
JOURNAL OF LATEX CLASS FILES 1

Method-Level Test-to-Code Traceability Link
Construction by Semantic Correlation Learning

Weifeng Sun, Zhenting Guo, Meng Yan, Zhongxin Liu, Yan Lei, Hongyu Zhang

Abstract—Test-to-code traceability links (TCTLs) establish links between test artifacts and code artifacts. These links enable
developers and testers to quickly identify the specific pieces of code tested by particular test cases, thus facilitating more efficient
debugging, regression testing, and maintenance activities. Various approaches, based on distinct concepts, have been proposed to
establish method-level TCTLs, specifically linking unit tests to corresponding focal methods. Static methods, such as
naming-convention-based methods, use heuristic- and similarity-based strategies. However, such methods face the following
challenges: ① Developers, driven by specific scenarios and development requirements, may deviate from naming conventions, leading
to TCTL identification failures. ② Static methods often overlook the rich semantics embedded within tests, leading to erroneous
associations between tests and semantically unrelated code fragments. Although dynamic methods achieve promising results, they
require the project to be compilable and the tests to be executable, limiting their usability. This limitation is significant for downstream
tasks requiring massive test-code pairs, as not all projects can meet these requirements. To tackle the abovementioned limitations, we
propose a novel static method-level TCTL approach, named TESTLINKER. For the first challenge of existing static approaches,
TESTLINKER introduces a two-phase TCTL framework to accommodate different project types in a triage manner. As for the second
challenge, we employ the semantic correlation learning, which learns and establishes the semantic correlations between tests and
focal methods based on Pre-trained Code Models (PCMs). TESTLINKER further establishes mapping rules to accurately link the
recommended function name to the concrete production function declaration. Empirical evaluation on a meticulously labeled dataset
reveals that TESTLINKER significantly outperforms traditional static techniques, showing average F1-score improvements ranging from
73.48% to 202.00%. Moreover, compared to state-of-the-art dynamic methods, TESTLINKER, which only leverages static information,
demonstrates comparable or even better performance, with an average F1-score increase of 37.40%.

Index Terms—Software engineering, Software testing, Traceability, Pre-trained Code Model.

✦

1 INTRODUCTION

MAINTAINING traceability between software artifacts
is crucial in the software development lifecycle [1].

Watkins et al. emphasize the significance of software artifact
traceability, highlighting that “You can’t manage what you
can’t trace” [2]. Unit testing validates the correctness of the
unit under test (hereon tested code) and enhances software
quality. Establishing precise traceability between test code
and the tested code, known as test-to-code traceability links
(TCTLs) [3], is essential for leveraging the benefits of unit
testing and remains a critical part of the software develop-
ment process.

Although establishing TCTLs is necessary, achieving this
connection is far from straightforward, especially without
explicit clues or effective tool support [4]. Moreover, sub-
stantial research has concentrated on class-level traceability,
linking test classes to their corresponding focal classes [5],
[6], [7], [8], [1], [9]. In contrast, method-level traceability,
which pairs unit tests with specific focal methods, has not
received as much attention [10], [11], [12]. The granularity
provided by method-level TCTLs, as opposed to class-level

• Weifeng Sun, Zhenting Guo, Meng Yan, Yan Lei, and Hongyu Zhang
are with the School of Big Data and Software Engineering, Chongqing
University, China.
E-mail: weifeng.sun@cqu.edu.cn, cqugzt@cqu.edu.cn,
mengy@cqu.edu.cn, yanlei@cqu.edu.cn, hyzhang@cqu.edu.cn

• Zhongxin Liu is with the State Key Laboratory of Blockchain and Data
Security, Zhejiang University, China.
E-mail: liu zx@zju.edu.cn

Meng Yan is the corresponding author.

TCTLs, is critical for accurately understanding and vali-
dating production functionality, as well as for effectively
locating and resolving defects [12]. Therefore, this paper
focuses on method-level traceability, with test code and tested
code referring to the unit test (hereafter called test) and the
focal method, respectively.

In addressing the challenge of automated traceability
at the method level, researchers have proposed various
static approaches, yielding promising outcomes. Some ap-
proaches use heuristics, such as naming conventions (NC),
where tests are named after their focal methods, typically
with a test prefix or suffix [13], [9], [14]. For example, a
test named testDeepCopy likely corresponds to a focal
method named DeepCopy. Other common approaches rely
on lexical similarity between the tests and focal methods.
However, these methods face effectiveness bottlenecks due
to one or several of the following challenges: ① C1: De-
velopers, driven by specific scenarios and development
requirements, may ignore naming conventions, leading to
TCTL identification failures. ② C2: Moreover, static methods
that depend on text similarity or predefined rules often
overlook the rich semantic content in test code, potentially
misidentifying corresponding focal methods.

Recently, White et al. [3], [15] introduce TCTracer, a state-
of-the-art dynamic TCTL technique. TCTracer leverages test
execution information to identify functions executed by a
given test t and then applies static traceability methods to
score traceability links between t and each executed func-
tion. The highest-scoring production function is selected as

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3449917

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 14,2024 at 01:51:53 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES 2

the focal method. Unlike static TCTL methods that analyze
all production functions within a project, TCTracer narrows
its focus to only those executed by t, significantly reducing
the number of potential function candidates. Unfortunately,
its applicability reveals certain limitations: ① Constrained
Usability in Downstream Tasks. Identifying and constructing
TCTLs underpins a range of downstream tasks, such as
Just-In-Time obsolete test code detection [16], co-evolution
visualization [17], and assertion generation [18]. Such tasks
require massive pairs of tests and the corresponding focal
methods. For instance, Tufano et al. [19] mine a vast dataset
of 887,646 test-code pairs to fine-tune a transformer model
for unit test generation. Similarly, Rao et al. [20] prepare
1.1M test-code pairs to pre-train code models. Nevertheless,
TCTracer requires the project to be compilable and the tests
to be executable, restricting its usability in constructing
large-scale datasets, as not all projects meet these criteria.
Moreover, automating project compilation is often challeng-
ing due to dependencies on specific external or internal
setups and resources [21], [22]. ② Limitations Derived From
Static TCTL Techniques. Although TCTracer integrates dy-
namic information, it still relies on static TCTL strategies for
scoring traceability links, inevitably inheriting limitations
similar to those of static methods, particularly in challenge
C1 and C2.

Our work. To tackle the abovementioned challenges,
we propose a more flexible static TCTL approach, with
the goal of matching or surpassing the performance of
dynamic methods. For the challenge C1 mentioned above,
we introduce a two-phase TCTL framework to accommo-
date different project types in a triage manner. Leveraging
naming conventions, our method determines focal methods
for tests adhering to established conventions. For tests de-
viating from these conventions, we introduce an innova-
tive identification strategy to establish TCTLs effectively.
Regarding the challenge C2, we leverage the semantic
correlation learning, which learns and understands the inher-
ent semantic correlation between tests and focal methods
based on semantic understanding capabilities of Pre-trained
Code Models (PCMs). Notably, test code may involve many
function calls, including the calls to helper functions and
those to initialize object states. While such function calls are
necessary for setting up the test environment but are not
the calls to the focal method. Yet, it is fundamental for the
test code to call the tested code to verify its functionality,
which implies that the tested code is interwoven within
the function calls invoked by the test code. The challenge
lies in isolating potential function calls in the test code and
understanding the intents behind these calls to identify the
focal method accurately. Motivated by this, we reframe the
TCTL problem as a ranking task among a set of potential
function calls, aiming to identify the most relevant one as
the focal method.

Based on the idea mentioned above, we propose a novel
approach named TESTLINKER, which integrates heuristic
rules with PCMs to facilitate the TCTL construction. Specif-
ically, for a given test t, TESTLINKER first extracts the name
of t and then applies naming conventions to determine a
function name candidate for t. If this name candidate can
be found within the focal class, TESTLINKER recommends
the corresponding method as the focal method. Otherwise,

TESTLINKER parses the test to extract the names of the
functions called in the t. To filter out potential yet extraneous
function calls that could muddle PCM inference, we estab-
lish two heuristic rules to refine the name list. Subsequently,
TESTLINKER employs a PCM fine-tuned on our constructed
dataset to evaluate the semantic correlation/relevance of
each function call name to the test code, where the name
with the highest relevance serves as the recommended focal
method name. To map the recommended name to its func-
tion declaration, we have implemented a set of mapping
rules, improving TCTL identification precision.

To evaluate the performance of TESTLINKER, we first uti-
lize the largest publicly available dataset provided by White
et al. [3], [15], which is manually annotated and widely rec-
ognized as a benchmark in the field. Given that this public
dataset primarily consists of utility libraries, we additionally
manually labeled two distinct types of projects to extend the
evaluation dataset. In total, the manually labeled dataset
comprises 335 verified traceability links, encompassing a
diverse array of test scenarios. The results indicate that
TESTLINKER significantly outperforms existing static tech-
niques in terms of effectiveness. Specifically, TESTLINKER
achieves an average precision of 73.51%, an average recall of
58.81%, and an average F1-score of 65.34%. These metrics re-
flect average F1-score improvements ranging from 73.48% to
202.00%. Furthermore, compared to state-of-the-art dynamic
TCTL methods, TESTLINKER, which leverages only static
information, demonstrates comparable or superior perfor-
mance, with an average F1-score improvement of 37.40%.

Novelty & Contributions. To sum up, the contributions
of this paper are as follows:
(1) Effective Technique. We propose TESTLINKER, a hy-

brid approach that integrates heuristic rules with Pre-
trained Code Models (PCMs) to construct the test-to-
code traceability link (TCTL), without using any addi-
tional dynamic execution information. To our knowl-
edge, our work is the first application of PCM in this
context. Moreover, we define a set of mapping rules, en-
suring precise alignment of the identified focal method
names with their corresponding classes and specific
function details. A notable feature of TESTLINKER is
its flexibility, which enables it to be implemented with
various PCMs.

(2) Extensive study. We conduct an empirical study to
evaluate the effectiveness of TESTLINKER compared to
state-of-the-art static and dynamic TCTL techniques.
The results indicate that TESTLINKER significantly out-
performs static baselines, achieving average F1-score
improvements ranging from 73.48% to 202.00%. When
compared to dynamic TCTL methods, TESTLINKER
consistently shows comparable or even superior effec-
tiveness.

(3) Open Science. To support the research and develop-
ment in the field of TCTL, we have curated and released
several datasets that include tested code, test code, and
the function calls within the test code, providing valu-
able resources for further exploration and advancement
in TCTL methodologies. Additionally, we have open-
sourced the scripts for data processing, model training,
and model evaluation, as well as the traceability link
results and related models for follow-up studies [23].

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3449917

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 14,2024 at 01:51:53 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES 3

2 BACKGROUND

2.1 Test-to-Code Traceability Link

The establishment and maintenance of traceability links
between test code and their corresponding tested code
have gained significant attention in the research community,
given their diverse applications. These traceability links
are crucial for: 1) Identifying Test Code Updates: They help
pinpoint which test code needs updates following changes
in the tested code [15]. 2) Maintaining Consistency Dur-
ing Refactoring: Traceability aids in maintaining consistency
during the refactoring process [24]. 3) Documenting: They
serve as a comprehensive form of documentation [1]. 4)
Enhancing Regression Testing Efficiency: TCTL greatly bolsters
the efficiency of regression testing, leading to considerable
time and resource savings [25], [26]. 5) Facilitating Fault
Localization: Additionally, it can help developers accurately
identify the specific code under test when test cases fail. 6)
Laying Foundations for Downstream Tasks: More importantly,
establishing these traceability links lays the foundation for
a range of downstream tasks, such as Just-In-Time detection
of obsolete test code [27], co-evolution of production and
test code [17], [28], assertion generation [18], and unit test
generation [19], etc.

The majority of previous research on TCTL has focused
on the class level, i.e., establishing links between test classes
and their corresponding focal classes [9], [1], [7], [8], [5], [6].
For instance, Van Rompaey et al. [9] assess six traceability
techniques in three projects, using a dataset of 59 links. Their
findings suggest perfect precision and recall for naming con-
ventions, but their study is limited to class-level traceability
and a small dataset. Kicsi et al. [8] investigate Latent Se-
mantic Indexing (LSI) for class-level TCTL, assuming lexical
similarity between a test class and its focal class. Csuvik et
al. [6] adopt a similar approach but use word embeddings,
improving precision but not investigating recall.

Research on method-level TCTLs, which link unit tests
to their focal methods, has been relatively limited [10], [12],
[11]. EzUnit [10] enables developers to manually annotate
tests with links to focal methods. Similarly, TestNForce [12]
links tests to focal methods, employing tracing to identify
methods called within a test. However, TestNForce does
not perform further filtering, leading to a low precision.
More recent advancements by White et al. [3], [15] with
TCTracer mark a significant development in this area. TC-
Tracer dynamically collects each test’s function calls, in-
cluding the called functions and their positions within the
call stack relative to the tests. This methodology provides a
natural filtering process that serves as a starting place for
establishing TCTLs. TCTracer then utilizes static traceability
techniques on these dynamically generated candidate links
to compute scores indicating their validity. Additionally,
TCTracer employs two methods—call depth discounting and
normalization—to refine these scores. Call depth discounting
adjusts the scores based on the call stack distance, with the
intuition that functions closer to the test are more likely
the focal methods. Normalization standardizes these scores,
ensuring a consistent metric. Unlike the aforementioned
methods, our proposed hybrid approach combines heuristic
rules with Pre-trained Code Models (PCMs) to facilitate
TCTL construction, without any additional dynamic execu-

tion information. Furthermore, TESTLINKER addresses the
scalability and generalizability challenges of previous TCTL
methods to some extent, making it adaptable to a wider
range of project sizes and types.

2.2 Pre-trained Code Model

Our research draws inspiration from the success of
Pre-trained Code Models (PCMs) in software engineer-
ing. Such PCMs typically fall into three categories of
transformer architecture: encoder-only, decoder-only, and
encoder-decoder models [29]. 1) Encoder-Only Models: Mod-
els like CodeBERT[30] and GraphCodeBERT [31] use a
bidirectional transformer during pre-training. This allows
each token in the input sequence to interact with all other
tokens, providing a comprehensive understanding of the
context. However, these models require an external decoder
for generative tasks, which is not pre-trained and must be
trained from scratch. 2) Decoder-Only Models: Models like
GPT [32] are pre-trained using a unidirectional language
modeling approach. Here, tokens can only interact with
previous tokens in the sequence to predict the next tokens.
This design makes them suitable for autoregressive tasks
like code completion. However, the unidirectional nature
limits the effectiveness of these models in understanding
tasks that require a complete and integrated understanding
of the entire input context. 3) Encoder-Decoder Models: These
models combine both encoding and decoding capabilities,
rendering them highly adaptable for various tasks. The
encoder-decoder structure is beneficial for tasks that require
an in-depth understanding of context and the generation of
relevant outputs based on that context.

PCMs have been applied in a wide range of code-
related tasks, including program repair [33], [34], vulnera-
bility repair [35], [36], vulnerability detection [37], [38], code
review [39], [40], and assertion generation [41], [42], [43].
For instance, Steenhoek et al. [38] offer a comprehensive
evaluation of the latest PCMs in software vulnerability de-
tection. Additionally, Xia et al. [33] assess the effectiveness of
various PCMs in rectifying real-world software bugs. Recent
studies [41], [42], [43] delve into the capabilities of PCMs,
such as T5 and BART, in facilitating the task of assertion
generation. These models undergo a process of pre-training
and fine-tuning to adapt to the specific requirements. De-
spite promising results from PCMs in various software en-
gineering tasks, to the best of our knowledge, there has been
no research specifically investigating their capabilities in
supporting TCTL. In this study, we harness PCMs to capture
the testing intent of tests, thereby establishing more precise
test-to-code traceability links. To explore the generalization
capabilities of TESTLINKER, we have selected four advanced
PCMs, i.e., CodeBERT [30], GraphCodeBERT [31], UniX-
coder [44], and CodeT5 [16]. Additionally, we investigate
the use of CHATGPT, a large language model, to further
enhance our evaluation.

3 MOTIVATION

To better illustrate our motivation, we refer to an example
(as shown in Figure 1) from the popular GitHub project
commons-math [45]. In this example, we manually establish

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3449917

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 14,2024 at 01:51:53 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES 4

Test Code

1 @Test
2 public void testCreate() {
3 final double[] d = { -1.2, 3.4, 5 };
4 final DiagonalMatrix m = new DiagonalMatrix(d, false);
5 final RealMatrix p = m.createMatrix(5, 5);
6 final int RowDimension = p.getRowDimension();
7 Assert.assertEquals(5, RowDimension);
8 }

Tested Code

1 public RealMatrix createMatrix(int rowDimension,
2 int columnDimension) {
3

4 if (rowDimension != columnDimension) {
5 throw new CustomException(rowDimension,
6 columnDimension);
7 }
8

9 return new DiagonalMatrix(rowDimension);
10 }

Fig. 1: A test-to-code traceability link in commons-math

the TCTL to identify and summarize two critical challenges
that impede the effectiveness of current TCTL approaches.

Challenge 1 (C1): Naming conventions in test code
sometimes deviate from the norm. Although best practices
for JUnit test naming suggest a resemblance between test
names and focal method names, often realized by append-
ing or prefixing test to the focal method name, real-world
practices sometimes deviate from this norm. For instance,
some tests commence with the prefix BUG, followed by a
numeric identifier. This indicates a linkage to the specific
bug report [9]. Moreover, even for tests that seem to fol-
low naming conventions, accurately identifying their focal
methods can be challenging. An example in Figure 1 demon-
strates this divergence: Despite the use of the prefix test,
the actual focal method is createMatrix, not Create.
While strict adherence to naming conventions provides a
precise basis for constructing TCTLs, as supported by prior
research [3], [15], [9], the existence of exceptions necessitates
a more flexible approach. This understanding motivates
the development of our two-phase TCTL framework to
accommodate different project types in a triage manner.

Challenge 2 (C2): Current static TCTL methods often
overlook the semantic information within test code. Ex-
isting static methods tend to rely on naming and textual
similarities, often ignoring the rich semantics embedded
within test code. Test names provide limited identifica-
tion information, usually consisting of just a few tokens.
On the other hand, assessing text similarity between tests
and production functions often fails to capture semantic
nuances, as code fragments with high semantic similarity
might exhibit substantial differences in lexical composition,
and vice versa [46]. For instance, the test in Figure 1 only
shares a Jaccard similarity of 0.175 with the focal method.
The Last Call Before Assert (LCBA) technique is predicated
on the assumption that the last function invoked before an
assertion is the one being tested. However, this assumption
is not always correct. In this instance, LCBA erroneously
identifies getRowDimension as the focal method. Con-
structing precise TCTLs requires an in-depth understanding
of test code semantics to capture the test’s intent. In the ex-
ample test, the initialization of a diagonal matrix, invocation

of createMatrix, and subsequent assertion aim to verify
the correct handling of specific inputs by createMatrix.
This level of semantic comprehension extends beyond basic
similarity measures or predefined rules. Benefiting from the
pre-training paradigm, Pre-trained Code Models (PCMs) of-
fer satisfactory semantic understanding, making them suit-
able for constructing TCTLs. Furthermore, we observe that
tests typically call their focal methods and auxiliary func-
tions, such as DiagonalMatrix and getRowDimension.
Therefore, based on the PCMs’ semantic understanding,
we model the TCTL as a ranking challenge and employ
the semantic correlation learning [47], [48], [49], which learns
the inherent semantic correlation between tests and focal
methods.

4 APPROACH

In this section, we introduce TESTLINKER in detail. As
discussed in Section 3, to address Challenge C1, we propose
a two-phase TCTL framework. Specifically, in cases where
tests strictly adhere to naming conventions, we leverage
these conventions to identify focal methods. For instances
that deviate from these norms, we introduce an innovative
identification strategy, ensuring the effective establishment
of traceability links. To address Challenge C2, our identi-
fication strategy trains a neural ranking model to evaluate
the semantic correlation/relevance of each called function
to the test code, with a higher relevance score indicating a
greater likelihood of being the focal method.

The overall framework of our approach is illustrated
in Figure 2. TESTLINKER consists of two parts: Offline
Ranking Model Training and Online Two-phase TCTL
Identification. During offline training, we establish a cus-
tom training dataset to train a neural ranking model.
When it comes to online construction, for a given test
t, TESTLINKER follows these steps to identify TCTLs: 1)
TESTLINKER first extracts the name of t and then em-
ploys the Naming Convention (NC) to identify a function
name candidate for t (refer to Component#1). 2) If this
name candidate can be found within the corresponding
focal class, TESTLINKER recommends the corresponding
method as the focal method. 3) If the name candidate is
not found, TESTLINKER switches to its second phase (refer
to Component#2). In this phase, TESTLINKER parses t to
extract the names of the functions called within it, filters
out irrelevant ones using heuristics, and utilizes the trained
neural ranking model to identify the function name most
likely to be the focal method. Given Java’s polymorphic
features, TESTLINKER implements a series of mapping rules
to precisely associate the recommended function name with
its corresponding production function declaration.

4.1 Offline-Ranking Model Training

Actually, a single test may evaluate multiple overloaded
functions. For example, in the gson project [50], the
testStringValueAsSingleElementArraySerializa
tion tests two functions with the same name:
toJson(String[]) and toJson(String[],
String[].class). Besides, Java’s polymorphic
characteristic introduces complexity to identifying the

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3449917

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 14,2024 at 01:51:53 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES 5

public void testBlockArrange() {

 BlockContainer c = createTestContainer1();

 RectangleConstraint constraint =

 RectangleConstraint.NONE

 .toFixedHeight(100.0);

 Size2D s = c.arrange(null, constraint);

 assertEquals(90.0, s.width, EPSILON);

 assertEquals(100.0, s.height, EPSILON);

}

Online—Two-phase TCTL Identification

Offline—Ranking Model Training

public void MASK() {

 for (int i = 1; i <= 100; i++) {

 assertEquals(Integer.toString(i),

range.next());

 }

}

Test Code：
public void MASK() {

 for (int i = 1; i <= 100; i++) {

 assertEquals(Integer.toString(i),

range.next());

 }

}

Test Code：

Method Call: next

Positive: Focal Method Name

Method Call: next

Positive: Focal Method Name

Method Call: toString

Negative: Called Function Name

Method Call: toString

Negative: Called Function Name

['public','void','MASK','()','{','fo

r','(','int','i','=','1',';','i','<=

','100',';','i','++)','{','assert','

Equals','(','Integer','.','to','Stri

ng','(','i','),','range','.','next',

'());','}','}']

Test Code Tokens：
['public','void','MASK','()','{','fo

r','(','int','i','=','1',';','i','<=

','100',';','i','++)','{','assert','

Equals','(','Integer','.','to','Stri

ng','(','i','),','range','.','next',

'());','}','}']

Test Code Tokens：

Positive: ['next']

Focal Method Name Tokens：

Positive: ['next']

Focal Method Name Tokens：

Negative: ['to', 'String']

Called Function Name Tokens：

Negative: ['to', 'String']

Called Function Name Tokens：

Code

Tok.

Test Sample

PCM-Encoder

Encoder 1

feed-forward

self-attention

layer-norm

En
co

d
e

r 2

En
co

d
e

r 1
2

...

Neg. Vector

Pos. Vector

Class A

Class B

Class A

Class B

Classification

Trained

Rank Model

TC-Call Pair

Call1Call1Test CodeTest Code

Sorted Call Set

Call3Call3

Call2Call2

Call2Call2

Call1Call1

Call3Call3

Public:

 M1();

 M2();

Class C1

Public:

 M1();

 M2();

Class C1

Public:

 M3();

Private:

 M4();

Class C2

Public:

 M3();

Private:

 M4();

Class C2

Public:

 C2 c2;

 M5();

Class C3

Public:

 C2 c2;

 M5();

Class C3

Class Diagram

Map

Map

No

test + BlockArrange

Prefix Root Word

Component#1: Naming Convention

blockArrange
Successful

Search ?
Yes

Fine

Tune

Code

Emb.

Parse

Infer
Component#2: Neural Ranking

Github Repository

Methods2Test Dataset TestLink Dataset

Test method

Focal method

Test method

Focal method

Filter Empty Calls

Mask Test Names

Parse Function

Calls

Preprocess

Map

JUnit Framework

Static Analysis

JavaParser

Configuration Analysis

Extr.

Target Project

Mine

public void testBlockArrange() {

 BlockContainer c = createTestContainer1();

 RectangleConstraint constraint =

 RectangleConstraint.NONE

 .toFixedHeight(100.0);

 Size2D s = c.arrange(null, constraint);

 assertEquals(90.0, s.width, EPSILON);

 assertEquals(100.0, s.height, EPSILON);

}

Online—Two-phase TCTL Identification

Offline—Ranking Model Training

public void MASK() {

 for (int i = 1; i <= 100; i++) {

 assertEquals(Integer.toString(i),

range.next());

 }

}

Test Code：

Method Call: next

Positive: Focal Method Name

Method Call: toString

Negative: Called Function Name

['public','void','MASK','()','{','fo

r','(','int','i','=','1',';','i','<=

','100',';','i','++)','{','assert','

Equals','(','Integer','.','to','Stri

ng','(','i','),','range','.','next',

'());','}','}']

Test Code Tokens：

Positive: ['next']

Focal Method Name Tokens：

Negative: ['to', 'String']

Called Function Name Tokens：

Code

Tok.

Test Sample

PCM-Encoder

Encoder 1

feed-forward

self-attention

layer-norm

En
co

d
e

r 2

En
co

d
e

r 1
2

...

Neg. Vector

Pos. Vector

Class A

Class B

Classification

Trained

Rank Model

TC-Call Pair

Call1Test Code

Sorted Call Set

Call3

Call2

Call2

Call1

Call3

Public:

 M1();

 M2();

Class C1

Public:

 M3();

Private:

 M4();

Class C2

Public:

 C2 c2;

 M5();

Class C3

Class Diagram

Map

Map

No

test + BlockArrange

Prefix Root Word

Component#1: Naming Convention

blockArrange
Successful

Search ?
Yes

Fine

Tune

Code

Emb.

Parse

Infer
Component#2: Neural Ranking

Github Repository

Methods2Test Dataset TestLink Dataset

Test method

Focal method

Filter Empty Calls

Mask Test Names

Parse Function

Calls

Preprocess

Map

JUnit Framework

Static Analysis

JavaParser

Configuration Analysis

Extr.

Target Project

Mine

Fig. 2: The overall framework of our approach. Offline—Ranking Model Training: TestLink, an adaptation of the Meth-
ods2Test dataset, enhances model training by pairing modified developer-written tests with focal methods, resulting in
over 2.5 million labeled instances for studying semantic correlations. Online—Two-phase TCTL Identification: Trained models
are applied to a target project, ensuring unbiased validation with no overlap in data from the TestLink dataset.

focal method, as the actual parameter in the test may not
align with the formal reference types. This misalignment
can hinder the model’s ability to accurately distinguish
between different function calls based on their signatures.
To tackle this challenge, our ranking model prioritizes the
names of functions called in a test, providing an abstract
level to establish the relationship between the test and
function calls. This approach is crucial, as relying on
function signatures at this stage might overlook potential
matches due to polymorphism-related discrepancies. When
multiple calls share the same name, each is considered a
potential focal method.

Our model is built using a pre-trained CodeT5 model,
fine-tuned on our customized TestLink dataset. It should
be noted that TESTLINKER can be implemented with other
PCMs (see Section 6.4). CodeT5 [27] adopts T5’s encoder-
decoder architecture and incorporates token-type informa-
tion specific to code. It utilizes a denoising sequence-
to-sequence pre-training task. Alongside a denoising pre-
training task, it incorporates semantics from developer-
assigned identifiers via two identifier-related tasks: identifier
tagging and masked identifier prediction. These tasks enable
CodeT5 to comprehend the significance of identifiers in code
and to learn contextual dependencies involving identifiers.
CodeT5 has demonstrated its utility in a wide range of
downstream tasks. The TestLink dataset is structured as
TestLink = {((t, c), l)1, . . . , ((t, c), l)n}, where t signifies
the test code, c denotes the function call name, and l is
a binary label with l ∈ {0, 1}. A label of 1 indicates that
c is the focal point of t, while other function call names
are labeled 0. More details about TestLink can be found
in Section 5.2.1. We model the TCTL challenge as a binary
classification task. The neural ranking model accepts t and
c as inputs, truncates the code tokens, and uses the CodeT5
model to embed them. After obtaining the representations
for the test and the name of its invoked function, the ranking
model employs a deep learning classifier to produce the
final probabilities of the semantic correlation. Overall, our

neural ranking model comprises an encoder and a classifier.
The encoder, powered by CodeT5, generates embeddings
for the input tokens, while the classifier predicts whether a
function call is the focal point of the test code.

1) Encoder: The encoder is responsible for obtaining the
contextual representative embedding of the input sequence.
In this paper, we exploit the pre-trained CodeT5 encoder to
initialize the encoder. Specifically, the model takes the test
code paired with the name of one of its invoked functions as
input, denoted as TC. We treat TC as sequences of tokens
and employ a subword tokenizer [51] to address the out-of-
vocabulary problem by breaking down identifiers into their
subtokens. We retain the original tokenization vocabulary
instead of building a new one, allowing the model to inherit
the pre-trained semantic understanding and start learning
prediction from a solid initial point. This token sequence
is subsequently mapped to an embedding sequence X̃ =
{x̃1, x̃2, . . . , x̃n} via the embedding layer. Within CodeT5,
the sequence undergoes transformations across l dedicated
Transformer blocks, each integrating a multi-headed self-
attention mechanism [52], a feed-forward network and the
layer normalization operation [53], as follows:

X̂ = MultiHead(X̃)

Xi = LayerNorm(X̂+ FFN(X̂))
(1)

Here, MultiHead(·), FFN(·) and LayerNorm(·) represent the
multi-head self-attention layer [52], the feed-forward layer
and the layer normalization operation [53], respectively. i
in Xi indicates Xi is the output of the ith Transformer
layer. The multi-head self-attention layer learns long-range
dependencies in the input code tokens. The feed-forward
layer linearly transforms the token embeddings for better
feature extraction, and layer normalization ensures the sta-
bility of the code token embedding distribution. After being
processed by l Transformer layers, TC is encoded as a
sequence of contextual embeddings Xl =

{
xl
1,x

l
2, . . . ,x

l
n

}
.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3449917

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 14,2024 at 01:51:53 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES 6

We use the last hidden state xl
n as the contextual vector

representation R of TC.
2) Classifier: This step involves binary classification

based on the learned representation R to determine whether
the function call name is the focal method name of the input
test. To better capture the relationships between the two
parts of the input (TCi = {t, c}) from R, we employ a dense
layer with a non-linear function to learn latent interactions
between them. Subsequently, the output of the dense layer
is used to predict the likelihood of the final label l = {0, 1}.
More precisely, the classifier is defined as follows:

f = tanh(WR+ b)

P (l|t, c) = Softmax(f) (2)

where W represents the weight matrix, b denotes the bias
vector, and tanh serves as the activation function within
the dense layer. The Softmax generates the final probability
score for the label l between 0 and 1. Our objective is to train
the model to recognize and assign high semantic relevance
scores (i.e., prediction probability) to positive samples, while
negative samples are allocated low scores.

4.2 Online-Two-phase TCTL Construction
4.2.1 Key Component#1: Naming Convention
Naming Convention (NC) has been demonstrated to yield
high precision in identifying relevant focal methods [15].
Although the specific conventions may differ across
projects [9], the fundamental principle remains consistent:
there is a recognizable pattern or relationship between the
names of the test and the focal method.

As depicted in Figure 2, Component#1 initiates its
process by analyzing the name of the test. It specifically
searches prefixes or suffixes (e.g., test in the given ex-
ample) to identify the key part of the test’s name, which
we refer to as the root word (e.g., blockArrange). The root
word usually corresponds to or is closely related to the name
of the function or feature under test. To accommodate varied
naming practices among developers, we have predefined a
set of common prefix and suffix patterns, such as {test,
tests, testcase, testcases}. The root word is then
extracted using regular expressions. Once a potential link is
identified, the next step is to verify its validity. TESTLINKER
scans the production code to locate a function named with
the root word. If such a function exists, it confirms the
traceability link between the test and the function. To ensure
the precision of Component#1, we also take into account the
correlation between class names. Specifically, we stipulate
that for a traceability link to be established in Component#1,
both the test and production function names must align, and
their respective class names must correspond.

4.2.2 Key Component#2: Neural Ranking
1) Model Inference: While it is straightforward to obtain
function names called in the test through static analysis,
applying the trained ranking model indiscriminately to all
function names can result in several challenges: 1) Com-
putational Overhead: Running the ranking model for each
function name in a potentially large function call set can
be computationally intensive due to the resources required
for model inference. 2) Compromised Prediction Precision: The

presence of function call names that are plausible but irrele-
vant to the test’s actual focus can adversely affect prediction
precision. To mitigate these issues, we introduce two heuris-
tic rules to refine the original function call set (denoted as
FC), thereby improving both identification efficiency and
precision:

• Non-Focal API Filtering: While essential for imple-
menting the test code, the standard JDK APIs and asser-
tion functions are typically peripheral to the core testing
focus, i.e., the functions in the project under test. Therefore,
our heuristic rules exclude them. Specifically, TESTLINKER
leverages JavaParser [54] to obtain the fully qualified
name (FQN) of each element e in FC. These FQNs,
which encapsulate package, class, and function names,
differentiate standard JDK and common assertions from
application-specific calls. The differentiation is achieved
through a pattern-matching mechanism using a predefined
list of namespace patterns, including {java.*, javax.*,
org.junit.*, org.hamcrest.*}.

• Test Dependency Pruning: It is common for
test code to invoke other test functions due to
inheritance or code reuse practices. For instance,
GraggBulirschStoerStepInterpolatorTest
in the commons-math project [45] calls functions
from StepInterpolatorTestUtils for consistency
validations, which should not be regarded as focal
methods. To this end, TESTLINKER scans the entire project,
specifically identifies functions located in the src/test
directory, and recognizes them as part of the test suite
rather than the production code. Leveraging the FQNs of
these functions, TESTLINKER adeptly filters them out from
the candidate set FC.

After applying these heuristic rules, we obtain a more
relevant function call set, denoted as FC∗. In the inference
phase, for each element e ∈ FC∗, TESTLINKER pairs the test
code and the function name of e, and utilizes the trained
model to evaluate the semantic correlation of the function
name to the test. The name with the highest score is selected
as the recommended focal method name.

2) Function Mapping: Following the prioritization of
function call names, i.e., obtaining the most likely fo-
cal method name, precise alignment between the iden-
tified function name and its corresponding production
function declaration becomes imperative. Unlike dynamic
methods that focus on executed functions, we analyze
all functions within the project, which presents chal-
lenges, particularly when production classes contain mul-
tiple functions with identical names. For instance, a
common function like hashCode might create linkage
ambiguities, as merely using the function name could
incorrectly associate a hashCode test with every in-
stance of it in the project. Moreover, utilizing func-
tion signatures parsed from the test as production func-
tion declarations is imprecise due to Java’s polymor-
phism. For example, in the commons-io project [55], the
test case testMoveFileToDirectory_Errors calls the
closeQuietly function. Parsing it with JavaParser re-
veals the parameter type as BufferedOutputStream,
while the corresponding production code declares it as
closeQuietly(OutputStream). Here, the actual argu-
ment type is a subclass of the declared type. This poly-

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3449917

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 14,2024 at 01:51:53 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES 7

Algorithm 1: Mapping to Function Declaration
Input: Storing the classes information of project and JDK,

respectively: CIM , JCIM
Function-class detailed dictionary: Func Detail
The focal method name recommended by TESTLINKER: N
The test code under analysis: T

Output: Recommended tested class-method RTCM
1: RTFS ← GetFuncDetails(N,T)
2: for each m ∈ RTFS do
3: params len← GetParaLength(m.parameters)
4: sig list←

GetSignatures(m.class name,m.name, Func Detail)
5: sig list∗ ← FilterSignatures(sig list, params len)

// Using mapping rule#1
6: maxTotalScore← 0, bestSig ← None
7: for each sigi ∈ sig list∗ do
8: totalScore← 0

// Using mapping rule#2
9: for each paramj m ∈ m, paramj sigi ∈ sigi do

10: if isMatch(paramj m, paramj sigi) then
11: score = 1
12: else
13: score = ObtainLcsScore(paramj m, paramj sigi)
14: end if
15: totalScore+ = score
16: end for
17: if totalScore > maxTotalScore then
18: maxTotalScore← totalScore
19: bestSig ← sigi
20: end if
21: end for
22: RTCM ← Append(bestSig, bestSig.class name)
23: end for
24: Return RTCM

morphism introduces challenges in accurately mapping the
function call to the correct production function declara-
tion, as the exact match of parameter types is not always
straightforward. If the TCTL method does not accurately
map the function call to the correct function declaration,
it increases the manual review burden for developers. To
mitigate these challenges, we introduce a series of mapping
rules. These rules account for polymorphism and other nu-
ances in function declarations, thereby reducing ambiguities
and improving the overall precision of our method.

Algorithm 1, detailing our mapping rules, takes
the following inputs: • Classes Information of Project
(CIM): This contains inheritance dependencies among
production classes within the project. • Classes Informa-
tion of Java (JCIM): This details inheritance relation-
ships among standard JDK classes, such as the hier-
archy from ArrayList to Object. CIM and JCIM
are crucial for parameter type matching, e.g., mapping
BufferedOutputStream to OutputStream in the above
example requires the inheritance dependency established by
JCIM . • Func Detail: A dictionary where each key is the
FQN of a function in the production code, and each value
is the corresponding function signature. Its format is as
follows: {"fully.qualified.path.to.methodName":
("listOfParameters", "withTheirTypes")}. • N :
The focal method name as recommended by TESTLINKER.
• T : The test code under analysis. Initially, the algorithm
utilizes JavaParser to parse T and extract function calls
that share the name N (denoted as RTFS), including their
FQNs and actual parameter types (Line 1). For each func-
tion m from RTFS, the algorithm first counts the actual
parameters of m and retrieves functions from Func Detail
with the same FQN (Lines 3-4). Then, it applies mapping

rule#1: The target function’s parameter count should match that
of the recommended function. This criterion filters the initial
list to sig list∗ (Line 5). For each function signature sigi
∈ sig list∗, the algorithm uses mapping rule#2: A higher
parameter type similarity suggests a higher likelihood of the
function being the intended target. The algorithm compares
parameter types at corresponding positions and calculates
a cumulative similarity score between m and sigi (Lines 9-
15). The signature sigi with the highest similarity score is
then selected as the definitive mapping target for m (Lines
17-20). Each parameter type pair (paramj m, paramj sigi)
receives a similarity score within the range [0, 1], calculated
as follows: 1) If paramj m matches or is a subclass of
paramj sigi according to CIM and JCIM , the score is set
to 1. 2) For non-matching types, similarity scores are derived
using the Longest Common Subsequence (LCS) method, as
per the formula:

Similarity Score =
|LCS(paramj m,paramj sigi)|

|paramj m|
(3)

5 EVALUATION SETUP

This section presents our research questions, the experi-
mental datasets, and the evaluation metrics used in the
experiment.

5.1 Research Questions
We aim to answer the following research questions:

• RQ1: How does TESTLINKER compare in performance
with established TCTL baselines?

• RQ2: Are all proposed strategies of TESTLINKER instru-
mental to its effectiveness?

• RQ3: How is TESTLINKER influenced by the quantity
of recommended Function Names?

• RQ4: To what extent does the choice of code models
affect the overall effectiveness of TESTLINKER?

5.2 Data Preparation
5.2.1 Training Dataset Construction
To train our neural ranking model, we introduce TestLink,
a dataset derived from the Methods2Test dataset [19]. Meth-
ods2Test comprises developer-written unit tests paired with
their focal methods, extracted from a large collection of
over 91,000 open-source Java projects. The association of test
cases with their respective focal methods in Methods2Test
is achieved using two key rules: 1) Name Matching: This
rule pairs a test case with a focal method by matching
their names, excluding potential Test prefixes or suffixes.
2) Unique Method Call: If the intersection between the list of
function calls within the test and the list of methods defined
within the focal class yields a unique method, this method
is regarded as the focal method. Methods2Test ensures the
accuracy of these TCTLs [56] and includes 780,944 samples.
Building on this precision, we design TestLink to help
PCMs understand the semantic correlation between the fo-
cal method and its test code. We specifically adapt the Meth-
ods2Test dataset for the TCTL task. In TestLink, we modify
developer-written tests, including masking test names to
prevent data leakage, as Methods2Test partially relies on

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3449917

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 14,2024 at 01:51:53 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES 8

naming conventions. Methods2Test includes instances with
empty function call lists, which are unsuitable for model
training and testing. We thus exclude these instances from
Methods2Test. For each filtered sample ⟨fi, ti⟩ from the
Methods2Test, we parse ti to obtain the list of invoked func-
tion names: {ci1, ci2, . . . , cin}. We then automate the label-
ing process based on whether the function call name exactly
matches the focal method name. Specifically, if cim matches
the function name of fi, we construct a positive sample
⟨ti, cim,′ 1′⟩. The remaining calls are used to construct neg-
ative samples: {⟨ti, cik,′ 0′⟩ | 1 ≤ k ≤ n, k ̸= m}. This con-
struction method generates at least two new samples (one
positive and multiple negative samples) for each entry in
the refined Methods2Test dataset. As a result, the TestLink
dataset contains over 2.5 million labeled instances, making it
a substantial resource for developing and evaluating TCTL
prediction models.

5.2.2 Evaluation Dataset Construction
For RQ1-RQ3, we use the largest manually labeled dataset
to the best of our knowledge, based on the following con-
siderations: 1) Real-World Representation: The manually
labeled dataset includes diverse types of tests, accurately
representing real-world scenarios. This diversity makes it
ideal for evaluating the effectiveness of various TCTL meth-
ods. 2) Dynamic Method Requirements: Dynamic TCTL
methods require execution information, which cannot be
derived from the static TestLink dataset. The manually
labeled dataset provides such information by recovering
the project’s compilation environment and containing test
execution data. Below, we provide a detailed description of
this manually labeled dataset.

Public Dataset. We adopt the method-level traceability
datasets provided by White et al. [3], [15], derived from
four well-known open-source Java projects that use the
JUnit testing framework: Commons IO, Commons Lang,
JFreeChart, and Gson. We diligently adhere to the previous
experimental setting [15], aligning with the evaluated sub-
jects and versions, restoring compilation environments, and
ensuring test executability. These datasets are widely used
due to their rigorous annotation process, which is conducted
by a doctoral student experienced in software traceability
and two senior undergraduate students.

Additional Evaluation Dataset. To further enhance the
robustness and applicability of our evaluation, we have
broadened the evaluation dataset by incorporating addi-
tional projects. we select these projects using the following
criteria: 1) Project Types. The project needs to cover different
types and application scenarios to ensure a diverse dataset.
2) Long change history. Following previous work [57], [58],
[28], we exclude projects with a commit history of fewer
than three years to ensure that the selected projects are
well-maintained. 3) Popularity. The number of stars [59] on
GitHub reflects a repository’s popularity. Following previ-
ous research [60], we select projects with more than ten
stars to avoid possible toy projects. 4) Compilability. The
selected projects must be compilable, and all tests can be
run successfully, allowing us to obtain test execution infor-
mation. Given the time cost of manual labelling and the
complexity of restoring the project’s compilation environ-
ment, we ultimately chose Jenkins [61] and Dubbo [62].

Jenkins is a widely used automation server in the DevOps
domain, which offers a rich set of plugins to support
building, deploying, and automating any project. Dubbo
is a high-performance Java-based open-source Remote Pro-
cedure Call (RPC) framework that provides functionalities
such as automatic service registration and discovery, load
balancing, and fault tolerance.

To establish method-level oracle links, we invite three
volunteers experienced in TCTL research, each with at least
four years of Java programming experience, including one
PhD student and two master’s students. Oracle links, also
known as ground truth, refer to the manually verified trace-
ability links that serve as the benchmark for evaluating the
performance of TCTL methods. Following the methodology
outlined in previous work [3], [15], each volunteer indepen-
dently reviews a random selection of tests from the projects
to determine the focal methods for each test. The volunteers
are guided to label each sample based on several criteria:
the functions called within each test, the frequency of those
calls, the frequency with which these called functions are
invoked by other tests, the names of the tests, and the
functions whose return values are checked by assertions.
After completing their individual assessments, the three
volunteers collectively review any cases of disagreement.
Through this collaborative review process, they reach a
final consensus, achieving a full inter-rater agreement. By
involving multiple reviewers and employing a rigorous
review process, we ensure the reliability and accuracy of
the constructed oracle links.

In total, the manually labeled dataset, incorporating
both the public dataset and the additional evaluation
dataset, comprises 335 manually verified traceability links.
The dataset includes 231 samples across six projects: four
utility libraries for different application scenarios, an au-
tomation server project, and an open-source remote proce-
dure call (RPC) framework. An in-depth inspection reveals
that the number of unique function calls per test ranges from
1 to 26, with a median ranging from 3 to 10. Here, unique
function calls refer to the different functions invoked within
a test case, considering each function only once regardless
of the number of times it is called within the test. The total
number of assertions ranges from 68 in Commons IO to 296
in Commons Lang, with a median ranging from 1 to 3 per
test across projects. The count of assertions is determined
by the number of assertion statements (e.g., assertTrue,
assertEquals) found within the test code. This diversity
reflects the complex nature of real-world projects. Specif-
ically, 19.91% of samples contain multiple focal methods,
and 9.96% of the tests involve indirect focal method calls.
Notably, some samples include multiple traceability links
due to the presence of tests with multiple focal methods.
This explains why the number of traceability links (335)
exceeds the number of samples (231). To avoid data leakage,
we carefully remove all samples used to build the manually
labeled dataset from our TestLink. Further details about
these subjects are available in Table 1.

For RQ4, we utilize both the manually labeled dataset
and our self-constructed TestLink dataset to evaluate the
performance of different PCMs in TCTL prediction. The
TestLink dataset is a static dataset designed specifically
for training and evaluating semantic associations between

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3449917

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 14,2024 at 01:51:53 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES 9

TABLE 1: Subject statistics

Project Version Num. of Num. of Total Num. Median Num. Total Num. of Median Num. of Num. of Num. of Ground
Functions Tests of Assertion1 of Assertion1 Unique Function Call2 Unique Function Call2 Samples Truth Links

Commons IO 2.5 1,246 994 68 2 186 7 28 41
Commons Lang 3.7 3,111 3,061 296 3 242 6 42 78

JFreeChart 1.0.19 9,053 2,244 110 3 208 8 28 44
Gson 2.8.0 635 1,006 107 1 215 3 50 55

Jenkins-core 2.346.1 11,476 928 149 3 267 5 42 50
Dubbo-rpc 3.2.12 957 136 124 2 445 10 41 67

1. The “Total Num. of Assertions” and “Median Num. of Assertions” columns refer to the count of assertion statements within the test code.
2. The “Total Num. of Unique Function Calls” and “Median Num. of Unique Function Calls” columns refer to the count of different functions called

within the test code, considering each function only once regardless of the number of calls.

test code and focal methods. This dataset is valuable for
fine-tuning and testing PCMs due to its size and specific
focus on semantic relationships. Despite its simplicity and
constraints—such as ensuring each test has only one cor-
responding focal method and requiring direct calls—the
TestLink dataset provides a controlled environment to
evaluate PCM performance. The inclusion of TestLink in
RQ4 aims to broaden the evaluation scope, allowing for
a more comprehensive comparison of various PCMs. By
leveraging the larger and more focused TestLink dataset
alongside the manually labeled dataset, we can systemati-
cally investigate and compare the performance of different
models, ultimately identifying the most effective model
configurations for TCTL prediction. Notably, the division
of the TestLink dataset into training, validation, and test
sets strictly aligns with the same partitioning as the Meth-
ods2Test dataset, ensuring that there is no overlap between
the training and test sets in TestLink.

5.3 Evaluation Metrics
We have selected three critical metrics for our evaluation:
precision, recall, and the F1-score. Precision and recall,
which are essential in assessing binary classifier perfor-
mance, measure the proportion of true positives among
all positive predictions (i.e., Precision = TP

TP+FP) and the
proportion of all positive samples retrieved (i.e., Recall =

TP
TP+FN), respectively. In this context, TP represents the
correctly identified focal methods by TESTLINKER, FP rep-
resents the function calls mistakenly classified as focal meth-
ods, and FN accounts for focal methods that TESTLINKER
fails to recognize. As precision and recall often involve
trade-offs, the F1-score (i.e., F1-score = 2∗ Precision∗Recall

Precision+Recall)
serves as a valuable metric. It quantifies the balance between
precision and recall by taking their harmonic mean. Impor-
tantly, when computing precision and recall, we consider all
the correct focal methods of a given test. In other words, our
precision, recall, and F1-score calculations are based on the
number of traceability links, not the number of samples.

5.4 Test environment
We implement TESTLINKER in Python using PyTorch [63].
The experiments are performed on a Ubuntu 20.04 with four
NVIDIA GeForce RTX 3090 GPUs, one 32-core processor,
and 256GB memory. We set the number of recommended
function names (denoted as m) to one. In RQ3, we explore
the effects of varying m on the performance of TESTLINKER.
In RQ4, for other PCMs training, we take as input the tests
and the names of their invoked functions, denoted as TC.

PCMs tokenize and embed TC. The representation of TC
is derived from either the mean or [CLS] vector from the
last hidden states. A dense layer with a non-linear activation
function predicts the labels. Inputs exceeding 512 tokens are
truncated. The AdamW [64] optimizes the model, with the
best version chosen by the highest harmonic mean of F1-
score and accuracy on the validation dataset.

6 RESULT ANALYSIS

6.1 RQ1: Comparison with State-of-the-arts
6.1.1 Baselines
In this section, we evaluate TESTLINKER against 16 TCTL
techniques, encompassing both static and dynamic strate-
gies. Due to space limitations, we offer brief overviews of
these baselines here. More detailed method descriptions and
example listings for each technique can be found in the
Appendix (see supplementary material).

Static Techniques: Static methods for establishing
TCTLs solely rely on static information from the production
code of the target project. They include: 1) Static Naming
Conventions (Static NC) [9]: This method associates a test
with a production function if both their names and their
respective class names match according to naming conven-
tions. 2) Static Naming Conventions – Contains (Static
NCC) [3], [15]: This approach establishes a link between
a test and a production function when the test’s name
includes the function’s name, and the test class’s name
contains the function class’s name, with test removed from
both names. 3) Static Longest Common Subsequence – Both
(Static LCS-B) [3], [15]: This method uses Fully Qualified
Names (FQNs) to determine the ratio of the longest common
subsequence’s length to the length of the longer entity
(either the production function or test name). A higher ratio
indicates a higher likelihood of the function being tested. 4)
Static Longest Common Subsequence – Unit (Static LCS-
U) [3], [15]: This method is similar to Static LCS-B, but the
length of the longest common subsequence is divided by
the length of the function’s FQN only. 5) Static Levenshtein
Distance (Static Leven) [3], [15]: This measures the edit
distance between the function and test FQNs. The pair with
the smallest Levenshtein distance is considered most likely
linked. 6) Static Last Call Before Assert (Static LCBA) [65],
[9]: This method operates an assumption that the function
called immediately before an assert is likely to be the one
being tested. 7) Static Term Frequency–Inverse Document
Frequency (Static TFIDF) [66]: This method treats tests as
documents and functions as terms, aiming to link them
based on the frequency of function execution within tests.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3449917

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 14,2024 at 01:51:53 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES 10

Dynamic Techniques. TCTracer [3], [15] is the state-
of-the-art dynamic TCTL framework. Consequently, this
paper establishes several dynamic baselines based on
the TCTracer. Leveraging the TCTracer framework, we
adapt the abovementioned static baselines into dy-
namic variants, specifically: 1) Naming Convention
(TCTracerNC) [3], [15], 2) Naming Conventions – Contains
(TCTracerNCC) [3], [15], 3) Longest Common Subsequence
– Both (TCTracerLCS-B) [3], [15], 4) Longest Common Sub-
sequence – Unit (TCTracerLCS-U) [3], [15], 5) Levenshtein
Distance (TCTracerLeven) [3], [15], 6) Last Call Before Assert
(TCTracerLCBA) [3], [15], and 7) Term Frequency–Inverse
Document Frequency (TCTracerTFIDF) [3], [15]. Additionally,
an extra baseline, 8) TCTracerTarantula [3], [15], is introduced.
Drawing inspiration from Tarantula [67], an automatic fault
localization technique, this baseline calculates the suspi-
ciousness of a function relative to a test for a specific test-to-
code pair where the test executes the function. Based on the
intuition that each technique can provide insights not fully
accessible through any other method, White e.g., [3], [15]
ultimately propose an integrated approach, TCTracerComb,
that combines the individual techniques described above
into a single, comprehensive score. All dynamic techniques
utilize dynamic trace information, allowing them to avoid
common issues associated with static techniques, such as
over-approximation and the inability to reason about refer-
ences and dependencies resolved at runtime.

Each technique leverages different aspects of the rela-
tionship between tests and code to establish TCTLs. How-
ever, certain methods are excluded from our baselines due
to specific limitations. 1) Fixture Element Types (FET): This
method utilizes test fixture elements (e.g., objects, data) to
establish traceability links. However, it is not suitable for
method-level application due to its focus on broader fixture
elements rather than specific methods [9]. Additionally, this
strategy falls short if no objects are declared as explicit
fixture elements. 2) SCOTCH+: This technique enhances
traditional traceability by considering both dynamic slicing
and textual analysis. This method identifies tested class
candidates through dynamic slicing of execution traces,
focusing on the last executed assert statement. It then re-
fines this candidate set using textual similarity measures.
SCOTCH+ is not well-suited for method-level TCTL be-
cause its granularity and class-level focus do not capture
the finer details required for method-level traceability [1].
3) Lexical Analysis (LA): This method relies on the simple
lexical similarity between test and code elements, such as
natural language used in type names, identifiers, strings,
and comments, to establish links. It is excluded due to its
low precision and recall in practical scenarios, as confirmed
by previous studies [68], [8]. 4) Co-Evolution (Co-Ev): This
technique analyzes the co-evolution of tests and production
code over time to infer traceability links. Co-Ev is not
included in our evaluation because it necessitates extensive
historical co-evolution data. Furthermore, previous studies
have shown that Co-Ev often suffers from low precision and
recall [68], [8].

To ensure a direct and fair comparison between
TESTLINKER and the baselines, when multiple functions
achieve the same maximum traceability link score, the base-
line randomly selects one as the focal method for that test.

Given the variability introduced by this randomness, each
experiment is repeated five times per baseline. We report
the average results of these repetitions as the final baseline
performance to ensure reliable and consistent evaluation.

6.1.2 Results
In this RQ, we construct and utilize a large-scale, manually
labeled dataset. This dataset contains 335 oracle links, which
are manually verified traceability links serving as ground
truth for evaluating TCTL methods. The dataset spans vari-
ous project types, including four utility libraries for different
application scenarios, an automation server project, and
an open-source remote procedure call (RPC) framework.
It features a diverse array of test scenarios, encompassing
different test naming conventions, varying numbers of focal
methods per test, and both direct and indirect function
calls to focal methods. This diversity ensures a realistic and
comprehensive evaluation of TCTL methods. Further details
about the dataset are provided in Section 5.2.2.

The experimental results, as shown in Tables 2 and 3,
highlight the performance of TESTLINKER compared to var-
ious dynamic-based and static-based baseline techniques.
The evaluation metrics considered are precision, recall, and
F1-score. It is important to note that TESTLINKER is a
static method. When juxtaposed with other static TCTL
techniques, TESTLINKER consistently outperforms nearly
all baselines, as evidenced in Table 2. While TESTLINKER
falls short in precision compared to Static NC, it excels
across almost all other evaluated metrics. This is partic-
ularly evident in its F1-score, where TESTLINKER shows
significant improvements over static baselines, with average
increments ranging from 73.48% to 202.00%. Such findings
highlight TESTLINKER’s effectiveness in static TCTL con-
texts. In comparison with dynamic methods, TESTLINKER
exhibits a balanced performance overall. In contrast to
methods like TCTracerNC, which achieves high precision but
low recall, or TCTracerTFIDF, known for its strong recall but
lower precision, TESTLINKER effectively strikes a balance in
these two metrics. This is exemplified by its average F1-
score of 65.34%, which reflects substantial improvements
over almost all dynamic techniques, with average enhance-
ments varying from 8.57% to 161.36%. The average F1-score
performance gap between TESTLINKER and TCTracerComb is
marginal, at just 1.64%. Importantly, TESTLINKER achieves
similar or even better effectiveness compared to dynamic
methods, using only static information. TESTLINKER cir-
cumvents the need for compiling projects and executing
tests, making TESTLINKER especially suitable for down-
stream tasks requiring massive test-code pairs.

We further conduct statistical analysis to determine
whether TESTLINKER significantly outperforms all baseline
methods by employing the Wilcoxon signed-rank test [69]
at a 95% significance level. Meanwhile, the non-parametric
Cliff’s delta effect size is used to evaluate the magnitude
of the difference1 between the two approaches. Specifically,
we compute the p-value of TESTLINKER with respect to
each baseline, based on the F1-score results for the six

1. We use the following mapping for the values of the delta that are
less than 0.147, between 0.147 and 0.33, between 0.33 and 0.474 and
above 0.474 as “Negligible (N)”, “Small (S)”, “Medium (M)”, “Large (L)”
effect size, respectively [70]

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3449917

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 14,2024 at 01:51:53 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES 11

TABLE 2: Effectiveness (%) of TESTLINKER compared with each baseline

Project Category Technique Prec. Recall F1-score Project Category Technique Prec. Recall F1-score
C

om
m

on
s

La
ng

D
yn

am
ic

-b
as

ed

TCTracerComb 88.10 47.44 61.67 ↑ 12.61%

C
om

m
on

s
IO D
yn

am
ic

-b
as

ed

TCTracerComb 75.00 51.22 60.87 ↓ -7.59%
TCTracerNC 100.00 10.26 18.60 ↑ 273.24% TCTracerNC 100.00 7.32 13.64 ↑ 312.50%
TCTracerNCC 96.30 33.33 49.52 ↑ 40.22% TCTracerNCC 100.00 39.02 56.14 ↑ 0.20%
TCTracerLCS-U 78.57 42.31 55.00 ↑ 26.25% TCTracerLCS-U 67.86 46.34 55.07 ↑ 2.14%
TCTracerLCS-B 73.81 39.74 51.67 ↑ 34.40% TCTracerLCS-B 64.29 43.90 52.17 ↑ 7.81%
TCTracerLeven 82.93 43.59 57.14 ↑ 21.52% TCTracerLeven 75.00 51.22 60.87 ↓ -7.59%
TCTracerLCBA 81.08 38.46 52.17 ↑ 33.09% TCTracerLCBA 45.83 26.83 33.85 ↑ 66.19%
TCTracerTarantula 78.57 42.31 55.00 ↑ 26.25% TCTracerTarantula 71.43 48.78 57.97 ↓ -2.97%
TCTracerTFIDF 88.10 47.44 61.67 ↑ 12.61% TCTracerTFIDF 75.00 51.22 60.87 ↓ -7.59%

St
at

ic
-b

as
ed

Static NC 90.00 11.54 20.45 ↑ 239.48%

St
at

ic
-b

as
ed

Static NC 100.00 7.32 13.64 ↑ 312.50%
Static NCC 63.33 24.36 35.19 ↑ 97.36% Static NCC 43.75 17.07 24.56 ↑ 129.02%
Static LCS-U 54.05 25.64 34.78 ↑ 99.64% Static LCS-U 34.62 21.95 26.87 ↑ 109.38%
Static LCS-B 45.95 21.79 29.57 ↑ 134.87% Static LCS-B 47.62 24.39 32.26 ↑ 74.38%
Static Leven 51.35 24.36 33.04 ↑ 110.15% Static Leven 42.86 21.95 29.03 ↑ 93.75%
Static LCBA 78.79 33.33 46.85 ↑ 48.22% Static LCBA 43.75 17.07 24.56 ↑ 129.02%
Static TFIDF 78.05 41.03 53.78 ↑ 29.12% Static TFIDF 53.57 36.59 43.48 ↑ 29.38%
TESTLINKER 75.76 64.10 69.44 —— TESTLINKER 78.26 43.90 56.25 ——

G
so

n

D
yn

am
ic

-b
as

ed

TCTracerComb 84.00 76.36 80.00 ↑ 6.48%

JF
re

eC
ha

rt D
yn

am
ic

-b
as

ed

TCTracerComb 92.86 59.09 72.22 ↓ -20.34%
TCTracerNC 100.00 9.09 16.67 ↑ 411.08% TCTracerNC 100.00 15.91 27.45 ↑ 109.57%
TCTracerNCC 84.62 20.00 32.35 ↑ 163.28% TCTracerNCC 100.00 25.00 40.00 ↑ 43.83%
TCTracerLCS-U 72.00 65.45 68.57 ↑ 24.22% TCTracerLCS-U 84.62 50.00 62.86 ↓ -8.47%
TCTracerLCS-B 70.00 63.64 66.67 ↑ 27.77% TCTracerLCS-B 80.77 47.73 60.00 ↓ -4.12%
TCTracerLeven 78.00 70.91 74.29 ↑ 14.67% TCTracerLeven 88.46 52.27 65.71 ↓ -12.45%
TCTracerLCBA 70.45 56.36 62.63 ↑ 36.01% TCTracerLCBA 73.08 43.18 54.29 ↑ 5.98%
TCTracerTarantula 68.00 61.82 64.76 ↑ 31.53% TCTracerTarantula 74.07 45.45 56.34 ↑ 2.12%
TCTracerTFIDF 70.00 63.64 66.67 ↑ 27.77% TCTracerTFIDF 62.96 38.64 47.89 ↑ 20.14%

St
at

ic
-b

as
ed

Static NC 100.00 5.45 10.34 ↑ 723.41%

St
at

ic
-b

as
ed

Static NC 75.00 6.82 12.50 ↑ 360.24%
Static NCC 63.64 12.73 21.21 ↑ 301.56% Static NCC 44.44 9.09 15.09 ↑ 281.14%
Static LCS-U 38.89 25.45 30.77 ↑ 176.84% Static LCS-U 47.83 25.00 32.84 ↑ 75.21%
Static LCS-B 21.95 16.36 18.75 ↑ 354.29% Static LCS-B 56.52 29.55 38.81 ↑ 48.25%
Static Leven 33.33 23.64 27.66 ↑ 207.96% Static Leven 68.18 34.09 45.45 ↑ 26.57%
Static LCBA 33.33 16.36 21.95 ↑ 288.06% Static LCBA 50.00 13.64 21.43 ↑ 168.47%
Static TFIDF 18.00 16.36 17.14 ↑ 396.97% Static TFIDF 39.29 25.00 30.56 ↑ 88.28%
TESTLINKER 86.79 83.64 85.18 —— TESTLINKER 72.41 47.73 57.53 ——

Je
nk

in
s D

yn
am

ic
-b

as
ed

TCTracerComb 76.19 64.00 69.57 ↓ -12.24%

D
ub

bo

D
yn

am
ic

-b
as

ed

TCTracerComb 73.17 44.78 55.56 ↓ -0.17%
TCTracerNC 100.00 20.00 33.33 ↑ 83.16% TCTracerNC 93.75 22.39 36.14 ↑ 53.45%
TCTracerNCC 88.89 32.00 47.06 ↑ 29.74% TCTracerNCC 92.59 37.31 53.19 ↑ 4.27%
TCTracerLCS-U 63.16 48.00 54.55 ↑ 11.93% TCTracerLCS-U 75.68 41.79 53.85 ↑ 3.00%
TCTracerLCS-B 52.63 40.00 45.45 ↑ 34.32% TCTracerLCS-B 54.05 29.85 38.46 ↑ 44.20%
TCTracerLeven 63.16 48.00 54.55 ↑ 11.93% TCTracerLeven 70.27 38.81 50.00 ↑ 10.92%
TCTracerLCBA 46.88 30.00 36.59 ↑ 66.88% TCTracerLCBA 44.12 22.39 29.70 ↑ 86.72%
TCTracerTarantula 44.74 34.00 38.64 ↑ 58.02% TCTracerTarantula 50.00 28.36 36.19 ↑ 53.25%
TCTracerTFIDF 55.26 42.00 47.73 ↑ 27.92% TCTracerTFIDF 52.63 29.85 38.10 ↑ 45.59%

St
at

ic
-b

as
ed

Static NC 100.00 22.00 36.07 ↑ 69.28%

St
at

ic
-b

as
ed

Static NC 92.31 17.91 30.00 ↑ 84.87%
Static NCC 63.64 28.00 38.89 ↑ 56.99% Static NCC 84.00 31.34 45.65 ↑ 21.49%
Static LCS-U 59.46 44.00 50.57 ↑ 20.72% Static LCS-U 64.86 35.82 46.15 ↑ 20.17%
Static LCS-B 40.54 30.00 34.48 ↑ 77.05% Static LCS-B 44.44 23.88 31.07 ↑ 78.52%
Static Leven 48.78 40.00 43.96 ↑ 38.89% Static Leven 59.46 32.84 42.31 ↑ 31.09%
Static LCBA 48.15 26.00 33.77 ↑ 80.81% Static LCBA 53.85 20.90 30.11 ↑ 84.21%
Static TFIDF 37.50 30.00 33.33 ↑ 83.16% Static TFIDF 31.71 19.40 24.07 ↑ 130.38%
TESTLINKER 64.44 58.00 61.05 —— TESTLINKER 63.46 49.25 55.46 ——

↑ denotes performance improvement of TESTLINKER against state-of-the-art baselines
↓ denotes performance decrease of TESTLINKER against state-of-the-art baselines

evaluation projects. The statistical analysis, provided in
Table 3, underscores the robustness of TESTLINKER’s im-
provements. The p-values indicate that the F1-score im-
provements are statistically significant (p < 0.05) in most
cases. The effect size measurements indicate substantial
practical significance, with TESTLINKER achieving large ef-
fect sizes (L) against 12 baseline techniques. Although the
comparisons with TCTracerLCS-U and TCTracerLeven are not
statistically significant, TESTLINKER still demonstrates more
than an 8% improvement in average F1-score. Similarly,
while TESTLINKER’s F1-score is slightly lower than that of
TCTracerComb, the statistical analysis shows that this dif-
ference is not significant. This suggests that TESTLINKER’s
performance is comparable to the state-of-the-art dynamic
TCTL technique.

Detailed Analysis with an End-to-End Example. The
depicted example (Figure 3) showcases a testing scenario
from the Commons IO project. In this example, the method

Test Code

1 @Test
2 public void testIO300() throws Exception {
3 final File testDirectory = getTestDirectory();
4 final File src = new File(testDirectory, "dir1");
5 final File dest = new File(src, "dir2");
6 try {
7 FileUtils.moveDirectoryToDirectory(src, dest, false);
8 fail("expected IOException");
9 } catch (final IOException ioe) {

10 // expected
11 }
12 assertTrue(src.exists());
13 }

Fig. 3: A test sample that is successfully handled by
TESTLINKER in Commons-IO project

testIO300 tests the functionality of the FileUtils class,
specifically the moveDirectoryToDirectory method.
Static methods such as NC, NCC, LCS-U, LSC-B, and

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3449917

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 14,2024 at 01:51:53 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES 12

TABLE 3: Average Results, P -Values, Cliff’s Delta and Effect Size Comparing F1-score for Our Approach with Baselines

Category Technique
Metrics Statistical Results

Prec. Recall F1-score p-value Cliff’s Delta Effect-Size

D
yn

am
ic

-b
as

ed
TCTracerComb 81.39 56.12 66.43 ↓ -1.64% - - -
TCTracerNC 97.96 14.33 25.00 ↑ 161.36% ∗ 1.00 L
TCTracerNCC 93.75 31.34 46.98 ↑ 39.08% ∗ 0.94 L
TCTracerLCS-U 73.30 48.36 58.27 ↑ 12.13% - - -
TCTracerLCS-B 65.61 43.28 52.16 ↑ 25.27% ∗ 0.61 L
TCTracerLeven 75.91 49.85 60.18 ↑ 8.57% - - -
TCTracerLCBA 61.42 36.12 45.49 ↑ 43.64% ∗ 0.78 L
TCTracerTarantula 64.13 42.69 51.25 ↑ 27.48% ∗ 0.50 L
TCTracerTFIDF 67.71 45.07 54.12 ↑ 20.73% ∗ 0.39 M

St
at

ic
-b

as
ed

Static NC 93.18 12.24 21.64 ↑ 202.00% ∗ 1.00 L
Static NCC 63.72 21.49 32.14 ↑ 103.28% ∗ 1.00 L
Static LCS-U 51.02 29.85 37.66 ↑ 73.48% ∗ 1.00 L
Static LCS-B 41.03 23.88 30.19 ↑ 116.44% ∗ 1.00 L
Static Leven 49.75 29.25 36.84 ↑ 77.35% ∗ 1.00 L
Static LCBA 53.19 22.39 31.51 ↑ 107.35% ∗ 1.00 L
Static TFIDF 41.67 28.36 33.75 ↑ 93.61% ∗ 1.00 L
TESTLINKER 73.51 58.81 65.34 —— —— —— ——

1. ∗ p < 0.05, – p > 0.05.
2. L, M, S and N represent Large, Medium, Small and Negligible effect size according to Cliff’s delta.

Leven encounter difficulties in establishing TCTL due
to the test being generically named, resulting in zero
similarity scores. Dynamic methods, on the other hand,
analyze the function calls within the test execution trace.
Although they perform better by narrowing down potential
function candidates, they still suffer from false negatives
and false positives due to their reliance on static similarity
scores and execution context. In contrast, our proposed
approach, TESTLINKER, extracts function calls directly
from the test code and uses a neural ranking model to
learn and establish semantic correlations between tests
and focal methods from existing test-code pairs. The
detailed steps are as follows: 1) Component Selection:
Since TESTLINKER cannot identify the focal method for
this test using naming conventions, it switches to the
Component#2. 2) Function Call Extraction: TESTLINKER
employs the JavaParser to extract the following
function calls from the test to form a function call set:
{getTestDirectory, org.apache.commons.io.File,
org.apache.commons.io.FileUtils.moveDirectory
ToDirectory, org.junit.Assert.fail,
org.junit.Assert.assertTrue,
java.io.File.exists}. 3) Function Call Set Filtering:
Since getTestDirectory is a private function of the
test class, TESTLINKER removes it from the function
call set according to the Test Dependency Pruning
guidelines. Additionally, {org.junit.Assert.fail,
org.junit.Assert.assertTrue, and
java.io.File.exists} belong to JUnit and Java
standard APIs, and are also removed according to the
Non-Focal API Filtering principle. The final set of function
calls contains only {org.apache.commons.io.File,
org.apache.commons.io.FileUtils.moveDirectory
ToDirectory}. 4) Neural Ranking Model: TESTLINKER
then applies its neural ranking model to evaluate the
filtered function call set in the context of the test code.
The model, trained on a large corpus of test-code pairs,
incorporates both syntactic and semantic analysis to
rank the likelihood of each function being the focal

method. Based on this evaluation, TESTLINKER identifies
moveDirectoryToDirectory as the primary focal
method name with high confidence. 5) Function Mapping:
Finally, TESTLINKER uses the information parsed by
JavaParser, such as the number and type of parameters,
to match the function declarations in the production code
one by one, as described in Algorithm 1. This process
correctly identifies the function declaration of the focal
method: moveDirectoryToDirectory(File, File,
boolean).

Answer to RQ1: Overall, our comparison results reveal
that, (1) TESTLINKER can achieve remarkable perfor-
mance compared to existing static-based techniques with
average F1-score improvements ranging from 73.48% to
202.00%; (2) TESTLINKER can achieve similar or even
better effectiveness using only static information, com-
pared to dynamic methods, with an average F1-score
improvement of 37.40%.

6.2 RQ2: Ablation Experiment

6.2.1 Baselines

RQ2 aims to assess the individual contributions of the
distinct components within TESTLINKER. We consider how
each phase impacts TESTLINKER’s effectiveness by com-
paring the TESTLINKER against two of its variants: 1)
TESTLINKER-w/o C1: This variant constructs TCTLs solely
using the neural ranking model. 2) TESTLINKER-w/o C2:
Conversely, this variant relies exclusively on naming con-
ventions. Additionally, to understand the significance of
the filtering rules, which refine the list of function calls
during model inference, we introduce another variant: 3)
TESTLINKER-w/o rules: This variant still utilizes the two-
phase framework but does not apply the filtering rules
during the inference stage, meaning it evaluates all function
call names in the test code.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3449917

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 14,2024 at 01:51:53 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES 13

TABLE 4: The overall effectiveness of each component of
TESTLINKER

Variants Pre. Recall F1-score

TESTLINKER-w/o C1 73.31% 58.21% 64.89%
TESTLINKER-w/o C2 93.18% 12.24% 21.64%
TESTLINKER-w/o rules 67.84% 57.31% 62.14%

TESTLINKER 73.51% 58.81% 65.34%

6.2.2 Results
Due to space limitations, Table 4 presents the average per-
formance of TESTLINKER alongside its three variants across
all projects. For detailed results, please refer to our open-
source replication package [23]. The findings indicate that
each key component or strategy substantially contributes to
the effectiveness of TESTLINKER, as their exclusion results
in lower F1-scores.

• TESTLINKER-w/o C1: This variant relies on our ranking
model to construct TCTLs. Interestingly, it still main-
tains a precision of 73.31% and a recall of 58.21%,
with an F1-score of 64.89%, which is notable given
that test names are masked during training. Despite
this, the model still extracts useful clues from the
test names during inference. This phenomenon is
likely attributable to the PCMs, which, during pre-
training, might learn and capture semantic correla-
tions between function names and their code func-
tionalities. For example, in the gson project [71], the
testPrematureClose examines the Close function.
The model successfully identifies the focal method
Close from the key token in the test name. But,
with the test name masked, it incorrectly suggests
setLenient.

• TESTLINKER-w/o C2: This variant theoretically yields
the same performance to Static NC baseline. While
Component#1 is very precise, its limited scope results
in a low recall. Given the high precision of the naming
convention and the computational overhead required
to invoke the model, the two-phase framework can
enhance TESTLINKER’s adaptability. Further discussion
on Component#1 is provided in Section 7.1.

• TESTLINKER-w/o rules: This variant achieves a preci-
sion of 67.84%, a recall of 57.31%, and an F1-score of
62.14%. The decline in performance underscores the im-
portance of the filtering rules in improving prediction
quality by excluding irrelevant function calls.

Answer to RQ2: Overall, when each of the components
and strategies of the TESTLINKER is removed, the TCTL
identification performance of the TESTLINKER is typi-
cally reduced to varying degrees, with Component#2
and heuristic filtering rules significantly affecting the
performance of the TESTLINKER.

6.3 RQ3: The Effect of Different Number of Recom-
mended Function Names
6.3.1 Baselines
When resources are limited and there is restricted capacity
for manually checking the recommended focal methods,
it is more practical and efficient to focus on checking a

smaller subset (e.g., Top-1). Therefore, in Component#2 of
TESTLINKER, the model returns the function name with
the highest prediction score. Ideally, each test should cor-
relate directly with a single focal method. However, in
practical scenarios, tests sometimes encompass multiple
focal methods with different names. As described in Sec-
tion 5.2.2, 19.91% of the tests in the manually labeled
dataset involve testing multiple focal methods. To evaluate
the impact of recommending different numbers of function
names on TESTLINKER’s performance, we build three vari-
ants of our approach: TESTLINKER-r2, TESTLINKER-r3, and
TESTLINKER-r4. These variants are the same as TESTLINKER
except for returning the top-2, top-3, and top-4 recom-
mended function names, respectively. We then compare
their performance with that of TESTLINKER in the manually
labeled dataset.

6.3.2 Results
TABLE 5: Overall performance comparisons of different
number of recommended functions

The number of Evaluation Metrics

recommended functions Pre. Recall F1-score

TESTLINKER 73.51% 58.81% 65.34%
TESTLINKER-r2 58.55% 67.46% 62.69%
TESTLINKER-r3 50.52% 73.13% 59.76%
TESTLINKER-r4 45.24% 75.22% 56.50%

Table 5 presents the average results of various variants
across all projects. We observe that TESTLINKER outper-
forms its variants (TESTLINKER-r2 to TESTLINKER-r4) in
precision and F1-score, demonstrating its robust ability to
recommend the most relevant focal method while mini-
mizing false positives. As the variants recommend more
function names, there is a noticeable increase in recall, albeit
at the expense of precision. This compromise is reflected
in the declining F1-scores with an increasing number of rec-
ommendations. Considering the trade-off between precision
and recall, in this paper, we set the number of recommended
focal method names to one.

Answer to RQ3: The experimental results demonstrate
that TESTLINKER outperforms its variants (TESTLINKER-
r2 to TESTLINKER-r4) in both precision and F1-score
metrics, with fewer false positives. Furthermore, as the
number of recommended function names increases, the
recall of TESTLINKER exhibits a concurrent rise, albeit at
the expense of reduced precision.

6.4 RQ4: The Effect of Code Model Choices

6.4.1 Baselines
To gain a deeper understanding of how different code
models influence TESTLINKER’s performance in identifying
TCTLs, we evaluate four widely-used PCMs on the man-
ually labeled dataset and Testlink, i.e., CodeBERT [30],
GraphCodeBERT [31], UniXcoder [44], and CodeT5 [16].
These baselines are selected based on the following cri-
teria: 1) an extensive pre-training code corpus, 2) public
availability, and 3) diverse model structures. Large language
models (LLMs) [32], [72] trained on ultra-large-scale corpora

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3449917

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 14,2024 at 01:51:53 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES 14

TABLE 6: The performance of PCMs in TCTL prediction

PCMs Manually Labeled Dataset TestLink

Positive True Positive False Negative Pre. Recall F1-score Pre. Recall F1-score

CodeBERT 269 195 140 72.49% 58.21% 64.57% 91.65% 91.87% 91.76%
GraphCodeBERT 267 193 142 72.28% 57.61% 64.12% 92.11% 91.52% 91.81%

UniXcoder 269 195 140 72.49% 58.21% 64.57% 93.17% 91.45% 92.30%
CHATGPT 264 189 146 71.59% 56.42% 63.11% 77.78% 50.06% 60.92%

CodeT5 268 197 138 73.51% 58.81% 65.34% 93.55% 92.17% 92.86%

have made significant strides and exhibit remarkable per-
formance across various tasks. One noteworthy example is
CHATGPT [73], developed by OpenAI, which stands out
with its impressive 175 billion parameters and extensive
training data. The substantial scale of CHATGPT empowers
it with the ability to excel in understanding and generating
text across diverse domains. Consequently, we further ex-
plore the potential of augmenting the TESTLINKER frame-
work with CHATGPT’s in-context learning capabilities to
improve the TCTL identification.

Experimental Design. For each PCM, similar to CodeT5,
we fine-tune it on the TestLink training dataset to enable
it to learn semantic associations between the test code and
the focal method. Regarding CHATGPT [73], we access
it through the gpt-3.5-turbo-0301 API, the latest available
version. Interaction with CHATGPT involves natural lan-
guage conversations, where requests are sent, and responses
are received conversationally. To integrate CHATGPT into
the TESTLINKER framework, we use tailored prompts that
guide CHATGPT in generating responses that specify the
most likely focal method name within the test. This process
involves presenting the test to CHATGPT and highlighting
the function call names embedded within it. In our ex-
perimental setup, each interaction with CHATGPT begins
with the prompt: “You are an experienced Java test engineer.
In the following Java test method, please identify and output
the corresponding focal method from the given ##Invocations,
returning only the focal method’s name without additional text.”
We replace the neural ranking model of TESTLINKER with
the fine-tuned PCM and CHATGPT, respectively, to obtain
TESTLINKER’s performance in this configuration. In other
words, PCMs and CHATGPT are used only to determine
the function name of the most likely focal method for each
test, while the rest of the process remains consistent with
TESTLINKER.

6.4.2 Results
The results from Table 3 and Table 6 reveal that all
TESTLINKER variants, based on different PCMs and CHAT-
GPT, significantly outperform static TCTL baselines in
F1-scores. For example, the UniXcoder-based variant still
achieves an average F1-score enhancement ranging from
71.43% to 198.44%. Although these PCMs demonstrate sim-
ilar performance in TCTL identification, the CodeT5-based
variant slightly outperforms others. This finding is apparent
on both the TestLink and the manually labeled dataset.
Specifically, CodeT5 exhibits improvements in precision,
recall, and F1-score, albeit the increments are modest. On
the TestLink dataset, the increments range from 0.41%
to 2.07% in precision, 0.33% to 0.79% in recall, and 0.60%
to 1.20% in F1-score. Similarly, on the manually labeled
dataset, the improvements are 1.40% to 1.69% in precision,

7 10

2

1

0

0

2

0

0

0

1
0

2

4

1

1

11

0

2 2
3

1

0

3

6

2

2

10

162

codet5(197)

codebert(195)

graphcodebert(193)

chatgpt(189) unixcoder(195)

codet5
codebert
graphcodebert
unixcoder
chatgpt

Fig. 4: The overlaps of the TCTL identified by different
PCMs.

1.03% to 2.07% in the recall, and 1.19% to 1.90% in the F1-
score. We attribute this optimal performance to CodeT5’s
extensive pre-training code corpus, which includes both
CodeSearchNet and BigQuery datasets. In contrast, models
like CodeBERT are solely dependent on the CodeSearchNet
dataset. This evaluation demonstrates TESTLINKER’s gen-
eralizability as a framework compatible with a variety of
PCMs, not exclusively relying on CodeT5. Future work will
focus on improving the semantic understanding of PCMs,
thereby augmenting the effectiveness of TESTLINKER in
TCTL identification.

Table 6 presents the confusion matrix for CHATGPT
and various PCMs in TCTL identification, where Positive
indicates the total number of predicted focal methods, and
True Positive refers to those correctly identified. False Neg-
ative represents the number of actual focal methods that
the model fails to identify. Figure 4 illustrates the number
of overlapping TCTLs identified by different PCMs and
CHATGPT. From Table 6, it is evident that CHATGPT un-
derperforms in identifying TCTLs compared to CodeT5,
with an average precision of 71.59%, recall of 56.42%,
and F1-score of 63.11% in the manually labeled dataset.
Figure 4 shows that CHATGPT accurately identifies 189
TCTLs, slightly fewer than the 197 identified by CodeT5, 193
by GraphCodeBERT, and 195 by UniXcoder. These results
highlight CHATGPT’s limitations in general TCTL identi-
fication. However, CHATGPT uniquely identifies 7 TCTLs
that other models miss, underscoring its distinct advantages
in specific scenarios. This suggests that CHATGPT’s unique
strengths can complement traditional PCMs, potentially by

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3449917

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 14,2024 at 01:51:53 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES 15

integrating its conversational understanding into a hybrid
model or leveraging it in specific contexts to enhance TCTL
identification.

The results in Table 6 show a notable discrepancy in
the performance of different PCMs on the manually labeled
dataset versus the TestLink dataset. The manually labeled
dataset presents more complex scenarios, as it includes
19.91% of tests covering multiple focal methods and 9.96%
of tests lacking direct focal method calls. This complexity
is reflective of real-world testing scenarios and poses sig-
nificant challenges for TCTL identification methods. For the
PCMs, the higher performance on the TestLink dataset can
be attributed to the dataset’s design, which ensures that
each test has a one-to-one correspondence with its focal
method and that the focal methods appear directly in the
test. This simplifies the task for the PCMs, allowing them
to achieve higher precision and recall. However, CHATGPT
exhibits an inverse performance trend, performing better on
the manually labeled dataset than on the TestLink dataset.
This can be explained by CHATGPT’s unique strength in
understanding and generating text through conversational
context, which allows it to handle more nuanced and com-
plex scenarios better. In contrast, the TestLink dataset’s
simpler and more controlled environment, designed specifi-
cally for training semantic associations, may not fully lever-
age CHATGPT’s advanced conversational capabilities. The
more rigid and straightforward structure of TestLink aligns
less with CHATGPT’s strengths, thus leading to relatively
poorer performance compared to other PCMs.

Answer to RQ4: 1) The experimental results indicate
that all variants of TESTLINKER, utilizing different PCMs
and CHATGPT, significantly outperform static TCTL
baselines in F1-scores, with the CodeT5-based variant
showing slightly superior performance. 2) The experi-
mental results reveal that CHATGPT has lower precision,
recall, and F1-score in TCTL identification, compared
to CodeT5, GraphCodeBERT, and UniXcoder. However,
CHATGPT uniquely identifies more TCTLs not detected
by other models, suggesting its potential complementary
role in specific scenarios or hybrid model integration.

7 DISCUSSION

7.1 Selection of Component#1
As shown in Table 4, when examining the performance com-
parison between TESTLINKER-w/o C1 and TESTLINKER, the
careful reader may notice that they exhibit similar levels

Test Code

1 @Test
2 public void testLanguagesByCountry() {
3 assertLanguageByCountry(null, new String[0]);
4 assertLanguageByCountry("GB", new String[]{"en"});
5 assertLanguageByCountry("ZZ", new String[0]);
6 assertLanguageByCountry("CH", new String[]{"fr", "de", "

↪→ it"});
7 }

Fig. 5: A test sample that is successfully handled by Com-
ponent#1 in Commons-Lang project

of precision, recall, and F1-scores, with differences not ex-
ceeding 1%. This minimal variance suggests that replacing
Component#1 with another static-based method could po-
tentially amplify TESTLINKER’s effectiveness. However, our
current framework aims to ensure identification precision
in the initial phase, thereby placing the more challenging
samples in the second phase. In the subsequent phase,
the TESTLINKER employs semantic analysis for TCTL con-
struction, yielding better identification performance. De-
spite other static methods achieving higher F1-scores, their
precision significantly trails behind static NC. Therefore, we
chose the static NC strategy for the initial phase to prioritize
early-stage precision. This structured approach focuses on
precision first, followed by advanced identification capa-
bilities to handle complex samples, effectively managing
varying complexities within the samples.

Moreover, there are instances where the test code cannot
be parsed to retrieve function calls, causing the ranking
model to fail. However, some of these instances can be
effectively handled using naming conventions. For example,
as shown in Figure 5, the testLanguagesByCountry
directly invokes a custom assertion function that calls the
actual focal method languagesByCountry(). The neu-
ral ranking model might fail in this scenario because the
function calls are not directly present in the test code but
are nested within custom assertion methods. This nested
call structure can obscure the direct link between the test
and the focal method. However, naming conventions can
succeed where the neural ranking model fails because they
rely on the naming patterns of the tests and the methods.
In this case, the test name testLanguagesByCountry
closely matches the method name languagesByCountry,
allowing the naming convention to establish the TCTL
without parsing the nested function calls. In addition, static
NC reduces the time cost and computational overhead for
TESTLINKER. For the 335 manually labeled TCTLs, recog-
nizing TCTLs using only Component#2 takes 84.58 seconds.
When combining Component#2 with naming conventions,
the time cost is reduced to 67.28 seconds, with improve-
ments in both precision and recall. The naming convention
effectively handles simple TCTL scenarios through rules, re-
ducing the need for neural ranking model calls and enhanc-
ing the cost-effectiveness of TESTLINKER. Moving forward,
we will explore further optimization of Component#1 to
enhance its capability and overall efficiency in recognizing
TCTLs.

7.2 Application of Our Approach
TESTLINKER has the potential to facilitate automated soft-
ware engineering research in various domains, such as
obsolete test code detection (OTCD) [74], [27], regression
testing (RT) [1], and bug localization (BL) [75], [76], etc.

Obsolete Test Code Detection (OTCD): TESTLINKER
enhances OTCD by improving both precision and recall.
Higher precision ensures superior data quality for model
training, which enhances the accuracy of detection models.
Increased recall reduces the likelihood of missing obsolete
tests, ensuring that outdated or redundant test cases are
efficiently identified and removed. This results in more
maintainable and relevant test suites, streamlining the soft-
ware maintenance process.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3449917

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 14,2024 at 01:51:53 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES 16

Regression Testing (RT): In the RT, TESTLINKER im-
proves both precision and recall, optimizing the testing
process. Enhanced precision directs developers’ attention to
the most relevant tests, reducing the overall testing cycle
time. Additionally, increased recall expands test coverage,
thereby improving the likelihood of detecting regressions.
This contributes to higher software quality and reliability.

Bug Localization (BL): Bug localization involves identi-
fying the exact location of bugs within the codebase after
a test failure is detected. TESTLINKER can enhance bug
localization efforts by accurately mapping test failures to the
corresponding focal methods. This helps developers quickly
pinpoint the root cause of a bug, thereby accelerating the
debugging and fixing process. By providing precise links
between tests and their focal methods, TESTLINKER reduces
the time and effort required to diagnose issues, facilitating
faster resolution of software defects.

These applications highlight the versatility and potential
of TESTLINKER in improving various aspects of software
testing and maintenance, ultimately contributing to higher
software quality and more efficient development processes.

7.3 Limitation of Our Approach

We also investigate where TESTLINKER fails to correctly
build TCTLs. We manually review the samples where
TESTLINKER cannot make accurate predictions. The failures
primarily stem from the following issues: 1) As discussed in
RQ3, certain test cases lead to one-to-many scenarios, where
the test code tests more than one focal method. By default,
TESTLINKER returns only the Top-1 recommended function
name, which may result in the omission of some posi-
tive samples for such test cases. 2) TESTLINKER struggles
with detecting indirect method calls. However, in some in-
stances, the test code does not directly call the focal method.
As shown in Figure 6, in the Commons IO project, the
testTextXml only calls the checkTextXml function [77],
a private function within the test class which calls the
focal method. At this stage, TESTLINKER, relying mainly on
parsing direct function calls in test code, fails to recognize
these indirect relationships. Addressing this issue would re-
quire TESTLINKER to trace indirect call chains, necessitating
more advanced static analysis to deeply understand the call
relationships in code. 3) Finally, we face challenges due to
the limitations of JavaParser, which fails to parse some
implicitly called functions, such as the values function of
enumerated classes in Commons IO project [78]. Exploring
solutions to the above problems presents an interesting and
promising direction for future work.

7.4 Implication and Guideline

7.4.1 Implications for Practitioners
Considering Constructors as Focal Methods. In unit test-
ing, constructors can serve as focal methods, especially
when they are crucial for initializing the test environment.
For example, our manually labeled dataset reveals that out
of 335 TCTLs, 10 instances involve constructors as focal
methods. This is particularly important in object-oriented
programming, where constructors often play a significant
role in setting up the initial state of an object and ensuring its

Test Code

1 @Test
2 public void testTextXml() {
3 checkTextXml(false, null);
4 checkTextXml(false, "");
5 checkTextXml(false, "text/atomxml");
6 }

Other Test Code

1 private void checkTextXml(final boolean expected,
2 final String mime) {
3 assertEquals(expected, XmlStreamReader.isTextXml(mime),
4 "Mime=[" + mime + "]");
5 }

Fig. 6: A failure of TESTLINKER in Commons-IO project

proper configuration before any functions are invoked. Prac-
titioners should recognize the importance of constructors
and include them in their traceability analysis. By consid-
ering constructors as potential focal methods, practitioners
can achieve a more comprehensive understanding of the test
coverage and ensure that all critical initialization processes
are adequately traced. This approach can lead to more
thorough testing and better identification of issues related
to object instantiation and state management.

Handling Third-Party Dependencies. In real-world
projects, tests often invoke methods from third-party de-
pendencies. While our manually labeled dataset does not
reveal cases where third-party library functions are the focal
methods for tests, TESTLINKER does consider third-party
APIs within its neural ranking model. Specifically, we ex-
clude only Java standard and JUnit APIs from our analysis.
This exclusion is a deliberate choice aimed at reducing
noise and improving the precision of the traceability links.
Java standard APIs often include utility functions that are
widely used across various parts of the codebase, which
could lead to an overwhelming number of false positives
if included. Similarly, assertion APIs are used to verify
conditions in tests but do not themselves represent the core
functionality being tested. By filtering out these common
and generic APIs, TESTLINKER focuses on identifying more
meaningful traceability links that are directly relevant to the
application’s unique logic and functionality.

Ensuring that all third-party APIs used in tests are in-
cluded in the traceability analysis is essential for a complete
and accurate mapping of test cases. This comprehensive
approach helps in identifying potential issues arising from
third-party interactions, thereby improving the overall re-
liability and maintainability of the software. Practitioners
should extend their traceability analysis to include third-
party dependencies, ensuring a complete and accurate map-
ping of test cases to all relevant code. This includes identi-
fying direct calls to third-party methods and understanding
the interactions and dependencies that these methods intro-
duce. By incorporating third-party libraries into the trace-
ability analysis, practitioners can uncover hidden depen-
dencies and ensure that all parts of the software ecosystem
are adequately tested and traced.
7.4.2 Implications for Researchers
Addressing Mocks and Stubs. Following previous re-
search [3], [15], our current training and evaluation datasets
are designed for the Java programming language and utilize

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3449917

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 14,2024 at 01:51:53 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES 17

Test Code

1 /**
2 * Test localeLookupList() method.
3 */
4 @Test
5 public void testLocaleLookupList_Locale() {
6 assertLocaleLookupList(null, null, new Locale[0]);
7 assertLocaleLookupList(LOCALE_QQ, null, new Locale[{
8 LOCALE_QQ});
9 assertLocaleLookupList(LOCALE_EN, null, new Locale[]{

10 LOCALE_EN});
11 assertLocaleLookupList(LOCALE_EN, null, new Locale[]{
12 LOCALE_EN});
13 assertLocaleLookupList(LOCALE_EN_US, null,
14 new Locale[] {
15 LOCALE_EN_US,
16 LOCALE_EN});
17 assertLocaleLookupList(LOCALE_EN_US_ZZZZ, null,
18 new Locale[] {
19 LOCALE_EN_US_ZZZZ,
20 LOCALE_EN_US,
21 LOCALE_EN});
22 }

Fig. 7: A test sample in Commons-Lang project

the JUnit testing framework. While these datasets have been
meticulously curated, they do not explicitly account for the
presence of mocks and stubs within the tests. Mocks and
stubs are commonly used in unit testing to simulate depen-
dencies and isolate the functionality of the unit under test.
Their presence in testing scenarios can complicate the iden-
tification of focal methods in TCTL, as the approach must
distinguish between real method calls and those handled
by mocks or stubs. To address this limitation, researchers
could focus on explicitly identifying and handling mocks
and stubs within these testing scenarios. This enhancement
would involve: 1) Detection and Annotation: Developing
techniques to automatically detect and annotate mocks and
stubs in the test code. This could involve static analysis to
identify common mocking frameworks like Mockito [79],
EasyMock [80], and JMock [81]. 2) Impact Analysis: In-
vestigating the impact of mocks and stubs on the accuracy
of TCTL identification. This would involve comparing the
performance of TCTL methods on tests with and without
mocks and stubs. 3) Refinement of TCTL Methods: Adapt-
ing TCTL methods to handle mocks and stubs appropriately.
This could involve enhancing the algorithms to recognize
when a method call is to a mock or stub and adjusting the
traceability links accordingly.

Enhancing TCTL Identification with Additional Con-
text. Comments and Javadoc often provide valuable insights
that can significantly improve the accuracy of constructing
traceability links. For example, as shown in Figure 7, in the
Commons Lang project, a test with a comment explicitly
stating that it tests the localeLookupList() method
provides a clear indication of the focal method. This obser-
vation suggests that leveraging such contextual information
can greatly enhance TCTL identification. Researchers could
consider developing heuristic rules to parse comments and
Javadoc for keywords and phrases that indicate the focal
method. Patterns such as tests, checks, or verifies
followed by a method name can be valuable indicators.
Additionally, integrating this context into neural ranking
models can further enhance the ability to identify TCTLs
by recognizing and leveraging the semantic information
provided by comments and Javadoc. By incorporating this

additional context, tools like TESTLINKER can better handle
cases where the test does not follow naming conventions
or lacks direct function calls to the focal method. This
approach can lead to more accurate and reliable traceability
link construction, ultimately improving various aspects of
software testing and maintenance.

Enhancing TCTL Identification for Multi-Focal
Method Recognition. Currently, TESTLINKER recommends
only the most likely focal method name to maintain high
precision in TCTL identification. While this approach effec-
tively reduces false positives, it may lead to the omission of
valid TCTLs, especially in real-world scenarios where a test
might involve multiple focal methods with different names.
This observation highlights an important consideration for
researchers: the trade-off between precision and recall in
TCTL identification. An intuitive approach might suggest
that the number of assertions in a test correlates positively
with the number of focal methods. However, our analysis
shows that this is not strongly supported. Specifically, in
tests with multiple focal methods, the number of assertions
does not strongly correlate with the number of focal meth-
ods, as indicated by an R2 value (determination coefficient)
of 0.2282. This suggests that relying solely on the number
of assertions to predict multiple focal methods may not be
accurate. Therefore, researchers need to explore more ef-
fective methods, such as adaptive thresholding techniques,
to dynamically adjust the number of recommended focal
methods based on the confidence scores and the complexity
of the test code.

8 THREATS TO VALIDITY

Internal Validity. Threats to internal validity refer to the
biases in our experiments. In our work, we compare
TESTLINKER with TCTL methods across different cate-
gories. The implementation and execution of these baselines
could potentially threaten internal validity. To mitigate this
threat, we directly re-ran the TCTL tools using their de-
fault parameter configurations. Additionally, we carefully
checked the source code of TESTLINKER and the baselines,
and we publicly released all materials for further validation.
In RQ1-RQ3, we manually construct an additional eval-
uation dataset. The use of manual analysis could suffer
from subjectivity bias when interpreting which functions
are tested by a test. To mitigate this threat, we employ
three volunteers to conduct a two-phase verification process.
Although the volunteers share the same student status, they
come from diverse backgrounds and possess extensive prior
experience. Each volunteer independently assesses the tests,
ensuring a variety of perspectives. In cases of disagreement,
a conference is held to discuss and resolve differences. The
number of disagreements is small, and the smallest changes
enacted during the conference are to correct erroneous
results rather than to convince volunteers to change their
judgments. This approach ensures that our evaluation is
robust and minimizes the risk of subjectivity bias, thereby
enhancing the reliability of our findings.

External Validity. Threats to external validity involve the
generalization of TESTLINKER. Our dataset, derived from
Java projects, might raise concerns about TESTLINKER’s
applicability to other programming languages. However,
Java is one of the most popular programming languages.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3449917

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 14,2024 at 01:51:53 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES 18

Furthermore, the underlying ranking model, based on the
PCMs pre-trained with the code from various program-
ming languages, is adaptable to diverse programming con-
texts. While TESTLINKER incorporates Java-specific heuris-
tic rules, these rules can be easily modified for other lan-
guages. For instance, mainstream Python testing frame-
works like pytest [82] also follow naming conventions.
Python, similar to Java, possesses built-in functions and
inheritance structures useful for pruning function call lists
during model inference. Our evaluation datasets, recog-
nized for considerable size, demonstrate TESTLINKER’s suit-
ability for complex software systems. Additionally, these
datasets have been scrupulously annotated by three judges
to minimize manual evaluation biases [3], [15]. Finally, we
have expanded our evaluation dataset to include a diverse
range of projects beyond utility libraries. The inclusion of
Jenkins (an automation server) and Dubbo (an RPC frame-
work) ensures that our dataset covers various project types
and application scenarios. However, despite these efforts,
the dataset may still not capture the full spectrum of possi-
ble software projects. Future work could involve extending
the dataset further to include additional domains such as
mobile applications, web applications, and embedded sys-
tems to enhance the generalizability of our findings.

9 RELATED WORK

Traceability link recovery (TLR) is a fundamental aspect
of software engineering, enabling the establishment of
connections between various artifacts generated during
the software development lifecycle. While our work with
TESTLINKER focuses on constructing traceability links from
tests to code, it is essential to consider other significant ap-
proaches in this domain and compare them to our approach.

Marcus and Maletic [83] use latent semantic indexing
(LSI) to recover traceability links between software arti-
facts. While effective, LSI-based approaches can suffer from
precision and recall limitations due to the ambiguity and
variability in natural language descriptions. TESTLINKER
improves on this by using a combination of static analysis
and a neural ranking model to capture both syntactic and
semantic information, enhancing the accuracy of traceability
link construction. Murphy et al. [84] explore the recovery of
transitive traceability links among software artifacts. Their
approach, called the Connecting Links Method (CLM), ex-
tends traditional traceability by identifying indirect relation-
ships between artifacts and using a third artifact to bridge
the connection. For example, CLM can link requirement R1
to source code S1 via design D1, even if a direct link be-
tween R1 and S1 is weak or missing. This method improves
the coverage of traceability links where direct connections
are insufficient. Furtado et al. [85] propose a technique,
namely Trace++, to assist with the transition from traditional
to agile methodologies by extending traditional traceability
relationships with additional information. This work fo-
cuses on addressing specific problems, such as the lack of
metrics for rework, understanding high-level project scope,
documenting non-functional requirements, and maintaining
management control during the transition to agile processes.
While Trace++ provides support for transitioning between
methodologies and handling broader development artifacts,
TESTLINKER focuses on enhancing test-to-code traceability

in both agile and traditional development environments.
Rath et al. [86] recently addressed the problem of miss-
ing links between commits and issues in version control
systems. Their approach uses a combination of process
and text-related features to train a classifier that identifies
missing issue tags in commit messages, thereby generating
the missing links. This work focuses on enhancing the trace-
ability between feature requests, bug fixes, commits, source
code, and specific developers. This distinction highlights
TESTLINKER’s targeted approach to linking tests directly to
the focal methods. Moran et al. [87] leverage Hierarchical
Bayesian Networks (HBNs) to enhance the recovery of
traceability links between software artifacts such as require-
ments, design documents, and code. The hierarchical nature
of HBNs allows for the integration of multiple sources of
evidence and their dependencies, resulting in more accu-
rate and reliable traceability links. In contrast, TESTLINKER
specifically targets test-to-code traceability, thus focusing on
a different aspect of the traceability problem.

In summary, while numerous methods have been pro-
posed for TLR, ranging from information retrieval tech-
niques to machine learning and hierarchical Bayesian net-
works, TESTLINKER offers a novel approach by combining
static analysis with neural ranking and heuristic refinement.
This comprehensive strategy allows TESTLINKER to effec-
tively handle the specific challenges of test-to-code trace-
ability, setting it apart from other methods in the field.

10 CONCLUSION AND FUTURE WORK

In this paper, we propose TESTLINKER, a novel approach
designed to enhance the establishment of test-to-code trace-
ability links (TCTLs). To the best of our knowledge, we are
the first to use a two-phase framework to identify TCTLs,
combining heuristic rules and semantic learning capabilities
of Pre-trained Code Models (PCMs) to address this com-
plex challenge. We build TESTLINKER using the pre-trained
CodeT5 model and fine-tune CodeT5 for TCTL. For training
TESTLINKER, we construct an adapted dataset. The eval-
uation results demonstrate that TESTLINKER significantly
outperforms all static baselines. Moreover, when compared
to the state-of-the-art dynamic TCTL methods, TESTLINKER
achieves comparable or even better performance in identi-
fying traceability links. Future work can explore enhancing
our approach by integrating contextual information and ad-
vancing learning techniques for code semantics. Addition-
ally, we aim to extend our approach to other programming
languages, such as Python and JavaScript, to broaden its
applicability and generalizability.

11 ACKNOWLEDGEMENTS

We appreciate the insightful insights provided by anony-
mous reviewers to improve the quality of the paper. This
work was supported in part by the National Natural Science
Foundation of China (No. 62372071), the Chongqing Tech-
nology Innovation and Application Development Project
(No. CSTB2022TIAD-STX0007 and No. CSTB2023TIAD-
STX0025), the Natural Science Foundation of Chongqing
(No. CSTB2023NSCQ-MSX0914) and the Fundamental Re-
search Funds for the Central Universities (No. 2023CD-
JKYJH013).

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3449917

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 14,2024 at 01:51:53 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES 19

REFERENCES

[1] A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, and D. Binkley,
“Recovering test-to-code traceability using slicing and textual
analysis,” Journal of Systems and Software, vol. 88, pp. 147–168, 2014.

[2] R. Watkins and M. Neal, “Why and how of requirements tracing,”
Ieee Software, vol. 11, no. 4, pp. 104–106, 1994.

[3] R. White, J. Krinke, and R. Tan, “Establishing multilevel test-
to-code traceability links,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 861–872.

[4] A. Qusef, G. Bavota, R. Oliveto, A. D. Lucia, and D. Binkley,
“Evaluating test-to-code traceability recovery methods through
controlled experiments,” Journal of Software: Evolution and Process,
vol. 25, no. 11, pp. 1167–1191, 2013.

[5] V. Csuvik, A. Kicsi, and L. Vidács, “Evaluation of textual similarity
techniques in code level traceability,” in Computational Science and
Its Applications–ICCSA 2019: 19th International Conference, Saint
Petersburg, Russia, July 1–4, 2019, Proceedings, Part IV 19. Springer,
2019, pp. 529–543.

[6] ——, “Source code level word embeddings in aiding semantic test-
to-code traceability,” in 2019 IEEE/ACM 10th International Sympo-
sium on Software and Systems Traceability (SST). IEEE, 2019, pp.
29–36.

[7] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. De Lucia, “On
integrating orthogonal information retrieval methods to improve
traceability recovery,” in 2011 27th IEEE International Conference on
Software Maintenance (ICSM). IEEE, 2011, pp. 133–142.

[8] A. Kicsi, L. Tóth, and L. Vidács, “Exploring the benefits of utilizing
conceptual information in test-to-code traceability,” in Proceedings
of the 6th International Workshop on Realizing Artificial Intelligence
Synergies in Software Engineering, 2018, pp. 8–14.

[9] B. Van Rompaey and S. Demeyer, “Establishing traceability links
between unit test cases and units under test,” in 2009 13th European
Conference on Software Maintenance and Reengineering. IEEE, 2009,
pp. 209–218.

[10] P. Bouillon, J. Krinke, N. Meyer, and F. Steimann, “Ezunit: A
framework for associating failed unit tests with potential program-
ming errors,” in Agile Processes in Software Engineering and Extreme
Programming: 8th International Conference, XP 2007, Como, Italy, June
18-22, 2007. Proceedings 8. Springer, 2007, pp. 101–104.

[11] M. Ghafari, C. Ghezzi, and K. Rubinov, “Automatically identi-
fying focal methods under test in unit test cases,” in 2015 IEEE
15th International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE, 2015, pp. 61–70.

[12] V. Hurdugaci and A. Zaidman, “Aiding software developers to
maintain developer tests,” in 2012 16th European Conference on
Software Maintenance and Reengineering. IEEE, 2012, pp. 11–20.

[13] H. M. Sneed, “Reverse engineering of test cases for selective
regression testing,” in Eighth European Conference on Software Main-
tenance and Reengineering, 2004. CSMR 2004. Proceedings. IEEE,
2004, pp. 69–74.

[14] A. Qusef, R. Oliveto, and A. De Lucia, “Recovering traceability
links between unit tests and classes under test: An improved
method,” in 2010 IEEE International Conference on Software Main-
tenance. IEEE, 2010, pp. 1–10.

[15] R. White and J. Krinke, “Tctracer: Establishing test-to-code trace-
ability links using dynamic and static techniques,” Empirical Soft-
ware Engineering, vol. 27, no. 3, p. 67, 2022.

[16] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understand-
ing and generation,” arXiv preprint arXiv:2109.00859, 2021.

[17] A. Zaidman, B. Van Rompaey, A. Van Deursen, and S. Demeyer,
“Studying the co-evolution of production and test code in open
source and industrial developer test processes through repository
mining,” Empirical Software Engineering, vol. 16, pp. 325–364, 2011.

[18] Z. Liu, K. Liu, X. Xia, and X. Yang, “Towards more realis-
tic evaluation for neural test oracle generation,” arXiv preprint
arXiv:2305.17047, 2023.

[19] M. Tufano, D. Drain, A. Svyatkovskiy, S. K. Deng, and
N. Sundaresan, “Unit test case generation with transformers and
focal context,” vol. abs/2009.05617, 2020. [Online]. Available:
https://arxiv.org/abs/2009.05617

[20] N. Rao, K. Jain, U. Alon, C. L. Goues, and V. J. Hellendoorn, “Cat-
lm: Training language models on aligned code and tests,” arXiv
preprint arXiv:2310.01602, 2023.

[21] F. Hassan and X. Wang, “Hirebuild: An automatic approach to
history-driven repair of build scripts,” in Proceedings of the 40th
international conference on software engineering, 2018, pp. 1078–1089.

[22] Y. Lou, Z. Chen, Y. Cao, D. Hao, and L. Zhang, “Understanding
build issue resolution in practice: symptoms and fix patterns,”
in ESEC/FSE ’20: 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
Virtual Event, USA, November 8-13, 2020, P. Devanbu, M. B. Cohen,
and T. Zimmermann, Eds. ACM, 2020, pp. 617–628.

[23] 2024. [Online]. Available: https://figshare.com/s/
6d9a729c2ebb83c4b291

[24] J. H. Hayes, A. Dekhtyar, and D. S. Janzen, “Towards traceable
test-driven development,” in ICSE Workshop on Traceability in
Emerging Forms of Software Engineering, TEFSE@ICSE 2009. Van-
couver, BC, Canada, 18 May, 2009. IEEE Computer Society, 2009,
pp. 26–30.

[25] G. Rothermel and M. J. Harrold, “Empirical studies of a safe
regression test selection technique,” IEEE Transactions on Software
Engineering, vol. 24, no. 6, pp. 401–419, 1998.

[26] Y. Lou, J. Chen, L. Zhang, and D. Hao, “A survey on regression
test-case prioritization,” in Advances in Computers. Elsevier, 2019,
vol. 113, pp. 1–46.

[27] S. Wang, M. Wen, Y. Liu, Y. Wang, and R. Wu, “Understanding
and facilitating the co-evolution of production and test code,” in
2021 IEEE International conference on software analysis, evolution and
reengineering (SANER). IEEE, 2021, pp. 272–283.

[28] W. Sun, M. Yan, Z. Liu, X. Xia, Y. Lei, and D. Lo, “Revisiting the
identification of the co-evolution of production and test code,”
ACM Trans. Softw. Eng. Methodol., jul 2023, just Accepted.

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, 2017, pp. 5998–6008.

[30] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained
model for programming and natural languages,” in Findings of
the Association for Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, ser. Findings of ACL, vol. EMNLP
2020. Association for Computational Linguistics, 2020, pp. 1536–
1547.

[31] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. B. Clement,
D. Drain, N. Sundaresan, J. Yin, D. Jiang, and M. Zhou, “Graph-
codebert: Pre-training code representations with data flow,” in
9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021, 2021.

[32] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei, “Language models are
few-shot learners,” in Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[33] C. S. Xia, Y. Wei, and L. Zhang, “Automated program repair in
the era of large pre-trained language models,” in Proceedings of the
45th International Conference on Software Engineering (ICSE 2023).
Association for Computing Machinery, 2023.

[34] W. Yuan, Q. Zhang, T. He, C. Fang, N. Q. V. Hung, X. Hao,
and H. Yin, “CIRCLE: continual repair across programming lan-
guages,” in ISSTA ’22: 31st ACM SIGSOFT International Symposium
on Software Testing and Analysis, Virtual Event, South Korea, July 18
- 22, 2022, S. Ryu and Y. Smaragdakis, Eds. ACM, 2022, pp. 678–
690.

[35] Y. Wu, N. Jiang, H. V. Pham, T. Lutellier, J. Davis, L. Tan, P. Babkin,
and S. Shah, “How effective are neural networks for fixing security
vulnerabilities,” in Proceedings of the 32nd ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, ISSTA 2023,
Seattle, WA, USA, July 17-21, 2023, R. Just and G. Fraser, Eds.
ACM, 2023, pp. 1282–1294.

[36] M. Fu, C. Tantithamthavorn, T. Le, V. Nguyen, and D. Q. Phung,
“Vulrepair: a t5-based automated software vulnerability repair,”
in Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2022, Singapore, Singapore, November 14-18, 2022, A. Roy-
choudhury, C. Cadar, and M. Kim, Eds. ACM, 2022, pp. 935–947.

[37] M. Fu and C. Tantithamthavorn, “Linevul: A transformer-based
line-level vulnerability prediction,” in 19th IEEE/ACM International

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3449917

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 14,2024 at 01:51:53 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/2009.05617
https://figshare.com/s/6d9a729c2ebb83c4b291
https://figshare.com/s/6d9a729c2ebb83c4b291

JOURNAL OF LATEX CLASS FILES 20

Conference on Mining Software Repositories, MSR 2022, Pittsburgh,
PA, USA, May 23-24, 2022. ACM, 2022, pp. 608–620.

[38] B. Steenhoek, M. M. Rahman, R. Jiles, and W. Le, “An empirical
study of deep learning models for vulnerability detection,” in 45th
IEEE/ACM International Conference on Software Engineering, ICSE
2023, Melbourne, Australia, May 14-20, 2023. IEEE, 2023, pp. 2237–
2248.

[39] R. Tufano, S. Masiero, A. Mastropaolo, L. Pascarella, D. Poshy-
vanyk, and G. Bavota, “Using pre-trained models to boost code
review automation,” in 44th IEEE/ACM 44th International Confer-
ence on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May
25-27, 2022. ACM, 2022, pp. 2291–2302.

[40] Z. Li, S. Lu, D. Guo, N. Duan, S. Jannu, G. Jenks, D. Majumder,
J. Green, A. Svyatkovskiy, S. Fu, and N. Sundaresan, “Automating
code review activities by large-scale pre-training,” in Proceedings
of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE
2022, Singapore, Singapore, November 14-18, 2022, A. Roychoudhury,
C. Cadar, and M. Kim, Eds. ACM, 2022, pp. 1035–1047.

[41] M. Tufano, D. Drain, A. Svyatkovskiy, and N. Sundaresan, “Gener-
ating accurate assert statements for unit test cases using pretrained
transformers,” in IEEE/ACM International Conference on Automation
of Software Test, AST@ICSE 2022, Pittsburgh, PA, USA, May 21-22,
2022. ACM/IEEE, 2022, pp. 54–64.

[42] A. Mastropaolo, S. Scalabrino, N. Cooper, D. Nader-Palacio,
D. Poshyvanyk, R. Oliveto, and G. Bavota, “Studying the usage
of text-to-text transfer transformer to support code-related tasks,”
in 43rd IEEE/ACM International Conference on Software Engineering,
ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 2021, pp. 336–347.

[43] A. Mastropaolo, N. Cooper, D. Nader-Palacio, S. Scalabrino,
D. Poshyvanyk, R. Oliveto, and G. Bavota, “Using transfer learn-
ing for code-related tasks,” IEEE Trans. Software Eng., vol. 49, no. 4,
pp. 1580–1598, 2023.

[44] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin, “Unixcoder:
Unified cross-modal pre-training for code representation,” in Pro-
ceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, S. Muresan, P. Nakov, and A. Villavicencio, Eds.
Association for Computational Linguistics, 2022, pp. 7212–7225.

[45] “Commons-math project.” https://github.com/apache/
commons-math/blob/3.6-release/src/test/java/org/apache/
commons/math3/linear/DiagonalMatrixTest.java, 2016.

[46] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey of
machine learning for big code and naturalness,” ACM Computing
Surveys (CSUR), vol. 51, no. 4, pp. 1–37, 2018.

[47] S. Wang, T. Liu, J. Nam, and L. Tan, “Deep semantic feature learn-
ing for software defect prediction,” IEEE Transactions on Software
Engineering, vol. 46, no. 12, pp. 1267–1293, 2018.

[48] L. Zhang, X. Zhang, and J. Pan, “Hierarchical cross-modality
semantic correlation learning model for multimodal summariza-
tion,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 36, no. 10, 2022, pp. 11 676–11 684.

[49] Q. Zhang, C. Fang, W. Sun, Y. Liu, T. He, X. Hao, and Z. Chen,
“Appt: Boosting automated patch correctness prediction via fine-
tuning pre-trained models,” IEEE Transactions on Software Engineer-
ing, 2024.

[50] “StringTest in gson,” https://github.com/google/gson/
blob/main/gson/src/test/java/com/google/gson/functional/
StringTest.java, 2023.

[51] R. Sennrich, B. Haddow, and A. Birch, “Neural machine
translation of rare words with subword units,” arXiv preprint
arXiv:1508.07909, 2015.

[52] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,”
in Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers). Association for Computational
Linguistics, 2019, pp. 4171–4186.

[53] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[54] T. J. Team, “JavaParser: A java parser library,” 2023, software
available from https://javaparser.org.

[55] “An example in commons-io project.” https://github.com/
apache/commons-io/blob/master/src/test/java/org/apache/
commons/io/FileUtilsTest.java, 2024.

[56] M. Tufano, S. K. Deng, N. Sundaresan, and A. Svyatkovskiy,
“METHODS2TEST: A dataset of focal methods mapped to test
cases,” in 19th IEEE/ACM International Conference on Mining Soft-
ware Repositories, MSR 2022, Pittsburgh, PA, USA, May 23-24, 2022.
ACM, 2022, pp. 299–303.

[57] V. Lenarduzzi, N. Saarimäki, and D. Taibi, “Some sonarqube issues
have a significant but small effect on faults and changes. a large-
scale empirical study,” Journal of Systems and Software, vol. 170, p.
110750, 2020.

[58] J. Tan, D. Feitosa, and P. Avgeriou, “Does it matter who pays back
technical debt? an empirical study of self-fixed td,” Information and
Software Technology, vol. 143, p. 106738, 2022.

[59] “About stars (GitHub).” https://docs.github.
com/en/get-started/exploring-projects-on-github/
saving-repositories-with-stars, 2021.

[60] F. Wen, C. Nagy, G. Bavota, and M. Lanza, “A large-
scale empirical study on code-comment inconsistencies,” in
Proceedings of the 27th International Conference on Program
Comprehension, ICPC 2019, Montreal, QC, Canada, May 25-31,
2019. IEEE / ACM, 2019, pp. 53–64. [Online]. Available:
https://doi.org/10.1109/ICPC.2019.00019

[61] “Project jenkins.” https://github.com/jenkinsci/jenkins, 2024.
[62] “Project dubbo.” https://github.com/apache/dubbo, 2024.
[63] “PyTorch,” https://pytorch.org/., 2023.
[64] I. Loshchilov and F. Hutter, “Decoupled weight decay regular-

ization,” in 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019.

[65] M. Madeja and J. Porubän, “Tracing naming semantics in unit
tests of popular github android projects,” in 8th Symposium on
Languages, Applications and Technologies, SLATE 2019, June 27-28,
2019, Coimbra, Portugal, ser. OASIcs, vol. 74, 2019, pp. 3:1–3:13.

[66] H. Schütze, C. D. Manning, and P. Raghavan, Introduction to
information retrieval. Cambridge University Press Cambridge,
2008, vol. 39.

[67] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test
information to assist fault localization,” in Proceedings of the 24th
international conference on Software engineering, 2002, pp. 467–477.

[68] R. M. Parizi, S. P. Lee, and M. Dabbagh, “Achievements and
challenges in state-of-the-art software traceability between test
and code artifacts,” IEEE Transactions on Reliability, vol. 63, no. 4,
pp. 913–926, 2014.

[69] F. Wilcoxon, Individual comparisons by ranking methods. Springer,
1992.

[70] N. Cliff, Ordinal methods for behavioral data analysis. Psychology
Press, 2014.

[71] “JsonTreeWriterTest in gson,” https://github.com/google/
gson/blob/gson-parent-2.8.0/gson/src/test/java/com/google/
gson/internal/bind/JsonTreeWriterTest.java, 2023.

[72] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen,
C. Dewan, M. T. Diab, X. Li, X. V. Lin, T. Mihaylov, M. Ott,
S. Shleifer, K. Shuster, D. Simig, P. S. Koura, A. Sridhar, T. Wang,
and L. Zettlemoyer, “OPT: open pre-trained transformer language
models,” CoRR, vol. abs/2205.01068, 2022.

[73] J. Schulman, B. Zoph, C. Kim, J. Hilton, J. Menick, J. Weng,
J. Uribe, L. Fedus, L. Metz, M. Pokorny et al., “Chatgpt: Optimizing
language models for dialogue,” 2022.

[74] X. Hu, Z. Liu, X. Xia, Z. Liu, T. Xu, and X. Yang, “Identify and
update test cases when production code changes: A transformer-
based approach,” in 2023 38th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2023, pp. 1111–
1122.

[75] M. Pradel, V. Murali, R. Qian, M. Machalica, E. Meijer, and
S. Chandra, “Scaffle: Bug localization on millions of files,” in
Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2020, pp. 225–236.

[76] B. Wang, L. Xu, M. Yan, C. Liu, and L. Liu, “Multi-dimension con-
volutional neural network for bug localization,” IEEE Transactions
on Services Computing, vol. 15, no. 3, pp. 1649–1663, 2020.

[77] “Commons-IO project, testTextXml function.” https://github.
com/apache/commons-io/blob/master/src/test/java/org/
apache/commons/io/input/XmlStreamReaderUtilitiesTest.java,
2023.

[78] “Commons-IO project, test_serialization function.”
https://github.com/apache/commons-io/blob/commons-io-2.
5/src/test/java/org/apache/commons/io/IOCaseTestCase.java,
2023.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3449917

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 14,2024 at 01:51:53 UTC from IEEE Xplore. Restrictions apply.

https://github.com/apache/commons-math/blob/3.6-release/src/test/java/org/apache/commons/math3/linear/DiagonalMatrixTest.java
https://github.com/apache/commons-math/blob/3.6-release/src/test/java/org/apache/commons/math3/linear/DiagonalMatrixTest.java
https://github.com/apache/commons-math/blob/3.6-release/src/test/java/org/apache/commons/math3/linear/DiagonalMatrixTest.java
https://github.com/google/gson/blob/main/gson/src/test/java/com/google/gson/functional/StringTest.java
https://github.com/google/gson/blob/main/gson/src/test/java/com/google/gson/functional/StringTest.java
https://github.com/google/gson/blob/main/gson/src/test/java/com/google/gson/functional/StringTest.java
https://github.com/apache/commons-io/blob/master/src/test/java/org/apache/commons/io/FileUtilsTest.java
https://github.com/apache/commons-io/blob/master/src/test/java/org/apache/commons/io/FileUtilsTest.java
https://github.com/apache/commons-io/blob/master/src/test/java/org/apache/commons/io/FileUtilsTest.java
https://docs.github.com/en/get-started/exploring-projects-on-github/saving-repositories-with-stars
https://docs.github.com/en/get-started/exploring-projects-on-github/saving-repositories-with-stars
https://docs.github.com/en/get-started/exploring-projects-on-github/saving-repositories-with-stars
https://doi.org/10.1109/ICPC.2019.00019
https://github.com/jenkinsci/jenkins
https://github.com/apache/dubbo
https://pytorch.org/.
https://github.com/google/gson/blob/gson-parent-2.8.0/gson/src/test/java/com/google/gson/internal/bind/JsonTreeWriterTest.java
https://github.com/google/gson/blob/gson-parent-2.8.0/gson/src/test/java/com/google/gson/internal/bind/JsonTreeWriterTest.java
https://github.com/google/gson/blob/gson-parent-2.8.0/gson/src/test/java/com/google/gson/internal/bind/JsonTreeWriterTest.java
https://github.com/apache/commons-io/blob/master/src/test/java/org/apache/commons/io/input/XmlStreamReaderUtilitiesTest.java
https://github.com/apache/commons-io/blob/master/src/test/java/org/apache/commons/io/input/XmlStreamReaderUtilitiesTest.java
https://github.com/apache/commons-io/blob/master/src/test/java/org/apache/commons/io/input/XmlStreamReaderUtilitiesTest.java
https://github.com/apache/commons-io/blob/commons-io-2.5/src/test/java/org/apache/commons/io/IOCaseTestCase.java
https://github.com/apache/commons-io/blob/commons-io-2.5/src/test/java/org/apache/commons/io/IOCaseTestCase.java

JOURNAL OF LATEX CLASS FILES 21

[79] Mockito Contributors, “Mockito: A framework for unit tests in
java,” https://site.mockito.org/, 2024, https://site.mockito.org/.

[80] EasyMock Team, “Easymock: A library that provides an easy
way to use mock objects for unit testing,” https://easymock.org/,
2024, https://easymock.org/.

[81] JMock Project, “Jmock: A library for testing java code with mock
objects,” http://jmock.org/, 2024, http://jmock.org/.

[82] “Pytest.” https://pytest.org/en/latest/explanation/
goodpractices.html#test-discovery, 2021.

[83] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-
code traceability links using latent semantic indexing,” in 25th
International Conference on Software Engineering, 2003. Proceedings.
IEEE, 2003, pp. 125–135.

[84] K. Nishikawa, H. Washizaki, Y. Fukazawa, K. Oshima, and
R. Mibe, “Recovering transitive traceability links among software
artifacts,” in 2015 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). IEEE, 2015, pp. 576–580.

[85] F. Furtado and A. Zisman, “Trace++: A traceability approach to
support transitioning to agile software engineering,” in 2016 IEEE
24th International Requirements Engineering Conference (RE). IEEE,
2016, pp. 66–75.

[86] M. Rath, J. Rendall, J. L. Guo, J. Cleland-Huang, and P. Mäder,
“Traceability in the wild: automatically augmenting incomplete
trace links,” in Proceedings of the 40th International Conference on
Software Engineering, 2018, pp. 834–845.

[87] K. Moran, D. N. Palacio, C. Bernal-Cárdenas, D. McCrystal,
D. Poshyvanyk, C. Shenefiel, and J. Johnson, “Improving the ef-
fectiveness of traceability link recovery using hierarchical bayesian
networks,” in Proceedings of the ACM/IEEE 42nd International Con-
ference on Software Engineering, 2020, pp. 873–885.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3449917

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 14,2024 at 01:51:53 UTC from IEEE Xplore. Restrictions apply.

https://site.mockito.org/
https://site.mockito.org/
https://easymock.org/
https://easymock.org/
http://jmock.org/
http://jmock.org/
https://pytest.org/en/latest/explanation/goodpractices.html#test-discovery
https://pytest.org/en/latest/explanation/goodpractices.html#test-discovery

	Introduction
	Background
	Test-to-Code Traceability Link
	Pre-trained Code Model

	Motivation
	Approach
	Offline-Ranking Model Training
	Online-Two-phase TCTL Construction
	Key Component#1: Naming Convention
	Key Component#2: Neural Ranking

	Evaluation setup
	Research Questions
	Data Preparation
	Training Dataset Construction
	Evaluation Dataset Construction

	Evaluation Metrics
	Test environment

	Result analysis
	RQ1: Comparison with State-of-the-arts
	Baselines
	Results

	RQ2: Ablation Experiment
	Baselines
	Results

	RQ3: The Effect of Different Number of Recommended Function Names
	Baselines
	Results

	RQ4: The Effect of Code Model Choices
	Baselines
	Results

	Discussion
	Selection of Component#1
	Application of Our Approach
	Limitation of Our Approach
	Implication and Guideline
	Implications for Practitioners
	Implications for Researchers

	Threats to Validity
	Related Work
	Conclusion and Future Work
	Acknowledgements
	References

