
IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 1

Multi-Dimension Convolutional Neural Network
for Bug Localization

Bei Wang, Ling Xu, Meng Yan, Chao Liu and Ling Liu, Fellow, IEEE

Abstract—Software bugs remain frequent in the life cycle of software development and maintenance. Automatic localization of buggy
source code files is critical for timely bug fixing and improving the efficiency of software quality assurance. Various bug localization
techniques have been proposed using different dimensions of features. Recent studies have shown that different dimensions of
features may play different roles in bug localization. Unfortunately, how to effectively merge these dimensions of features for improving
bug localization has rarely been investigated. This paper presents a Multi-Dimension Convolutional Neural Network (MD-CNN) model
for bug localization automatically based on a bug report. Our approach has dual-novelty. First, we identify and extract five statistical
dimensions of features. Second, we design a Convolutional Neural Network (CNN) model that takes our five statistical dimensions of
features as the input and iteratively learns the complex and non-linear relationship between the features and the bug locations. The
MD-CNN bug localization model is verified using six large-scale open source projects. The experimental results show that our MD-CNN
outperforms the existing representative bug localization techniques in terms of the Mean Average Precision (MAP) and the number of
bugs successfully localized in the top 1, 5, and 10 matched source code files.

Index Terms—Bug localization, feature extraction, convolutional neural network, software quality assurance

F

1 INTRODUCTION

Large-scale software systems are the complex artifacts cre-
ated by team efforts. Software bugs remain frequent in the
lifecycle of software development and maintenance. Bug
tracking systems (e.g., Bugzilla and JIRA) are used to report
and manage bugs. Developers or users can submit bug
reports to bug tracking systems upon discovering abnormal
behavior of a software project [20].

Bug localization refers to the task of locating the potential
buggy source code files in a software project given a bug re-
port. Developers who assign to resolve a bug report usually
need to find the locations of the source code files in order to
fix the bug. Generally speaking, in order to locate a reported
bug, a developer needs to analyze the bug report and
reviews a large number of source code files. Unfortunately,
for a large-scale project, not only the number of source code
files is at the scale of several thousands, the number of bug
reports is often very large too. For example, until May 14th,
2019, Eclipse project has received more than 547,200 bug
reports. It is prohibitively expensive and labor intensive to
identify potentially buggy files for all incoming bug reports
manually. Therefore, automated localization of buggy files
can significantly improve the efficiency of bug fixing and
speed up the productivity of software maintenance.

• Bei Wang, Ling Xu, Meng Yan are with the School of Big Data and
Software Engineering, Chongqing University, Chongqing, China,
E-mail: {bwang2013, xuling, mengy}@cqu.edu.cn

• Chao Liu is with the College of Computer Science and Technology,
Zhejiang University, Hangzhou, China.
E-mail: liuchaoo@zju.edu.cn

• Ling Liu is with the College of Computing, Georgia Institute of Technol-
ogy, USA.
E-mail: ling.liu@cc.gatech.edu

• Ling Xu is the corresponding author.

Manuscript received ; revised

Several automated bug localization techniques have
been proposed to help developers focus on potentially
buggy files [29], [30], [43], [49]. We can broadly categorize
the existing approaches into two groups: dynamic with
runtime test cases and static without execution traces.

The dynamic approaches usually locate bugs by collect-
ing and analyzing program data, breakpoints, or the exe-
cution traces of the system [5], [13], [31]. These approaches
rely on passing or failing execution traces of a set of test
cases under certain input conditions. Spectrum-based fault
localization [1], [46], [47] and model-based fault localiza-
tion [8], [19] are two well-known dynamic approaches. The
Dynamic approach is time-consuming and expensive, its
accuracy highly relies on the quality of the test suite, and
most of the test suite do not have enough code coverage to
locate bugs [4]. For real-world programs, we may have no
test cases.

The static approaches do not require execution traces
and can be applied to the system at any stage of the software
development. They only rely on bug reports and source code
files to localize bugs. The traditional information retrieval
(IR) techniques are widely used for bug localization [29],
[32], [49]. These IR-based approaches usually rely on the
text similarities between bug reports and source code files
to compute a ranked list of source code files based on their
similarities to a given bug report. However, the performance
of these approaches is limited by the semantic gap between
a bug report and the source code files, because bug reports
and source code files may not always share common textual
tokens or synonyms [16], [43]. To address the mismatch
of text similarity, several enhancement techniques have
been proposed using other dimensions of features, such
as the structured Information Retrieval [32], [48], semantic
information [16], [18], bug-fixing history [37], are proposed
to improve the performance of bug localization. Although



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 2

these approaches demonstrate the possibility of combining
multiple features compared to the traditional IR approaches
that rely on only text-similarity, how to effectively combine
multiple dimensions of features for bug localization has
rarely been investigated.

Despite the success of automated bug localization in
existing empirical studies, the reported accuracy has been
in the range of 10% to 40% and remains to be too low to be
practically useful. [2] has shown that there is a significant
lexical mismatch inherent between the natural language
text in the bug report and the programming language in
the source code files. To bridge the semantic gap, machine
Leaning (ML) techniques are used. These ML approaches
typically adopt the trained models to match the topics of
bug reports with those of source files or classify the source
files into multiple pre-defined class labels using previously
fixed source files as classification labels [14]. For exam-
ple, [36] used n-gram language model to generate a list
of probable bugs. [44] used a learning to rank approach
for adaptive ranking based on 19 features from different
software artifacts, such as bug reports, source code, API
description and Bug-fixing History. However, it is unclear
which combinations of features are effective for a bug lo-
calization model. Some features may incur misclassification
and hurt the localization performance.

Deep learning is known to perform well for some natural
language processing (NLP) problems [7], credit scoring [25],
[26], and medical problems [27], [45]. In the software engi-
neering area, Huo, et al. [12] used an NP-CNN model to
extract program structure and learn unified features from
bug report and source code. Xiao, et al. [41], [42] combined
CNN with IR based methods to locate buggy files. These
deep learning techniques improve the performance by 5%
to 10% by considering the textual semantics features, but
they suffer from ignoring API documents and Bug-fixing
History.

In this paper, we make the following two major con-
tributions: identifying the core dimensions of features that
are critical for effectively bug localization and proposing
a multi-dimension deep learning model that can capture
the complex and non-linear correlations among the core
dimensions of features. In particular, We propose a Multi-
Dimension Convolutional Neural Network model for bug
localization, denoted by MD-CNN, which fuses multiple
statistical dimensions of features between bug reports and
source files.

We evaluate the MD-CNN model on 22,747 bug reports
from six open source projects: AspectJ, Eclipse, Birt, SWT,
JDT, and Tomcat. The experimental results show that our
MD-CNN outperforms the existing representative bug local-
ization techniques in terms of the Mean Average Precision
(MAP) and the number of bugs successfully localized in the
top 1, 5, and 10 matched source code files.

The rest of the paper is organized as follows. Section 2
presents the related work. Section 3 presents an overview
of our MD-CNN model. Section 4 describes the statis-
tical extractions of five important bug-source correlation
dimensions of features. Section 5 presents the design of
our iterative CNN model training to learn the non-linear
relationships among five statistical dimensions of features
independently extracted from bug reports, source code files,

and bug fixing history. We describe our experimental setup,
metrics, and evaluation objectives and report our experi-
mental evaluation results in Section 6 and conclude the
paper in Section 7.

2 RELATED WORK

2.1 IR-based Bug Localization
Most of the existing approaches for bug localization are
IR-based [20], [29], [43], [49], such as Vector Space Model
(VSM) [21], [33], Latent Semantic Indexing (LSI) [22], [28]
and Latent Dirichlet Allocation (LDA) [20], Unigram Model
(UM) [29] and Cluster Based Document Model (CBDM) [29].
[29] presents a good survey to evaluate many standard
IR-based bug localization methods, and they show that
LDA and LSA did not outperform VSM and UM. [30]
proposed BugLocator model using a revised Vector Space
Model (rVSM), which performs bug localization based on
previously fixed similar bugs and document length. [32]
extracts and models code structures like classes, methods,
variables and comments from source files, demonstrating
the effectiveness for bug localization. [43] proposed an
adaptive ranking algorithm using a learning-to-rank tech-
nique to derive the weights for combining features using a
linear weight function. [23] combined the textual similarity
between a bug report and a source file and the structural
similarity between the stack trace and the code elements.
The structural similarity was measured by computing the
minimum distance between a stack trace and a code el-
ement. [38] proposed AmaLgam+, a method that locates
buggy files by integrating five data sources: version history,
similar reports, structure, stack traces, and reporter informa-
tion.

The main drawback of the IR-based approaches is the
use of a linear combination of multiple similarity features,
even though the weights are trained on historical solved bug
reports using adaptive learning techniques.

2.2 ML-based Bug Localization
Machine learning (ML) based techniques have gained pop-
ularity for bug localization. [40] proposed an approach to
use a trained BP neural network to localize faults utilizing
information about the testing coverage of the statements
in the program. [24] proposed BugScout, which used an
extended LDA to estimate the topics of a new report and
compare it with the topics of all source files. [14] used
Naive Bayes to build a two-phase recommendation model,
which wipes out ”unpredictable” bug reports in phase 1 and
applies Bayes model to assign a set of source files to a bug
report in phase 2, using only the names of fixed files as labels
in the training process, incapable of handling a new bug
report that had never been fixed before. [44] used learning
to rank with multiple ranking features from bug reports and
source files. [12] proposed a unified framework to combine
the LSTM and CNN model based on program structure
and sequence nature of source code. [16] built HyLoc that
combines deep learning with IR techniques using six deep
neural networks (DNNs), two for feature extraction, two for
projection, one for relevancy estimation and one for feature
combination. It suffers from the high cost of training and the
difficulty of adjusting the weights of the six models during
training. [42] proposed an enhanced CNN by considering



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 3

bug-fixing experience with a new rTF-IDuF method and a
pre-trained word2vec technique.

Existing machine learning based approaches for bug
localization focus more on extracting semantic information
in bug reports but ignored many useful IR-base features.
For example, historical bug reports and file revision history
provide useful hints that can help bug localization. In this
paper, we combine the best of both worlds by selectively
utilizing the conventional IR techniques to perform statisti-
cal feature extractions and then construct feature matrices as
the training input dataset and configure the multi-layer con-
volutional neural network to produce our MD-CNN model.
We show through extensive experiments on six datasets
that our MD-CMM outperforms existing representative ap-
proaches.

3 SOLUTION APPROACH: AN OVERVIEW

In this section, we first give a brief overview of the bug
localization and then describe the assumptions we make for
the design and implementation of our MD-CNN model to
bug localization. We will present each of the five dimensions
features and statistical feature extraction methods in the
next section.

Background. A software bug is a coding defect or mis-
take in a software module, which may cause an unintended
behavior at runtime of the software execution. A bug report
is a text document that is intended to provide information to
help in fixing a bug found by a developer or a user. A source
code file (source file) is a software program that is written in a
programming language, such as Java, C or C++. A software
project refers to the development of a software product. A
large number of bug reports may be generated during both
the development and the deployment life cycle of a software
product. Upon receiving a new bug report, the developers
of the software project may need to locate the buggy source
code files that contain the bug, then reproduce the bug and
perform code reviews to find the cause, finally fix the bug.
The bug localization is a task of ranking all the source files
with respect to the probability of containing the cause of
the bug, and Automated bug localization is critical for the
productivity of the developers to fix the newly reported bug.

Assumption. In the development of the MD-CNN bug
localization model, we assume that for a repository of
software projects, there are three repositories available: a
repository of historical bug reports, a repository of source
code files, and a repository of bug fixing history. Let SF
and BR denote the set of Ns source files and the set of
Nb bug reports, i.e., |SF | = Ns and |BR| = Nb. Each
source file s ∈ SF contains a number of fields, such as
the source file identifier, the class, the method, the variable,
the comment, and/or API documents, and so forth. Each
bug report b ∈ BR consists of the bug identifier and the
bug text that can be further divided into the summary and
the description. Each bug fixing history record consists of
the bug identifier, the time stamp tb when the bug report
is fixed, and the set of source file identities associated with
this bug b.

MD-CNN Design Overview. The development of MD-
CNN bug localization model consists of two phases: model
training and model deployment. Figure 1 presents the over-
all design framework.

MD-CNN Model Training. There are two primary tasks
in the model training phase. The first task is to perform
the statistical feature extraction. The goal of this task is to
prepare the training dataset by preprocessing the raw input
data from a set of historical bug reports stored in the bug
tracking system, which correspond to the target software
system, a set of source code files of the target software
system, including the API documents of the classes and
the interfaces used in the source code, and a repository of
bug fixing history, and generate a set of statistical features
that capture the varying types of relationships between bug
reports and source code files. In the first prototype of MD-
CNN, we extract five independent features from these three
software repositories: (1) text similarity between bug report
and source file; (2) bug-source relationship by similarity of
bug reports; (3) bug-source relationship by recently-fixed
source files; (4) bug-source relationship by class name Sim-
ilarity; (5) bug-source relationship by structural similarity.
Given a bug report, each of these five features will produce
a ranking score for each of the Ns source files.

The second task of our model training phase is to con-
struct a feature matrix of size 5×Ns for each bug report in
the training set, say Nb. We provide Nb training inputs, each
is represented as a feature matrix of Ns columns and five
rows, and corresponds to a bug report in the training set. In
each feature matrix, a column corresponds to a source file
in the training set with the five statistical features (ranking
scores in the range of [0, 1] as its row values, which are the
output generated by the feature extraction task for each pair
of source file and bug report. We train the MD-CNN model
for bug localization by taking the collection of Nb feature
matrices as the training input, and configuring a CNN
model with varying number of kernels in convolutional
layers to capture the complex and non-linear relationships
among different combinations of the five statistical features
across the Ns source files and the Nb bug reports.

The output layer is a concatenation of the deep semantics
learned by different ways of combining the features across
Nb bug reports and Ns source files and their bug fixing
history. The trained model is generated in multiple epochs
iteratively, and each epoch consists of multiple iterations.
The model training is concluded after the validation phase,
which performs accuracy testing of the trained model on the
validation dataset. Usually 90% : 10% or 80% : 20% ratio
is used to split the input dataset into training dataset and
validation dataset.

Model Deployment. In the deployment phase, the pre-
trained MD-CNN model for automated bug localization
prediction will be performed upon request. When a new bug
report is received, the model prediction will be triggered
and it will first parse the bug report against all Ns source
files to generate a feature matrix. Then this feature matrix
will be sent as a query input to the pre-trained MD-CNN
model to perform bug localization. The output of the model
prediction is the ranked list of source files, of which those
source files with high probability scores are considered as
the most buggy files as they are the best matches to the new
bug report.

Let fMD−CNN (θ, r) denote the trained MD-CNN model
with r as the query with the new bug report and θ as the
model parameters, which include the number of hidden



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 4

Fig. 1. The Overall Framework of MD-CNN

layers used by the MD-CNN model, the number of kernel
filters Wi (i > 1) used for learning the varying patterns
of hidden and non-linear relationships among different fea-
tures across different source files and across different bug
reports, with the goal to produce the best matching of a bug
report to the correct source files with high confidence. The
output of fMD−CNN (θ, r) is a probability vector of size Ns
for the query r with the top k highest scores as the top k
best source files that match the new bug report r. We use
a number of accuracy metrics to measure the effectiveness
of the bug localization using MD-CNN by comparing it
with existing representative approaches. We next provide
a more detailed description of the two tasks in our model
training phase in Section 4 and Section 5, and then present
our experimental setup and evaluation results in Section 6.

4 STATISTICAL FEATURE EXTRACTION

The first task of developing the proposed MD-CNN model
for automated bug localization is to extract important di-
mensions of features using statistical analysis techniques,
aiming to capture different types of observable features
between each pair of a bug report and a source file, denoted
by (b, s), ∀b ∈ BR, ∀s ∈ SF . For each pair (b, s), we
extract k features from them and build the feature vectors
Socre(b, s) = [Scorei(b, s)]1≤i≤k.

In the first prototype development of MD-CNN, we
identify five important features that capture the observable
features between a bug report and a source file: (1) the
textual similarity to the source files, (2) the normalized
cosine similarity to historical bug reports, (3) the normalized
cosine similarity to recent buggy source files, (4) the class
name similarity to the source files, and (5) the structural
similarity to the source files. We describe the statistical
method to extract and represent each of these five features
in the remaining of this section. Each feature extraction
algorithm will take the data input from the three repositories
and output a similarity score for each pair (b, s). Table 1
provides a summary.

Upon completion of the feature extraction task, the MD-
CNN model training task will construct the training dataset,
consisting of Nb feature matrices, each of size 5 × Ns, to
train our MD-CNN model iteratively to learn the hidden
and non-linear relationships among Nb bug reports and Ns
source files based on the five features that are extracted to
characterize each source file based on a given bug report in
the training set. The goal of the trained MD-CNN model is

to produce a ranked list of source files for each bug report
with high prediction accuracy.

TABLE 1
Features Used in the MD-CNN Model

Dimension Formula

Text Similarity Scoret−sim(b, s) = g(nt)× cos(b, s) = 1

1+eγmm(nt)
× ~b·~s
‖~b‖‖~s‖

Similar Bug History Scorecf−sim(b, s) =
k∑

i=1

1
i
sim− rank(b, B(s))

Bug-fixing History Scoreh−sim(b, s) =
∑

s∈Hm

1

1+e
−

12telapse(s,b)

m
+w(s)

Class Name Similarity Socrec−sim(b, s) =

{
max len(cn) if cn ∈ s.class ∩ b.class

0 otherwise

Structural Similarity Scores−sim(b, s) =
∑

bp∈b

∑
sp∈s

sim(bp, sp)

4.1 Text Similarity
In general, a bug report b is expressed in a natural language,
and a source code file s is expressed in a programming
language. To compute text similarity between each pair
(b, s), we first view bug reports and source code files as
text documents under the vector space model (VSM) by
employing tokenization to transform each bug report or
each source file into a bag of words using the vocabulary V
of all text tokens from the repository of source files and the
repository of bug reports. The typical tokenization toolkit,
including the NLTK package1, the Porter stemmer2, is used.
Thus, we represent each source file s and each bug report
b in the format of term vector of size |V | = n, denoted
by ~b = [wi1 , wi2 , · · · , win ] and ~s = [wj1 , wj2 , · · · , wjn ]
respectively, where n is the total number of the terms in V ,
wi1 , . . . , win denote the term weight for terms in document
b and wj1 , . . . , wjn denote the term weight for terms in
document s. We also represent BR as the set of bug reports
(i.e., ~b ∈ BR), SF as the set of source files (i.e., ~s ∈ SF),
and the documents D = BR∪ SF. One example term weight
function is the term frequency tf , which gives the frequency
of the term vi ∈ V appeared in the respective document, be
it a bug report b or a source file s. The most representative
weight function in the classical VSM is the TF.IDF model.
The term weight w is computed based on both the term
frequency (tf) and the inverse document frequency (idf).

To address the bias problem introduced due to long and
short documents, we adopt the rVSM (revised Vector Space
Model) by incorporating an improved term-frequency vari-
ant as larger source code files may have higher probability
of containing a bug [7], and [49] has shown that rVSM has

1. http://www.nltk.org/
2. https://sourceforge.net/projects/porterstemmer/



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 5

shown better performance than the classic VSM for bug
localization. Let dt denote the number of documents that
contain the term t and dt ≤ |D|. Let ftd denote the number
of occurrences of a term t in a document d (d ∈ D). In rVSM,
the logarithm variant of tf(t, d) is used to help smooth
the impact of high frequency terms. We compute the term
frequency tf(t, d), the inverse document frequency idf(t, d)
in (1) and compute the term weight wt in each document
vector of size n by (2).

tf(t, d) = log(ftd + 1)

idf(t,D) = log(
|D|
dt

)
(1)

wt∈d = tf(t, d)× idft,D = log (ftd + 1)× log( |D|
dt

) (2)

After the tokenization preprocessing of all the input
bug reports and source files, and the completion of tf-idf
weight computation, we use the standard cosine similarity
in Equation (3) to compute the text similarity between a bug
report and a source file, which is the inner product of the
two vectors ~b and ~s, denoted by ~b · ~s, normalized by their
Euclidean norm.

cos(b, s) =
~b · ~s
‖~b‖‖~s‖

(3)

However, using the cosine similarity directly to measure
the text similarity between a bug report and a source file
may introduce bias. This is because bugs are often localized
in one method or some small code fragment of a large source
code file. For a large source file, the normalized Euclidean
norm will be large, which will lead to a very small cosine
similarity, even though the bug report is highly relevant to
the source file. This motivates us to introduce Equation (4)
to compute the text similarity score between a bug report b
and a source file s.

Scoret−sim(b, s) = g(nt)× cos(b, s)

=
1

1 + eγmm(nt)
×

~b · ~s
‖~b‖‖~s‖

(4)

where nt denotes the total number of distinct terms in the
source file s, g(nt) models the length of document s, and
γmm(nt) denotes the Min-Max normalization method to
normalize the value of nt as the input to the exponential
function ex. ex is a function that takes into account of larger
documents during the ranking of source files for a given bug
report.

To compute the text similarity feature, we extract the
text of summary, description, and comments from each bug
report and extract the string-literal in addition to comments
and identifiers from each source file. We argue that API
documentation in the source file should be included in the
text similarity computation as well. In principle, the text in
a bug report may have a number of common words that
also appear as the technical terms in those buggy source
code files that found to match the bug report. In practice,
we may find that this is not always true for a fair number of
bug reports and source files. For example, Figure 2 shows
an example from the Eclipse project. Bug report 407505
describes a defect that the hidden editor area will be shown
when Maximize/Restore is called, and MinMaxAddon.java
is known to be relevant to this bug report. Indeed, we

Fig. 2. Example of a bug report and a corresponding source file in the left
box, compared to including the API specification in the source file text
similarity computation shown in the right box. The colored text indicates
some common word tokens shared by the bug report and the source file
with its associated APIs.

observe from Figure 2 that the bug report 407505 and
the corresponding source file MinMaxAddon.java do not
have any tokens in common, and consequently their cosine
similarity is zero, failing to capture the actual relevance
of the bug report to this source file. However, there are
several ways to bridge the lexical mismatches between
natural language texts in bug reports and technical terms in
source code. For example, the API specification of the classes
and various interfaces [43], [44] can be a good additional
channel to use in the text similarity computation. In the
right box of Figure 2, the API document for the classes Shell
and partService has some tokens, such as minimized and
workbench page, which also appear in the bug report 407505.
By obtaining the text description of the classes and interfaces
through term extraction from their API speciation, we can
further enhance the coverage of text similarity based linkage
of a bug report with those potentially relevant source files.
Thus, our feature extraction and tokenization procedure is
also employed for each class and each method in a source
file. We extract the textual content of their API descriptions
for classes and methods mentioned in both source files and
bug reports and integrate these additional tokens for the text
similarity computation and feature extraction.

4.2 Similarity to Historical Bug Reports
There are a large number of historically fixed bug reports
in the bug reporting system repository. Many similar bug
reports may be relevant to the same source code files.
Thus, we examine the bug fixing history to extract those
previously fixed bug reports that are textually similar to the
current bug report. Based on this set of fixed bug reports,
we can locate those source files that are associated with the
historical bug reports because it is highly likely that these
source files are also relevant to the current bug report. It
can be useful to rank them based on their textual similarity
score to the current report. Figure 3 shows the examples
of three bug reports that are relevant to the same class file
AjBuildManager.java. We also observe that the three bug re-
ports share numerous keywords, such as aspectjrt, classpath,
compile, etc. These bug reports are similar and related to the
same buggy source code file.

Motivated by these observations, one can leverage the
fact that one source file may correspond to multiple bug
reports to compute the similarity between a new bug report
b and a source file s. Let br(b, s) denote the set of historical



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 6

Fig. 3. Bug reports that are similar with a single source file

bug reports associated with a source file s and are fixed
before the current bug report b. Thus, Equation (5) computes
the textual similarity between the current bug report b and
the summaries of all the bug reports in br(b, s).

Scorehbs−sim(b, s) = cosine(b, br(b, s)) (5)

Although [44] implements this approach using the conven-
tional collaborative filter (CF) method, we argue that using
a simple sum of the similar bug reports in Equation (6) may
introduce bias and inaccuracy.

Thus, in our MD-CNN model, we propose to use Equa-
tion (6) instead. It improves Equation (5) from two aspects.
First, we propose to normalize the CF score of the similar
historical bugs for each source file. Let Bs denote the set of
bug reports for which the source file s was fixed before the
current bug report bwas received. k is an integer from 1 to n.
cosine(b, b′) is the cosine similarity between the vector b and
the vector b′ ∈ Bs. Let sim−rank(b, B(s)) be the similarity
ranked list in descending order. Let k be a system-supplied
parameter (3 ≤ k ≤ n). By default, k = 3 is used in our first
prototype. The pseudocode is provided in Figure 4.

Scorecf−sim(b, s) =

k∑
i=1

1

i
sim− rank(b, B(s)) (6)

Fig. 4. The main steps of the improved collaborative filtering method

4.3 Similarity to Recent Buggy Source Files
This third feature extraction leverages the change history
data of source code in the version control systems. When
a bug was located in the source files, the developer needs
to fix the buggy files. The fixing of bugs in a buggy source
file may introduce new bugs before the bug is fixed. [15]
reported that software faults do not occur in isolation, but
rather in bursts of several related faults. This motivates us
to utilize the bug-fixing history to identify and predict fault-
prone source files [37]. Figure 5 shows three bug reports for
the project JDT. The last two bug reports occurred after the
first bug 272354 was reported. We observe that the second
bug report 272418 was only five hours after the first bug
report 272354 was received and the third one 274041 is 13
days after the second one was reported, and all three of
them were located in the same buggy source file P2Utils.java.
This shows that a buggy source file may generate new bug

reports either before or after the previously reported bugs
have been fixed. We conjecture that a source file is more
likely to contain faults if it has recently been changed by
fixing bugs. Put differently. It is highly likely to locate new
bugs from the most recent buggy files.

Fig. 5. Three bug reports corresponding to the same source code file

Inspired by the defect prediction technique called Time-
Weighted Risk (TMR), which provides the bug-fixing com-
mits on Google systems [17], we introduce time based
decaying method to leverage the most recent fault-prone
source files in the bug-fixing history. Let BFH denote the
repository of bug fixing history with each entry representing
the bug report b, the buggy source file s fixed at time t, i.e.,
(b, s, t)∈ BFH and Hm denote the set of buggy source files
that are found in m days before receiving the bug report b at
tb. Hm,b,tb = {s|s ∈ SF, (b, s, t) ∈ BFH,m ≥ (tb− t)}. m is
set empirically at the system initialization and configuration
time. We will include the experiments on the performance
impact of the parameter m in Section 6. Let telapse(s, b) is
the number of days that have elapsed between a bug-fixing
commits and a newly submitted bug report b. Equation (7)
defines the similarity to the recent buggy files. w(s) denotes
the shortest time between a bug-fixing commit for the source
file s and the current bug report b, showing the importance
of the source files in terms of recency. It is defined in
Equation (8). The larger the w(s) value is, the smaller the
output of the similarity score.

Scoreh−sim(b, s) =
∑
s∈Hm

1

1 + e−
12telapse(s,b)

m +w(s)
(7)

w(s) = mins∈Hm,telapse(s,b)≤mtelapse(s, b) (8)

Consider Figure 5 again and assume that the third bug
report 274041 is new, and the w value of the source file
P2Utils.java is 13 because the bug was recently found in
P2Utils.java about 13 days ago (2009-04-15). If we set m to
be 60, then telapse(s, b) of the source file P2Utils.java is 13,
13, and 56 respectively since the bugs were also found in
the same source file on 2009-03-03. So the similarity score to
the recent buggy file P2Utils.java for the bug report 274041
is 0.141.

There are other techniques to make defect prediction.
[15] proposed BugCache method which use locality infor-
mation of the previous defect and maintains a relatively
short list of most bug-prone source code files (or methods).
Our experiments show that recent bug-fixing history is more
effective than bug-fixing frequency in training our MD-
CNN bug localization model.



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 7

4.4 Class Name Similarity

In many bug reports, the class names are found in the sum-
mary or the description, which provides a useful indicator
of the corresponding class files, which may be relevant to the
bug report. For example, the description after the tokeniza-
tion of the bug report 255600 for the SWT project contains
the class names ViewerAttributeBean, viewer, attribute and
bean, but only the longest name ViewerAttributeBean is the
relevant buggy source file. Also when the class name is
longer, it is more specific [44]. Thus, we design the fourth
feature extraction method, which computes the statistical
similarity between a bug report b and a source file s by
checking whether the name of each class in the source code
file is also included in the bug report. For all the class names
present in the bug report, we use the maximum length of the
class name as the similarity value for the Scorecn(b, s), and
if no common class names exist, the score is set to zero.

Let s.class denote the set of class names in a source
file s, and b.word denote the set of words in the bug
report b. Let max len(b, s) denote the longest class name
of the source file s which appeared in the bug report b, i.e.,
max len(b, s) = {length(cn) | cn ∈ s.class∩b.word,∀cn′ ∈
s.class ∩ b.class, cn′ 6= cn, length(cn′) ≤ length(cn)}. We
compute the class name similarity by Equation (9).

Socrec−sim(b, s) =

{
max len(b, s) if cn ∈ s.class ∩ b.class

0 otherwise

(9)

4.5 Structural Similarity

Recall the discussion in the text similarity section, when
a bug report is relatively small compared to the large
source code files, if the bug reported only matches one
text segment of the source file, then the cosine similarity
can be misleading because the large source file can lead
to the large Euclidean norm of b and s, resulting in very
small similarity value, even though the source file is highly
relevant to the bug report. One straightforward approach to
address this problem is to introduce the structural similarity
between b and s. For example, we can segment the source
code file into methods to compute per-method based co-
sine text similarity to the bug report [18]. Another recent
proposal is BLUiR [32]. Inspired by BLUiR parsers, we
partition each bug report b into two segments: b.summary
and b.description, and partition each source file s into
four structural segments: s.class, s.method, s.variable and
s.comment. Each of these text segments are represented as
a vector of size n = |V | following the cosine similarity
computing procedure (4), and then sum the eight similarity
scores. The structural similarity feature can be computed as
follows:

Scores−sim(b, s) =
∑
bp∈b

∑
sp∈s

sim(bp, sp) (10)

where bp is one of the two text segments (partitions) in a
bug report b, sp is one of the four text segments (partitions)
in a source file s, and sim(bp, sp) is the cosine similarity of
the two vector representations of bp and sp. The output of
the structure similarity feature is a set of Ns scores, one for
each source file in the source file repository SF (|SF | = Ns).

5 MD-CNN MODELING

5.1 Feature Scaling with Min-Max Normalization

For a given feature ξ, we set ξmin and ξmax as the minimum
and the maximum observed values in the training dataset.
If a feature value ξ in the test dataset is larger than ξmax,
we set ξ to be ξmax; and if ξ < ξmin, then we set ξ = 0.
For ξmin ≤ ξ ≤ ξmax, if ξ > 1, then we need to employ the
min-max normalization to scale ξ to the value range of [0, 1]
by ξ−ξmin

ξmax−ξmin .

5.2 Feature Combination

Different types of features are extracted by employing differ-
ent statistical analysis techniques to compute the similarity
scores between a bug report b and a source file s. In the first
prototype of MD-CNN, we provide five types of features:
text similarity (t-sim), similarity to historical bug reports
(cf -sim), similarity to recent buggy files (h-sim), class name
similarity (c-sim) and structural similarity (s-sim). Each
of these features serves as a useful indicator for linking a
bug report to the most relevant source files for bug local-
ization. Thus, a careful combination of these features can
significantly improve the performance of bug localization.
Existing methods [18] use weighted linear combination by
learning how to derive the proper weight value for each
of the different feature types. However, linear models fail
to capture the hidden and non-linear relationship among
the different types of features across bug reports and source
files. The table in Figure 6 shows the five similarity scores
between bug report 263837 and three source files, which
shows the sample bug report 263837 with three class struc-
tural similarity (s-sim) but ranks the highest similarity
compared to historical bug reports (cf -sim) and the class-
name similarity feature (c-sim). This indicates that given
a bug report, the same source file under different features
has different importance, and the same feature has dif-
ferent importance for different source files, demonstrating
non-linear relationships among the different features. For
example, for the feature of Text Similarity, the values of
BceClassWeaver.java, BceTypeMunger.java and BcelWeaver.java
are 0, 0.01 and 0.86 respectively. The most important feature
for BcelClassWeaver.java is the similar bug history (0.87), but
the most important feature for BcelClassWeaver.java is the
text similarity (0.86). This motivates us to replace the linear
model for combining the bug-source file similarity features
for bug localization by using deep neural networks such as
convolutional neural network, which is known to capture
the latent and non-linear relationships among the features
and holds the potential to outperform the linear feature
integration model for bug localization.

Fig. 6. An example of the non-linear relationship between the features



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 8

5.3 MD-CNN Model Training and Model Prediction

Motivated by the success of Convolutional Neural Net-
works (CNNs) for learning complex non-linear relationships
between inputs and outputs [10], we take a two phase
approach to develop a CNN-based non-linear feature com-
binator, aiming to compute the ranking scores for all source
code files for each given bug report in the bug reporting
repository and output the ranked list of source code files
upon receiving a new bug report from the prediction query
API. The first phase is the model training, which takes
the training datasets and produces the trained model. The
second phase is the model prediction, which takes a new
bug report as a query input, transforms it into its feature
matrix format, and feeds it to the trained model. The output
is the bug localization result, which is a ranked list of source
files by the descending order of the probability likelihood of
the source files matching the new bug report.

Feature Matrix. To construct our MD-CNN model
through the CNN training, we first need to create the
training input matrix for training. Each input matrix is a
two-dimensional feature matrix, which corresponds to a bug
report, and consists of five rows and Ns columns. Each
row represents one of the five features captured from our
statistical feature extraction step (the file names determine
the order of the source files in each row). Each column
represents the five similarity scores (the order of such five
similarity scores in each column is the same as the No. in
Table 1) between the bug report and one of the Ns source
code files. In particular, due to the source files that will
change according to the change of project’s version, we take
a subset of source files that contains all source files that have
appeared (i.e., including deleted ones). Each feature matrix
can be viewed as a feature map of the bug report b ∈ BR
over the entire source code file repository BF through five
different observable features. By using all the bug reports
in the training set, we want to train the MD-CNN model
to learn several latent and non-linear relationships among
the training dataset (the Nb feature matrices of size 5×Ns,
such as how is the bug report correlated to different source
code files in the entire collection SF , how is a source
file correlated to different bug reports, and what types of
hidden relationships can be extracted from the historical bug
fixing history about bug reports and source files. Such latent
relationship representation will be captured and expressed
by the MD-CNN model through iterative DNN training
and the trained model will be deployed for future bug
localization prediction.

Convolutional Neural Network Structure. A typical
CNN contains several convolutional layers that are often
combined with pooling steps (subsampling) and then fol-
lowed by a fully connected layer. Figure 7 shows the basic
structure of our CNN training. The input matrix is of size
5×Ns (Ns is the total number of source files in the training
sets. Given that each column of an input feature matrix
represents the statistical features of a source file with respect
to a given bug report. Features in different columns are
independent of one another in terms of how features are
extracted. Thus, the width of a neuron and of a convolution
kernel is 1, which is different from image and video clas-
sification and recognition systems. To learn the non-linear

relationship for different combinations of the features, we
use multiple kernel filters of varying sizes. For five features,
we set four sizes of kernel filters to combine 5, 4, 3, and 2
features, respectively. Thus, for the first convolution layer,
we use four types of kernel filters with different region
sizes (e.g., 2, 3, 4, and 5). For each convolution layer, the
input of every neuron is convoluted with multiple trainable
kernel filters, defined by Wi. A non-linear function, such
as sigmoid or Rectified Linear Units (ReLU), is used to
increase the network’s non-linear properties, followed by
the pooling (subsampling) procedure. A max-over-time (or
mean-over-time) pooling operation is used in the pooling
step to reduce the number of parameters and alleviate the
over-fitting problem [34]. The size of kernel filters in this
pooling layer is 4 × 1. Followed by the first pooling layer,
we splice the results into a new feature matrix. To learn
more complex feature correlation relationships between bug
reports and source files, the second convolution layer uses
four filters with a size of 2 × 1. The second pooling layer
operates similarly as the first one with the size of filters in
this max pooling layer set to be 3 × 1. Finally, the sigmoid
function is used in the fully connected layer to increase the
non-linear properties of the network. Our CNN is trained
to minimize the following mean binary cross-entropy lost
function [9]:

Lost(θ) = −
1

N

N∑
i=1

T∑
j=1

W ∗ tij log(yij) + (1− tij)log(1− yij)) (11)

where N is the size of a batch of multiple samples, and T
is the number of classes (i.e., the file names of source files).
tij is the ground truth of class j of sample i, and yij is the
output probability of class j of sample i. Since the number of
positive samples (i.e., the buggy files) and negative samples
is extremely unbalanced, we set W to solve such problem.
W is the weight based on the proportion of positive and
negative samples in the training data. The early stopping
strategy is used that checks every two epochs to avoid
overfitting, and the learning rate and batch size are set to 1e-
3 and 32, respectively. The number of layers and parameters
of the above CNN network are optimized by the brute force
method.

6 EXPERIMENTAL EVALUATION

We evaluate the effectiveness of MD-CNN by conduct-
ing experiments on six open source software projects and
compare its performance with three existing representative
bug localization approaches and a Deep Neural Networks
(DNN) approach. We first describe the experimental setup,
including the datasets used, the performance metrics, and
the evaluation objectives in Section 6.1 and then report the
evaluation results in Section 6.2.

6.1 Experimental Setup
6.1.1 Dataset.
Data Collection. For comparison, we use the same collection
of datasets provided in [44]. It contains a total of 22,747
bug reports from six popular open-source projects: Eclipse
Platform UI, JDT, Bir747t, SWT, Tomcat, and AspectJ. Ta-
ble 2 describes the datasets in detail. All of the projects
use Bugzilla as the issue tracking system and GIT as a
version control system (earlier versions are transferred from
CVS/SVN to GIT). All of the bug reports, source code



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 9

Fig. 7. The architecture of convolutional neural network

repositories, buggy files, and API specifications are publicly
available at http://dx.doi.org/10.6084/m9.figshare.951967.

TABLE 2
Benchmark Datasets

Project Time Range #bug reports #source files #API entries

Eclipse 10/01−01/14 6495 3454 1314
JDT 10/01−01/14 6274 8184 1329
Birt 06/05−12/13 4178 6841 957

SWT 02/02−01/14 4151 2056 161
Tomcat 07/02−01/14 1056 1552 389
AspectJ 03/02−01/04 593 4439 54

Training, Validation, and Testing Data. The bug reports
of each project are chronologically sorted by the bug IDs.
The first 80% of the bug reports (older bugs) were used
to train our model (Use the ratio 90%: 10% to split it into
training dataset and validation dataset), and the remaining
20% (newer bugs) used as the testing set.

6.1.2 Evaluation Metrics.

We use three popular metrics to evaluate the effectiveness of
our MD-CNN model: Accuracy@k, Mean average precision
(MAP) and Mean Reciprocal Rank (MRR).

Accuracy@k: This metric measures the percentage of the
bug reports that have found at least one buggy source files
in the top k (k= 1,5,10,20) ranked files returned. A bug report
b belongs to the top k accuracy ranked list if the top k query
results contain at least one correct source file from which the
bug is successfully located. The higher value the metric has,
the better performance the bug localization approach offers.

MRR (Mean Reciprocal Rank): This metric measures
the mean of the reciprocal rank for all queries [35]. The
reciprocal rank of a query is the multiplicative inverse of
the position of the first correctly located buggy file in the
ranked list of returned files for a query (i.e., a new bug
report). Let Q denote the set of queries (i.e., bug reports)
in the test set, and rank − pos(q) denote the position of
the first correctly located buggy file for the query q in the
ranked list of returned files. We define MRR as follows:

MRR =
1

|Q|

|Q|∑
i=1

1

rank − posqi
(12)

MAP (Mean Average Precision): This metric measures
the mean of the Average Precision (AvgP) scores across all
bug report queries. MAP is the most commonly used IR
metric to evaluate and compare the ranking approaches [21].

MAP =

|Q|∑
i=1

AvgP (qi)

|Q|
(13)

For a single query q ∈ Q, we can compute the average
precision AvgP (q) for q overall N source files as follows:
Let top− SF (k) denote the number of buggy files correctly
located in the top k ranked list of the N source files returned
and flag(k) denote whether the file in the rank k is the
correct buggy file: correct if flag(k) = 1 and incorrect if
flag(k) = 0. Let BuggyF (k) denote the total number of
buggy files in the top k returned files.

AvgP (q) =

|N |∑
k=1

top− SF (k)flag(k)
BuggyF (k)

(14)

The higher the Accuracy@k, MRR, and MAP values are,
the better performance and higher effectiveness the bug
localization approach will offer.

6.1.3 Evaluation Plan.

Our evaluation plan consists of four evaluation objectives.
First, we evaluate the effectiveness of our MD-CNN by
comparing it with existing representative bug localization
systems. Second, we evaluate the importance of different
features on the overall performance of our MD-CNN. Third,
we evaluate the impact of training data on the performance
of our MD-CNN. Finally, we study the impact of multiple
system parameters on the performance of MD-CNN.

Performance and Effectiveness of MD-CNN. To eval-
uate the performance of MD-CNN, we conduct an exper-
imental comparison of MD-CNN with the following three
representative baseline approaches on all six datasets in
Table 2:

• Learning to Rank (LR) [44] leverages some domain
knowledge through functional decompositions of
source code files into methods, API descriptions, the
Bug-fixing History, and the code change history.

• BugLocator (BL) [49] is a well-known bug localiza-
tion technique, which ranks the source files based
on textual similarity, the size of source files, and
information about previous bug fixing results.

• The standard VSM method VSM [21] ranks the
source files based on their textual similarity with a
bug report.



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 10

• Deep Neural Networks (DNN) [11]. The Deep Neu-
ral Networks (DNN) is used to combine our five
statistical dimensions of features.

To provide stable accuracy and reduce the errors in-
curred by the randomness of CNN structure and hyper-
parameter settings, we train the MD-CNN model for 10
times using each dataset, and record the mean value of
the results. In addition to the three metrics, Accuracy@k,
MAP and MRR, we also apply the Wilcoxcon signed-rank
test [39] at 95% significance level on 18 paired measurement
values, which correspond to the performance metrics of
Accuracy@k, MAP, or MRR on six datasets. We use the
Cliff’s delta (δ) [6] to quantify the amount of difference
between the two models. |δ| ranges from 0 to 1, where |δ| = 0
means that the results of the two models overlap completely
without any difference, and |δ| = 1 means that one model
outperforms another model on all datasets in terms of the
performance metrics. The interpretation of different delta
values is given in Table 3.

TABLE 3
Different cliff’s delta and effectiveness level [6]

Cliff’s Delta (|δ|) Effectiveness Level

0.000 ≤ |δ| < 0.147 Negligible
0.147 ≤ |δ| < 0.330 Small
0.330 ≤ |δ| < 0.474 Medium
0.474 ≤ |δ| ≤ 1.000 Large

Performance Impact of Each Feature on MD-CNN.
We have extracted five statistical features from observable
properties in the repository of bug reports, the repository of
source code files, and the repository of bug fixing histories.
We plan to compute the MAP of each feature on all six
datasets and estimate the impact of each feature on the
test performance of MD-CNN. We also use the greedy
algorithm [3] to sort the five features on each dataset and
measure the performance of combining features by adding
the best performing feature to the model one at a time.

Impact of Model Parameters on MD-CNN. Although
several parameters may impact on the performance of our
MD-CNN model, in this paper, we report the impact of
the following three parameters on the bug localization per-
formance of MD-CNN using MAP measurements on all
six datasets. They are the cf-sim feature (similarity to the
historical fixed bugs) and the h-sim feature (similarity to the
recent-fixed source files), and the number of convolutional
layers.

6.2 Evaluation Results
6.2.1 Performance of MD-CNN.
Table 4 compares MD-CNN with three existing represen-
tative baseline approaches LR [44], BL [49] and VSM [21]
and DNN feature combination approach using Accuracy@k
metric. We make four observations.

(1) MD-CNN consistently outperforms the four baseline
approaches in terms of Accuracy@k for k=1, 5, 10. For ex-
ample, MD-CNN successfully locates 45.3% bugs in AspectJ,
44.8% bugs in Eclipse, 46.7% bugs in Tomcat in terms of top-
1 accuracy.

Comparing to the learning-to-rank (LR), MD-CNN in-
creased the Accuracy@1 by an average of 25.99%, the im-
provement at Accuracy@5 is from 8.5−39.4%, the improve-
ment at Accuracy@10 is from 10−45.5%.

(2) Even at Accuracy@20, MD-CNN outperforms VSM
and BL on all six datasets and outperforms LR on 4 out of
6 datasets with comparable performance on the other two
datasets (JDT and Tomcat).

(3) Table 4 also list the p-value and Cliff’s Delta for
the comparison of MD-CNN with the three representative
baseline methods. When the p value is less than 0.05, the
comparison is significantly different. For Accuracy@1, 5, 10
and 20, MD-CNN demonstrates significant improvement
over VSM (all four values p < 0.01) with large effect size
(all four δ = 0.944). Similarly, MD-CNN is significantly
better than BL for Accuracy@1, 5, 10 and 20 with all four
p < 0.05 and large effect size (δ > 0.7). Finally, MD-CNN
outperforms LR on Accuracy@1 (p < 0.05, δ = 0.722),
and shows small improvement over LR on Accuracy@5,10
(p > 0.05) with large effect size (both δ > 0.5).

(4) DNN feature combination approach outperforms the
Learning to Rank (LR) in most cases. Such result shows
that our five statistical dimensions of features can capture
the varying types of relationships between bug reports and
source code files which conducive to accurately locate the
buggy files. And our MD-CNN consistently outperforms the
DNN feature combination approach demonstrates that our
CNN model is more suitable for feature combination than
DNN.

Next, we compare the performance of MD-CNN with
LR, BL, VSM, and DNN in terms of MAP and MRR. Table 5
shows the results. We observe two interesting facts. First,
MD-CNN consistently outperforms all three existing base-
line approaches on all six datasets. AspectJ achieve MAP
and MRR score of 0.41 and 0.46 respectively, and Birt achieve
MAP and MRR score of 0.22 and 0.25, respectively, better
than all three existing methods. For SWT, MD-CNN has the
MAP score of 0.53, 562.5% higher than VSM, 39.4% higher
than BL, and 32.5% higher than LR. Second, MD-CNN has
the high average MRR, about 43.4% higher than the average
MRR for BL, and 11.8% higher than the average MRR for
LR. The consistently high MAP and MRR for MD-CNN also
suggest that the overall ranking of the buggy source files
located by MD-CNN is more effective than those of LR, BL,
and VSM. And Table 5 also shows that MD-CNN has signif-
icant improvement over VSM in both MAP and MRR for all
6 datasets (both p < 0.01, δ > 0.889). The improvement of
MD-CNN over BL is more substantial than the improvement
over LR for both MAP and MRR measures. Furthermore,
the performance of the DNN feature combination approach
is second only to MD-CNN.

Table 6 shows the training time on dataset and test
time for one bug report of MD-CNN. In particular, we use
TensorFlow to construct the CNN model, and all experi-
ments are run on a server with Intel Xeon CPU E5-2650 and
NVIDIA GPU TITAN V. We can observe that the training
time is acceptable (we use early stopping strategy) and test
time is reasonable(below one minute for one bug report).
Since MD-CNN must reset the commit version of project
continuous in feature extraction step, the feature extraction
cost many time in training and test. Especially, due to the
boost of GPU, the time cost by the trained CNN network (for
feature combination) is much less than the time for feature
extraction.

Overall, our MD-CNN has significantly improved over



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 11
TABLE 4

Performance comparison (Accuracy@k, k=1,5,10,20) of four representative baseline methods (VSM, BL, LR, DNN)

Dataset
Accuracy@1 Accuracy@5 Accuracy@10 Accuracy@20

VSM [21] BL [49] LR [44] DNN MD-CNN VSM [21] BL [49] LR [44] DNN MD-CNN VSM [21] BL [49] LR [44] DNN MD-CNN VSM [21] BL [49] LR [44] DNN MF-CNN

AspectJ 0.116 0.251 0.374 0.402 0.453 0.209 0.404 0.523 0.567 0.59 0.285 0.48 0.637 0.738 0.752 0.40 0.505 0.738 0.785 0.801
Birt 0.043 0.111 0.124 0.173 0.197 0.096 0.259 0.289 0.371 0.403 0.117 0.321 0.381 0.513 0.530 0.178 0.399 0.489 0.568 0.609

Eclipse 0.185 0.271 0.397 0.402 0.448 0.337 0.538 0.654 0.713 0.735 0.422 0.616 0.743 0.805 0.822 0.523 0.710 0.821 0.833 0.844
JDT 0.097 0.181 0.334 0.427 0.439 0.201 0.39 0.635 0.714 0.720 0.287 0.502 0.729 0.800 0.811 0.396 0.604 0.832 0.827 0.831
SWT 0.044 0.198 0.313 0.418 0.464 0.118 0.381 0.624 0.739 0.752 0.199 0.496 0.75 0.852 0.867 0.433 0.612 0.835 0.878 0.893

Tomcat 0.208 0.351 0.419 0.434 0.467 0.487 0.651 0.715 0.743 0.776 0.599 0.716 0.802 0.827 0.859 0.680 0.815 0.898 0.856 0.871

Average 0.116 0.227 0.327 0.376 0.412 0.241 0.437 0.573 0.641 0.663 0.318 0.522 0.673 0.756 0.773 0.435 0.608 0.769 0.791 0.813
Improved% +255.17 +81.49 +25.99 +9.57 - +175.1 +51.71 +15.71 +3.43 - +143.08 +48.08 +14.86 +2.25 - +86.9 +33.72 +5.72 +2.78 -

p-Value <0.01 <0.05 <0.05 - - <0.01 <0.05 >0.05 - - <0.01 <0.05 >0.05 - - <0.01 <0.05 >0.05 - -
δ 0.944 0.778 0.722 - - 0.944 0.778 0.5 - - 0.944 0.889 0.667 - - 0.944 0.778 0.167 - -

TABLE 5
Performance comparison (MAP and MRR) with four representative baseline methods (VSM, BL, LR, DNN)

Dataset
MAP MRR

VSM [21] BL [49] LR [44] DNN MD-CNN VSM [21] BL [49] LR [44] DNN MD-CNN

AspectJ 0.12 0.22 0.38 0.40 0.41 0.16 0.32 0.44 0.46 0.46
Birt 0.05 0.14 0.17 0.21 0.22 0.07 0.18 0.21 0.23 0.25

Eclipse 0.20 0.31 0.44 0.47 0.48 0.25 0.37 0.51 0.54 0.54
JDT 0.12 0.23 0.40 0.45 0.45 0.15 0.30 0.47 0.53 0.53
SWT 0.08 0.38 0.40 0.51 0.53 0.09 0.44 0.46 0.56 0.57

Tomcat 0.33 0.43 0.52 0.54 0.55 0.36 0.48 0.55 0.59 0.60

Average 0.15 0.285 0.385 0.43 0.44 0.18 0.348 0.44 0.485 0.492
Improved% +193.3 +54.4 +14.3 +2.3 - +173.3 +41.4 +11.8 +1.4 -

p-Value <0.01 <0.05 >0.05 - - <0.01 >0.05 >0.05 - -
δ 0.944 0.667 0.5 - - 0.889 0.667 0.388 - -

TABLE 6
Training and Test Time of MD-CNN (in minutes)

Project
Training time on the dataset (Average) Test time for one report (Average)

Feature Extraction Feature Combination Feature Extraction Feature Combination

AspectJ 89 177 0.46 0.07
Birt 138 181 0.68 0.08
Eclipse 196 193 0.39 0.07
JDT 210 199 0.82 0.08
SWT 129 186 0.25 0.06
Tomcat 68 170 0.15 0.05

VSM and BL across all Accuracy@k, MAP, and MRR for
all six data sets. Compared with LR, MD-CNN has a good
improvement in most evaluation metrics. Compared with
the DNN combination approach, MD-CNN consistently has
a slight improvement. The overall ranking of the buggy
source files located by MD-CNN is more efficient than LR,
BL, VSM, and DNN.

6.2.2 Impact of Each Feature on MD-CNN.

TABLE 7
The MAP of each feature on six projects

Feature AspectJ Birt Eclipse JDT SWT Tomcat

Text Similarity 0.264 0.157 0.352 0.312 0.344 0.457
Similar Bug History 0.090 0.178 0.212 0.372 0.413 0.307
Bug-fixing History 0.247 0.049 0.089 0.042 0.135 0.037

Class Name Similarity 0.133 0.050 0.197 0.146 0.167 0.094
Structural Similarity 0.093 0.076 0.194 0.126 0.105 0.196
MD-CNN (5 combo) 0.41 0.22 0.48 0.45 0.53 0.55

Table 7 shows the performance of each of the five
features on all 6 datasets. For example, for AspectJ, the
system achieves the best MAP of 0.2644 using the fea-
ture {Text Similarity}, and performs the second place
for MAP metric of 0.2469 when using the feature {Bug-
fixing History}. However, when using the same feature
{Bug-fixing History} for Tomcat, the system achieves
the least MAP value of 0.0373. This suggests that each
feature plays a different role in different projects. From
Table 7, we observe that the feature {Text Similarity},
which measures the lexical similarity between bug reports
and source code, is the most critical feature for the projects
AspectJ, Eclipse and Tomcat. In comparison, the feature
{Similar BugHistory}, which measures the similarity be-
tween a new bug report and the previously fixed bug
reports, is the most critical feature for the project Birt,

JDT, and SWT. For all six projects (datasets), Text Similar-
ity and Similar Bug History are more critical features by
examining the overall performance. Other features provide
complementary information that further improves the bug
localization performance.

TABLE 8
The importance of features using greedy algorithm (Feature NO.1: Text
Similarity; Feature NO.2: Similar Bug History; Feature NO.3: Bug-fixing
History; Feature NO.4: Class Name Similarity; Feature NO.5: Structural

Similarity;)
Dataset First Second Third Fourth Fifth

AspectJ
Feature 1 3 4 2 5
MAP 0.264 0.359 0.387 0.405 0.412

Improved - +36.0% +7.8% +4.7% +1.7%

Birt
Feature 2 1 4 5 3
MAP 0.178 0.195 0.209 0.216 0.220

Improved - +9.6% +7.2% +3.3% +1.9%

Eclipse
Feature 1 2 4 5 3
MAP 0.352 0.415 0.441 0.466 0.479

Improved - +17.9% +6.3% +5.7% +2.8%

JDT
Feature 2 1 4 5 3
MAP 0.372 0.413 0.431 0.444 0.452

Improved - +11.0% +4.4% +3.0% +1.8%

SWT
Feature 2 1 4 3 5
MAP 0.413 0.475 0.507 0.523 0.534

Improved - +15.0% +6.7% +3.2% +2.1%

Tomcat
Feature 1 2 5 4 3
MAP 0.457 0.494 0.524 0.543 0.548

Improved - +8.1% +6.1% +3.6% +0.9%

In the next set of experiments, we evaluate the impor-
tance of features using the greedy algorithm. Table 8 shows
the result. For each project, the first row represents the
order of the features when being combined. We observe
that the performance of the MD-CNN model is improved
when an additional feature is added. This demonstrates that
every feature is useful, effective, and necessary. At the same
time, we also observe that some features are particularly
effective for certain data sets. For example, the performance
of feature {Similar BugHistory} on AspectJ increase the
MAP value by 36%, and the MAP performance of {Similar
BugHistory} on SWT is 0.475, which has surpassed the LR
approach [44] of 0.40 as shown in Table 5.

Our experimental results show that these five dimen-
sions features contribute differently to each dataset in terms
of the accuracy of bug localization. These results can be used
to determine the trade-off between localization accuracy and
system complexity.



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 12

Fig. 8. The MAP measure (y-axis) for varying k (x-axis) on Similar
Bug History feature (cf-sim)

6.2.3 Impact of Model Parameters on MD-CNN.

Although there are many parameters involved in training
MD-CNN, we identify three parameters to show how the
setting of these parameters may impact the performance
of MD-CNN. The first parameter is related to the cf-sim
feature, which computes the feature by similar bug histories
using the set of k bug reports associated with a source file
(recall Equation (6)). We want to study the setting of this
k value on the performance of MD-CNN. Figure 8 shows
the measurement of MAP by varying the k from 2 to 10.
We observe that the MAP value for the projects JDT and
SWT are gradually increasing when the value of k increases
from 2 to 6. But the MAP value of AspectJ is declining as
the value of k increases from 2 to 6. Also, we observe that
when k = 3, we obtain the best performance for Birt and
Eclipse platform UI dataset. By default, we set k = 3 in our
prototype.

The next set of experiments is designed to compare the
performance of the feature of similarity by recently fixed
source files, which computes the feature by using the set of
bug fixing files m days before the submission of the current
bug report (recall Equation (7)). We want to study the setting
of this k value on the performance of MD-CNN. To compare
the MAP performance of MD-CNN with different settings
of parameter k, we define the settings of k by the following
five scenarios:ios:

A. k>3 ,α=1
B. k =3 ,α=1
C. k>3 ,α=i
D. k>3 ,α=i2

E. k =3 ,α=i
where due to an average of 80% of the buggy files in all
datasets correspond to no more than 3 historical bug reports,
k=3 is used in our prototype and set it in scenarios B, E.
To compare the necessity of the parameter k, we do not
set the value of the parameter k in scenarios A, C and D.
Also, α is the weights of sim-rank in Equation (6), and i
means the ranking of similarity between buggy file with its
corresponding bug report (as shown as Figure 4). As shown
in Table 9, more than 50% of the total number of buggy
files corresponds to only one historical bug report (One file
corresponds to one report) in each dataset. The number of
buggy files which correspond to two historical bug report
accounts for 11.0% to 21.8% of the total. We used parameter
α as an attenuation factor to reduce the imbalance effect
of multiple similarity accumulations on the CF score. And

to verify the effect and appropriate size of the attenuation
factor, we set α=1 (This means no attenuation factor is used)
in scenarios A and B, α=i (According to the proportion of
the buggy files in Table 9) in scenarios C and E, and α=i2 in
scenarios D.

TABLE 9
Number of buggy files which correspond to bug reports of 1, 2, 3, 4 or
more respectively(#Bug Reports indicates the number of bug reports

that buggy file correspond to)

#Bug Reports AspectJ Birt Eclipse JDT SWT Tomcat

1 763 2002 2907 2747 633 564
2 116 754 1252 636 176 168
3 52 354 561 303 65 79
4 30 191 305 201 52 35
>4 96 536 723 766 319 127

Total files 1057 3837 5748 4653 1245 973

Table 10 shows the results when the parameters are
set in the scenarios of A to E. Obviously, except AspectJ,
the performance of scenario A is worse than the others.
The performance of scenarios B, C, D, E were somewhat
mixed. For example, the performance of scenario D is best
on AspectJ, Eclipse, and Tomcat, but it is worse than C on
SWT. We choose scenario E to train MD-CNN because the
performance of scenario E is more stable even though it is
not the best by MAP measurement on some projects.

TABLE 10
The MAP of Similar Bug History when using different parameters on

the six projects

Scenario AspectJ Birt Eclipse JDT SWT Tomcat

A 0.0801 0.0997 0.1672 0.212 0.3578 0.2601
B 0.0736 0.176 0.1973 0.3845 0.4235 0.3067
C 0.0914 0.1502 0.2087 0.3523 0.4614 0.3025
D 0.0916 0.1756 0.2135 0.3795 0.4322 0.3089
E 0.0898 0.1775 0.2124 0.3718 0.4126 0.3072

Figure 9 shows the measurement of MAP by varying the
m days from 30 to 180. We observe that the m value has a
high impact on AspectJ, but has relatively less effect on the
other five projects. When m = 90 and m = 120, the MAP
values are comparable. This motivates us to set m to be 90
as the system default in our prototype.

Fig. 9. The MAP of h-sim with varying m settings

The third parameter we evaluate is the number of convo-
lution layers in MD-CNN and its impact on the effectiveness
of MD-CNN for bug localization. We vary the number of
convolution layers in MD-CNN and compute MAP and
MRR for all the bug reports in all six projects. Figure 10
shows the results. We make two observations. First, the
MAP scores are the lowest when the network structure of
MD-CNN has only one convolution layer. As we add the



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 13

second convolution layer, the MAP scores are increased
significantly for all datasets. By increasing the number of
convolution layers above 2, the MAP scores are increasing
very slowly. For all six datasets, the setting of 4 to 6 convo-
lutional layers is sufficient. This is one of the motivations for
the design of our CNN structure in Figure 7.

Fig. 10. MAP scores of six projects with varying number of convolution
layers in MD-CNN

7 CONCLUSION

Bug localization is a challenging and time-consuming pro-
cess. Automated bug localization techniques are desirable in
practice. Although several automatic bug localization meth-
ods have been proposed in recent years, the low accuracy of
these approaches makes them difficult to use.

In this paper, we present a Multi-Dimension Convolu-
tional Neural Network (MD-CNN) model for bug localiza-
tion, which creates a deep learning model to automatically
localize the most-buggy source files based on a bug report.
MD-CNN effectively merges five statistical dimensions of
features and iteratively learns the complex and non-linear
relationship between the multiple dimensions of features
and the bug locations. We have evaluated our model on
22,747 bug reports and 26,526 source files from six different
software systems. Compared with the existing represen-
tative bug localization techniques, MD-CNN uses fewer
features but outperforms them in terms of Top 1, Top 5, Top
10, and MAP scores. MD-CNN trained the CNN network
on each dataset separately, so it has a strong generalization
ability on different projects. Our proposed MD-CNN also
has a disadvantage, i.e., if any new files are added to the
projects in the future, our model needs to be trained again
for better performance.

In the future, we plan to improve the performance of
our approach further and investigate more aspects of bug
reports and source code, such as the inherent structural
information of a program better to represent the high-
level semantics of the source code. We also plan to localize
methods and classes instead of buggy files for automatic
program repair.
Acknowledgment. The work described in this paper was
partially supported by the National Key Research and
Development Project (No. 2018YFB2101200), the Funda-
mental Research Funds for the Central Universities (No.
2019CDYGYB014 and 2020CDJQY-A021),the Major Project
of Technological Innovation and Application Demon-
stration of Chongqing (No. cstc2018jszx-cyztzxX0037),
the Chongqing Technology Innovation and Application
Development Project (No. cstc2019jscx-dxwtBX0012 and
cstc2019jscx-zdztzxX0051), and Ling Liu’s research is par-
tially supported by USA NSF CISE grant No. 1564097 and
an IBM faculty award.

REFERENCES

[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the accuracy
of spectrum-based fault localization. In Proceedings of the Testing:
Academic and Industrial Conference Practice and Research Techniques -
MUTATION, TAICPART-MUTATION ’07, Washington, DC, USA,
2007. IEEE Computer Society.

[2] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and
T. Zimmermann. What makes a good bug report? In Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, SIGSOFT ’08/FSE-16, pages 308–318, New
York, NY, USA, 2008. ACM.

[3] A. Bouchet. Greedy algorithm and symmetric matroids. Mathe-
matical Programming, 1987.

[4] S. Chakraborty, Y. Li, M. Irvine, R. Saha, and B. Ray. Entropy
guided spectrum based bug localization using statistical language
model. CoRR, abs/1802.06947, 2018.

[5] H. Cleve and A. Zeller. Locating causes of program failures. In
Proceedings of the 27th International Conference on Software Engineer-
ing, ICSE ’05, pages 342–351, New York, NY, USA, 2005. ACM.

[6] N. Cliff. Ordinal methods for behavioral data analysis. Psychology
Press, 2014.

[7] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa. Natural language processing (almost) from scratch. J.
Mach. Learn. Res., 12:2493–2537, Nov. 2011.

[8] A. Feldman and A. van Gemund. A two-step hierarchical algo-
rithm for model-based diagnosis. In Proceedings of the 21st National
Conference on Artificial Intelligence - Volume 1, AAAI’06, pages 827–
833. AAAI Press, 2006.

[9] X. Gu, H. Zhang, D. Zhang, and S. Kim. Deep api learning. 2016.
[10] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly,

A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kings-
bury. Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. IEEE Signal
Processing Magazine, Nov 2012.

[11] G. E. Hinton and R. Salakhutdinov. Reducing the dimensionality
of data with neural networks. Science, 2006.

[12] X. Huo, M. Li, and Z.-H. Zhou. Learning unified features from
natural and programming languages for locating buggy source
code. In Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, IJCAI’16. AAAI Press, 2016.

[13] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula
automatic fault-localization technique. In Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE ’05, New York, NY, USA, 2005. ACM.

[14] D. Kim, Y. Tao, S. Kim, and A. Zeller. Where should we fix this
bug? a two-phase recommendation model. IEEE Trans. Softw. Eng.,
39(11):1597–1610, Nov. 2013.

[15] S. Kim, T. Zimmermann, E. J. Whitehead, Jr., and A. Zeller.
Predicting faults from cached history. In Proceedings of the 1st India
Software Engineering Conference, ISEC ’08, 2008.

[16] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. Bug
localization with combination of deep learning and information
retrieval. In Proceedings of the 25th International Conference on
Program Comprehension, ICPC ’17, pages 218–229, Piscataway, NJ,
USA, 2017. IEEE Press.

[17] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. White-
head Jr. Does bug prediction support human developers? findings
from a google case study. In Proceedings of the 2013 international
conference on Software Engineering. IEEE Press, 2013.

[18] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff. Statistical
debugging: A hypothesis testing-based approach. IEEE Trans.
Softw. Eng., 32(10):831–848, Oct. 2006.

[19] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. Sober: Statis-
tical model-based bug localization. SIGSOFT Softw. Eng. Notes,
30(5):286–295, Sept. 2005.

[20] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn. Bug localization using
latent dirichlet allocation. Inf. Softw. Technol., Sept. 2010.

[21] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
Information Retrieval. Cambridge University Press, New York, NY,
USA, 2008.

[22] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. An information
retrieval approach to concept location in source code. In 11th
Working Conference on Reverse Engineering, Nov 2004.



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 14

[23] L. Moreno, J. J. Treadway, A. Marcus, and W. Shen. On the use
of stack traces to improve text retrieval-based bug localization.
In Proceedings of the 2014 IEEE International Conference on Software
Maintenance and Evolution, ICSME ’14, pages 151–160, Washington,
DC, USA, 2014. IEEE Computer Society.

[24] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and
T. N. Nguyen. A topic-based approach for narrowing the search
space of buggy files from a bug report. In Proceedings of the
2011 26th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’11, pages 263–272, Washington, DC, USA, 2011.
IEEE Computer Society.

[25] P. Plawiak, M. Abdar, and U. R. Acharya. Application of new
deep genetic cascade ensemble of svm classifiers to predict the
australian credit scoring. Applied Soft Computing, 2019.

[26] P. Plawiak, M. Abdar, J. Plawiak, V. Makarenkov, and U. R.
Acharya. Dghnl: A new deep genetic hierarchical network of
learners for prediction of credit scoring. Information Sciences, 2020.

[27] P. Plawiak and U. R. Acharya. Novel deep genetic ensemble
of classifiers for arrhythmia detection using ecg signals. Neural
Computing and Applications, pages 1–25, 2019.

[28] D. Poshyvanyk, A. Marcus, V. Rajlich, Y.-G. Gueheneuc, and
G. Antoniol. Combining probabilistic ranking and latent semantic
indexing for feature identification. In Proceedings of the 14th IEEE
International Conference on Program Comprehension, ICPC ’06, pages
137–148, Washington, DC, USA, 2006. IEEE Computer Society.

[29] S. Rao and A. Kak. Retrieval from software libraries for bug
localization: A comparative study of generic and composite text
models. In Proceedings of the 8th Working Conference on Mining
Software Repositories, MSR ’11, New York, NY, USA. ACM.

[30] M. Renieres and S. P. Reiss. Fault localization with nearest neigh-
bor queries. In 18th IEEE International Conference on Automated
Software Engineering, 2003. Proceedings., Oct 2003.

[31] D. Saha, M. G. Nanda, P. Dhoolia, V. K. Nandivada, V. Sinha, and
S. Chandra. Fault localization for data-centric programs. In Pro-
ceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, ESEC/FSE ’11,
New York, NY, USA, 2011. ACM.

[32] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry. Improving bug
localization using structured information retrieval. In 2013 28th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 345–355, Nov 2013.

[33] Salton, Wong, Yang, and S. C. A vector space model for automatic
indexing. Communications of the Acm, 1974.

[34] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extract-
ing and composing robust features with denoising autoencoders.
In Proceedings of the 25th International Conference on Machine Learn-
ing, ICML ’08, pages 1096–1103, 2008.

[35] E. M. Voorhees. The trec question answering track. Nat. Lang. Eng.,
7(4):361–378, Dec. 2001.

[36] S. Wang, D. Chollak, D. Movshovitz-Attias, and L. Tan. Bugram:
Bug detection with n-gram language models. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016. ACM, 2016.

[37] S. Wang and D. Lo. Version history, similar report, and structure:
Putting them together for improved bug localization. In Proceed-
ings of the 22Nd International Conference on Program Comprehension,
ICPC 2014, pages 53–63, New York, NY, USA, 2014. ACM.

[38] S. Wang and D. Lo. Amalgam+: Composing rich information
sources for accurate bug localization. Journal of Software: Evolution
and Process, 10 2016.

[39] F. Wilcoxon. Individual comparisons by ranking methods. Biomet-
rics Bulletin, 1945.

[40] W. E. WONG and Y. QI. Bp neural network-based effective
fault localization. International Journal of Software Engineering and
Knowledge Engineering, 2009.

[41] Y. Xiao, J. Keung, K. E. Bennin, and Q. Mi. Improving bug
localization with word embedding and enhanced convolutional
neural networks. Information and Software Technology, 2019.

[42] Y. Xiao, J. Keung, Q. Mi, and K. E. Bennin. Improving bug
localization with an enhanced convolutional neural network. In
2017 24th Asia-Pacific Software Engineering Conference (APSEC),
pages 338–347, Dec 2017.

[43] X. Ye, R. Bunescu, and C. Liu. Learning to rank relevant files for
bug reports using domain knowledge. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014. ACM.

[44] X. Ye, R. Bunescu, and C. Liu. Mapping bug reports to relevant
files: A ranking model, a fine-grained benchmark, and feature
evaluation. IEEE Transactions on Software Engineering, April 2016.

[45] z. Yıldırım, P. Pławiak, R.-S. Tan, and U. R. Acharya. Arrhythmia
detection using deep convolutional neural network with long
duration ecg signals. Computers in Biology and Medicine, 2018.

[46] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE Trans. Softw. Eng., 28(2):183–200, Feb. 2002.

[47] M. Zhang, X. Li, L. Zhang, and S. Khurshid. Boosting spectrum-
based fault localization using pagerank. In Proceedings of the 26th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2017, New York, NY, USA, 2017. ACM.

[48] X. Zhang, Y. Yao, Y. Wang, F. Xu, and J. Lu. Exploring metadata in
bug reports for bug localization. In 2017 24th Asia-Pacific Software
Engineering Conference (APSEC), pages 328–337, Dec 2017.

[49] J. Zhou, H. Zhang, and D. Lo. Where should the bugs be
fixed? more accurate information retrieval-based bug localization
based on bug reports. In Software Engineering (ICSE), 2012 34th
International Conference on. IEEE, 2012.

Bei Wang received the B.S. degree in soft-
ware engineering from Chongqing University,
Chongqing, China, in 2017. He is currently pur-
suing the Ph.D. degree in the School of Big Data
& Software Engineering, Chongqing Univeristy,
China. His current research interests include
bug localization, deep learning, natural language
processing and data mining.

Ling Xu is an Associate Professor at the School
of Big Data & Software Engineering, Chongqing
Univeristy, China. She received her B.S. degree
in Hefei University of Technology in 1998, and
her M.S. degree in software engineering in 2004.
She received her Ph.D. degree in Computer Ap-
plication from Chongqing University, P.R. China
in 2009. Her research interests include mining
software repositories, bug rediction and localiza-
tion.

Meng Yan is now an Assistant Professor at
the School of Big Data & Software Engineer-
ing, Chongqing Univeristy, China. Prior to joining
Chongqing University, he was a Postdoc at Zhe-
jiang Univeristy advised by Prof.Shanping Li and
Dr. Xin Xia. he got his Ph.D degree in June 2017
under the supervision of Prof. Xiaohong Zhang
from Chongqing University, China. His currently
research foucuses on how to improve develop-
ers’ productivity, how to improve software quality
and how to reduce the effort during software

development by analyzing rich software repository data.

Chao Liu received the M.S., B.S., and Ph.D. de-
grees in software engineering from Chongqing
University, Chongqing, China, in 2011, 2014 and
2018, respectively, where he is currently a post-
doc at Zhejiang University. His research interests
include information retrieval, machine learning,
deep learning, data mining, and program analy-
sis.

Ling Liu is a professor in the School of Com-
puter Science, Georgia Institute of Technology.
She directs the research programs in the Dis-
tributed Data Intensive Systems Lab (DiSL). She
is an elected IEEE fellow, a recipient of the IEEE
Computer Society Technical Achievement Award
in 2012, and a recipient of the best paper award
from a dozen top venues, including ICDCS 2003,
WWW 2004, 2005 Pat Goldberg Memorial Best
Paper Award, IEEE Cloud 2012, IEEE ICWS
2013, ACM/IEEE CCGrid 2015, and IEEE Sym-

posium on BigData 2016. In addition to serving as the general chair and
PC chair of numerous IEEE and ACM conferences in data engineering,
she has served on the editorial board of over a dozen international
journals. Her current research is primarily sponsored by NSF, IBM, and
Intel.


