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Abstract—Defect localization aims to locate buggy program elements (e.g., buggy files, methods or lines of code) based on defect

symptoms, e.g., bug reports or program spectrum. However, when we receive the defect symptoms, the defect has been exposed and

negative impacts have been introduced. Thus, one challenging task is: whether we can locate buggy program prior to the appearance

of the defect symptom (e.g., when buggy program elements are being committed to a version control system). We refer to this type of

defect localization as “ Just-In-Time (JIT) Defect localization” . Although many prior studies have proposed various JIT defect

identification methods to identify whether a new change is buggy, these prior methods do not locate the suspicious positions. Thus, JIT

defect localization is the next step of JIT defect identification (i.e., after a buggy change is identified, suspicious source code lines are

located). To address this problem, we propose a two-phase framework, i.e., JIT defect identification and JIT defect localization. Given a

new change, JIT defect identification will identify it as buggy change or clean change first. If a new change is identified as buggy, JIT

defect localization will rank the source code lines introduced by the new change according to their suspiciousness scores. The source

code lines ranked at the top of the list are estimated as the defect location. For JIT defect identification phase, we use 14 change-level

features to build a classifier by following existing approach. For JIT defect localization phase, we propose a JIT defect localization

approach that leverages software naturalness with the N-gram model. To evaluate the proposed framework, we conduct an empirical

study on 14 open source projects with a total of 177,250 changes. The results show that software naturalness is effective for our JIT

defect localization. Our model achieves a reasonable performance, and outperforms the two baselines (i.e., random guess and a static

bug finder (i.e., PMD)) by a substantial margin in terms of four ranking measures.

Index Terms—Defect localization, just-in-time, defect identification, software naturalness

Ç

1 INTRODUCTION

DURING software development and maintenance, devel-
opers often spend much effort and resources to debug

a program [1]. Defect localization (or bug localization) aims
to help developers to locate buggy program elements, such
as buggy files, methods or lines of code. Researchers have
proposed various techniques for defect localization, includ-
ing information retrieval (IR) based techniques [2], [3], [4],
[5] and spectrum-based techniques [6], [7], [8]. These techni-
ques perform localization by analyzing the defect symp-
toms. These symptoms could be a description of a bug, or a
failing test case. For example, IR based techniques analyze

the textual description in bug reports, spectrum-based tech-
niques analyze program spectrum of failing and successful
execution traces [1].

However, one main limitation of the above-mentioned
localization techniques is that they rely on defect symptoms
(i.e., from bug reports or execution traces). When a defect
symptom is discovered, the defect has already been exposed
and it has already negatively impacted the software. There-
fore, one challenging task is: can we locate buggy program
prior to the appearance of the defect symptom (e.g., when
buggy program elements are being committed to a version
control system)? We refer to this type of defect localization
as “Just-In-Time (JIT) Defect Localization”.

The idea of “JIT Defect Localization” comes from “JIT
Defect Identification” (aka, JIT defect prediction) which
is a well-known technique for identifying buggy (i.e.,
defect-introducing) changes at check-in time. Recently,
JIT defect identification has attracted an increasing
research interest, a number of studies have proposed
various techniques for JIT defect identification [9], [10],
[11], [12], [13], [14], [15], [16]. JIT defect identification
can yield many benefits. For example, the identification
can be performed at the time when the change is submit-
ted; such immediate feedback ensures that the context is
still fresh in the minds of developers. This fresh context
can speed up the fixing of the buggy change. Addition-
ally, the identification is made at a fine-granularity, i.e.,
change-level, that are mapped to a few areas of the large
code base. Such a fine-granularity identification can
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provide large effort saving over coarser grained identifi-
cation (e.g., file-level or module-level) [17].

Despite the achievements of JIT defect identification, one
issue remains unanswered is: what is the next step if we
identified a buggy change? Our main concern is that all of
the prior studies focus on how to classify a change (i.e., clas-
sify a change as buggy or clean), or sort changes according
to their defective likelihood scores, to find more buggy
changes by inspecting fewer changed lines of code (i.e.,
effort-aware model) [9], [12], [15], [16]. However, after a
buggy change is identified, it is also a difficult task to locate
the exact buggy positions (e.g., source code lines), especially
for a change that has added many lines of code (LOC). Take
the Jmeter project as an example: the average newly added
LOC across all the changes is 180. It would cost a great
amount of inspection effort if we inspect all the added LOC
for all the buggy changes. Unfortunately, there is no tech-
nique for guiding how to inspect a buggy change in order to
locate the exact buggy lines with less inspection effort.

Therefore, in response to the concerns raised above, we
highlight the framework of JIT Defect Identification and
Localization. Different from current defect localization tech-
niques by analyzing defect symptoms, JIT defect localiza-
tion aims to be an early step of continuous quality control
because it can be performed as soon as a code change is
checked in. In summary, the main benefits of performing
JIT defect identification and localization are as follows:

� Localization is performed at a fine-granularity. JIT defect
localization locates buggy program elements at a
fine-granularity, i.e., line-level. For each buggy
change, JIT defect localization locates the buggy
lines in a buggy change. Such a fine-granularity can
help developers to locate and address defects using
less effort.

� Localization is performed early on. JIT defect localiza-
tion is performed at check-in time. Such immediate
feedback ensures that the context is still fresh in the
minds of developers. This fresh context can help
speed up the fixing of located defects immediately.

� Localization is performed without relying on defect symp-
toms. In JIT defect localization, only change

properties are needed. Thus, the localization can be
invoked without analyzing the defect symptoms. In
contrast to current defect localization techniques
which require the analysis of defect symptoms, the
benefit of JIT defect localization is that it can locate
the defect before the appearance of its symptom.

The basic technical idea of our JIT localization technique
begins with the “software naturalness” as observed by Hin-
dle et al. [18] who noted that “natural” code is highly repeti-
tive and can be captured through a language model (e.g., a
N-gram model that was originally developed in Natural
Language Processing field). Based on this observation, Ray
et al. [19] observed that buggy code tends to be more entro-
pic (i.e. unnatural) compared with clean code. Moreover,
they observed that this observation can be helpful for defect
identification on release level and can complement the effec-
tiveness of static bug finders (e.g., FindBugs and PMD).

Inspired by the above-mentioned observations, we pro-
pose an automated two-phase framework. The first phase con-
sists of a JIT defect identification (i.e., identify buggy
changes). The second phase consists of a JIT defect localization
for the buggy changes that were correctly identified by the
first phase. The first phase is similar to the prior approaches.
We implement a JIT defect identification approach by follow-
ing prior studies [9], [15], [20]. In the second phase, we pro-
pose a localization approach based on software naturalness
by learning from historical labeled code.

In summary, our work consists of three steps as shown in
Fig. 1. (1) The first step is a data preparation step. We iden-
tify buggy and clean changes using the Refactoring Aware
SZZ (RA-SZZ) algorithm first [21], [22], then we link each
buggy change and its corresponding bug-fixing change(s).
Subsequently, we label the added lines by buggy changes
that are modified by the corresponding bug-fixing changes
as buggy code; otherwise, the lines are labeled as clean
code. (2) The second step is the model building phase. We
build a JIT defect identification model (i.e., JIT Defect Identi-
fier) and a JIT defect localization model (i.e., JIT Defect
Locator). For the JIT defect identifier, we use 14 change-level
features to build a logistic classifier by following prior stud-
ies [15], [20]. For the JIT defect locator, we build a code
language model based on historical clean code using the

Fig. 1. Overview of our proposed framework.
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N-gram model that has shown to be an effective technique
for source code modeling [18], [19], [23], [24]. (3) The third
step is the model application phase. For a new change, we
first identify whether or not it is a likely buggy change using
our JIT defect identifier. For a likely buggy change, we sort
the added lines according to the likelihood values using the
JIT defect locator. The lines sorted at the top are more likely
to be the defect location.

1.1 Novelty Statement

The novelty of this paper is to propose a new framework:
Just-In-Time Defect Identification and Localization. The
proposed framework contains a two-phase analysis, i.e., (1)
identifying buggy changes and (2) locating suspicious code
lines introduced in the identified buggy change.

1.2 Contributions

The contributions of this paper are as follows:

� We propose a two-phase framework of JIT defect
identification and localization. This framework can
locate suspicious defective lines on change-level at
check-in time.

� We conduct an empirical study to evaluate our pro-
posed framework on 14 projects with a total of
177,250 changes. The results show that our frame-
work achieves a reasonable performance, which sig-
nificantly outperforms the baselines (i.e., random
guess and a static bug finder (i.e., PMD)) by a sub-
stantial margin1.

1.3 Paper Organization

The rest of the paper is structured as follows. Section 2
presents the details of our proposed framework. Section 3
provides the empirical study setup, including the dataset,
validation setting and model evaluation. In Section 4, we
provide the experimental results and their analysis. Section 5
presents the discussions on the impact of different configu-
rations. Section 6 describes the threats to validity. Section 7
presents the related work of our study. Section 8 concludes
and presents future work.

2 OUR FRAMEWORK

Fig. 1 presents an overview of our proposed framework.
Our framework consists of three steps: data preparation,
model building and model application. In this section, we
first describe how to prepare the dataset to build our model.
Then we provide the details about how to build our model.
Finally, we present how to apply our framework to JIT
defect localization.

2.1 Data Preparation

In this phase, we identify and collect clean and buggy
source code lines that are added by software changes. Clean
lines are used to build a “Clean” language model, buggy
lines are used to be the ground truth for evaluating the
localization performance. We focus on added lines by

software change because our model aims to perform the
localization on the added lines of new changes. Note that a
modified line of a change is treated as an added line (after
modification) and a deleted line (before modification).

Similarly to Ray et al. [19], we apply the SZZ algo-
rithm [25] to identify clean and buggy lines. Many prior
studies reported that �Sliwerski et al.’s original SZZ algo-
rithm [25] is impacted by large amounts of noise (e.g.,
blank/comment lines) [21], [22], [26], [27], [28]. Following
prior study’s recommendation [22], we apply Refactoring
Aware SZZ (RA-SZZ) [21]—an SZZ variant that can deal
with noise including blank/comment lines, format modifi-
cations and refactoring modifications.

In summary,we take four steps to prepare the studied data:

1) Defect-fixing change identification. We identify the
changes that fix defects following prior work [22].
For each change, we first search the commit message
for references to issue reports, e.g., “Fixed #233”.
Then, we crawl the corresponding issue report from
the issue tracking system (ITS) of the project and
check whether the report is defined as a defect in the
ITS. If the report is defined as a defect and it is
resolved or closed, we consider the change as a
defect-fixing change.

2) Buggy (i.e., defect-introducing) change identification. We
leverage RA-SZZ2 [21], [22] to identify defect-intro-
ducing changes. RA-SZZ first leverages the git

diff command to identify the lines that were
changed by defect-fixing changes. From the identi-
fied lines, RA-SZZ filters away blank/comment
lines, lines involving format modifications (e.g.,
modification of code indentation) and those involv-
ing refactoring modifications. Then, for the remain-
ing lines, RA-SZZ traces back through the change
history to identify the changes that introduce the
lines, which are identified as defect-introducing
changes. RA-SZZ leverages the annotation graph [29]
to trace back through the change history. Annotation
graph was proposed by Zimmermann et al. [29]. The
graph traces the evolution of lines of code along the
code change history. Using the annotation graph,
RA-SZZ will not stop its search for defect introduc-
tion changes at changes that involve format modifi-
cations or refactoring modifications instead it can
further trace back through the code history to iden-
tify the actual defect-introducing changes. In addi-
tion, another advantage of RA-SZZ is that for a code
statement involving multiple lines, RA-SZZ can
automatically combine the lines into one line. Hence,
RA-SZZ ensures the completeness of the code lines
that are analyzed in our study.

3) Buggy and clean lines identification. We label the lines
that were added by clean changes, and lines that
were added by buggy changes but were not later
fixed, as clean lines. And we label the lines that were
added by buggy changes, and were later fixed by
linked defect-fixing changes as buggy lines. Since we
aim to analyze the source code to locate likely

1. Our replication package: https://github.com/MengYan1989/JIT-
DIL 2. https://github.com/danielcalencar/ra-szz
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defective code lines, the source code comments are
out of the scope of our consideration. Therefore, we
remove all the source code comments in the added
lines using regular expression.

4) Code tokenization. After collecting buggy and clean
code lines, we perform the code tokenization step to
break each line into separate words. Specifically, we
use the tokenization tool that delimit code based on
the Java grammar proposed by prior study [24]. For
example, a line in Deeplearning4J project is “System.
out.println(graph.summary(InputType.feedForward
(5)));”, the tokenized words are: “System . out .

println ( graph . summary ( InputType .

feedForward ( 5 ) ) );”. All the tokenized words
of code lines are included for building a code lan-
guage model.

2.2 Model Building

The model building step consists of two models, i.e., the JIT
defect identification model and the JIT defect localization
model.

1) JIT defect identification model.
Our JIT defect identification model aims to identify

whether or not a new change is a buggy change. To do so,
we implemented a logistic regression based approach as
done by prior studies [9], [15]. We briefly introduce the
steps of the JIT defect identification below, and more details
can be found in the original papers [9], [15]. First, we extract
14 change-level features proposed by prior studies [9], [12],
[15], [16], [30] and presented in Table 1. Second, we do the
same data preprocessing steps (e.g., re-sampling and log
transformation) as prior studies [9], [15]. Third, since we
already labeled each historical change as buggy or clean in
our data preparation step, we build the identification model
using a logistic regression classifier by training on historical
changes. Subsequently, a new change would be classified as
buggy if its predicted likelihood is larger than 0.5; otherwise
it will be identified as clean.

Table 1 presents the name and description of our used 14
change-level features. These features are grouped into five
dimensions: diffusion (NS, ND, NF and Entropy), size (LA,
LD and LT), purpose (FIX), history (NDEV, AGE and NUC)

and experience (EXP, REXP and SEXP). The diffusion
dimension characterizes the distribution of a change. The
purpose dimension only consists of FIX, which indicates
whether or not this commit is a bug fixing commit. The his-
tory dimension characterizes how developers modify the
files within the change in the code history. The experience
dimension captures a developer’s experience based on the
number of commits made by that particular developer in
the past. We calculate these features following prior stud-
ies [9], [15], more detailed description can be found at
Kamei et al.’s work [9].

2) JIT defect localization model.
To build a localization model, we build a source code

language model trained on clean source code lines (i.e., a
clean model) by using N-gram model.

N-Gram Modeling For Source Code. In our work, we choose
N-gram model as our underlying language modeling tech-
nique because N-gram model has been shown to be effec-
tive in modeling source code [18], [19], [23], [24]. Our
objective is to propose the first JIT defect localization frame-
work. Thus, we believe that a simple and popular modeling
technique is sufficient.

Formally, a language model assigns a probability (or a
score) to a sequence of words. In our context, suppose there
is a code fragment s of length jsj, it is tokenized into t1,
t2,...,ts. A language model estimates the probability of this
sequence occurring as a product of a series of conditional
probabilities as:

pðsÞ ¼
Yjsj

i¼1

pðtijt1; . . . ; ti�1Þ: (1)

Specifically, pðtijt1; . . . ; ti�1Þ denotes the probability that
the token ti follows the previous tokens, i.e., the prefix
h ¼ t1; . . . ; ti�1. The count-based MLE (count of sequence/
count of context) that is used in N-gram models becomes
impractical to estimate the probabilities, due to the very
large number of possible prefixes. Thus, a common optimi-
zation is the N-gram language model. The N-gram model
assigns a probability (or a score) to a sequence of words
based on the Markov-assumption, i.e., each token is condi-
tioned on theN � 1 preceding tokens, that is,

pðtijhÞ ¼ pðtijti�nþ1; . . . ; ti�1Þ: (2)

We estimate the above-mentioned probability from the
training corpus as the fraction of times that ti follows the
prefix ti�nþ1; . . . ; ti�1. Additionally, since the probabilities
may vary by orders of magnitude, we use the (typically
negated) logarithm of the phrase probability, to arrive at the
information-theoretic measure of entropy as defined in
prior studies [19], [24]. Entropy reflects the number of
needed bits to encode the phrase (and, analogously, a token)
given the language model. Entropy is a measure of how
“surprised” a model is by the given document. The lower
the entropy of a new code fragment is, the more natural the
new code fragment is with the training code corpus. For-
mally, given a code fragment s of length jsj, the prefix of
each token is denoted by h ¼ t1; . . . ; ti�1, the entropy of the
code fragment (and, analogously, a token) is computed as:

TABLE 1
Summary of the Used Change Features
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HpðsÞ ¼ � 1

jsj log2 pðsÞ ¼ � 1

jsj
Xjsj

i¼1

log2 pðtijhÞ: (3)

Note that the model training corpus only consists of the
added clean lines by software changes that are identified in
the data preparation step. The vocabulary is built from the
training corpus. The reason is that we attempt to build a pure-
clean training corpus and our target is line-level localization.
Adding more context (e.g., other lines before/after a clean
line)might impact the cleanliness of our training corpus.

N-Gram Configuration. By default, in terms of the N-gram
length (i.e., the value size N in an N-gram model), we set
N ¼ 6 (i.e., 6-gram) since prior study by Hellendoorn and
Devanbu [24] has shown that the value performs well for
modeling source code. Additionally, in practice, it is necessary
to smooth the probability distributions by assigning non-zero
probabilities to unseen words or N-grams. The smoothing is
needed since models that are derived directly from the n-
gram frequency counts have severe problems when con-
fronted with any n-grams that have not explicitly been seen
before, i.e., the zero-frequency problem. Smoothing is a popu-
lar technique to cope with this problem in the NLP field [31].
Various smoothingmethods have been proposed, such as Jeli-
nek-Mercer (JM), Witten-Bell (WB) and Absolute Discounting
(AD) [24], [31]. By default, we adopt the JM smoothing
method that has shown to perform well for modeling source
code as recommended byHellendoorn andDevanbu [24].

2.3 Model Application

JIT Defect Identification. Given a new change, the built JIT
defect identification model in previous subsection will iden-
tify it as buggy or clean.

JIT Defect Localization. For the likely buggy changes iden-
tified in previous step, the built JIT defect localization model
will computes the entropy of each token, then we compute
the entropy of a line using the entropy values of all its
tokens. Subsequently, we sort all the introduced lines in
descending order according the entropy of each line. Lines
that are sorted at the top are more likely to be defective.

One final issue that remains is how to compute the line
entropy (i.e., the entropy-based score of a line) according to
the entropy values of its tokens. Suppose there is a code line
s of length jsj, the line is tokenized into t1, t2,...,tjsj. The
entropy of each token outputted by language model is
denoted as Hpðt1Þ, Hpðt2Þ,...,HpðtjsjÞ. In a prior study [19],
the line entropy HpðsÞ is computed by simply averaging the
entropy values of its tokens, that is:HpðsÞ ¼ 1

jsj
Pjsj

i¼1 HpðtiÞ.
In our context, since our model aims to sort lines accord-

ing to line entropy to find more likely buggy lines, we con-
jecture that the most unnatural token sequences is
important for sorting. Therefore, we adjust line entropy
HpðsÞ computing method by combining maximum entropy
and the average entropy.

Specifically, in terms of the cleanmodel, we compute the line
entropy (denoted as HpðsÞc) by summing the maximum (i.e.,
max) entropywith the average entropy of its tokens, that is,

HpðsÞc ¼ maxðHpðt1Þ; . . . ;HpðtjsjÞÞ þ 1

jsj
Xjsj

i¼1

HpðtiÞ: (4)

The reasons for this adjustment are: 1) the max entropy cap-
tures the most unnatural token sequences of a line. Within the
context of the clean model, the most unnatural line means the
most defective line. 2) The average entropy captures the entire
naturalness of a line, summing it with max entropy is useful
for describing the entire naturalness of the line, especially
when themax entropy of different linesmight be equal.

3 EMPIRICAL STUDY SETUP

In this section, we present our empirical study setup. First,
we present a summary of the used dataset. Second, we pres-
ent our validation setting to create the training and testing
sets for our study. Third, we describe the performance
measures that are used to evaluate the JIT defect localization
method. At last, we present the research questions that we
are interested in answering in our empirical study.

3.1 Dataset

We select experimental projects from Github. The selected
projects are written by Java, cover different application
domains, are of different sizes and have a varying number
of contributors. Additionally, all the projects have over
5,000 changes to ensure sufficient samples for modeling,
and over 1,000 stars to ensure that the studied projects are
non-trivial ones [32]. We randomly selected 14 projects that
satisfy our inclusion criteria. The sample size is larger than
the related JIT studies [9], [12], [15], [16], [20]. Table 2
presents the summary of studied projects.

We collect the changes of studied projects from the creation
data of the projects to March 1, 2018. However, since we need
to use the future changes to identify defect-introducing
changes, we use the changes until October 1, 2017 (i.e., a five-
monthwindow) to ensuremost of the studied changes are cor-
rectly labeled. We set the five-month window because above
80 percent of the buggy changes in our dataset were fixed
within fivemonths on average. There are a few buggy changes
thatmay need even over a year to be fixed. Amuch largerwin-
dow may reduce the number of instances for our study. A
shorter timewindowwould likely introduce noise in our data.
Thus, we think five months is a rational and sufficient win-
dow. In total, there are 177,250 changes in the studied projects.

3.2 Model Evaluation

Evaluation Setting. Our proposed framework aims to locate
the buggy lines that are introduced by a buggy change. Thus,

TABLE 2
Summary of the Studied Projects
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the JIT defect localization phase is only useful when a buggy
change is identified in JIT defect identification phase. Under
this situation, we report the evaluation results considering
two kinds of settings. One setting is the evaluation of identi-
fied-buggy changes in the testing set. This setting means that
we only consider the buggy changes that are correctly identi-
fied by our first phase (i.e., the JIT defect identification phase).
This setting aims to simulate the practical usage scenario
when using our tool. The other setting is the evaluation of
all-buggy changes in testing set. This setting assumes that we
already know whether or not a change is a buggy one, then
we apply our localization approach (i.e., supposingwe have a
perfect JIT defect identification approach). In our evaluation,
we report the results of these two settings.

Performance Measures. MRR and MAP are classical evalu-
ation metrics for information retrieval [33]. In our context,
MRR measures how far we need to check in down a sorted
list of added lines of a buggy change to locate the first buggy
line, while MAP considers the ranks of all buggy lines in
that sorted list. MRR and MAP are widely used in many
software engineering studies to evaluate the performance of
a retrieval task [34], [35], [36], [37]. Note that our evaluation
is performed at the change-level, i.e., each buggy change in
our test set has an MRR and an MAP performance value.
And we report the average of identified-buggy and all-buggy
changes in the testing set in a project.

Top-k Accuracy. In practice, inspecting all changed LOC
in all changes is probably unrealistic. Prior studies assumed
that only a small proportion of the changed LOC could be
inspected given the limited resources and time in prac-
tice [19], [38]. Therefore, we also evaluated our approach
considering a limited inspection budget (i.e., inspecting the
most Top-k buggy lines of a change).

Top-k accuracy is the percentage of buggy changes for
which at least one actually buggy line is ranked within the
Top-k position in our returned list of sorted code lines. In
terms of one buggy change i, if at least one of the Top-k
most likely buggy lines returned by our approach is actu-
ally the buggy location, we consider the localization to be
successful, and set the top-k value of this change Top kðiÞ
to 1; otherwise, we consider the localization as unsuccess-
ful, and set the Top-k value Top kðiÞ to 0. Given a set of N
buggy changes in a project P , its Top-k accuracy is com-
puted as Top kðP Þ ¼ 1

N

PN
i¼1 Top kðiÞ. In this paper, we set

k = 1 and 5.

3.3 Research Questions

We formalize our study using the following three research
questions:

RQ1: Can we effectively locate the buggy lines when identify-
ing a buggy change using our proposed framework? In this RQ,
we evaluate the effectiveness of our proposed framework
for JIT defect identification and localization. To answer this
RQ, we conduct an empirical study to evaluate our frame-
work on 14 open source projects. Additionally, we compare
its performance with two baselines, i.e., a random guessing
and a static bug finder baseline (i.e., PMD [39]).

RQ2: What is the impact of using prior buggy code for JIT
defect localization phase? By default, we build our model for
JIT defect localization by training on prior clean code (i.e., a
clean language model). In this RQ, we investigate what if

we build the source code language model using buggy code
(i.e., a buggy language model).

RQ3: How effective is our framework in a cross-project set-
ting? In this RQ, we aim to explore the effectiveness of our
framework in a cross-project modeling setting. By default,
we build our model for each project by learning from the
historical code changes within that project. To answer this
RQ, we build a cross-project model by learning from the
other studied projects except one project (the testing project)
at a time.

Validation Setting for Answering the Above RQs. In order to
simulate the practical usage of our framework, we adopt a
time-aware validation setting that divides the training and
testing sets as done by prior studies [12], [25]. In our time-
aware validation, for each project, we first rank all changes
in chronological order according to the commit date and
time. Then we use the early 60 percent of the changes as our
training set, and use the remaining 40 percent of the
changes as our testing set.

For answering RQ1 and RQ2, we use the within-project
validation setting, i.e., learning from the early 60 percent
changes within the project, and testing on the remaining
40 percent changes. For answering RQ3, we build the
approach by learning from all the changes from the other
studied projects except one project (the testing project) at a
time. Note that in order to make a fair comparison, we keep
the testing set of within-project and cross-project setting the
same for answering RQ3.

4 EXPERIMENTAL RESULTS

In this section, we aim to answer the aforementioned three
research questions. In RQ1, we evaluate the performance of
our proposed JIT defect localization approach on 14 open
source projects and compare it with two baselines. In RQ2,
we present the results of clean versus buggy model. In RQ3,
we show the effectiveness of our approach when using
cross-project modeling.

4.1 RQ1: Performance of Proposed Framework

Approach. To answer this research question, we conduct an
empirical study on 14 open source projects. By default in JIT
defect localization phase, we build a clean model by training
on a clean corpus of lines of code from prior code changes for
each project. For each change in testing set, we first classify it
as buggy or clean using the built logistic classifier learning on
our training set (i.e., JIT defect identification). Then, for a likely
buggy change determined by previous classifier, we perform
our localization phase. Additionally, in order to compare the
effectiveness of the proposed approachwith similar solutions,
we implement two baselines, i.e., random guess and a static
bug finder baseline, PMD.

Baseline 1: Random Guess (RG). RG is usually adopted as a
baseline when there is no previous method for addressing
the same research question [40]. In random guess JIT defect
localization, the model randomly sort the introduced lines.
In terms of computing its performance, since the perfor-
mance only relates to the order of lines, we sort the intro-
duced lines in a buggy change randomly and we repeat the
random sorting 100 times to get the median performance.
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Baseline 2: PMD. PMD is a commonly-used static bug
finder. We choose PMD as a baseline because it is a popular
static bug finder tool and has been used in prior related
studies [19], [41]. PMD produces line-level warnings and
assigns a priority for each warning. Another popular static
bug finder tool is FindBugs [42]. We did not choose Find-
Bugs as a baseline because it needs to operate on the Java
bytecode. Prior studies have found that not all changes
leave the code base in a compilable state [43]. The main rea-
son for a broken snapshot (i.e., cannot be compiled) is due
to the problems related to the resolution of dependencies
[44], [45]. Since we aim to perform the evaluation on each
change, the existence of broken snapshots prevents us from
adding FindBugs as another baseline.

We simply execute the existing PMD tool3 for each code
change to implement the baseline. Specifically, for each
change in our test set, we checkout the changed/added files
after the commit time. Subsequently, we use the PMD tool to
scan the changed files then record the warning priority (1-5,
denotes “High”, “Medium high”, “Medium”, “Medium
low”, “Low” respectively) of each introduced line by the
change. If a line is not marked by PMD, we assign the value of
priority as 6 (i.e., denotes “Clean”). In this way, we can sort
the lines according to their warning priority (i.e., 1-6). Addi-
tionally, since some lines might have equal priority, we add a
small random amount from [0,1] to all line priority values for
sorting. This step simulates the developer randomly choosing
to inspect the lines returned by the PMD tool with the same
priority level (as proposed by a prior study [19]). Thenwe sort
the introduced lines according to these computed priority val-
ues (i.e., “1-6” + “[0,1]”) in ascending order. The lines sorted
at the top of the list aremore likely to be the defect location. To
reduce the bias of our randomly added amount from [0,1], we
repeat this process for 100 times and get the median perfor-
mance for each change.

To conduct a fair comparison,we use the same approach in
terms of JIT defect identification phase for our framework and
two baselines. Because our point is to compare the localization
performance supposing we use the same JIT defect identifica-
tion tool in the first phase as described in Section 2.

To investigate whether the difference between the base-
line models and our proposed models is statistically

significant, we employ the Wilcoxon signed-rank test [46]
with a Bonferroni correction [47] at 95 percent confidence
level. The Wilcoxon signed-rank test is a non-parametric
hypothesis test which can compare two matched samples to
assess whether their population mean ranks differ. Bonfer-
roni correction is used to counteract the problem of multiple
comparisons. Additionally, we employ Cliff’s delta to mea-
sure the effect size. Cliff’s delta is a non-parametric effect
size measure that can evaluate the amount of difference
between two approaches. It defines a delta of less than
0.147, between 0.147 and 0.33, between 0.33 and 0.474 and
above 0.474 as “Negligible (N)”, “Small (S)”, “Medium
(M)”, “Large (L)” effect size, respectively [48].

Results of JIT Defect Identification. Table 3 shows the result
of the first phase (i.e., JIT defect identification) of our frame-
work. For each project, we list the number of training and
testing changes and two performance measures for JIT
defect identification:

1) Identification ratio is the recall of our JIT defect identi-
fication phase. It indicates the ratio of correctly iden-
tified buggy changes among all buggy changes in
our testing set. Our JIT defect localization approach
is only useful when examining a buggy change.
Thus, a high identification ratio for the first phase of
our framework is an essential first step for using our
localization approach.

2) Misidentification ratio is the false positive rate of our
JIT defect identification phase. It indicates the ratio
of misidentified clean changes on which we would
have wasted our limited inspection effort. It is unre-
alistic to inspect all changes in practice. Hence, we
cannot classify all changes as “buggy” to achieve an
identification ratio of 1. This would lead to a large
amount of wasted inspection effort. Thus, we use
misidentification ratio to capture the amount of
wasted effort.

From Table 3, we observe that we can achieve an average
identification ratio of 0.843, and a misidentification ratio of
0.284 for JIT defect identification phase. Since the first phase
is not the main contribution of our work, we simply imple-
ment a prior approach which provides us with reasonable
performance already. The core focus of this paper is to
investigate the performance of our proposed framework for
JIT defect localization using the correctly identified buggy

TABLE 3
Descriptive Statistics for Our Training and Testing Sets, as Well as the Performance Measures

for our JIT Defect Identification Approach

3. https://pmd.github.io/
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changes from the first phase. Additionally, we report the
performance of our localization approach in a hypotheti-
cally setting which assumes that we have at hand a perfect
JIT defect identification approach that is capable of identi-
fied all buggy changes and not misidentifying any changes.

Data Distributions of Lines and Tokens. To gain an overview
of the distribution of lines and tokens in our dataset, we use
violin plots [49]. Since the absolute value of added lines for
some changes are very large (e.g., more than 1K LOC are
modified), we applied a standard log transformation (base
2) to the size of each change before visualization.
Fig. 2presents the distributions of change size (i.e., added
lines), buggy lines, the ratio of buggy lines relative to the
number of added lines in a buggy change for identified-
buggy and all-buggy changes, and the number of tokens in
buggy and clean lines across all the studied projects. The
ratio of buggy lines can capture the defect localization diffi-
cult degree. The smaller the ratio is, the more difficult it is
to perform defect localization. A ratio of 1 indicates that all
the added lines are buggy lines, the defect localization is
easiest in this case. In summary, the figure shows that:

1) Considering all-buggy changes, the majority of the
buggy changes added less than 180 (i.e., 27:5) lines of
code, the median value is near 32 (i.e., 25) from
Fig. 2a. Among the added lines, most of the buggy
changes added less than 6 (i.e., near 22:5) buggy lines
from Fig. 2b. From the ratio of buggy lines, most of
the buggy changes have a relatively higher difficulty
degree for localization, the median value of the ratio
of buggy lines is near 0.125 (i.e., locating 1 buggy
line from 8 added lines) from Fig. 2c.

2) Considering identified-buggy changes, the number
of small changes (e.g., less than 22:5) is much less
compared to all-buggy changes from Fig. 2a. This
means that our JIT defect identification phase tends
to identify “large” buggy changes. Meanwhile, the
number of buggy changes with a high difficulty
degree for localization is much larger than all-
buggy changes from Fig. 2c. This means that identi-
fied-buggy changes tend to be more difficult for
localization.

3) From Fig. 2c, we observe that there are a few changes
that have a ratio of 1 (i.e., all the added lines are buggy
lines). In this case, a JIT defect localization is not
needed. However, in order to consider a more realistic
usage scenario, we did not remove these changes.

4) Fig. 2d presents the distribution of the number of
tokens of buggy and clean lines. Since a few lines

may contain a large number of tokens (e.g., a long
string), we only visualize the lines that contain less
than 50 tokens. We use the Wilcoxon rank-sum
test [50] to analyze the statistical significance of the
difference between the number of tokens of buggy
and clean lines. The result shows that the number of
tokens of buggy lines is significantly larger than that
of clean lines (i.e., p-value< 0:05). The number of
tokens could be an important factor affecting the
entropy of a line. The longer lines may have an over-
all average entropy higher than shorter lines. The
statistical results in Fig. 2d could be a correlated
effect on why buggy lines tend to have a higher aver-
age entropy.

Results of JIT Defect Localization. Tables 4, 5, and 6present
the results of MRR, MAP, Top-k accuracy for each project
considering identified-buggy and all-buggy changes. We
list the performance of our approach and the two baselines
(i.e., RG and PMD). Additionally, we list the average
improvement ratio over the baseline for each project (i.e.,
“Improve.RG” and “Improve.PMD”).

Calculation of Improvement Ratio. Since the performance
for each project is the average performance among consid-
ered identified-buggy or all-buggy changes, there is an
improvement ratio for each change (change-level improve-
ment). The change-level improvement ratio is computed as
ðOurs�Baseline

Baseline Þ � 100% when our approach is better than base-
line on this change; as Ours�Baseline

Ours � 100% when our
approach is worse than baseline on this change (now the
improvement is a negative number). Then we average all
the change-level improvement ratio among all considered
changes for each project.

We use average improvement ratio on change-level
rather than computing the improvement ratio on the final
project-level. This is because there are some small changes
(where most of the added lines are buggy) will flat the
improvement ratio. For example, if there are two identified-
buggy changes in testing set in a project, one change is with
2 added code lines where there is 1 buggy line; the other
change is with 200 added lines where there is 2 buggy lines.
Obviously, the second change is more difficult for localiza-
tion. Supposing the MRR of the two changes are 1 and 0.1
using PMD, the MRR of the two changes are 1 and 0.3 using
our approach. Now the improvement ratio on project-level

is: ð1þ0:3Þ=2�ð1þ0:1Þ=2
ð1þ0:1Þ=2 ¼ ð0:65�0:55Þ

0:55 ¼ 18%. However, this project-
level improvement ratio cannot describe the actual
improvement of our approach due to the different difficulty
degree for localization on the two changes as Fig. 2 shows.
If we use a change-level calculation method, the average

Fig. 2. Distribution of total added lines, buggy lines, ratio of buggy lines relative to the added lines for all-buggy and identified-buggy changes, and the
number of tokens in buggy and clean lines in our dataset. “Buggy Lines/ Total Lines” can capture the difficulty degree for a defect localization
approach. A dot represents the median value.
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improvement ratio is: ð1�1Þ=1þð0:3�0:1Þ=0:1
2 ¼ ð0þ200%Þ

2 ¼ 100%.
We believe that this improvement ratio can describe the
actual difference when comparing two approaches, since
this is a pair-wise comparing manner. As a result, although
there is not a significant difference in terms of the average
performance sometimes, there could be a significant differ-
ence in terms of the average change-level improvement
ratio. Additionally, note that we did not calculate the
improvement ratio for Top-k accuracy, because the perfor-
mance is either 1 or 0 for each change in terms of Top-k
accuracy for each change.

From Tables 4, 5, and 6, we have the following
observations:

1) On average across the 14 projects, our approach
achieves a reasonable performance. It achieves an
MRR of 0.396, an MAP of 0.353, a top-1 accuracy of
0.265 and a top-5 accuracy of 0.544 considering identi-
fied-buggy changes. From MRR, the performance
means that our approach can successfully locate the
first buggy line in near 3 lines on average. From Top-k
accuracy, the performance means that our approach
can successfully locate at least one buggy line in top-1

line among 26.5 percent and in top-5 lines among 54.0
percent of identified-buggy changes.

2) Among our identified-buggy changes, there are a
few small buggy changes (i.e., adding <¼ 5 lines).
In this case, top-5 accuracy is 1 for both our frame-
work and baselines. However, we observe that there
are only near 0.1 percent of small changes (i.e., add-
ing <¼ 5 lines) in identified-buggy changes. Thus,
we believe that our top-5 accuracy is reasonable.

3) Considering all-buggy changes, the performance is
better from Tables 4, 5, and 6. This is observed
because the identified-buggy changes are likely
larger and more difficult for localization as Fig. 2
shows. The median value of added lines of identi-
fied-buggy is a bit larger than that of all-buggy
changes. The ratio of buggy lines of identified-buggy
is smaller than that of all-buggy changes (the ratio is
smaller; the localization tends to be more difficult).

4) Comparing to RG and PMD, our approach outper-
forms the two baselines in terms of all the measures
on average with a statistical significance (i.e., p-value
< 0.05) and a non-negligible effect size according to
Wilcoxon signed-rank test and Cliff’s delta in most

TABLE 5
The Performance of MAP Considering Identified-Buggy and All-Buggy Changes

“Improve” indicates the average improvement ratio over the baseline for each project. The best performance among the three approaches is highlighted in bold.

TABLE 4
The Performance of MRR Considering Identified-Buggy and All-Buggy Changes

“Improve” indicates the average improvement ratio over the baseline for each project. The best performance among the three approaches is highlighted in bold.
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of the projects from Tables 4, 5, and 6. Additionally,
the improvement ratio is substantial on average
(e.g., at least greater than 50 percent in terms of MAP
and MRR). The row “W/T/L” reports the number of
projects for which the corresponding approach
obtains a better, equal or worse performance than
ours. Our framework outperforms the two baselines
in all of the projects in terms of MRR, and MAP, and
in most of the projects in terms of Top-k accuracy.

5) In project “Jitsi”, although the performance of ours is
better, the improvement ratio is a negative value in
terms of MRR compared to PMD. Such value indi-
cates that our framework may be failed for some
changes, but the PMD is successful for defect locali-
zation for these changes and with a significant
improvement ratio compared to our framework. In
terms of Top-k accuracy, although the PMD baseline
could perform better than our framework in a few
projects (e.g., Libgdx, Storm, and Jitsi), our frame-
work outperforms PMD with a statistically signifi-
cant difference among 14 projects.

6) Note that some of changes are with a high ratio of
buggy lines relative to the added lines as Fig. 2c
shows; for those changes, most of (or even all of) the
added lines are buggy. These changes would lead to
a good performance in terms of all the measures and
across all approaches. Such changes are likely to be
the reason for the reasonably good performance of
the random guess baseline.

Our approach can achieve a reasonable localization perfor-
mance that can outperform the two baselines with a statistical
significance in average of the 14 projects.

4.2 RQ2: Effectiveness of Buggy Model

Approach. By default, we build our JIT defect localization
model by training on the previously added clean source
code lines (i.e., a clean language model). The assumption of
a clean model is that buggy code tends to be more surpris-
ing with clean code. In this RQ, we investigate how effective
if we build our model using the buggy source code lines
(i.e., a buggy model). The assumption of a buggy model is
that buggy code tends to be similar with prior buggy code.

For building a buggy model, we use all the added buggy
lines of the training set as the training corpus for building a
language model. However, the method for computing the
line entropy and sorting is different with the default clean
model, since the assumption is different. In the buggy
model, a lower entropy value means a higher likelihood to
be defective. Thus, we sort the lines in ascending order
according to their entropy value.

In detail, in buggy model, we compute the line entropy
(denoted as HpðsÞb) by subtracting the average entropy from
the minimum (i.e., min) entropy of its tokens as Formula 5
shows. The reasons for this adjustment are two-folds:

1) The min entropy captures the most natural token
sequences of a line. Within the context of the buggy
model, the most natural line means the buggiest line.

2) The average entropy captures the entire naturalness
of a line, subtracting it from the min entropy is useful
for describing the entire naturalness of the line, espe-
cially when the min entropy of different lines might
be equal.

HpðsÞb ¼ minðHpðt1Þ; . . . ; HpðtjsjÞÞ � 1

jsj
Xjsj

i¼1

HpðtiÞ (5)

Results. We evaluate the buggy model on the same data-
set and setting used for answering RQ1. Table 7presents the
performance of buggy model and its comparison with the
default clean model considering identified-buggy changes.
Since identified-buggy changes are more realistic than all-
buggy for using our approach, we only consider identified-
buggy changes in the following sections. From the table, we
observe that:

1) Comparing the performance of buggy model to two
baselines in RQ1 as shown in Tables 4, 5, and 6, we
observe that buggy model can achieve a comparable
or better performance in most of the cases on aver-
age. This indicates that a language model based on
buggy code can also be possible for JIT defect
localization.

2) The clean model is better than the buggy model on
average in terms of all the measures considering
identified-buggy changes. Clean model outperforms

TABLE 6
The Performance of Top-k Accuracy Considering Identified-Buggy and All-Buggy Changes
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buggy model with a statistical significance (i.e.,
p� value < 0:05) and a non-negligible effect size
according to Wilcoxon signed-rank test and Cliff’s
delta in terms of MAP and top-5 accuracy. There is
no statistical difference between them in terms of
MRR and top-1 accuracy.

4) The main reason for the performance difference
between the clean model and the buggy model might
be the assumption behind them. The assumption of
the clean model is that buggy code tends to be sur-
prising compared to the prior clean code. For exam-
ple, our approach successfully located the buggy
line at the first position in the change “a774741
7e541666d5316bccaaf41ca5e1112e985” for the Deep-
learining4j project, since the buggy line contains
“return feedForward(true, excludeOutputLayers, false,
true);”. We noticed that the use of “return feedForward
(true” rarely occurred elsewhere in the training cor-
pus. After a closer investigation, we observed that
the most commonly used token after “new feedFor-
ward(” is “train”, or “)” in the training corpus. Thus,
this line has a rather high entropy since it is rather
surprising relative to the training corpus. The corre-
sponding bug-fix change fixed this line by using
“return feedForward(train, excludeOutputLayers, false,
true);”. The assumption of the buggy model is that
buggy code tends to be similar compared to prior
buggy code. For example, the buggy model tends to
sort the lines that contain the use of “new INDAr-
rayIndex[]” at the top of the list in the Deeplearining4j
project (e.g., in change “33c68cdf23257cc9f09d721625f
47cd832de8ca6”) since the “new INDArrayIndex[]”
occurs many times in the buggy training corpus.
However, in this change, the line used the “new
INDArrayIndex[]” is not the buggy line. Thus, the
buggy model failed to locate this buggy change.

5) In most cases, the clean model outperforms the
buggy model. Hence, supporting our assumption
that the clean model is more effective for JIT defect
localization. However, the clean model does not con-
sistently outperform the buggy model. This indicates
that the assumption of the buggy model might be
also appropriate in other cases.

A buggy model can also be possible for JIT defect localization.
However, a clean model is a better choice on average.

4.3 RQ3: Performance of Cross-Project Model

Approach. For each target project, we build our approach by
learning from all the other projects in our study. Similar to
RQ2, we focus on the clean model since we observed that
the clean model is better than the buggy model. And we
focus on identified-buggy changes, since they are more real-
istic for using our approach.

In our cross-project setting, we build the N-gram model
by learning from all the clean corpus of other projects. To
do so, we first combine all the clean source lines of other
projects as one multi-project training corpus. Second, we
build the N-gram model by learning on the combined
multi-project corpus using the same modeling setting as
used for answering RQ1. Third, we apply the multi-project
model on the testing set which consists of a single target
project. We then compare the performance of our cross-
project setting with our default within-project setting.

Results. Table 8 presents the effectiveness of cross-project
modeling. The results show that:

1) On average across the 14 projects, the cross-project
model achieves a comparable performance com-
pared to within-project model. There is no statistical
significance between them.

2) We can observe that cross-project model can
slightly improves the performance on average.
From the above observation, we can conclude that
cross-project is also doable. The reason might be
that the training corpus in cross-project is much
larger than the corpus for the within-project set-
ting. For example, when targeting the Deeplear-
ning4j project, the total tokens in the training
corpus is 3,110K and 40,620K (above 10 times
larger) in within-project and cross-project setting
respectively. In other words, the cross-project
model achieves comparable or better performance
by using approximately a 10 times larger training
corpus than the within-project model.

TABLE 7
The Performance Buggy versus Clean Model Considering Identified-Buggy Changes

92 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 1, JANUARY 2022

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on January 11,2022 at 07:12:06 UTC from IEEE Xplore.  Restrictions apply. 



Cross-project modelling can achieve comparable performance
compared to within-project model by learning on a much
larger training corpus.

5 DISCUSSION

5.1 Effectiveness of Fusing the Clean
and Buggy Models

In this subsection, we explore whether we can improve the
performance of our framework by fusing the clean and
buggy models. We investigate two fusing methods, i.e., fus-
ing by entropy value (F-value) and fusing by rank (F-rank).

Fusing by Entropy Value (F-Value). In this fusing method,
we simply update the entropy for each line by subtracting
the entropy of the buggy model from the entropy of the
clean model. In detail, we compute the fused line entropy
(denoted as HF value as Formula (6) shows. The reason for
this calculation method is due to the difference between the
clean and buggy models. In the clean model, a higher
entropy means a higher defectiveness likelihood, we sort
the lines in descending order according to their entropy
value. In the buggy model, a lower entropy means a higher

defectiveness likelihood, we sort the lines in ascending
order according to their entropy value. In this fusing
method, we use the subtraction method. As a result, the
sorting method is the same as the one used in the clean
model (i.e., in descending order according toHF valueÞ.

F value ¼ HClean �HBuggy: (6)

Fusing by Rank (F-rank). Additionally, we explore another
fusing method using the entropy rank rather than the
entropy value of each line. The fused rank (F-rank) is calcu-
lated as Formula (7) shows. Then, we sort the lines by the
fused entropy rank. For example, suppose a change intro-
duced three lines of code (Line A, B, and C), the entropy
rank (in ascending order) for each line in the clean model is
f1; 2; 3g respectively (i.e., Line C is the most defective line in
the clean model). The entropy rank (in ascending order) of
entropy for each line in a buggy model is f3; 2; 1g respec-
tively (i.e., Line C is also the most defective one in buggy
model). The fused rank for each line is f�2; 0; 2g respec-
tively. Then, we sort the lines in descending order according
to the fused rank. As a result, Line C is also the most defec-
tive one in this fusing method.

TABLE 8
The Performance Cross-Project (CP) versus Within-Project (WP) Model Considering Identified-Buggy Changes

TABLE 9
The Performance of Fusing the Buggy and Clean Models

F-value indicates the fusing method using the entropy value of the buggy and clean models. F-rank indicates the fusing method using the entropy rank of the
buggy and clean models.
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F rank ¼ RankClean �RankBuggy: (7)

Table 9 presents the results for the F-value and F-rank
models, and their differences compared to the clean model.
From the table, we observe that the clean model outper-
forms F-value and F-rank on average. There is a statistically
significant difference (p� value < 0:05) between the clean
model and the fused models in terms of MRR, MAP and
Top-5 accuracy. There is no statistically significant differ-
ence (p� value > 0:05) in terms of Top-1 accuracy.

In summary, fusing the buggy and clean models cannot
improve the performance compared to the clean model on
average.

5.2 Impact of Different Methods for Using Entropy

In localization step, we sort the added lines according to the
entropy of each line. By default, we calculate the line
entropy by combining the average entropy and the max
entropy among all the tokens of a line following Formula (4)
for the clean model (i.e., Avg+Max). In the buggy model,
we calculate the line entropy by combining the average
entropy and min entropy among all the tokens of a line fol-
lowing Formula (5) (i.e., Min-Avg). In this subsection, we
investigate the effectiveness of three other methods for
using the line entropy.

Average (Avg). We use the average entropy of all the
tokens in a line to represent the line entropy. This method

can be used in both the clean and buggy models. Addition-
ally, we use max/min as a tie-breaker for sorting when the
average entropy of two lines are equal.

Max/Min. We use the max entropy of all the tokens in a
line to represent the line entropy. The max entropy is used
in the clean model. We use the min entropy of all the tokens
in a line to represent the line entropy. The min entropy is
used in the buggy model. Additionally, we use the average
entropy as a tie-breaker for sorting when the max/min
entropy of two lines are equal.

Likelihood. We compute a likelihood value based on a
classifier learned from avg, max, and min entropy values of
a line. In this method, we calculate the avg, min and max
entropy values of each line in both the training and testing
set by using the built clean/buggy model. Using the avg,
min and max entropy values, we build a classifier (i.e.,
Logistic Regression) learned from the training set. Then, the
likelihood of a line in the testing set (with avg, min and max
entropy values) being buggy is predicted using such a clas-
sifier. Finally, we sort in descending order the lines in each
change that appears in the testing set.

Tables 10 and 11 present the results of the different line
entropy calculation methods that we considered, and the
best performing one is highlighted in bold for each project
and each performance measure. From these two tables, we
observe that: (1) In the clean model, considering the average
scores across the projects, the Max method can achieve

TABLE 10
The Performance of Different Methods for Calculating the Line Entropy in the Clean Model

TABLE 11
The Performance of Different Methods for Calculating the Line Entropy in the Buggy Model
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comparable or better performance than the other methods.
However, there is no statistically significant difference in
the effectiveness scores of Max, Avg and Max+Avg (p-val-
ue> 0.05). (2) In the buggy model, the Min-Avg method out-
performs the Avg and Min methods for most cases. In terms
of MRR and MAP, the Min-Avg method outperforms the
Avg and Min methods in a statistically significant way (p-
value< 0.05).

Tables 12 and 13 present the performance of the likeli-
hood methods in the clean and buggy models. From these
two tables, we observe that: (1) In the clean model, the
Avg+Max method outperforms the likelihood method on
average and in a statistically significant way in terms of
MRR and Top-5 accuracy. There is no statistically signifi-
cant difference observed in terms of MAP and Top-1 accu-
racy. (2) In the buggy model, the likelihood method can
achieve comparable or better performance compared to the
Min-Avg method. The likelihood method outperforms
Min-Avg method on average, but with no statistically sig-
nificant difference.

In summary, a pure Max method using average only as
the tie-breaker can achieve a comparable performance com-
pared to our originally used method in the clean model.
The likelihood (predicted by using a classifier based on min,

avg and max entropy values) method can achieve a compa-
rable performance compared to our originally used method
in the buggy model.

5.3 The Impact of Using Different Configurations of
N-Gram

The different N-gram configurations might affect the effec-
tiveness of modeling [24], [51]. In the prior RQs, we used
the default configuration as suggested by Hellendoorn and
Devanbu [24]. In this subsection, we investigate the impact
of different N-gram configurations, i.e., smoothing method
and N-gram length.

Smoothing is a technique essential in the construction of
n-gram models. Smoothing is used to make distributions
more uniform, by adjusting low probabilities such as zero
probabilities upward, and high probabilities downward.
Not only does smoothing generally prevent zero probabili-
ties, but it also improves the accuracy of the model as a
whole [24], [31]. N-gram length refers to the length of the
considered token sequences. N-gram models assume that
each token depends on the previous N � 1 tokens. Bigger
length may be more specific, but correspondingly less fre-
quent in the corpus, smaller length occur more often, but
may lose information. Thus, we are interested in how these

TABLE 12
The Performance of the Likelihood Method Based on a Classifier That is Trained From the avg,

min and max Entropy Values in the Clean Model

TABLE 13
The Performance of the Likelihood Method Based on a Classifier That is Trained From The avg,

min and max Entropy Values in the Buggy Model
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configurations impact the performance of our model and
which choice is better. We consider four popular smoothing
methods. We briefly introduce their ideas below. For more
detailed description of these smoothing methods please
refer to the work by Chen and Goodman [31].

Smoothing methods:
Jelinek-Mercer (JM). JM involves a linear interpolation of

the maximum likelihood model with the collection model,
using a coefficient to control the amount of smoothing. It is
a linear interpolation method for combining the information
from lower-order n-gram models for estimating higher-
order probabilities.

Witten-Bell (WB).WB smoothing is developed for the task
of text compression and is considered as an instance of the
Jelinek-Mercer smoothing. WB also uses linear discounting
but differs in that it incorporates the interpolation coeffi-
cient based on the average frequency of events seen in a
context.

Absolute Discounting (AD). AD method lowers the proba-
bility of seen words by subtracting a constant from their
counts. Different from the Jelinek-Mercer method, AD dis-
counts the seen word probability by subtracting a constant
instead of multiplying it by a coefficient.

Absolute Discounting Modified (ADM). ADM is a modified
AD. ADM improves AD by using three separate discounts,
for events seen once, twice and more than twice [24].

N-Gram Length. In terms of the N-gram length, we built
N-gram models with lengths from one (i.e., unigram) to ten
in order to investigate the impact of the N-gram length on
the model performance. We conducted the experiments in
this discussion using the same dataset, keeping the same
validation setting and smoothing method as used in RQ1.

Table 14 presents the results of different smoothing
methods. In terms of both the buggy and clean models, we
list the average performance of all projects by using differ-
ent smoothing methods. From this table, we observe that
the smoothing method has no substantial impact on the
average performance. In general, for the buggy model, the
best choice is Jelinek-Mercer (JM) smoothing. For the clean
model, the best choice is Absolute Discounting (AD)

smoothing. Fig. 3 presents the average performance of all
projects across different N-gram length. We can observe
that the N-gram length has no substantial impact on the
average performance. In general, bigger lengths (e.g.,
8-gram) tend to perform better.

In summary, the n-gram configuration has no substantial
impact on the average performance. In general, the Jelinek-
Mercer (JM) smoothing tends to be better for the buggy
model. The Absolute Discounting (AD) smoothing tends to
be better for the clean model. A bigger N-gram length (e.g.,
8-gram) tends to perform better for both the clean and
buggy models.

5.4 Implications

Usage Scenarios, Benefits and Costs of Using Our Tool. Our tool
consists of a JIT defect identification phase and a JIT defect
localization phase. The typical usage scenario of our tool is
to provide suggestions on suspicious buggy code lines
introduced by a buggy change at check-in time. For exam-
ple, Bob is a developer in a large project team, and his main
responsibility is to inspect code changes that are submitted
by other developers. He is typically assigned to inspect
more than 50 code changes in a single day. By default, we
can suppose Bob used the current JIT defect identification
tool as described in Section 2.

Without Our Tool. Following the recommendations of the
used JIT defect identification tool, Bob needs to inspect 20
likely buggy changes that are identified as buggy in a day.
Suppose one change introduced 180 lines on average, he
needs to inspect 20 � 180 ¼ 3; 600 lines of code. He finds that
it is hard for him to focus when he reviews more than 1,000
lines of code, and he often introduces errors when inspect-
ing the remaining lines.

With Our Tool. Bob uses the same JIT defect identification
tool (i.e., the first phase is the same). Thus, Bob also needs to
inspect 20 likely buggy changes. With our tool, he may only
need to inspect a small list of lines for each of these 20
changes (e.g., top-5 or top-10 lines as suggested by our tool).
As a result, he can pay more attention to inspect the most
suspicious lines of code in each change. In this way, he can
spend less time and effort to locate the exact bug positions.

The benefits is to save the inspection time and effort,
especially when there is limited time and source for inspect-
ing code changes. The cost is that we may miss a few bugs
and waste the effort on false positives. Since our approach
is the following step after JIT defect identification, the cost
of our approach is associated with the performance of the
JIT defect identification step. Hence the cost of our approach
includes that: (1) we missed 15.7 percent of the buggy

TABLE 14
The Impact of Using Different Smoothing Methods

on tHe cLean and Buggy Models

Fig. 3. The impact of the N-gram length on the clean and buggy models.
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changes, since these truly buggy changes are not identified
correctly in the first step; (2) we wasted inspection effort on
28.4 percent of the clean changes, since they are false posi-
tives. Additionally, developers cannot simply analyze the
warned buggy lines in isolation, but rather, they need the
surrounding context lines to fully understand them.

Implications for Practitioners. First, we found that in most
of the buggy changes, the ratio of buggy lines among all the
added lines is smaller than 0.25; half of them is near 0.125.
This data highlights the necessary for JIT defect localization,
since it is impractical to inspect all the changed lines for
each change with limited inspection effort. Second, using
our approach, possibly buggy lines can be highlighted in an
early stage (i.e., at check-in time), developers can inspect
them early when they are still fresh with the context. The
benefit is that developers can locate the defect by only
inspecting a list of highly defective lines suggested by our
approach. Third, there are two ways for building a localiza-
tion model, i.e., a clean model and a buggy model. Clean
model might be better for most of the projects, since buggy
code tends to be surprising compared to clean code. Fourth,
when applying our approach on a new project, we can train
the localization model by learning from multiple other
available projects.

Implications for Researchers. First, JIT defect localization is
a real problem which can be the second phase after JIT
defect identification. Solely investigating JIT defect identifi-
cation might be insufficient, since developers cannot iden-
tify where is the defect. We believe that JIT defect
localization can promote the use of JIT defect identification
in practice. Second, software naturalness is effective for JIT
defect localization. Currently, we build a simple solution
using N-gram. Further advanced methods are expected for
improving the performance. Third, both prior clean code
and prior buggy code are potentially useful for JIT defect
location. Prior clean code can be used to detect the defect
which is surprising to clean code, while prior buggy code
can be used to detect the defect which is similar to prior
buggy code.

6 THREATS TO VALIDITY

Threats to internal validity relate to potential errors in our
implementation. First, one potential threat to validity is the
potential errors in our modeling implementation. To miti-
gate the threat, we use and enhance the source code from a
previous study to implement the N-gram modeling on
source code [24]. We also double-checked the implementa-
tion and fully tested our code, still there could be errors that
we did not notice.

Threats to external validity relate to generalizability of
our results. Although we have analyzed 177,250 software
changes from 14 open-source Java software projects, we
cannot claim the generality of our observations to projects
written in other programming languages. Instead, the key
message of this paper is that there are many Java datasets
where our observations are statistically significant. When
applying our approach to projects written in other program-
ming languages, some steps (e.g., comments removing and
code tokenization) should be carefully adapted. Further
investigation of even more projects including projects

written in other programming languages is needed to miti-
gate this threat.

Threats to construct validity relate to the suitability of
our evaluation. One potential threat is that we use MRR,
MAP and Top-k accuracy as the performance measures,
and use Wilcoxon signed-rank test to investigate whether
the improvement of our proposed model over baselines is
significant. MRR, MAP and Top-k accuracy have been
widely used in past software engineering studies [34], [35],
[36], [37], [52]. The Wilcoxon sign-rank test has also been
used in many mining software repository studies. Thus, we
believe we have little threats to the validity on evaluation
measures. Additionally, the evaluation for JIT defect locali-
zation is conducted on identified-buggy or all-buggy
changes. The clean changes that are wrongly identified as
buggy changes (i.e., false positives in JIT defect identifica-
tion) are ignored. Because in these changes, there is no
buggy lines and we cannot calculate the MRR, MAP and
Top-k accuracy. This issue may represent a construct valid-
ity of our study.

7 RELATED WORK

We divide our related work into three parts: defect localiza-
tion, software naturalness and Just-in-time (JIT) defect
identification.

7.1 Defect Localization

Due to the importance of defect localization, researchers
continue to propose various techniques that can be divided
into two main categories, i.e., information retrieval (IR)
based techniques and spectrum-based techniques.

Information Retrieval Based Method. Lukins et al. [2] pro-
posed an LDA based technique for automated bug localiza-
tion. They build the localization model by performing an
LDA analysis on source code document collection (e.g.,
comments and identifiers) and bug reports (e.g., bug title
and description). The results indicate that this LDA-based
technique outperforms an LSI-based technique by Poshyva-
nyk et al. [53]. Rao and Kak [54] conducted an empirical
study by comparing five generic text models, i.e., the Unig-
ram Model (UM), the Vector Space Model (VSM), the Latent
Semantic Analysis Model (LSA), the Latent Dirichlet Alloca-
tion Model (LDA), and the Cluster Based Document Model
(CBDM). They found that simple text models such as UM
and VSM are more effective at correctly locating the rele-
vant buggy files as compared to more sophisticated models
such as LDA. Saha et al. [34] proposed a new localization
technique by combining the bug reports and the structure
of code files. Wang and Lo [55] proposed an integrated tech-
nique for bug localization by combining version history,
similar reports, and structure together.

Spectrum-Based Based Techniques. Jones and Harrold [7]
proposed the Tarantula technique that uses a suspicious-
ness score to locate buggy elements by using the pass/fail
information of test cases, the entities that were executed by
the test case and the source code for the program under test.
Abreu et al. [8] used another similar coefficient formula
called Ochiai from the biology domain. They achieved a bet-
ter performance than Tarantula. Xie et al. [56] conducted a
theoretical investigation on the effectiveness of the risk

YAN ETAL.: JUST-IN-TIME DEFECT IDENTIFICATION AND LOCALIZATION: A TWO-PHASE FRAMEWORK 97

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on January 11,2022 at 07:12:06 UTC from IEEE Xplore.  Restrictions apply. 



evaluation formulas for spectrum-based localization
method and found some formulas outperform others
among the 30 studied formulas. Based on this theoretical
framework, Xie et al. [57] subsequently analyzed the effec-
tiveness of genetic programming based risk evaluation for-
mulas proposed by Yoo et al. [58] for defect localization.

Our work is inspired by the above-mentioned studies but
differs in the usage timing. Both IR-based and Spectrum-
based techniques perform the localization based on defect
symptoms. IR based methods rely on analyzing the textual
description in bug reports, while spectrum-based techni-
ques rely on analyzing program spectrum from actual use
of the software system. These techniques are employed long
after a defect is discovered. Our work aims to perform
defect localization at code check in time–serving as an early
quality control step which can complement the current
localization techniques.

7.2 Software Naturalness

Software naturalness was originally proposed by Hindle
et al. [18]. It refers to the intuition that programming lan-
guages are highly repetitive. Such repetitiveness can be cap-
tured by statistical language models which are originally
from the natural language processing (NLP) field. Based on
this observation, researchers have leveraged software natu-
ralness for many software engineering tasks. For example,
Hindle et al. [18] developed a code completion tool for Java
by using software naturalness. Raychev et al. [59] used the
APIs to build the language model for code completion. Tu
et al. [23] proposed the “cache” mode to improve the perfor-
mance of code completion by using the locality of software.
Allamanis et al. [60] proposed a framework that learns the
style of a codebase, and suggests revisions to improve stylis-
tic consistency using software naturalness. Hellendoorn and
Devanbu [24] proposed an enhanced language modeling
toolkit for source code modeling, they found that carefully
adapting N-gram models for source code can outperform
deep-learning models.

The most similar papers to ours are the ones that use soft-
ware naturalness to detect bugs or syntax errors. There are
three most similar papers:

Ray et al. [19] proposed a line-level defect prediction
approach at the release level using software naturalness. They
found that buggy code lines are more “unnatural” than clean
code lines, and this observation can be used for enhancing the
effectiveness of static bug finding tools (e.g., FindBugs and
PMD). Campbell et al. [61] proposed a Java syntax-error loca-
tor using an N-gram model. Their approach is trained on the
prior versions of a project. Their results show that they can
effectively enhance a compiler’s ability to locate syntax errors.
Based on their observation, Santos et al. [62] proposed the
detection and correction of syntax errors using software natu-
ralness. Their approach is trained on clean source code and is
also evaluated on many specific revision pairs. Their results
show that their approach can locate and suggest corrections
for syntax errors.

Our work is inspired by the three aforementioned studies
and we do not aim to propose a more advanced approach to
outperform these methods. Instead, we aim to adopt their
idea for a new framework, i.e., JIT defect identification and
localization. Like our work, these previous studies can

identify buggy or syntax-error lines using software natural-
ness. However, we each tackle a different problem. The
main differences are as follows.

Ray et al. [19]’s work aims to complement the static
defect identification problem for a release, while our work
aims to identify the defects in software changes just-in-
time. Campbell et al. [61] and Santos et al. [62] aim to detect
and correct syntax errors. Our work differs from them in
two aspects. First, we aim to identify defects but they are
focusing on syntax errors. Second, they do not focus on
software changes. Although Santos et al. [62] collected
many specific revision pairs from IDE events data (the
revision directly prior to a failed compilation due to a syn-
tax error, and the revision immediately following the suc-
cessful compilation) for evaluating the detection and
correction of syntax errors, they only used the revision
pairs as the ground truth and they did not conduct the JIT
analysis by each change. In summary, different from the
above-mentioned studies, we aim to address the JIT defect
localization problem on changed content for software
changes which is a follow up for any JIT defect identifica-
tion approach. The timing at which each work will be used
is different. Our work aims to identify and locate defects
just-in-time when a change is submitted.

7.3 JIT Defect Identification

Researchers has proposed various methods for JIT defect
identification. Mockus and Weiss [63] proposed a method
for assessing the risk that changes introduce defect in a tele-
communication system. Kim et al. [64] proposed an
approach to predict the buggy entities and files from cached
history at the moment a fault is fixed. Furthermore, Kim
et al. [65] proposed a model for classifying a change as clean
or buggy by using various change features. Kamei et al. [9]
performed a large-scale empirical study of JIT defect identi-
fication using effort-aware evaluation. Shihab et al. [11] con-
ducted an industrial study to better understand risky
changes. Yang et al. [13], [14] proposed to use more
advanced modeling techniques for JIT defect identification,
such as ensemble learning and deep learning. Additionally,
many studies investigated the comparison between super-
vised and unsupervised modeling methods for JIT defect
identification [12], [15], [16].

Recently, Nayrolles and Hamou-Lhadj [66] proposed a
two-phase approach (called CLEVER) for intercepting risky
commits using code clone detection. The first phase is to
assess the likelihood that an incoming commit is risky or
not. The second phase is to use clone detection to suggest
fixes when clone code is detected from the risky commit in
the first phase. As a result, 66.7 percent of the suggested
fixes were accepted by developers at industry. Comparing
their work to this paper, the similarity is that both of us con-
ducted a two-phase analysis to support how to fix the com-
mits. The difference is the aim. They aim to suggest the fixes
from prior similar fixes at the moment clone code is
detected. We aim to locate the most suspicious lines in any
buggy change to save the code inspection effort.

Pascarella et al. [67] proposed a fine-grained JIT defect
identification approach which can identify defective files
within changes. They actually conducted a file-level defect
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prediction that focus on the changed files in commits. Differ-
ent from our work, they did not conduct the integrated analy-
sis on JIT defect identification and localization. Additionally,
they focus on file-level, whilewe focus on line-level.

Despite the success achieved by the above-mentioned
techniques, there is no attempt for telling developers where
is the most suspicious defective lines after JIT defect identi-
fication. Thus, our work aims to be served as the next step
of JIT defect identification. In other words, our JIT defect
localization phase can be employed when we identify a
change as buggy.

8 CONCLUSION AND FUTURE WORK

In this paper, we propose a two-phase framework, i.e., JIT
defect identification and localization. For JIT defect identifica-
tion phase, we implement a logistic regression based
approach using 14 change-level features. For JIT defect locali-
zation phase, we use N-gram modeling technique to build a
source code language model training on historical clean
source code. When given a new change, JIT defect identifica-
tion phase will identify it as buggy or clean first. If a new
change is identified as buggy, JIT defect localization phase
will compute an entropy value for each line introduced by the
change. Then, we can sort all the introduced lines according
to the entropy value. The lines sorted at the top aremore likely
to be the defect location. To evaluate the effectiveness of our
framework, we conduct an empirical study on 14 open source
projects with totally 177,250 changes.

In summary, the empirical study results show that: (1)
Our framework achieves a reasonable and better perfor-
mance than the baselines (i.e., PMD and RG) in terms of
MRR, MAP and Top-k accuracy. (2) Considering the buggy
changes that are correctly identified by our first phase (i.e.,
identified-buggy changes), our approach can successfully
locate the first buggy line in near 3 lines on average (i.e, a
MRR of 0.396). And our approach can successfully locate at
least one buggy line in top-1 line among 26.5 percent and in
top-5 lines among 54.4 percent. (3) A buggy model can also
be possible for JIT defect localization. However, a clean
model is a better choice on average.

Our paper is an important step in studying the effective-
ness of JIT defect localization. We envision many future
efforts to extend our work for JIT defect localization as well
as to improve JIT defect identification (and possibly even
crafting approaches that create a feedback loop between
these two approaches). For example, further research can
investigate whether or not the entropy of the changed lines
could be used to enhance (or even replace) the state-of-the-
art JIT defect identification approach. Whether or not the JIT
defect identification and localization are effective on pull
requests needs further investigation, since it is hard to
obtain the ground truth whether commits in unaccepted
pull requests are buggy or clean using the SZZ algorithm
that we leverage in this study. With respect to the language
modeling step, further research can investigate whether or
not a cache model (i.e., considering the locality of changed
content), or a nested model (i.e., combining CP, WP and
Cache models) can improve the effectiveness of JIT defect
localization. With respect to the granularity, further
research can adapt our approach at a wider granularity for

the JIT defect localization (e.g., a block-level defect localiza-
tion by considering a larger context of each change). Finally,
additional in depth case studies on JIT defect localization in
practice and the perception of developers should be con-
ducted. This can help the community obtain a better under-
standing of the problem and collect useful information to
improve this task further.
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