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Abstract—Recently, just-in-time (JIT) defect prediction tech-
nique attracted a lot of attention. In JIT defect prediction, all
branches and omitting changes outside the main branch should
be considered which can significantly affect the performance of
JIT defect prediction. However, there are many duplicate changes
among all the branches, which are referred to as a pair of changes
with identical implementation in different branches. Such changes
can influence the calculation of developer experience metrics and
are considered as the noisy data for JIT defect prediction. In this
article, the impact of duplicate changes on JIT defect prediction is
explored. An empirical study on a total of 105 828 changes from
eight Apache open-source projects is given. We find that 13% of
changes from different branches are duplicate among the studied
projects. The duplicate changes have a great influence on the model
metrics for JIT defect prediction. For 50% of the changes, removing
duplicate changes decreases the experience metrics with an average
of 6–55. In addition, the duplicate changes have a significant im-
pact on the evaluation and interpretation of JIT defect prediction
models. Removing duplicate changes among the studied projects
can significantly improve the performance of JIT defect prediction
models ranging from 1 to 125% concerning various performance
measures (i.e., area under the curve, Matthews correlation coeffi-
cient, and F1). Given the impact of duplicate changes, we suggest
that researchers should remove duplicate changes from the origi-
nal historical changes of software repository when evaluating the
performance of JIT defect prediction models in future work.

Index Terms—Branches, just-in-time (JIT) defect prediction,
mining software repositories, noisy data.

I. INTRODUCTION

SOFTWARE defect prediction refers to predicting the posi-
tion of potential defects in software [1], [2]. It has been
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a long-term research topic in the software quality assurance
area [3]. Recently, several studies focus on predicting defects
at the change level [4]–[8]. Such a technique is referred to
as just-in-time (JIT) defect prediction [6]. Different from
the traditional defect prediction techniques that perform at a
coarse-grained level (i.e., package or file level) [9]–[12], JIT
defect prediction aims to identify bug-introducing changes,
which has many benefits such that developers can only review a
pretty smaller amount of potentially defective lines.

JIT defect prediction leverages the historical changes that are
stored in version control systems (VCS) of software projects to
build prediction models [6]. Developers often leverage branch
to manage software versions [13]. Kovalenko et al. [14] noted
that JIT defect prediction should not only consider changes in
the main branch. They proposed that omitting changes outside
the main branch can significantly impact the performance of JIT
defect prediction.

In our article, we observe that to fix a bug or implement
a feature request, developers often need to perform the same
changes to the code of different branches [15]. In this article,
we define such changes that are submitted to different branches
with the same modifications as duplicate changes. Specifically,
duplicate changes have two characteristics: 1) they are sub-
mitted to different branches; 2) they have the same content
(i.e., the same modified files and code). Duplicate changes
may impact the data distribution of the training and testing
data that are used in the existing JIT defect prediction studies.
Consequently, duplicate changes may impact the validity of the
existing studies. Fig. 1 provides a pair of duplicate changes to
the project Apache/HBase.1 In this case, changes “4499092” and
“f4860d8” are created to fix the bug “#953.” They are submitted
to different branches, but they have the same change files and
codes. Such changes may impact the calculation of some features
(e.g., the number of changes made by the developer before the
current change), which is a threat to the validity of JIT defect
prediction models.

In this article, we explore the scale of duplicate changes
and the impact of duplicate changes on JIT defect prediction.
Following prior studies [6], [16], [17], we leverage 14 change-
level features proposed by Kamei et al. [6]. For each project,
we build a dataset that contains all changes from different
branches (referred to as In-dup change dataset). Then, we
identify duplicate changes by checking whether two changes are
from different branches and modify identical lines in identical
files. For each pair of duplicate changes, we remove one of
the changes and build a dataset that does not contain duplicate
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Fig. 1. Pair of duplicate changes.

changes (referred to as Un-dup change dataset). Then, we
use the refactoring aware SZZ (RA-SZZ) algorithm to label
the datasets [17], [18]. After that, we build two models using
two datasets, respectively. And we construct two kinds of JIT
defect prediction models: 1) classification JIT defect prediction
models to identify changes as buggy or clean; 2) effort-aware
JIT defect prediction models to prioritize changes considering
the inspection effort. For the classification JIT defect prediction
models, we leverage three classifiers as underlying classifiers,
which are random forest (RF), logistic regression (LR), and
Naive Bayes (NB), respectively [19]–[21]. We use area under the
curve (AUC) [22], Matthews correlation coefficient (MCC) [23],
and F1-score [24] as performance measures. For the effort-
aware JIT defect prediction models, two effort-aware models
are adopted including classify-before-sorting (CBS) [25] and
OneWay [26]. The Recall@20% is used as the performance
measure of effort-aware JIT defect prediction models. By doing
so, the impact of duplicate changes on evaluating the JIT defect
prediction models is investigated. Moreover, through calculating
the importance ranking of the metrics of JIT defect prediction
models, the impact on the interpretation of JIT models is also
explored.

As short-hand notations, the model using the In-dup change
dataset is denoted as In-dup model, and the model using the
Un-dup change dataset is Un-dup model.

A scale empirical study on eight projects including 105 828
changes is conducted. It is shown that the average proportion
of duplicate changes is 13% among the studied projects. The
duplicate changes have a significant impact on the experience
metric calculation of JIT defect prediction. For the 50% of the
changes, removing duplicate changes among the studied projects
decreases the experience metrics with an average of 6–55. For the
classification JIT defect prediction models, removing duplicate
changes among the studied projects can significantly improve
the performance of In-dup models ranging from 1 to 125%
concerning various performance measures (i.e., AUC, MCC,
and F1). For the effort-aware JIT defect prediction models, in
terms of Recall@20%, removing duplicate changes among the
studied projects can significantly improve the performance of
CBS effort-aware JIT defect prediction models ranging from 4
to 68%, yet reduce the performance of OneWay effort-aware JIT
defect prediction models ranging from 2 to 33%. While the du-
plicate changes lead to a significant impact on the second-ranked
and third-ranked metrics, the most important metrics are not to
be impacted by the duplicate changes.

The contributions of this article are summarized as follows.
1) To the best of our knowledge, this article is the first to

investigate the impact of duplicate changes on JIT defect
prediction. We find that the scale of the duplicate changes
varies across projects, and, on average, 13% duplicate
changes are duplicate among the studied projects.

2) We conduct an empirical study to evaluate the impact of
duplicate changes on JIT defect prediction. The results
show that the duplicate changes have a significant impact
on the JIT defect prediction (i.e., the model metrics, the
model evaluation, and the model interpretation).

II. RELATED WORK

A. JIT Defect Prediction

Software defect prediction is one of the important techniques
to improve the quality of software. Effective application of
software defect prediction technologies can reduce the cost of
software maintenance [3], [27]. The traditional defect prediction
technology mainly targets coarse-grained software entities, such
as files, modules, packages, etc. However, developers have poor
traceability for defects from coarse-grained software entities
that have large lines of code (LOC) [3]. As a result, researchers
should pay more attention to the fine-grained defect prediction
techniques [6]. Code change defect prediction is an important
kind of fine-grained defect prediction techniques. Mockus and
Weiss [5] first proposed a technique to predict defect changes
which is referred to as the change-level defect prediction. Sli-
werski et al. [28] proposed SZZ algorithm, which links each
bug-fixing change (changes are treated to fix bugs) to the
source code change introducing the original defect by combining
information from the VCS with the issue tracking system (ITS).
Kim et al. [4] first proposed a scheme to assess risk for each
code change. Kamei et al. [6] referred to this defect prediction
technology as the JIT defect prediction technology for the first
time and they performed their case study on 11 different projects
(i.e., six open-source and five commercial projects). To conduct
experiment datasets, they extracted data from the concurrent
versions system repositories of the projects and combined it with
bug reports and labeled their data by using SZZ algorithm. The
empirical results indicated the practicability of JIT defect predic-
tion technology and also inspired the enthusiasm for studying
JIT defect prediction. More research results subsequently ap-
peared. Yang et al. [29] first applied the deep learning techniques
in JIT defect prediction. They found that using deep learning
techniques significantly improved the performance of instant
defect prediction models. McIntosh and Kamei [30] found that
fluctuations in the properties of fix-inducing changes can impact
the performance and interpretation of JIT models.

In addition, due to the limited resources for developers to
check, there are many studies on effort-aware JIT defect pre-
diction. Kamei et al. [6] used a linear regression method to
build an effort-aware change-level defect prediction model effort
aware logistic regression (EALR). EALR is to prioritize changes
in descending order by predicting the changed defect density.
Yang et al. [31] applied the unsupervised to effort-aware JIT
defect prediction. They found that their unsupervised models
could achieve high recall in effort-aware JIT defect prediction.
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Huang et al. [25] proposed an improved supervised model and is
referred to as CBS. They found that CBS significantly improved
the precision and F1-score. Fu et al. [26] revisited the study of
Yang et al. [29] and proposed a novel approach to use supervised
methods on selecting the best models in effort-aware JIT defect
prediction, which is referred to as OneWay.

All of the above studies did not consider the branches outside
the main branch during the mining of change histories for
constructing their training datasets. We aim to make the first
step toward the assessment of this problem.

B. Noisy Data on Defect Prediction

Researchers have proposed various data quality issues of
defect prediction. It was found that VCS and ITS would be
noisy sources of data [30]. Prior studies have shown that noise
generally issues with the linkage process and the bug reports.
Bachmann et al. [32] found that there would occasionally be
bias in the links between issue reports and code changes. Bird
et al. [33] noted that some changes of fixing bug might not be
correctly recorded, leading to some initial defect changes that
could not be identified. Bird et al. [33] further proposed that rich
experienced developers could be good at linking bug reports
to the corresponding code changes. Noise may also appear in
bug reports owing to bug reports that are often mislabeled.
Kim et al. [34] found that using datasets that have a 20–35%
mislabeling rate may significantly influence the evaluation of
the defect prediction model. Herzig et al. [35] found that 43%
of all bug reports are mislabeled, and this mislabeling impacts
the ranking of the most defect-prone files.

Tantithamthavorn et al. [2] found that labeling errors did not
significantly affect the accuracy of the model but significantly
affected the recall of the model. Neto et al. [18] proposed a
framework in their work to evaluate the quality of the data
produced by the SZZ algorithm. The noise produced by SZZ
may threaten the evaluation of defect prediction models. Fan
et al. [17] analyzed the impact of noise produced by four SZZ
variants on JIT defect prediction models, including B-SZZ,
AG-SZZ, MA-SZZ, and RA-SZZ. They noted that AG-SZZ
most likely reduces the performance of JIT defect prediction
models.

The arising of duplicate changes does not ascribe to the
imperfect operations of developers. Duplicate changes are the
noisy data from VCS to JIT defect prediction. Our study can be
considered as an extension of the above studies.

III. EXPERIMENT

In this section, we first take a brief introduction for our studied
projects. Second, we describe the details of duplicate changes
identification. Third, we describe the studied metrics and the
process of data preprocessing. We also depict our experimental
procedures. In the end, we present the detail of constructing
models and evaluation measures. We attempt to address four
questions as follows:

RQ1: How many duplicate changes are there in all the
changes?

RQ2: How do duplicate changes impact the model metrics of
JIT defect prediction?

TABLE I
OVERVIEW OF STUDIED PROJECTS

RQ3: How do duplicate changes impact the evaluation of JIT
defect prediction models?

RQ4: How do duplicate changes impact the interpretation of
JIT defect prediction models?

A. Studied Projects

We select projects for our analysis along three criteria as
follows.

1) Hosted in Public Data Repositories: To ensure the avail-
ability of our data and strengthen the replication of our
experiments, our studied projects are chosen from Apache
open-source system and have been used in many prior JIT
defect prediction studies [17], [18], [36].

2) Including Various Sizes of Data: Mende [37] noted that
the performance of defect models may be impacted by
the size of datasets. To deal with the potential impact of
the size of used datasets, the eight analyzed projects have
various scales of changes.

3) Easy to Link Code Changes and Bug Reports: Linking
code changes and bug reports is essential for the SZZ al-
gorithm when identifying bug-introducing changes. Prior
studies have shown that there may exhibit bias in the link
between code changes and bug reports [17], [38], [39].
Bacchelli et al. [39] observed that the links between code
changes and bug reports that are managed by JIRA ITS are
much better than those managed by Bugzilla ITS. Hence,
we chose the studied project that leverages JIRA ITS to
manage bug reports.

Table I shows the introduction of eight studied projects that
satisfy the above three criteria.

To ensure that our data have the least mislabeled changes, we
adopt the RA-SZZ algorithm proposed by Neto et al. [18]. First,
RA-SZZ leverages the git diff command to identify the lines
that were changed by bug-fixing changes [36]. Then, RA-SZZ
filters away refactoring lines (i.e., blank/comment lines, mod-
ification of code indentation, etc.). RA-SZZ further leverages
the annotation graph to trace back the other identified lines
through the change history [18]. Finally, RA-SZZ identifies the
truly bug-introducing changes. Fan et al. [17] recommended
that RA-SZZ should be used when identifying bug-introducing
changes. Hence, in our study, we apply the RA-SZZ algorithm
to label our datasets improving the reliability of data labeling.
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Fig. 2. Process of duplicate changes identification.

B. Duplicate Changes Identification

In this article, we propose an approach to identifying duplicate
changes. As shown in Fig. 2, we traverse each change in turn
from the VCS of our studied projects. We first traverse changes
within a certain time interval from different branches. We set the
interval as one week. For each pair of duplicate changes, they
must satisfy all the three conditions: 1) whether they belong to
different branches; 2) whether they have the same modified files;
3) whether they have the same added and deleted lines in each
file. The details of the three conditions are as follows.

1) Whether They Belong to Different Branches: All Git repos-
itories start with a master branch by convention [14]. The
graph represented by changes can be represented as a
directed acyclic graph [38]. Each change is based on one
or several prior (parent) versions. We compare the hashID
of each change by running the “git log” command [40].
For the two changes, if they are not the ancestors of each
other, they belong to different branches.

2) Whether They Have the Same Modified Files. We traverse
the change histories of each change to get the name and
number of modified files by running the “git log” com-
mand [40]. For the two changes from different branches,
if they modified the same files, they work on similar or
related functionality.

3) Whether They Have the Same Added and Deleted Lines
in Each File. We can view the code change location by
running the “git diff” command [40]. For the two changes
from different branches, if they have the same added and
deleted lines in each file, they modified the same source
code.

We also take a manual analysis of the identified duplicated
changes. It is difficult to check all the identified duplicate
changes since it requires large amount of manual effort to
analyze the modified lines of each change. Thus, we randomly
sample 100 pairs of identified duplicate changes for each project.
We perform a manual analysis of the sampled duplicate changes
to investigate the accuracy of our approach.

Table II shows that our identification approach can achieve
a high accuracy ranging from 95 to 99%. In terms of the
mislabeling cases, we note that the mislabeling cases mainly
occurred when developers moved branches. For instance, when
developers pulled and merged branches, this change content may
be the same as the existing change of the pulled branches. The
two changes would be identified by our approach as duplicate
changes. However, the two changes should not be considered
as duplicate changes since they are implemented for different
purposes. The percentage of changes that are incorrectly identi-
fied as duplicate changes is 1% in most cases. Such mislabeling
cases are not likely to impact our analysis.

TABLE II
ACCURACY OF DUPLICATE CHANGES IDENTIFICATION ON SAMPLED CHANGES

TABLE III
STUDIED CHANGE METRICS

C. Studied Metrics

In this article, we use the 14 basic features proposed by Kamei
et al. [6] to construct JIT models. These metrics have proved to
be available and useful [16], [17], [29]. Table III outlines such
change metrics.

As shown in Table III, they are concerned with five dimensions
including diffusion (i.e., NS, ND, NF, and entropy), size (i.e.,
LA, LD, and LT), purpose (i.e., FIX), history (i.e., NDEV, AGE,
and NUC), and experience (i.e., EXP, REXP, and SEXP). Specif-
ically, the diffusion dimension characterizes the distribution of a
change. The size dimension represents the scale of a change. The
purpose dimension has only one metric, FIX, which indicates
whether the change is to fix a bug. The measurement of the
historical dimension represents the situation where developers
modify files when code history changes. The experience dimen-
sion is composed of three metrics: EXP, REXP, and SEXP. The
three experience metrics are measured by counting the number
of submitted changes by a developer.

D. Data Preprocessing

Some of the above 14 studied metrics are highly skewed
and correlated [6], [41], [42]. Such metrics may impact the
model evaluation [43]. In this article, we preprocess data in the
following two parts.

Logarithmic transformation. Logarithmic transformation is
usually used to create monotonic data transformation to alleviate
the effect of highly skewed metrics [6], [17]. In our article, the
standard logarithmic transformation ln(x+ 1) is used for each
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Fig. 3. Overview of the design of our case study.

metric, except the FIX metric since the FIX metric is a binary
variable.

Dealing with collinearity. Considering that the degrees of
correlation are different for studied metrics, we separately per-
form the metric selection on each project. After our metrics are
performed using the logarithmic transformation, we apply the
three policies (i.e., correlation analysis, independence analysis,
and redundancy analysis) to stepwise metric selection as follows.

1) Correlation Analysis: The Spearman rank correlation test
is used to calculate the correlation between each pair of
measures on each project [44]. According to the results
of the Spearman rank correlation test, we cluster the
correlated metrics. We take the correlation threshold as
0.8. As the correlation value is higher than 0.8, we keep the
metrics that are easier to understand [6], [17]. For example,
we note that the correlation value of NF and ND is larger
than 0.8, and we dropped ND and instead used NF.

2) Independence Analysis: The Chi-square independence test
is used to examine the statistical independence between
the FIX metric and other metrics [45]. Eventually, we drop
the FIX metric since it is not independent from the other
metrics (e.g., ND) among all the studied projects.

3) Redundancy Analysis: The REDUN function [46] is
used to detect redundant metrics. We note that there are
not any redundant metrics among all the studied projects.

E. Case Study Design

In our case study, we construct two JIT defect prediction
models: a baseline model that is built using the In-dup change
datasets (referred to as In-dup model) and a model that is
built using the Un-dup change datasets (referred to as Un-dup
model).

To ensure that our conclusions are statistically robust, we
adopt the out-of-sample bootstrap validation technique, which is
also used by prior studies [17], [47]. We first generate bootstrap
sample of sizes N with replacement from the training data to
train models, while we serve the samples that do not appear
in the bootstrap samples as testing data. In our article, the
out-of-sample bootstrap process iterates 1000 times.

Moreover, the generic metric importance score is used to
measure the importance of the metrics, which is proposed by
Tantithamthavorn and Hassan [43]. For the testing data in each
bootstrap iteration, we first randomly permute the values of the
metrics to generate a dataset with only one metric permuted.
Then, we compute the difference in the misclassification rate

of the models that are applied on the clean dataset and the
dataset with randomly permuted metrics. We take the value of the
difference as the important scores of each metric. This process
also iterates 1000 times.

Fig. 3 depicts the overall framework for the experiment of our
article, which is made up of the following steps.

1) Label the change dataset. We use the RA-SZZ algorithm
to label the change dataset of our studied projects.

2) Remove duplicate changes. We remove duplicate changes
in order to produce Un-dup change datasets.

3) Analyze metric difference. We compare the value of expe-
rience metric after removing duplicate changes with that
of the original change dataset.

4) Construct models. We construct our models using the In-
dup change datasets and Un-dup change datasets. In total,
we have two JIT models, referred to as In-dup and Un-dup
model, respectively. Then, we perform the out-of-sample
bootstrap validation technique.

5) Evaluate model performance. We repeat the out-of-sample
bootstrap process for 1000 times. We further evaluate
the models based on the results of various performance
measures.

6) Analyze model interpretation. We analyze the importance
ranking of the metrics by computing the generic metric
importance score.

F. Construct JIT Defect Prediction Models

In order for the experiment to be as comprehensive as pos-
sible, we build two kinds of JIT defect prediction models: 1)
classification JIT defect prediction models; 2) effort-aware JIT
defect prediction models.

1) Construct Classification JIT Defect Prediction Models:
Prior studies pointed out that the performance of the model
would be sensitive to training data settings and different classi-
fiers [17], [24]. We perform two different settings for the training
dataset in constructing classification models.

1) The original training data is imbalance data. To ensure that
the training and testing corpora share similar characteris-
tics and representative to the original dataset, following
prior works [17], [48], we use the original training data to
train models.

2) The balance data is also used in many prior JIT studies [6],
[7], [25], [26]. Hence, the undersampling technique is used
to rebalance the training data. Briefly, we randomly select
examples from the majority class (i.e., clean changes) and
delete them from the training dataset.
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Then, for the test dataset, we keep the original testing data,
which is imbalance data. Based on the above settings, we adopt
three widely used classifiers [6], [17], [47] as follows.

Random forest. RF is a classifier with multiple decision
trees and an ensemble learning method. When performing a
classification task and importing the new samples, each decision
tree will get its classification result. The RF will treat the result
with the most classification as the final result [20].

Logistic regression. LR is a generalized linear regression
analysis model and a widely used binary classification classifier.
It is used to indicate the possibility of something happening. Its
working model is to use one or more variables as independent
variables and then use a binary variable as the dependent variable
to analyze and estimate the relationship between the independent
variable and the dependent variable [19].

Naive Bayes. NB is a classifier that originates from Bayes’
theorem and independent assumptions of feature conditions.
It assumes that each input variable is independent and uses
the knowledge of probability statistics to classify the sample
dataset [21].

2) Construct Effort-Aware JIT Defect Prediction Models:
Effort-aware models aim to find more defects with limited effort.
To ensure that the conclusions of our experiments are robust,
we adopt two effort-aware JIT defect prediction techniques
including CBS [25] and OneWay [26]. The two technologies
are set as follows.

CBS. The working mode of CBS is simply to sort first and
then predict. First, a supervised model is used to predict changing
defect propensities. Then, for the tendencies which are predicted
to be buggy, CBS will prioritize them in ascending order based
on their churn size [25].

OneWay. OneWay first evaluates one unsupervised model on
supervised training data. Then, the most cost-effective unsuper-
vised model is picked to prioritize changes on testing data [26].

Additionally, for the dataset of the two effort-aware JIT defect
prediction models, we balance the training data by the method
of undersampling.

G. Evaluation Measures

In our study, we adopt four evaluation measures (i.e., AUC,
MCC, F1-score, and Recall@20%) to measure the performance
of JIT defect prediction models. There is a brief introduction as
follows.

AUC. AUC stands for “area under the receiver operator
characteristics (ROC) curve,” which measures the entire two-
dimensional area underneath the entire ROC curve (think inte-
gral calculus) from (0,0) to (1,1). AUC provides an aggregate
measure of performance across all possible classification thresh-
olds and is widely used [6], [7], [30].

MCC. MCC is the geometric mean of the regression co-
efficients of the problem and its dual [23]. Song et al. [24]
proposed that MCC performs better with performance standards
for addressing the imbalance in the data and is potentially useful
for software defect prediction, which can be a more balanced
measure.

F1. F1 is a weighted harmonic average of recall (the percent-
age of changes labeled as buggy that were correctly classified)
and precision (the percentage of actual buggy changes that were

correctly classified) [24]. Hence, F1-score can be considered as
a comprehensive evaluation measure [49].

Recall@20%. Recall@20% measures the percentage of
buggy changes that a developer can find in 20% of the code for all
bug-introducing changes in the total LOC. Many studies show
that the available resources account for only 20% of the workload
of checking all changes. It is a commonly used measure to
measure cost-effectiveness [6], [25], [26], [31].

IV. RESULTS

In this section, we aim to display experimental results and
address the following research questions.

(RQ1) How many duplicate changes are there in all the
changes?

Motivation: In software development practice, it is difficult
to maintain an overview of various branches. Most of mining
software repository activities focus on the master branch [50].
There are many duplicate changes among all the branches, which
are referred to as a pair of changes with identical implementation
in different branches [15]. However, little is known about the
scale of duplicate changes among all the changes. Thus, we
would like to explore the distribution of duplicate changes
among all the changes.

Approach: We mine eight open-source software projects
containing a total of more than 10 k changes from the Apache Git
repository. In order to identify duplicate changes, we propose a
framework to traverse each change. If the two changes are from
different branches and modify identical lines in identical files,
we regard the two changes as a pair of duplicate changes. We
remove one of the changes and calculate the percentage of dupli-
cate changes among all the projects. In addition, we investigate
the scale of duplicate changes that are bug-introducing changes.
Furthermore, we investigate the scale of duplicate changes that
are bug-fix changes according to the purpose metric.

Result: Table IV provides the distribution of duplicate
changes in each project. From left to right, the table shows the
number of duplicate changes and the percentage of total changes
for each project (i.e., bug-introducing changes, bug-fix changes,
etc.). The table also presents the number of branches and releases
of each project.

From Table IV, we have the following observations.
1) The average proportion of duplicate changes is 13% in

the studied projects. The highest proportion of duplicate
changes is our HBase dataset for 36.10%, and the smallest
proportion is 6.80% of the OpenJPA dataset. When the
results of these two projects are removed, the average
proportion of the remaining six projects is 10%.

2) In addition, Table IV shows that the average proportion of
duplicate bug-introducing changes is 14% for the bug-
introducing changes in our projects. Note that 60.59%
of the bug-introducing changes in the HBase dataset are
duplicate bug-introducing changes, yet the average pro-
portion of the remaining seven projects is only 7.23%.

3) Furthermore, Table IV also shows that the average per-
centage of duplicate bug-fix changes in the eight projects
is 17%. The HBase dataset also has the highest percentage
of duplicate bug-fix changes. The average value of the
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TABLE IV
DISTRIBUTION OF DUPLICATE CHANGES IN EACH PROJECT

remaining seven projects is only 13.11%. Also, we find
that the project with a high number of branches and re-
leases, the proportion of duplicate changes (i.e., duplicate
bug-introducing changes, duplicate bug-fix changes, etc.)
is also high. In particular, the HBase dataset not only has
a large amount of data but also has a large number of
branches and releases compared with other projects.

The scale of duplicate changes varies across projects. On av-
erage, 13% of changes from different branches are duplicate.

(RQ2) How do duplicate changes impact the model metrics of
JIT defect prediction?

Motivation: All the changes can be characterized by 14
change-level metrics with five dimensions [6]. Duplicate
changes from different branches may impact various metrics
calculation of change histories, such as develop experience of
contributors to a project [50]. As Table III shown, the experience
dimension is made up of three metrics: developer experience
(EXP), recent experience (REXP), and subsystem experience
(SEXP) [6]. The three experience metrics are measured by
counting the number of submitted changes by a developer. Gen-
erally, each duplicate change may be recorded as the develop-
ment experience of the contributor who produces this duplicate
change. However, we are not clear about the impact of duplicate
changes from the branches on the experience metric calculation.
Therefore, we would like to quantify the difference resulting
from the application of omitting duplicate changes in the history
of changes.

Approach: We start from Un-dup datasets that are produced
by removing duplicate changes and In-dup datasets (i.e., the
original datasets). Next, we do a subtraction operation to com-
pare the three model metrics (i.e., EXP, REXP, and SEXP). If
the changes of the two datasets have the same HashID, we will
subtract the experience metric of Un-dup datasets from that of
In-dup datasets.

To check whether the difference is statistically significant, we
perform the Wilcoxon signed-rank test [51] with a Bonferroni
correction [52] adjusted to compare the three model metrics (i.e.,
EXP, REXP, and SEXP) of the Un-dup datasets with that of the
In-dup datasets.

TABLE V
ADJUSTED P-VALUES COMPARING THE EXP, REXP, AND SEXP METRICS OF

THE UN-DUP CHANGE DATASETS WITH THAT OF THE IN-DUP CHANGE

DATASETS

Results: In Table V, we show the adjusted p-values comparing
the calculated experience metric of the In-dup change datasets
with that of the Un-dup change datasets. Fig. 4 shows the
difference of the experience metrics between the In-dup change
dataset and the Un-dup change dataset for each project.

From Table V and Fig. 4, we observe that duplicate changes
significantly impact the calculation of the experience metrics.
In terms of 50% of the changes, removing duplicate changes
decreases the three model metrics (i.e., EXP, REXP, and SEXP)
with an average difference of 10–57, 6–28, and 6–39, respec-
tively. The biggest difference is the Hadoop Common dataset
with a large amount of data. The three model metrics (i.e.,
EXP, REXP, and SEXP) are reduced by 12–83, 5–37, and 7–50,
respectively. Although the project Pig has a small amount of
data, the three model metrics (i.e., EXP, REXP, and SEXP) are
reduced by 6–50, 4–28, and 5–55, respectively. Indeed, the above
two datasets have not the low proportion of duplicate changes.

The duplicate changes have a significant impact on the
experience metrics calculation of JIT defect prediction. For
the 50% of the changes, removing duplicate changes among
the studied projects decreases the experience metrics with an
average of 6–55.
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Fig. 4. Difference of the experience metric between the In-dup change dataset and the Un-dup change dataset for each project.

(RQ3) How do duplicate changes impact the evaluation of JIT
defect prediction models?

Motivation: JIT defect prediction models not only can help
developers find the potentially defective changes in the shortest
possible time but also provide early feedback to developers
to optimize effort for inspection [3], [53]. In addition, as dis-
cussed in RQ2, the duplicate changes significantly impact the
calculation of the experience metrics. Hence, we would like to
investigate whether the duplicate changes impact the evaluation
of JIT defect prediction models, including classification models
and effort-aware models.

Approach: To investigate the impact of duplicate changes on
the evaluation of JIT defect prediction models, we first construct
two datasets: 1) In-dup changes datasets (i.e., datasets where
duplicate changes are not removed); 2) Un-dup change datasets
(i.e., datasets where duplicate changes are removed). Then, we
evaluate the performance of JIT defect prediction models that are
built on the In-dup change datasets and Un-dup change datasets,
respectively.

For two kinds of JIT defect prediction models: classification
JIT defect prediction models and effort-aware JIT defect predic-
tion models. The AUC and MCC measures are used to evaluate
the classification JIT defect prediction models trained on imbal-
ance data. The AUC and F1 measures are used to evaluate the
classification JIT defect prediction models trained on balance
data. The Recall@20% is used to evaluate the effort-aware JIT
defect prediction models.

As Fig. 3, we adopt the out-of-sample bootstrap as model
validation technique. We train the In-dup model and the Un-
dup model in each bootstrap iteration, respectively. Then we
apply two models on the testing data and calculate the mea-
sure score. After 1000 bootstrap iterations, we have 1000
measure scores for each of the two models. We calculate the
average value of the measure scores. Note that the baseline
model is In-dup model, which is built using the In-dup change
datasets.

To check if our measure scores are statistically significant,
we compare the measure scores of the Un-dup model and
the In-dup model by applying the Wilcoxon signed-rank test
[51] with Bonferroni correction [52]. In addition, the Cliff’s

delta2 [54] is also used to measure the magnitude of the differ-
ence. Moreover, we analyze the ratios of the absolute perfor-
mance difference to the performance of the In-dup model (i.e.,
the percentage of performance improvement).

Results: In order to better describe the experimental results,
we divide the experimental results into three parts to illustrate
(i.e., the classification JIT defect prediction models trained on
imbalance data, the classification JIT defect prediction models
trained on balance data, and the effort-aware JIT defect predic-
tion models). As shorthand notations, we denote them as RQ3-a
result, RQ3-b result, and RQ3-c result, respectively, as shown
below.

RQ3-a result: Table VI shows the average of AUC and
MCC scores of the In-dup and Un-dup models. The table also
presents the ratios of the absolute performance difference to the
performance of the In-dup model with regard to the AUC and
MCC scores. Table VII shows the adjusted p-values and Cliff’s
delta of the Un-dup model compared with the In-dup model in
terms of AUC and MCC scores.

From Tables VI and VII, we have the following observations.
1) For the Un-dup model, on across the eight projects,

we observe that the AUC score and MCC score are
generally higher than that of the In-dup model on all
cases. In terms of statistical significance, we observe that
the Un-dup model significantly improves performance
over the In-dup model with a large effect size on most
cases.

2) In terms of AUC, the absolute difference between the In-
dup model and Un-dup model is ranging from 0.01 to 0.08.
The Un-dup model shows the performance improvement
of at least 1% in most cases.

3) In terms of MCC, the absolute difference between the
In-dup model and Un-dup model is ranging from 0.01 to
0.05. The Un-dup model shows the performance improve-
ment of at least 3% in most cases. In addition, the value
of the percentage of performance improvement of the

2A Cliff’s delta with less than 0.147, between 0.147 and 0.33, between 0.33
and 474, and larger than 0.474 is considered as a negligible, small, medium, and
large effect size, respectively.
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TABLE VI
AVERAGE AUC AND MCC SCORES OF THE IN-DUP AND UN-DUP MODELS

TRAINED ON IMBALANCE DATA

We also Show the Ratios of the Absolute AUC and MCC Scores Difference
to the Performance of the In-dup Model.

MCC score is greater than the percentage of performance
improvement of AUC. However, it does not represent the
MCC score tend to be impacted by duplicate changes.
Because even if the absolute difference is the same, the
percentage change of the smaller number will be greater
than that of the larger one.

For the classification JIT defect prediction models trained
on imbalance data, after removing duplicate changes, the
performance among the studied projects is significantly im-
proved from 1 to 11% and 2 to 125% in terms of AUC and
MCC, respectively.

RQ3-b result: Table VIII shows the average AUC and F1
scores of the In-dup and Un-dup models trained on balance data.
The table also presents the ratios of the absolute performance
difference to the performance of the In-dup model with regard
to the AUC and F1 scores. Table IX shows the adjusted p-values
and Cliff’s delta of the Un-dup model compared with the In-dup
model in terms of AUC and F1.

From Tables VIII and IX, we have the following observations.
1) For the Un-dup model, on across the eight projects, we

observe that the AUC and F1 scores are slightly higher than
that of the In-dup model. We find that the Un-dup model
shows statistically significant performance improvement
for the AUC score in most cases. for the F1 score, we find
that only the HBase dataset shows statistically significant
reduction with a large effect size. The rest of our projects
show statistically significant improvement.

2) In terms of AUC, we note that the absolute difference be-
tween the In-dup model and Un-dup model is ranging from
0.01 to 0.06. The Un-dup model shows the performance

TABLE VII
ADJUSTED P-VALUES AND CLIFF’S DELTA COMPARING AUC AND MCC
SCORES FOR THE UN-DUP MODEL WITH THOSE OF THE IN-DUP MODEL

***p < 0.001.

improvement of at least 1% in most cases. We note that
the AUC score of the absolute difference is 0.01 of the two
models on random forest classifier.

3) In terms of F1, we note that the absolute difference be-
tween the In-dup model and Un-dup model is ranging from
0.01 to 0.07. The Un-dup model shows the performance
improvement of at least 2% in most cases. Note that for
the HBase dataset, the F1 of the Un-dup model is lower
than the In-dup model that may be because the training
data is reduced by removing duplicate changes.

For the classification JIT defect prediction models trained
on balance data, after removing duplicate changes, the
performance among the studied projects and classifiers is
significantly improved by 1–9% and 1–21% in terms of AUC
and F1 scores, respectively.

RQ3-c result: Table X shows the average Recall@20%
scores of the In-dup and Un-dup models. The table also presents
the ratios of the absolute performance difference to the per-
formance of the In-dup model with regard to the Recall@20%
scores. Table XI presents the adjusted p-values and Cliff’s delta
of the Un-dup compared with the In-dup model in terms of
Recall@20%. From Tables X and XI, we have the following
observations.

1) For the model built using the CBS technique, on average
across eight projects, the Un-dup model shows a signif-
icant improvement over the In-dup model with a large
effect size on six projects and a medium effect size on
two projects. We note that the absolute difference between
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TABLE VIII
AUC AND F1 SCORES OF THE IN-DUP AND UN-DUP MODELS TRAINED ON

BALANCED DATA

We Also Show the Ratios of the Absolute AUC and F1 Scores Difference to
the Performance of the In-dup Model.

the In-dup model and Un-dup model is ranging from
0.02 to 0.32. The In-dup model shows the performance
improvement of at least 4% in all cases.

2) For the models built using the OneWay technique, the Un-
dup model shows a significant reduction over the In-dup
model on four projects. We note that there are only two
cases on the absolute difference that are higher than the In-
dup model ranging from 0.01 to 0.03. And in the remaining
cases, the Un-dup model shows the performance reduction
of at least 2% on four cases.

For the effort-aware JIT defect prediction models, in terms of
Recall@20%, while removing duplicate changes among the
studied projects can significantly improve the performance
of CBS effort-aware JIT defect prediction models ranging
from 4 to 68%, it can reduce the performance of OneWay
effort-aware JIT defect prediction models ranging from 2 to
33%.

(RQ4) How do duplicate changes impact the interpretation of
JIT defect prediction models?

Motivation: The interpretation of JIT defect prediction mod-
els is closely related to the metrics. By investigating the po-
tential feature interactions, we can understand which features
may be important in model decision making that ensures the
fairness of the model [3]. According to the importance ranking
of the metric, developers can specify the corresponding software
quality improvement program to maintain software as easily
as possible [4], [6], [17]. Hence, we would like to investigate

TABLE IX
ADJUSTED P-VALUES AND CLIFF’S DELTA COMPARING AUC AND F1 SCORES

FOR THE UN-DUP MODEL WITH THOSE OF THE IN-DUP MODEL

***p < 0.001.

TABLE X
RECALL@20% SCORES OF THE IN-DUP AND UN-DUP MODELS

We Also Show the Ratios of the Absolute Re-
call@20% Scores Difference to the Performance of
the In-dup Model.

whether the duplicate changes influence the importance ranking
of the metrics.

Approach: We first calculate the generic metric importance
scores of the metrics for the In-dup and Un-dup models. Tan-
tithamthavorn et al. [43] suggested that the models trained using
balance data should be avoided when calculating metric impor-
tance. Hence, we calculate metric importance for the models
trained on imbalance data. We repeat the bootstrap for 1000
times. Also, the Scott–Knott effect size difference (SK-ESD) is
used to test on the metric importance scores [55]. The SK-ESD
test is a method of statistical comparison, which has been widely
used in prior studies [17], [56]. Then, we count the scale of
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TABLE XI
ADJUSTED P-VALUES AND CLIFF’S DELTA COMPARING RECALL@20% SCORES

FOR THE UN-DUP MODEL WITH THOSE OF THE IN-DUP MODEL

***p < 0.001.

TABLE XII
NUMBER OF PROJECTS WHERE A METRIC IS RANKED AS THE TOP-1 AND ONE

OF THE TOP-3 IMPORTANT METRICS

projects in which a metric as ranked top-1 important metrics
and one of the top-3 important metrics. In addition, following
Rajbahadur et al. [57], we use the rank shifts to denote the
important metrics difference between the In-dup model and
Un-dup model, which can be calculated as

Shifts(k) =

⎛
⎝ ∑

v∈V1(k)

|k − Rank2(v)|+

∑
v∈V2(k)

|k − Rank1(v)|
⎞
⎠ /Nmetric .

(1)

In the formula, V1(k) and V1(k) are the rank k of the metrics.
The Nmetric is the quantity of the metrics. The Rank1(v) and
Rank2(v) are the rank of the metric v calculated from two
models, respectively. To check if the difference is statistically
significant, we also use the Wilcoxon signed-rank test to com-
pare the rank shifts with that of no shift case where all shifts are 0.

Result: Fig. 5 depicts the rank difference between the Un-dup
model and the In-dup model. Table XII shows the number of

Fig. 5. Rank shifts of the top-3 ranked metrics between the Un-dup model and
the In-dup model.

TABLE XIII
AVERAGE RANK SHIFTS COMPARING THE UN-DUP MODEL WITH THE UN-DUP

MODEL ACROSS THE EIGHT PROJECTS

The Significant Rank Shifts are in Bold (p-
Value<0.05)

projects in which a metric is ranked as the top-1 metric and
one of the top-3 important ones, respectively. Table XIII shows
the average rank shifts. The table also presents the p-values for
comparing the rank shifts with the ideal no-shift case.

From Tables XII and XIII and Fig. 5, we have the following
observations.

1) For the rank difference between the Un-dup model and
the In-dup model, the average shifts between the two
models range from 0.03 to 0.34, 0.10 to 0.29, and 0.18
to 0.31, respectively. In terms of statistical significant,
the top-ranked metrics are obviously robust, only 2–5
projects of the Un-dup model different from the In-dup
model. However, the second-ranked and third-ranked met-
rics are significantly unstable. For the second-ranked and
third-ranked metrics, the Un-dup model shows different
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Fig. 6. Proportion of duplicate changes among changes of each studied project
when varying the time interval.

from the In-dup model on 3–5 projects and 4–7 projects,
respectively.

2) For the most important metrics, we note that LA (i.e., lines
of code added) is the most important metric for each of the
two models in all cases. In addition, we note that the top-3
metrics of the Un-dup model are consistent with those of
the In-dup. For example, LA, NF (i.e., number of files),
and LT (i.e., lines of code in a file) are the top-3 metrics
for each of the two models on random forest classifier.

The duplicate changes lead to a significant impact on the
second-ranked and the third-ranked metrics. However, the
most important metrics are not to be impacted by the dupli-
cate changes.

V. DISCUSSION

In this section, we further discuss the underlying experimental
subject (i.e., time interval) and data rebalancing techniques of
our article.

A. Why Choose One Week as the Time Interval for Identifying
Duplicate Changes?

By default, we set one week as the time interval for identifying
duplicate changes. The release cycle of modern software can be
days or even hours [3]. For instance, an online social entertain-
ment website updates code 50 times a day on average [58]. Given
the high frequency of software updates, duplicate changes are
more likely to appear within a short time interval. Selecting a
different time interval may yield different results. To combat
this bias, we conduct an experiment to explore the impact of
using different time intervals. We set ten time intervals with one
day as a step to repeatedly identify duplicate changes from all
branches of eight studied projects. We calculate the proportion
of duplicate changes among changes of the studied projects.

Fig. 6 presents the proportion of duplicate changes among
changes of each studied project when varying the time interval.
We have the following observations: 1) When the time interval
is less than seven days, the proportion of duplicate changes
increases as the time interval increases; 2) when the time interval
is equal or larger than seven days, the proportion of duplicate
changes becomes stable with respect to the time interval.

TABLE XIV
AVERAGE AUC AND F1 SCORES OF THE IN-DUP MODEL FOR USING

DIFFERENT DATA PROCESSING METHODS

The AUC and F1 Scores of the Oversampling and Smote Methods That are Higher Than
Those of the Undersampling Method Are in Bold.

In summary, one week is suitable as the time interval for
identifying duplicate changes.

B. Impact of the Used Data Rebalancing Techniques

In RQ3-b, we investigate the impact of duplicate changes
on the performance of JIT defect prediction models trained on
balanced data. To deal with the imbalanced data, we leverage the
undersampling technique to balance the training data following
prior studies [6], [25]. Undersampling is implemented by reduc-
ing the number of majority class instances (i.e., clean changes).
In this section, we further evaluate the performance of In-dup
and Un-dup models by using two other data-level rebalancing
techniques.

Oversampling. Oversampling involves supplementing the
training data with multiple copies of some of the minority
classes. It increases the samples of the minority class (i.e.,
buggy changes) by creating samples similar to the existing ones
to create an equally proportioned dataset [59]. We randomly
copy some minority samples so that the number of majority and
minority samples in the training dataset is equal.

Smote. Synthetic Minority Oversampling TEchnique
(SMOTE) is a special oversampling method that seeks to
avoid overfitting by synthetically creating new minority class
instances [60]. It is based on using linear interpolation between
minority class data point and one its K-nearest neighbors to
generate data. We set k = 5.

Tables XIV and XV present the average of AUC and F1 scores
for the In-dup and Un-dup models using different data rebalanc-
ing techniques, respectively. We also show the adjusted p-values
and Cliffs delta of the oversampling and SMOTE techniques
compared with the undersampling technique in terms of AUC
and F1 scores.

From these two tables, we observe the following. 1) For the
In-dup model, in terms of AUC and F1 scores, the undersampling
technique achieves a higher score than the other techniques
in most cases. The oversampling technique outperforms the
other techniques considering the average AUC scores across
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TABLE XV
AVERAGE AUC AND F1 SCORES OF THE UN-DUP MODEL FOR USING

DIFFERENT DATA PROCESSING METHODS

The AUC and F1 Scores of the Oversampling and SMOTE Methods That are Higher
Than Those of the Undersampling Method Are in Bold.

three classifiers. However, there is no statistically significant
difference in the AUC and F1 scores of oversampling, SMOTE,
and undersampling techniques. 2) For the Un-dup model, in
terms of AUC and F1 scores, the undersampling technique does
not perform worse than the other techniques in most cases.
The oversampling technique outperforms the other techniques
considering the average AUC scores across three classifiers.
The SMOTE technique outperforms the other techniques on
RF and LR classifiers with respect to F1 scores. However, the
undersampling technique does not show a statistically significant
difference in the effectiveness scores compared with oversam-
pling and SMOTE techniques.

In summary, our analysis shows that different data rebalancing
techniques have no substantial impact on the evaluation of In-
dup and Un-dup models.

VI. THREATS TO VALIDITY

A. Internal Validity

The potential errors of our experimental implementation are
threats to internal validity. The first potential threat has to do
with our code. We adopted an amount of technical and analytical
work. Our code has been carefully tested and inspected, but there
may still be errors that we did not notice. Our code and datasets
are shared at our accompanying GitHub repository.3

Additionally, another threat is related to data labeling; we
adopt the default diff algorithm Myers in RA-SZZ to calculate
the location of the deleted lines of bug-fixing changes (i.e.,
bug-related lines). Many existing JIT defect prediction studies
used the default Myers diff algorithm [14], [18], [36]. Note
that our focus is to investigate if duplicate changes impact the
validity of existing studies. Hence, our experimental setup is
consistent with prior studies. Nurgroho et al. [61] observed
that the Histogram algorithm performs better in identifying the
bug-related lines than the default algorithm. Our datasets and

3[Online]. Available: https://github.com/deref007/Duplicate-change-TR

code are made publicly available. Future research can explore if
using different diff algorithms have an impact on our analysis.

Furthermore, among the eight studied projects, our manual
analysis of the duplicate changes shows that our approach
achieves nearly perfect accuracy (98.13%). The scale of mis-
labeling duplicate changes is 1% in most cases. Soares et al.
[62] noted that less than 1% of refactors attempts introduce bugs.
Hence, we believe that mislabeling duplicate changes are hardly
affecting the distribution (i.e., the scale of buggy changes are
smaller than clean duplicate changes) of the duplicate changes
and are not likely to impact the conclusion of our article.

B. External Validity

The generality of our conclusions is a threat to external
validity. We have analyzed eight open-source Java software
projects containing more than 100 k changes. These projects
comprise different application domains and are also widely used
by many other researchers [17], [18], [36]. This guarantees
data availability and openness of JIT software defect prediction
community. Nevertheless, to extend our findings, it would be
valuable to investigate software projects from other software
systems written in different programming languages.

C. Construct Validity

The suitability of our evaluation measures is a threat to con-
struct validity. We use AUC, MCC, F1-score, and Recall@20%
in our case study, which are widely used in past studies [17],
[24], [30], [31]. Additionally, to ensure that our experimental
results are robust, we apply the Wilcoxon signed-rank test and
Cliff’s delta as statistical measures.

VII. CONCLUSION

In this article, we conducted a large-scale empirical study
for investigating the impact of duplicate changes on JIT defect
prediction.

Based on our experimental results, we observed the following.
1) The number of the duplicate changes varies across projects.
The average proportion of duplicate changes is 13% among the
studied projects. 2) The duplicate changes have a significant
impact on the experience metric calculation of JIT defect pre-
diction. For the 50% of the changes, removing duplicate changes
among the studied projects decreases the experience metrics
with an average of 6–55. 3) The duplicate changes obviously
impact the evaluation of JIT defect prediction models. Removing
duplicate changes among the studied projects can significantly
improve the performance the classification JIT defect prediction
models ranging from 1 to 125% concerning various performance
measures (AUC, MCC, and F1-score). Additionally, in terms
of Recall@20%, while removing duplicate changes among the
studied projects can significantly improve the performance of
CBS effort-aware JIT defect prediction models ranging from 4
to 68%, it can reduce the performance of OneWay effort-aware
JIT defect prediction models ranging from 2 to 33%. 4) For
the JIT defect prediction model interpretation, the duplicate
changes lead to a significant impact on the second-ranked and
third-ranked metrics. However, the most important metrics are
not to be impacted by the duplicate changes.
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Our article is an important extension in studying the noisy data
of JIT defect prediction. Considering the impact of duplicate
changes, we recommend that future work should remove dupli-
cate changes from the original historical changes of software
repository. We hope that our study can inspire more researchers
to conduct various case studies in the practice of the problem.
This will further improve the practicality of JIT defect prediction
technology.
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