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Abstract—Just-in-time (JIT) bug prediction is an effective qual-
ity assurance activity that identifies whether a code commit will
introduce bugs into the mobile app, aiming to provide prompt feed-
back to practitioners for priority review. Since collecting sufficient
labeled bug data is not always feasible for some mobile apps, one
possible approach is to leverage cross-app models. In this work, we
propose a new cross-triplet deep feature embedding method, called
CDFE, for cross-app JIT bug prediction task. The CDFE method
incorporates a state-of-the-art cross-triplet loss function into a deep
neural network to learn high-level feature representation for the
cross-app data. This loss function adapts to the cross-app feature
learning task and aims to learn a new feature space to shorten the
distance of commit instances with the same label and enlarge the
distance of commit instances with different labels. In addition, this
loss function assigns higher weights to losses caused by cross-app
instance pairs than that by intra-app instance pairs, aiming to
narrow the discrepancy of cross-app bug data. We evaluate our
CDFE method on a benchmark bug dataset from 19 mobile apps
with two effort-aware indicators. The experimental results on 342
cross-app pairs show that our proposed CDFE method performs
better than 14 baseline methods.
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I. INTRODUCTION

MOBILE Internet has become an indispensable environ-
ment for information communication in human society.

As it continues to evolve, smart devices (such as the smart
phones and terminals) have been popularized rapidly. Mobile
apps have largely facilitated the flourishment of smart devices.
Thus, the quality of mobile apps has a direct impact on smart
devices development. To satisfy new features or requirements,
mobile apps are needed to continuously update. Due to a variety
of uncontrollable factors, the process of fast iterative updates
inevitably introduces bugs into the next release of the mobile
apps [1]. It is a trending topic to early detect the bugs and rec-
ommend them to the app practitioners for fixing before releasing
to the market, which is called bug prediction task. This process
is expected to speed up program repair that can save massive
manual efforts in software debugging [2].

Researchers have proposed many bug prediction methods
for identifying the buggy code snippets (such as classes) in
which the supervised bug prediction methods have been widely
studied. The general process of the supervised bug prediction
method usually contains two steps described as follows: first,
a set of features and the bug labels are collected from the
code and historical development data to form the labeled bug
data. Then, a machine learning model is built on the labeled
data to predict the bug labels of the unlabeled instances. Most
studies investigated the instances at the file or class level. For
mobile apps, they continuously release newer versions, instead
of being constrained under a clearly defined road map [1]. The
frequent updates usually involve a large number of code changes
or commits, such as adding new code snippets, deleting old
code snippets, and changing existing code snippets. Developers
prefer a method that can alert them whether one code change
will introduce bugs into the apps when they submit a code
commit. This can speed up the bug solving process because the
change details are still fresh in developers’ mind what they have
done at the moment. But this goal is beyond the scope of bug
prediction at file or class level. For this purpose, Catolino [3]
proposed just-in-time (JIT) bug prediction for mobile apps. JIT
bug prediction uses features and labels of commit instances
from the code change logs or comments to build a classification
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model for identifying bug-introducing code commits, which can
provide the developers with immediate feedback [4], [5]. JIT bug
prediction is particularly well suited for software products, such
as the mobile apps, that are characterized with frequent version
updates involving a large amount of code commits. In this work,
we focus on JIT bug prediction on mobile apps.

The typical intra-app bug prediction scenario needs sufficient
labeled commit data for model training. However, new devel-
oped mobile apps are usually lack of historical development data
to collect the label information, which hinders the application
of intra-app bug prediction. One alternative solution is to utilize
the labeled commit data of other mobile apps to assist the label
identification of the mobile app at hand with the cross-app
model.

As deep learning has presented the power feature learning
strength for bug prediction task, in this work, we focus on
proposing a deep learning-based metric learning method to learn
the effective feature representation for cross-app bug prediction.
A recent study [6] was the first to introduce the triplet loss-based
deep feature embedding for the bug prediction task on tradi-
tional software projects and achieved promising performance.
Triplet loss is used for metric learning aiming to learn a feature
embedding space to make the instances with the same label
as close as possible while the instances with different labels
as far as possible. However, the triplet loss-based deep feature
embedding method in [6] could only be applied to intra-app bug
prediction scenario since it does not consider the cross-domain
(an app denotes a domain in our work) discrepancy. Motivated
by the work in [7], we propose a cross-triplet deep feature
embedding (CDFE) method for our cross-app bug prediction
task. Our CDFE method extends the original triplet loss to
cross-app scenario by considering the domain information. More
specifically, we apply a deep neural network (DNN) model with
the improved cross-triplet loss to learn the high-level feature
representation. The novel cross-triplet loss function not only
simultaneously considers the intra-app and cross-app similarity
during the process of feature representation learning, but also
assigns higher weight to the cross-app triplet loss than the
intra-app triplet loss, aiming to narrow the large discrepancy
across app bug data.

As bug prediction is a binary classification task, previous stud-
ies mainly use some typical confusion matrix-based indicators,
such as F-measure, to measure the performance of bug prediction
on mobile apps. As app quality assurance activities have their
own restrictions, such as limited testing resources, thus, general
classification indicators in machine learning may not be well
adapted to the bug prediction scenario. Arisholm et al. [8]
proposed the effort-aware indicators designed for bug prediction
on traditional software system. This type of indicators assumes
that only limited test efforts are available for code inspection
and is deemed as the appropriate performance measure for bug
prediction in practical applications. In this work, we focus on the
effort-aware performance of our proposed bug prediction model
on mobile apps.

To evaluate the effectiveness of our CDFE method for cross-
app bug prediction, we use a recently-released bug data that
consists of 19 mobile apps as our benchmark dataset. We employ

two widely used effort-aware indicators, i.e., Effort-Aware Re-
call (EARecall) and Effort-Aware F-measure (EAF-measure),
to measure the performance of our CDFE method on a total
of 342 (19× 18) cross-app pairs. Our proposed CDFE method
achieves an average EARecall value of 0.589 and an aver-
age EAF-measure value of 0.405 across these cross-app pairs.
Compared with 14 baseline methods, including one within-app
method, four instance selection methods, six transfer learning
methods, and three classifier combination methods, the exper-
imental results show that our CDFE method achieves the best
performance in terms of both effort-aware indicators.

The contributions of our work are highlighted as follows.
1) To the best of our knowledge, we are the first to introduce

the deep learning-based feature embedding into JIT bug
prediction on mobile apps.

2) We propose a novel metric learning method, called CDFE,
to learn high-level feature representation for cross-app bug
data. CDFE adapts the tripet loss function to a cross-app
scenario that takes the intra-app loss, cross-app loss, and
their different important degrees into consideration.

3) We make the first attempt to apply the effort-aware in-
dicators to evaluate the performance of our cross-app
bug prediction method. The experimental results of 342
cross-app pairs from 19 mobile apps show the superiority
of our proposed method.

II. RELATED WORK

A. Just-in-Time Bug Prediction

To our best knowledge, Kamei et al. [9] were the first to
propose the notion of JIT bug prediction for software quality
assurance. They collected a benchmark dataset consisting of 11
defect data from six open source and five commercial projects.
The experimental results on logistic regression classifier showed
that they achieved an average recall of 0.64 and identified 35%
of buggy code commits by inspecting 20% of efforts. Since
then, many researches followed this work to conduct a series of
studies. Fukushima et al. [10], [11] used a cross-project model
to cope with the data scarcity issue for JIT bug prediction.
They conducted experiments on 11 open-source projects and
the results showed that the models that achieved better per-
formance under the within-project scenario did not necessarily
perform well under cross-project scenarios and the ensemble
learning models tended to yield more accurate results. Yang
et al. [12] found that simple feature ranking-based unsupervised
models can outperform a series of supervised models under three
validation settings for effort-aware JIT bug prediction on six
open-source projects. Tourani and Adams [13] investigated the
impact of issue and review discussions based features on JIT
defect prediction. Their experiments on 15 open-source projects
showed that these human discussions could complement the
conventional change-based features and had a positive effect on
the identification of buggy commits on half of projects. Tourani
and Adams [13] investigated an unsupervised model based on
a feature that was neglected in Yang et al.’s work [12]. They
conducted experiments with the same benchmark dataset and
validation settings as Yang et al.’s work [12], and found that this
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neglected unsupervised model performed best compared with
the methods in. Also, following Yang et al.’s work [12], Huang
et al. [14], [15] proposed a simple supervised model called
CBS and its improved version CBS+ for JIT defect prediction.
The experiments on six open-source projects showed that the
two supervised models achieved similar effort-aware Recall and
better effort-aware Precision and effort-aware F-measure than
the best unsupervised model in [12]. Chen et al. [16] proposed a
multiobjective optimization based supervised method and Yang
et al. [17] proposed a hybrid model combining decision tree and
ensemble learning to improve performance of JIT bug predic-
tion. In addition, some studies investigated the impacts of the
context information [18] and SZZ-based labeling methods [19]
on the performance of JIT bug prediction.

All these above studies focused on the JIT bug prediction
on traditional standard software projects. Recently, two stud-
ies emerged to apply this topic on mobile apps. Catolino [3]
conducted experiments on five mobile apps and suggested that
future work was needed to improve the performance of JIT bug
prediction on mobile apps. Later, they investigated the cross-app
bug prediction using leave-one-out cross-validation [1]. Their
experimental results on 14 mobile apps showed that ensemble
methods performed the best. However, they did not consider the
cross-app scenario based on the pair among two apps, which is a
more commonly-used setting, but mixed the bug data of all apps
except one as the training set. In addition, they just used standard
classification model for prediction without transforming features
by taking the distribution difference into considering. In view of
the above shortcomings, in this work, we propose a deep feature
embedding based metric learning to learn high-level feature
representation which helps to alleviate the data distribution
difference across apps, and conduct the cross-app experiment
on each pair of apps.

B. Effort-Aware Bug Prediction

To our best knowledge, Arisholm et al. [8] were the first
to introduce the concept of effort into a bug prediction model.
They compared the performance of nine classifiers on a legacy
Telecom software and pointed out that the effort-aware indica-
tor (called cost-effectiveness in the original paper) was more
appropriate than the usual confusion matrix based classification
indicators. Mende et al. [20] compared a trivial model (called
lines-of-code-based module order) with five classifiers. Their
experimental results on 13 projects showed that the trivial model
achieved the best AUC values but the worst effort-aware per-
formance. Mende et al. [21] designed two strategies to incor-
porate effort into the prediction process. Their results on 15
projects showed that both strategies significantly improved the
effort-aware performance of bug prediction models in a prac-
tical sense. They also found that the classifier achieving better
values on confusion matrix-based indicators achieved relatively
lower performance in terms of the effort-aware indicator. Some
studies investigated the impacts of the lines of code (LOC)
feature [22], slice-based cohesion features [23], the dependence
clusters of program elements [24], the sampling-based balance

strategies [25], dependency relationships-based network fea-
tures [26], code churn-based features [27], and the learning
to rank methods [28] on the performance of effort-aware bug
prediction models. In addition, some studies proposed the deep
ensemble learning method [29], neural network method [30],
and sample-based semi-supervised method [31] to improve the
effort-aware performance of bug prediction.

All the above studies investigated the effort-aware perfor-
mance of bug prediction models on traditional software systems.
However, no work has devoted to this topic on mobile apps. In
this work, we bridge this research gap to explore the effort-aware
cross-app bug prediction performance of our proposed deep
feature embedding model.

C. Bug Prediction on Mobile Apps

To our best knowledge, Scandariato and Walden [32] were
the first to study the mobile app bug prediction. They conducted
experiments on five versions of a mobile app and used the
SVM classifier to predict which classes of the app are buggy.
Kaur et al. [33], [34] suggested that the bug prediction models
based on process features could achieve better performance
than that based on code complexity features for mobile apps.
Malhotra [35] investigated the bug prediction performance of 18
classification models on seven mobile apps. The results showed
that there existed significant performance differences among
these models and the SVM-based models performed the worst.
Ricky et al. [36] pointed out that SVM performed better than
decision tree classifier for bug prediction on mobile apps. In
addition, some studies used log files [37] and high-frequency
keywords extracted from abstract syntax trees (AST) [38] to
identify the buggy code snippets of mobile apps.

Considering that the above studies focused on the bug pre-
diction on mobile apps at class level, Catolino et al. [1], [3]
explored the JIT bug prediction at commit level which was
more suitable for apps. We follow their work to conduct our
research by proposing a cross-domain metric learning method
for cross-app bug prediction task.

D. Deep Learning in Bug Prediction

As the successful application of deep learning with its pow-
erful representation learning ability in other fields, some re-
searchers utilized it to improve bug prediction performance. The
present studies can be roughly divided into two categories: one is
to use deep learning models to learn new feature representation
from the handcrafted features of the bug data or as a classification
model for bug prediction, and the other is to use deep learning
models to extract representation of the software units from the
source code instead of handcrafted features. For the former ones,
Yang et al. [39] were the first to use deep brief network (DBN)
model to integrate handcrafted features for JIT bug prediction.
Albahli [29] proposed a deep ensemble learning method that
combined DNN model, random forest, and XGBoost for JIT
bug prediction. Manjula and Florence [40] proposed a hybrid
method that used genetic algorithm-based feature optimization
and DNN-based classification model for bug prediction. Qiao
et al. [41] employed the DNN model to predict the number of
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Fig. 1. Overview of our method.

bugs. Hasanpour et al. [42] compared the performance of two
deep learning models, i.e., stack sparse auto-encoder and DBN
model for bug prediction, and found that the former one achieved
overall better performance. Xu et al. [6] proposed a hybrid loss
(combining the triplet loss and cross-entropy loss) based DNN
model for performance improvement of bug prediction.

For the later ones, Wang et al. [43], [44] were the first to use
DBN model to extract semantic features of the program from its
AST. Li et al. [45] used the convolutional neural network (CNN)
model to learn semantic and structural features from AST. Dam
et al. [46] used the long short-term memory (LSTM) network to
extract both syntactic and structural information of the program
from its AST. Phan et al. [47] utilized the directed graph-based
CNN model to extract semantic features from the control flow
graphs. Chen et al. [48] employed a bidirectional LSTM network
to learn semantic features from AST. Fan et al. [49] applied the
recurrent neural network model to learn semantic features from
AST.

The later ones usually extract feature vectors for the instances
with very high dimensions which will increase model training
time, and the feature of each dimension has no specific meaning
toward the code. We refer to the former ones to propose a new
deep learning method to learn high-level feature representation
from the handcrafted features. Different from the studies in the
former ones that are applied to the traditional software projects
and within-project scenario, our work focuses on the mobile
apps and cross-app scenario.

III. METHOD

A. Overview

Fig. 1 presents an overview of our proposed method. As our
method needs some labeled commit instances from the target
app to assist the data of source app to learn the cross-app feature
embedding, we randomly select a small number of commit
instances as having labels for participation. Then, the data of the
source app, the labeled data of the target app, and the unlabeled
data of the target app are normalized with the z-score method.
The data of the source app and the labeled data of the target app
are input into our method to learn an optimal embedding mode.
Then, the data of the source app and the unlabeled data of the
target app are transfered into a new embedding space with this

Fig. 2. An example of the learning process of the triplet loss function.

mode. At last, the embedding data of the source app are used to
train a classification model which is applied to predict the labels
of the unlabeled commit instances of the target app.

B. Triplet Loss

Triplet loss function is used to learn a better representation of
the input features. Assume a triplet data as (xa, xp, xn), where
xa denotes an anchor of the triplet, xp denotes the positive
instance that has the same label as xa (called matched pairs),
and xn denotes the negative instance that has different labels
with xa (called unmatched pairs). The goal of the triplet loss
function is to learn an embedding representation space in which
the distance between the commit instances with the same class
label is as close as possible while the commit instances with
different class labels are as far as possible. The embedding
process is demonstrated in Fig. 2.

For the above purpose, each commit instance is chosen as the
anchor and the triplet loss function is formalized as follows:

� =
3

2m

m/3∑
i

[D2
x(i)a,p

−D2
x(i)a,n

+md]
2
+ (1)

where Dx(i)a,p
= ||f(x(i)a)− f(x(i)p)||2 denotes the distance

between matched pairs, Da,n = ||f(x(i)a)− f(x(i)n)||2 de-
notes the distance between unmatched pairs, f(·) denotes the
embedding function, and md is a margin parameter. The objec-
tive of the loss function is to make that Dx(i)a,n

is larger than
Dx(i)a,p

plus md.
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Fig. 3. An example of cross-triplet embedding.

C. Cross-Triplet Embedding Loss

Original triplet embedding method is mainly applied to a
single domain; in other words, all the elements in the triplet
(xa

i , x
p
i , x

n
i ) are from the same data. This limits its application

for the feature representation learning tasks across different
data. Jiang et al. [7], [50] made the first attempt to adapt the
triplet loss function to cross-domain scenario. Their method
was used to process image data from different domains with a
deep convolutional neural network, called AlexNet model [51]
which is not suitable for the commit instances of our bug data.
Motivated by their work, we modify their method to adapt it
to our bug prediction task. More specifically, the simplest way
to consider all the triplet combinations whose three elements
are randomly selected from either the source app or the target
app. In this case, we have a total of eight triplet combina-
tions, i.e., (xs

a, x
s
p, x

s
n), (x

t
a, x

t
p, x

t
n), (x

s
a, x

t
p, x

t
n), (x

t
a, x

s
p, x

s
n),

(xs
a, x

t
p, x

s
n), (x

s
a, x

s
p, x

t
n), (x

t
a, x

s
p, x

t
n), and (xt

a, x
t
p, x

s
n), where

the superscript s (or t) denotes the corresponding commit in-
stance comes from the source app (or target app). This simple
way may cause some problems. For example, it treats the triplets
from the same app and across apps the same, i.e., assigning them
the equal weights when calculating the corresponding triplet loss
function. However, the triplet loss for the triplets whose three ele-
ments are from cross-app data should be assigned higher weights
than those whose three elements are from the same app data.
The reason is that cross-app discrepancy is larger and should
be treated more carefully [50]. In addition, for the last four
triplets of the eight combinations, i.e., (xs

a, x
t
p, x

s
n), (x

s
a, x

s
p, x

t
n),

(xt
a, x

s
p, x

t
n), and (xt

a, x
t
p, x

s
n), whose positive instances and

negative instances come from different apps, it is difficult to
decide the margins md and the weights. For example, in terms
of the matched pair (xt

a, x
s
p) from cross apps and the unmatched

pair (xt
a, x

t
n) from intra app, we could not judge whether the

loss of the former should be larger than the loss of the latter one.
To overcome the above issues, we employ an improved ver-

sion of triplet embedding loss, called cross-triplet embedding
loss, which is applied to the labeled data of source app and a small
amount of labeled data of target app. The cross-triplet embed-
ding loss only chooses the first four triplets of the combinations
as shown in Fig. 3. The triplets in the blue and red rectangles
[i.e., (xs

a, x
s
p, x

s
n) and (xt

a, x
t
p, x

t
n)] are from intra-app, while

the triplets in the green and orange rounded rectangles [i.e.,

(xs
a, x

t
p, x

t
n) and (xt

a, x
s
p, x

s
n)] are from cross apps. In addition,

the cross-triplet embedding loss calculates the total loss by
assigning different weights to the losses from cross-app triplets
and the losses from intra-app triplets, aiming to consider the
domain information. The cross-triplet embedding loss function
is formalized as follows:

�cross = β1(�
s,s + �t,t)︸ ︷︷ ︸

intra app

+β2(�
s,t + �t,s)︸ ︷︷ ︸

cross app

(2)

where �s,s and �t,t denote the intra-app loss of the triplets from
source app (xs

a, x
s
p, x

s
n) and target app (xt

a, x
t
p, x

t
n), individually.

�s,t and �t,s denote the cross-app loss of the triplets from
(xs

a, x
t
p, x

t
n) and (xt

a, x
s
p, x

s
n), individually. β1 and β2 denote

the weights for intra-app loss and cross-app loss, individually.
For each triplet, the loss is calculated using (1). To highlight the
cross-app triplet loss, we set β2 > β1. From the formula, we can
see that the positive instance and the negative instance in a triplet
must select from the same app, no matter the anchor instance
comes from the source app or target app.

D. Deep Neural Network

In our work, we use the DNN with the cross-app triplet loss to
learn the deep feature embedding. In general, the DNN contains
three kinds of layers (e.g., the input layer, hidden layer, and
output layer). The first layer receives the input feature vectors of
commit instances, which is called input layer. The hidden layer
transforms the feature vectors, aiming to learn the high-level
feature representation. The last layer generates the prediction
results (i.e., the commit instance label), which is called output
layer. As our aim is mainly for feature representation learning
using DNN without involving in the label prediction, in this
work, we employ the DNN structure that only contains the
first two types of layers. We use the fully connected strategy to
construct the network structure, that is, the units among layers
are fully connected while no connections exist between the units
in the same layer.

The training process of DNN consists of two types of prop-
agation algorithms, i.e., the forward propagation and the back
propagation. The former one carries out a series of linear opera-
tions and activation operations with feature vectors of the triplet,
the weight vector, and the bias vector. The latter one calculates
the cross-triplet embedding loss to optimize the network param-
eters, aiming to learning a high-level feature representation for
the cross-app data by considering the domain information. We
apply adaptive moment estimation (Adam) algorithm [52] to
optimize the model parameters during the training process. The
code is available at https://figshare.com/search?q=10.6084/m9.
figshare.13 635 347.

IV. EXPERIMENTAL SETUP

A. Benchmark Dataset

In this work, we conduct experiment on a publicly available
benchmark dataset recently released by a previous study [1].
This dataset consists of 19 Android mobile apps, including
Android Firewall, Alfresco, Android Sync, Android Wallpaper,
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TABLE I
BASIC STATISTIC INFORMATION OF THE 19 APPS

TABLE II
BRIEF DESCRIPTIONS OF THE 14 FEATURES

AnySoft Keyboard, Apg, Applozic Android SDK, Atmosphere,
Chat Secure Android, Delta Chat, Facebook Android SDK,
Android Universal Image Loader, Kiwix, Lottie, Observable
Scroll View, Own Cloud Android, Page Turner, Notify Reddit,
and Telegram. The basic statistic information of these apps is
presented in Table I, including the briefly functional description
(Description), lines of code (# LOC), the total number of commit
instances (# Total), the number of defective instances (# Buggy)
and clean instances (# Clean), and the buggy ratio (% Ratio).
From the table, we can observe that these apps are developed
for various types of functions. This means that these apps belong
to different domains, which improve the diversity of the mobile
apps used. Meanwhile, the LOCs range from 9506 to 4 158 369,
which means that these apps have different scales. Fourteen
commonly used features from five families are collected to
characterize the code commit instances and these features are
used to conduct the JIT defect prediction on mobile apps. The
brief descriptions of the 14 features are presented in Table II.

B. Performance Indicators

Typical classification indicators based on confusion matrix,
such as Precision, Recall, and F-measure, hold that the test

sources are sufficient for code reviews and treat the efforts for
the test activities, such as inspecting different code snippets,
as the same. However, the test resources are always limited in
practical cases, and the inspection efforts for distinct snippets
are also different. Therefore, typical classification indicators are
not suitable to measure the bug prediction performance.

As some previous studies [12], [14]–[16], [27] focusing on
tradition software recommended to evaluate the JIT bug pre-
diction performance using effort-aware indicators which are
more appropriate performance measurement for bug prediction
in practical applications, we follow these studies to employ
effort-aware indicators which take the inspection efforts into
consideration for performance evaluation of our cross-app bug
prediction method. Thus, we do not use the typical noneffort-
aware performance indicators, such as accuracy, the area under
the receiver operating characteristic curve (AUC), and Matthews
correlation coefficient (MCC) in our work. Below, we briefly
describe the calculation process of our used two effort-aware
indicators. Note that the sum of the features LA and LD is treated
as the proxy measure of efforts (i.e., cost) involved in inspecting
a file, while the limited test resource is defined as 20% of all
efforts [14], [15], [53].
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Fig. 4. Calculating process of the effort-aware indicators.

In this work, we follow previous studies [6], [54] to calcu-
late the effort-aware indicators. More specifically, when the
commit data of two mobile apps are embedding into a new
feature space by using our proposed deep feature embedding
method, a classifier is trained on the embedded source app and
predicts the embedded target app as two groups, i.e., buggy and
clean. Next, the commit instances in each group are sorted with
ascending order based on their inspection efforts, respectively.
Third, the sorted results of the two groups are merged in which
the sorted results of the group with label buggy are placed in
the front. Then, we imitate the practitioners to inspect these
commit instances one by one from the highest to the lowest
ranked instances according to the sorted results. The inspection
process stops when the cumulative effort percentage of the
inspected commit instances reaches 20%. Some statistics of the
inspected commit instances are used to calculate the effort-aware
indicators. More specifically, we first introduce three basic terms
as follows.

1) td denotes the total number of commit instances that are
buggy in the data of the target app.

2) tn denotes the total number of checked commit instances,
including both buggy and clean ones after inspecting 20%
of efforts.

3) tnd denotes the number of checked commit instances that
are buggy after inspecting 20% of efforts.

The first effort-aware indicator that we used is called Effort-
Aware Recall (EARecall). It denotes the proportion of detected
buggy commit instances during the inspection process among
all buggy commit instances in the target app. EARecall is
formulated as follows:

EARecall = tnd/td. (3)

Effort-Aware Precision (EAPrecision) denotes the propor-
tion of detected buggy commit instances during the inspection
process among all checked instances, which is formulated as
EAPrecision = tnd/tn.

The second effort-aware indicator that we used is called
Effort-Aware F-measure (EAF-measure). Like the definition of
typical F-measure in machine learning, EAF-measure is defined
as the weighted harmonic average between EARecall and EA-
Precision, which is formulated as follows:

EAF-measure =
(1 + θ2)× EAPrecision× EARecall

θ2 × EAPrecision + EARecall
(4)

where θ is a trade-off parameter between EARecall and EAPre-
cision. In this work, we set θ as 2 following the same parameter
setting in previous studies [6], [54], [55]. Fig. 4 gives an example
to show the process of calculating the effort-aware indicators.

C. Data Partition

In this work, we combine all the commit instances from
source app and 10% of the commit instances from target app
as candidate set to train the cross-triplet embedding model.
The 10% of the commit instances are selected with stratified
sampling strategy. Compared with using random sampling to
obtain the 10% of data, the used stratified sampling is more
suitable since it can ensure that the bug ratio of the sampled data
is the same as the target app data. To generate the training set and
test set, we take all the commit instances from source app as the
training set and the remainder (90%) of the commit instances
from the target app as the test set to build our classification
model. For a fair comparison, we also use 90% data of the target
app as the test set for all baseline methods. In addition, we repeat
this partition procedure 50 times to reduce the randomness of
the bias and record the average values and the corresponding
standard deviations on each indicator individually.

D. Parameter Settings

In this work, we set the DNN structure as two hidden layers
with 16 units to build the cross-triplet embedding model. For the
hyperparameters, we set the batch size as 32 and the iteration
epochs as 30. In each iteration, the learning rate is set as 0.1 with
the L2 regularization to relieve the overfitting. In addition, for
the cross-triplet embedding loss function, we set md as 0.5, β1

as 1, and β2 as 2 (i.e., β2/β1 = 2), following the same parameter
setting in the previous work [7].

As our deep feature embedding method CDFE requires to
combine the data from the source app and part of commit
instances from the target app to learn the feature representation
for the cross-app data, we use stratified strategy to randomly
select 10% commit instances from the target app to participate
the feature embedding learning. The stratified sampling denotes
that we randomly select 10% buggy and 10% clean commit
instances from the data of the target app, which avoids to select
only the clean commit instances due to the class imbalance of
bug data and ensures that the selected commit instances have
the same bug ratio as the data of target app. After the feature
embedding task being completed, the embedding data of source
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app are used as the training set and the remaining 90% data of
target app are used as the test set for the classification model. We
repeat the selection operation of the 10% data of target app 50
times to reduce the random bias and report the average indicator
values of the 50 rounds.

E. Classification Model

After obtaining the feature embedding of the commit in-
stances for the cross-app data, a classifier is needed to build on
the training data which is used to determine whether the commit
instances in the test data will introduce the bug into the apps, i.e.,
buggy or clean. In this work, we employ the logistic regression
(LR) as the basic classifier to build the prediction model. LR is
a generalized linear model, which extends the linear regression
model by incorporating the logistic function. The reasons of
the choice of LR are that it is a simple classifier which solves
the relationship between the features and labels of the commit
instances, and is proved to be effective in previous bug prediction
studies [23], [24], [56]–[59].

Let define the label as ys and feature vector as xs =
xs1 , xs2 , . . ., xsds of a commit instance in the source app data,
where ds is the feature dimension. In addition,w = w1, . . ., wds

and b denote the weight vector associated with the features in
xs and a bias parameter, respectively, where wi is the weight of
ith feature of xs. Then, the confidence scores (or probabilities)
for xs to be buggy and clean are calculated as follows:

P(ys = buggy|xs) =
exp(w · xs + b)

1 + exp(w · xs + b)
(5)

P(ys = clean|xs) =
1

1 + exp(w · xs + b)
. (6)

The core of LR is to evaluate the weight vector w and bias
b from the training set, i.e., the source app data. Then, the built
model based on these parameters is used to predict the labels of
the commit instances in the target app data.

F. Statistic Test

To statistically analyze the performance differences between
our method and the comparative methods, we employ the Fried-
man test with the Nemenyi post hoc test [60] for significance
test at significance level α with 0.05. This test takes the ad-
vantage that it does not require the performance results being
analyzed to satisfy a particular distribution and is less sensitive
to outliers [61]. The Friedman is a nonparametric hypothesis
test which examines whether the significant differences exist
among the average ranks of different methods. This test returns
a p-value to decide whether the null hypothesis is true. The null
hypothesis will be rejected when the p-value is less than 0.05.

When the null hypothesis is rejected, that is, the performance
among multiple methods are significantly different, the Nemenyi
post hoc test is employed to determine which method group is
significantly different compared with the others [62]. Nemenyi
post hoc test detects whether the average rank difference of two
methods surpasses a critical distance (CD). If does, it denotes
that the two methods have significant performance difference.

However, the original Nemenyi post hoc test will produce
overlapping groups, i.e., a method may appear in multiple groups
with significant differences. To overcome this drawback, in
this work, we refer to the same strategy in [61] to produce
the nonoverlapping groups with significant differences. More
specifically, assume that the best and the worst average rank
among the comparative methods as rb and rw individually, and
the distance between rb and rw as d, we have the following
three rules: 1) If d > 2 CD, the methods will be divided into
three non-overlapping groups: the first group, called the top rank
group, includes the methods whose absolute value of the rank
difference toward rb is less than CD. The second group, called
the bottom rank group, includes the methods whose absolute
value of the rank difference toward rw is less than CD. The
third group, called the middle rank group, includes the remaining
methods. 2) If CD < d < 2 CD, the methods will be divided
into two non-overlapping groups: the top rank group contains
the methods whose average rank is closer to rb than rw and the
bottom rank group contains the method whose average rank is
closer to rw than rb. 3) If d < CD, all the methods belong to
one group.

V. PERFORMANCE EVALUATION

A. RQ1: Does Our Proposed CDFE Method Achieve Better
Cross-App Bug Prediction Performance Than Instance
Selection-Based Cross-App Model?

Motivation: One way to alleviate the data distribution between
two apps is to use instance selection methods to select some
representative commit instances towards the target app data
from the source app data. This research question is designed
to investigate whether our proposed cross-app method CDFE
can achieve better JIT bug prediction performance on mobile
apps than instance selection based methods.

Methods: To answer this research question, we select three
instance selection methods for comparison, including NF [63],
PF [64], and YF [65], which are briefly described as follows.

1) NF: For each commit instance in the target app, NF selects
its closest 10 commit instances from the source app. The
nonredundant commit instances are used as the training
set.

2) PF: This method applies k-means clustering to divide the
data combining the source app and target app into multiple
groups and reserves the groups that contain at least one
commit instance for the target app. For each instance from
the source app in the reserved groups, its closest instance
in the target app is called the popular one. For each popular
instance, PF selects its closest one from the source app as
the candidate of the training set.

3) YF: This method applies agglomerative clustering to di-
vide the data combining the source app and target app into
multiple groups and reserves the groups that contain at
least one commit instance for the target app. The commit
instances from the source app in the reserved groups are
used as the training set.
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Fig. 5. Box-plots for EARecall across cross-app pairs on each app and all apps for CDFE, four instance selection methods, and one within-app method. (a)
Firewall. (b) Alfresco. (c) Sync. (d) Wallpaper. (e) Keyboard. (f) Apg. (g) Applozic. (h) Atmosphere. (i) Secure. (j) Delta. (k) Facebook. (l) Image. (m) Kiwix. (n)
Lottie. (o) Scroll. (p) Cloud. (q) Turner. (r) Reddit. (s) Telegram. (t) All.

TABLE III
AVERAGE INDICATOR VALUES OF OUR CDFE METHOD, FOUR INSTANCE

SELECTION-BASED METHODS, AND ONE WITHIN-APP METHOD ACROSS ALL

CROSS-APP PAIRS

These instance selection methods reserve part of commit
instances in the source apps, which are representative toward
the instances in the target app.

We also design the NONE method that only uses the classifica-
tion model without instance selection and feature transformation
on the source and target apps as the most basic instance selection
based cross-app method. In addition, we design a within-app bug
prediction method Within that only uses the LR classifier on the
training and test data, both from the target app, for comparison.

Results: Table III reports the average EARecall and EAF-
measure values of our proposed CDFE method, the four in-
stance selection-based cross-app methods, and the within-app
prediction method. Figs. 5 and 6 depict the box-plots of the six
methods in which the first 19 subfigures show the box-plots on
the cross-app pairs for each app and the last subfigure shows the
box-plots on the cross-app pairs for all apps. Fig. 7 visualizes
the corresponding statistical test results across all 342 cross-app
pairs in which the methods with red, blue, and green color denote
that they belong to the top, middle, and bottom rank groups,
respectively.

Table III shows that our CDFE method achieves the best
average EARecall and EAF-measure values compared with
the within-app method and four instance selection meth-
ods. Compared with the best average indicator values among
the five baseline methods, CDFE achieves improvements of
60.1% and 23.1% in terms of EARecall and EAF-measure,
respectively.

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on April 18,2021 at 06:26:27 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON RELIABILITY

Fig. 6. Box-plots for EAF-measure across cross-app pairs on each app and all apps for CDFE, four instance selection methods, and one within-app method. (a)
Firewall. (b) Alfresco. (c) Sync. (d) Wallpaper. (e) Keyboard. (f) Apg. (g) Applozic. (h) Atmosphere. (i) Secure. (j) Delta. (k) Facebook. (l) Image. (m) Kiwix. (n)
Lottie. (o) Scroll. (p) Cloud. (q) Turner. (r) Reddit. (s) Telegram. (t) All.

Fig. 7. Statistic results with the Nemenyi test among CDFE, four instance selection methods, and one within-app method for two effort-aware indicators. (a)
EARecall. (b) EAF-measure.

Fig. 5 shows that the EARecall values of our CDFE method are
apparently higher than that of the four instance selection-based
methods on each app and across all apps. Compared with the
Within method, the EARecall values of our CDFE method are
apparently higher on 16 apps (except for Applozic, Reddit, and
Telegram) and among all apps. Fig. 6 shows the EAF-measure
values of our CDFE method are apparently higher than that of
the four instance selection-based methods on eight apps (i.e.,
Firewall, Wallpaper, Keyboard, Atmosphere, Secure, Facebook,

Kiwix, and Telegram), a little higher on four apps (i.e., Alfresco,
Apg, Applozic, and Lottie), and across all apps, while a little
lower on other apps. Compared with the Within method, the
EAF-measure values of our CDFE method are apparently higher
on 13 apps (except for Firewall, Sync, Applozic, Secure, Reddit,
and Telegram) and among all apps.

Fig. 7 demonstrates that our CDFE method ranks first and
belongs to the top rank group in terms of EARecall and EAF-
measure. In addition, CDFE performs significantly better than
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all baseline methods in terms of EARecall and than two baseline
methods in terms of EAF-measure.

Answer to RQ1: In sum, our proposed CDFE method achieves
better cross-app bug prediction performance than the instance
selection methods and the Within method on the cross-app
pairs of nearly all mobile apps in terms of the two effort-aware
indicators.

B. RQ2: Does Our Proposed CDFE Method Perform Better
Than Transfer Learning-Based Cross-App Model for Bug
Prediction Performance?

Motivation: Transfer learning, especially for the feature based
transfer learning, is the most commonly used cross-project
model. Such kind of methods employs some feature transfor-
mation strategies, such as matrix transformation, to learn a
common feature space to narrow the data distribution differences
across domains. This research question is designed to investigate
whether our proposed feature embedding-based metric learning
method CDFE performs better than transfer learning methods
in terms of JIT bug prediction performance on mobile apps.

Methods: To answer this research question, we select six
transfer learning methods for comparison, including IFS_5 [66],
IFS_16 [67], transfer component analysis (TCA) [68], con-
ditional distribution-based transfer learning (CDT) [69], joint
distribution-based transfer learning (JDT) [70], and extended
TCA (TCA+) [58], which are briefly described as follows:

1) IFS_5: This method transforms the original features into
a new space including five distribution characteristics
of the commit instances, i.e., median, mean, minimum,
maximum, and variance values.

2) IFS_16: This method is a variant version of IFS_5, which
includes 16 distribution characteristics, i.e., mode, me-
dian, mean, harmonic mean, minimum, maximum, range,
variation ratio, first quartile, third quartile, interquartile
range, variance, standard deviation, coefficient of varia-
tion, skewness, and kurtosis values.

3) TCA: TCA only considers the margin distribution of the
cross-app data.

4) CDT: CDT only considers the conditional distribution of
the cross-app data.

5) JDT: JDT simultaneously considers the margin distribu-
tion and conditional distribution of the cross-app data with
the same weight.

6) TCA+: TCA+ first employs some predefined rules to
preprocess the data of the two apps with a specific nor-
malization strategy and then applies the TCA method.

These transfer learning methods map the data of the source
and target apps into a new feature space in which their distribu-
tions are more similar.

Results: Table IV reports the average EARecall and EAF-
measure values of our proposed CDFE method and the six
transfer learning-based cross-app methods. Figs. 8 and 9 depict
the box-plots of the six methods on the cross-app pairs for each
app as well as all apps. Fig. 10 visualizes the corresponding
statistical test results across all 342 cross-app pairs.

TABLE IV
AVERAGE INDICATOR VALUES OF OUR CDFE METHOD AND SIX TRANSFER

LEARNING METHODS ACROSS ALL CROSS-APP PAIRS

Table IV shows that our CDFE method achieves the best
average EARecall and EAF-measure values compared with the
six transfer learning methods. Compared with the best average
indicator values among the six baseline methods, CDFE achieves
improvements of 67.2% and 34.5% in terms of EARecall and
EAF-measure, respectively.

Fig. 8 shows that the EARecall values of our CDFE method
are apparently higher than that of the six baseline methods on
14 apps (i.e., Firewall, Wallpaper, Keyboard, Apg, Applozic,
Atmosphere, Secure, Facebook, Image, Kiwix, Lottie, Scroll,
Cloud, and Telegram) and across all apps, a little higher on
four apps (i.e., Alfresco, Sync, Delta, and Turner), while a little
lower on one app (i.e., Reddit) on one method (i.e., TCA+).
Fig. 9 shows the EAF-measure values of our CDFE method are
apparently higher than that of the six baseline methods on nine
apps (i.e., Firewall, Keyboard, Applozic, Atmosphere, Secure,
Facebook, Kiwix, Cloud, and Telegram), a little higher on five
apps (i.e., Alfresco, Wallpaper, Apg, Lottie, and Scroll) and
across all apps, while a little lower than on other five apps.

Fig. 10 demonstrates that our CDFE method ranks first in
terms of EARecall and EAF-measure, respectively, and belongs
to the top rank group in terms of both two effort-aware indicators.
In addition, CDFE performs significantly better than all baseline
methods in terms of both two effort-aware indicators.

Answer to RQ2: To sum up, our proposed CDFE method
outperforms the transfer learning methods on the cross-app pairs
of most mobile apps in terms of the two effort-aware indicators.

C. RQ3: Is Our CDFE Method Superior to Classifier
Combination-Based Cross-App Model for Bug Prediction
Performance?

Motivation: Classifier combination methods refer to the idea
of ensemble learning to improve the cross-domain prediction
performance with the help of multiple classification results.
This research question is designed to investigate whether our
proposed feature embedding method CDFE performs better than
classifier combination methods in terms of JIT bug prediction
performance on mobile apps.

Methods: To answer this research question, we select three
classifier combination methods for comparison, including Bag-
ging_ J48 ( B_J48) [71], COmbined DEfect Predictor ( CODEP)
method [72], and Adaptive Selection of Classifiers in bug predIc-
tion (ASCI) method [73], which are briefly described as follows.

1) B_J48: This method trains multiple learning models and
then combines them to reduce the generalization errors.

2) CODEP: This method first applies multiple classifiers
to the cross-app data independently, and then uses the
probability outputs of these classifiers as the new features
of the the commit instances.
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Fig. 8. Box-plots for EARecall across cross-app pairs on each app and all apps for CDFE and six transfer learning methods. (a) Firewall. (b) Alfresco. (c) Sync.
(d) Wallpaper. (e) Keyboard. (f) Apg. (g) Applozic. (h) Atmosphere. (i) Secure. (j) Delta. (k) Facebook. (l) Image. (m) Kiwix. (n) Lottie. (o) Scroll. (p) Cloud. (q)
Turner. (r) Reddit. (s) Telegram. (t) All.

TABLE V
AVERAGE INDICATOR VALUES OF OUR CDFE METHOD AND THREE

CLASSIFIER COMBINATION METHODS ACROSS ALL CROSS-APP PAIRS

3) ASCI: This method dynamically selects the right one from
multiple classifiers based on the characteristics of the class
that the classifier can better predict.

These classifier combination methods aim to improve the
cross-app bug prediction performance from the perspective of
classifier selection and combination.

Results: Table V reports the average EARecall and EAF-
measure values of our CDFE method and the three classifier
combination based cross-app methods. Figs. 11 and 12 depict
the box-plots of the four methods on cross-app pairs for each

app as well as all apps. Fig. 13 visualizes the corresponding
statistical test results across all 342 cross-app pairs.

Table V shows that our CDFE method achieves the best
average EARecall and EAF-measure values compared with the
three classifier combination methods. Compared with the best
average indicator values among the three baseline methods,
CDFE achieves improvements of 38.6% and 13.4% in terms
of EARecall and EAF-measure, respectively.

Fig. 11 shows that the EARecall values of CDFE are ap-
parently higher than that of the three baseline methods on
12 apps (i.e., Firewall, Sync, Wallpaper, Keyboard, Applozic,
Secure, Facebook, Image, Kiwix, Lottie, Scoll, and Telegram)
and across all apps, a little higher on five apps (i.e., Alfresco,
Apg, Atmosphere, Cloud, and Reddit), while a little lower on two
apps (i.e., Delta and Turner). Fig. 12 shows the EAF-measure
values of CDFE are apparently higher than that of the three base-
line methods on five apps (i.e., Firewall, Wallpaper, Keyboard,
Facebook, and Telegram), a little higher on five apps (Applozic,
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Fig. 9. Box-plots for EAF-measure across cross-app pairs on each app and all apps for CDFE and six transfer learning methods. (a) Firewall. (b) Alfresco. (c)
Sync. (d) Wallpaper. (e) Keyboard. (f) Apg. (g) Applozic. (h) Atmosphere. (i) Secure. (j) Delta. (k) Facebook. (l) Image. (m) Kiwix. (n) Lottie. (o) Scroll. (p) Cloud.
(q) Turner. (r) Reddit. (s) Telegram. (t) All.

Fig. 10. Statistic results with the Nemenyi test among CDFE and six transfer learning methods for two effort-aware indicators. (a) EARecall. (b) EAF-measure.

Secure, Kiwix, Lottie, and Scroll) and across all apps, while a
little lower on other apps.

Fig. 13 demonstrates that our CDFE method ranks first
and belongs to the top rank group in terms of EARecall and
EAF-measure. In addition, CDFE performs significantly bet-
ter than all baseline methods in terms of EARecall and than

two baseline methods in terms of EAF-measure expect for
B_J48.

Answer to RQ3: In short, our proposed CDFE method per-
forms significantly better than the classifier combination meth-
ods across all cross-app pairs in terms of the two effort-aware
indicators.
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Fig. 11. Box-plots for EARecall across cross-app pairs on each app and all apps for CDFE and three classifier combination methods. (a) Firewall. (b) Alfresco.
(c) Sync. (d) Wallpaper. (e) Keyboard. (f) Apg. (g) Applozic. (h) Atmosphere. (i) Secure. (j) Delta. (k) Facebook. (l) Image. (m) Kiwix. (n) Lottie. (o) Scroll. (p)
Cloud. (q) Turner. (r) Reddit. (s) Telegram. (t) All.

VI. THREATS TO VALIDITY

A. Threats to Construct Validity

Threats to construct validity depend on the reasonability of
the used performance measurement and statistic test method.
EARecall and EAF-measure are used as our main performance
indicators which have been suggested as the appropriate perfor-
mance evaluation for the bug prediction task. The used improved
statistic test method combining Friedman test with a Nemenyi
post hoc test has the advantage to generate nonoverlapped groups
with significant differences, which has been successfully applied
to many previous bug prediction studies [55], [57], [69], [74]–
[76].

B. Threats to Internal Validity

Threats to internal validity lie in experimental mistakes when
implementing our method and replicating the comparative meth-
ods. We carefully implement CDFE method with tensorflow

and the first two authors have double-checked the implemen-
tation details to reduce the threats to the internal validity. Since
the original implementations of most baseline methods (except
for TCA, CDT, and JDT) were not available, we reimplement
them by strictly following the corresponding descriptions in the
original papers. Nonetheless, we still could not claim that our
versions of the baseline methods can fully restore all of their
original details.

C. Threats to External Validity

Threats to external validity come from the generalization
of our experimental results to other datasets. Currently, the
benchmark dataset consists of 19 apps which have different size
and are from different application domains. This is helpful to
generalize the experimental results to a certain extent. Selecting
more apps to be included in the benchmark dataset can further
improve the generalizability of the proposed method, which is
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Fig. 12. Box-plots for EAF-measure across cross-app pairs on each app and all apps for CDFE and three classifier combination methods. (a) Firewall. (b) Alfresco.
(c) Sync. (d) Wallpaper. (e) Keyboard. (f) Apg. (g) Applozic. (h) Atmosphere. (i) Secure. (j) Delta. (k) Facebook. (l) Image. (m) Kiwix. (n) Lottie. (o) Scroll. (p)
Cloud. (q) Turner. (r) Reddit. (s) Telegram. (t) All.

Fig. 13. Statistic results with the Nemenyi test among CDFE and three classifier combination methods for two effort-aware indicators. (a) EARecall.
(b) EAF-measure.

our future work. Since the 19 apps are developed on the An-
droid platform, considering additional apps developed on other
platform, such as IOS, could also strengthen the generalizability
of our method. As the programming constructs and structures
can vary among different programming languages and using
different constructs and structures may cause the calculated
feature values different [77], selecting mobile apps written in

different languages (such as Kotlin), not only Java as our apps,
would further increase the external validity of this work.

VII. CONCLUSION

In this work, we developed a deep learning-based cross-
domain metric learning method, called CDFE, that learns deep
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feature embedding for cross-app JIT bug prediction task. This
method incorporated a state-of-the-art cross-triplet loss function
into a DNN model to learn high-level feature representation for
the cross-app data. Cross-triplet loss function is a variant of
original triplet loss function which extends the later one from
within-domain to cross-domain scenario. This loss function aims
to learn a feature space in which the commit instances with the
same label are close together, whereas the commit instances with
different labels are far apart. We evaluated our proposed CDFE
method on a publicly available benchmark dataset consisting
of 19 mobile apps and compared it with 14 baseline methods.
The experimental results showed that our method achieved the
best average performance values in terms of two effort-aware
indicators.

As potential future work, we are planning to apply our method
to more bug data of mobile apps and adapt our method to im-
balance data since class imbalance is inherent in bug prediction
on mobile apps.
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