
Neuron Semantic-Guided Test Generation for Deep Neural Networks
Fuzzing

LI HUANG∗ and WEIFENG SUN∗, Chongqing University, China
MENG YAN†, Chongqing University, China
ZHONGXIN LIU, Zhejiang University, China
YAN LEI, Chongqing University, China
DAVID LO, Singapore Management University, Singapore

In recent years, significant progress has been made in testing methods for deep neural networks (DNNs) to ensure their
correctness and robustness. Coverage-guided criteria, such as neuron-wise, layer-wise, and path-/trace-wise, have been
proposed for DNN fuzzing. However, existing coverage-based criteria encounter performance bottlenecks for several reasons:
¶ Testing Adequacy: Partial neural coverage criteria have been observed to achieve full coverage using only a small
number of test inputs. In this case, increasing the number of test inputs does not consistently improve the quality of models.
· Interpretability: The current coverage criteria lack interpretability. Consequently, testers are unable to identify and
understand which incorrect attributes or patterns of the model are triggered by the test inputs. This lack of interpretability
hampers the subsequent debugging and fixing process. Therefore, there is an urgent need for a novel fuzzing criterion that
offers improved testing adequacy, better interpretability, and more effective failure detection capabilities for DNNs.

To alleviate these limitations, we propose NSGen, an approach for DNN fuzzing that utilizes neuron semantics as guidance
during test generation. NSGen identifies critical neurons, translates their high-level semantic features into natural language
descriptions, and then assembles them into human-readable DNN decision paths (representing the internal decision of the
DNN). With these decision paths, we can generate more fault-revealing test inputs by quantifying the similarity between
original test inputs and mutated test inputs for fuzzing. We evaluate NSGen on popular DNN models (VGG16_BN, ResNet50,
and MobileNet_v2) using CIFAR10, CIFAR100, Oxford 102 Flower, and ImageNet datasets. Compared to 12 existing coverage-
guided fuzzing criteria, NSGen outperforms all baselines, increasing the number of triggered faults by 21.4% to 61.2% compared
to the state-of-the-art coverage-guided fuzzing criterion.This demonstrates NSGen’s effectiveness in generating fault-revealing
test inputs through guided input mutation, highlighting its potential to enhance DNN testing and interpretability.

CCS Concepts: • Software and its engineering→ Software testing and debugging.

Additional Key Words and Phrases: Deep learning testing, test input generation, fuzzing

1 INTRODUCTION
Deep neural networks (DNNs) have witnessed remarkable advancements over the past few decades and
are now extensively employed in diverse applications such as image classification [19], computer vision [31],
∗Both authors contributed equally to this research.
†corresponding author

Authors’ addresses: Li Huang, lee.h@cqu.edu.cn; Weifeng Sun, weifeng.sun@cqu.edu.cn, Chongqing University, China; Meng Yan, Chongqing
University, ChongQing, China, mengy@cqu.edu.cn; Zhongxin Liu, Zhejiang University, China, liu_zx@zju.edu.cn; Yan Lei, Chongqing
University, China, yanlei@cqu.edu.cn; David Lo, Singapore Management University, Singapore, davidlo@smu.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2024 Copyright held by the owner/author(s).
ACM 1557-7392/2024/8-ART
https://doi.org/10.1145/3688835

ACM Trans. Softw. Eng. Methodol.

https://orcid.org/0009-0005-2603-3366
https://orcid.org/0000-0001-6013-1369
https://orcid.org/0000-0002-9538-9121
https://orcid.org/0000-0002-1981-1626
https://orcid.org/0000-0003-4504-6806
https://orcid.org/0000-0002-4367-7201
https://orcid.org/0009-0005-2603-3366
https://orcid.org/0000-0001-6013-1369
https://orcid.org/0000-0002-9538-9121
https://orcid.org/0000-0002-1981-1626
https://orcid.org/0000-0003-4504-6806
https://orcid.org/0000-0002-4367-7201
https://doi.org/10.1145/3688835
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3688835&domain=pdf&date_stamp=2024-08-14

2 • Huang and Sun, et al.

Fig. 1. Examples of the neuron-descriptions pairs.

speech recognition [2], natural language processing [20], and medical diagnosis [18, 40]. Despite their impressive
performance, concerns about the safety and robustness of DNNs have been raised, especially in safety-critical
applications like autonomous driving [3]. Any unexpected misbehavior of DNNs may lead to catastrophic
consequences, making it essential to test DNNs and effectively identify their defects.

Fuzzing, as a well-established automatic testing technique [9], has been demonstrated to be effective in
detecting bugs and vulnerabilities in traditional software systems. Fuzzing involves generating random test
inputs for the software under test, monitoring the application’s behavior during test execution, collecting test
inputs’ execution information, and mutating the inputs to trigger faults based on specific coverage criteria. While
traditional coverage-guided fuzzing (CGF) methods [12, 17, 65] are effective, applying such techniques directly
to DNNs poses challenges due to inherent differences in test input mutation strategies, and feedback guidance
between DNNs and traditional software. Therefore, the design of an effective fuzzing strategy becomes crucial in
the context of DNN testing, with feedback guidance, i.e., coverage criteria, playing a pivotal role in effectively
uncovering faults in DNNs.

To this end, several neural coverage criteria have been proposed for DNNs, based on the neural activation
status [59]. Such criteria can be broadly categorized into neuron-wise, layer-wise, and trace-/path-wise criteria.
Neuron-wise criteria [45, 59] evaluate test input coverage by considering each neuron individually, while
layer-wise criteria [45] assess coverage from a layer-level perspective. Trace-/path-wise criteria [37, 39, 81]
measure DNN coverage based on the traces or paths traversed by neurons. These criteria encompass various
coverage calculations, such as neuron coverage (NC) [59], top-: neuron coverage (TKNC) [45], and neuron path
coverage (NPC) [81]. Guided by existing coverage criteria, automated testing techniques like DeepXplore [59],
DeepTest [77], and DeepHunter [82] have been developed to generate test inputs that maximize above-mentioned
neural coverage. However, recent studies [30, 47, 69, 87, 88] have highlighted the limitations of existing neural
coverage criteria in guiding the generation of DNN test inputs: À Testing adequacy. It has been observed
that a partial neural coverage criterion could achieve full coverage using only a small number of test inputs. In
this case, increasing the number of test inputs did not consistently improve the quality of models [30, 47]. Á
Interpretability. The existing coverage criteria lack interpretability [47, 69]. As a result, testers are unable to
identify what incorrect attributes or patterns of the model are triggered by the test inputs. Additionally, this lack
of interpretability hinders the subsequent debugging and fixing process, as it becomes challenging to understand
and address the underlying bugs in the model.

To alleviate the above problems, we present a novel DNN test input generation method called NSGen (Neuron
Semantic-Guided Test Generation) for DNNs fuzzing. NSGen starts by extracting the semantics of all neurons
from the DNN under test and translating them into natural language descriptions. Next, for a given original
image and its mutated counterpart, we identify neurons that significantly influence the DNN’s prediction

ACM Trans. Softw. Eng. Methodol.

Neuron Semantic-Guided Test Generation for Deep Neural Networks Fuzzing • 3

results. We construct a decision path, which represents the internal decision of the DNN on given inputs [81],
comprising neuron semantics by assembling the corresponding natural language descriptions according to a
template. Finally, we measure the similarity between the original and mutated images based on their decision
path described by natural language. Intuitively, a mutated image showing significant dissimilarity in the decision
path is more effective in uncovering violations and exposing flaws. Such images explore different DNN decision
paths compared to the original input. Figure 1 shows that the intricate semantic information, acquired by the
neurons within a DNN, can be mapped into expressive and comprehensible natural language descriptions. By
associating natural language descriptions with individual neurons, NSGen enables a deeper understanding of the
semantic information they represent. These descriptions reveal specific semantic or structural information that
neurons activate in response to input data, facilitating the explanation of DNN’s inner workings. Additionally,
this neuron-level semantic information enhances our comprehension of how the model makes decisions based
on various features extracted from the input data [32, 53, 92].

We evaluate the effectiveness of NSGen by extensively testing it on three models used in the latest DNN
fuzzing paper [90], including VGG16_BN, ResNet50, and MobileNet_v2, with four datasets CIFAR10, CIFAR100,
Oxford 102 Flower, and ImageNet, for the task of image classification. Compared to 12 existing coverage-guided
fuzzing criteria, NSGen outperforms all baselines, significantly increasing the number of triggered faults by 21.4%
to 61.2% compared to the state-of-the-art coverage-guided fuzzing criterion. In summary, our contributions can
be summarized as follows:
• Approach. We introduce NSGen, an effective neuron semantic-guided test generation approach specifi-

cally designed for DNN fuzzing. This pioneering study represents one of the earliest endeavors in the
domain of neuron semantic guided test generation for DNNs fuzzing.
• Interpretation. Our approach contributes to the comprehension and interpretability1 of DNN models by

mapping semantic information of influential neurons into natural language descriptions and forming
decision paths based on neuron semantics.
• Study. We demonstrate the effectiveness of NSGen on three typical models across four widely used

datasets. NSGen yields a significant improvement in the diversity and fault revelation of the generated
test inputs.

2 BACKGROUND

2.1 Deep Neural Networks
This paper focuses on DNNs for single-label classification. The formalization of a DNN classifier can be expressed
as a function 5 : - → . , wherein it maps a set of input values - to a set of corresponding labels denoted as
. . The output generated by the DNN classifier assumes the form of a probability distribution % (. |-), which
conveys the likelihood that an input vector G ∈ - belongs to each class represented in . . Subsequently, the label
assigned to the input G corresponds to the class with the highest probability.

A typical DNN classifier, denoted as 5 , comprises an input layer, a series of hidden layers, and an output layer,
each composed of multiple neurons. The parameters \ associated with the DNN represent the weights assigned
to the edges connecting neurons between adjacent layers. When provided with an input vector G , the DNN’s
output, denoted as 5\ (G), can be calculated as the weighted sum of outputs from all the neurons.

The training process for a DNN classifier involves a training dataset � = {(G8 , ~8)}#8=1, which includes a
collection of # input examples, denoted as {G1, G2, . . . , G# }, along with their corresponding ground-truth labels,
{~1, ~2, . . . , ~# }. The DNN classifier aims to optimize the following objective function:

1We say that NSGen is interpretable, as it is designed to identify the key neurons that contribute more ion the decision of the model based on
the interpretation technique, i.e., Integrated Gradients [24, 75].

ACM Trans. Softw. Eng. Methodol.

4 • Huang and Sun, et al.

min
\

1
#

#∑
8=1

L(5\ (G8), ~8) (1)

Here, L represents the loss function, used to assess the penalties for incorrect classifications. The DNN
undergoes a training process byminimizing the loss on the training dataset and iteratively adjusting the parameters
\ accordingly. Given the intricate non-linear computations inherent in DNNs, understanding the rationale behind
their decision-making processes often poses a significant challenge.

2.2 Coverage-guided Testing
Coverage-guided testing (CGT) stands out as a widely embraced technique for the identification of software
bugs [5]. Among the CGT methodologies, fuzzing, exemplified by AFL [91], stands as a prominent approach that
has successfully unearthed thousands of bugs within real-world software [16, 70, 76]. The fuzzing process initiates
by establishing a seed corpus, which comprises an initial set of seed inputs. Subsequently, in each iteration, a
seed is selected from this corpus, and mutants are generated based on the chosen seed. The execution of mutants
is accompanied by the collection of code coverage information, such as branch coverage. Mutants that enhance
coverage, i.e., those that reveal new software behaviors, are incorporated into the seed queue. CGT is also tailored
to test DNN with specific coverage criteria devised for DNNs [37, 45, 58, 90]. Numerous CGT techniques have
been introduced for DNN testing, incorporating diverse coverage feedback mechanisms [29, 44, 56, 59, 77, 82].
Nevertheless, the explicit utilization of neural semantic information to steer fuzz testing remains an unresolved
challenge.

2.3 Natural Language Description for Neurons
In this section, we present related concepts that are essential to the core of our approach, which involves mapping
the semantic features of neurons into natural language descriptions. The Show, Attend, and Tell (SAT) model
[84] is a framework used for generating natural language descriptions of images. The SAT model employs an
image classifier 6 pre-trained on a large dataset, to extract : annotation vectors from a single input image G ,
representing different parts of the image:

G = [a1; a2; . . . ; a:] (2)

The annotation matrix G is input to a decoder LSTM, with the hidden state initialized based on the mean of
the annotation matrix ā = 1/!∑8 a8 . The decoder employs an additive attention mechanism [7] to focus on
the features, and it utilizes the attenuated annotation matrix [33] along with the previous token to predict the
subsequent token at each time step.

Expanding upon SAT, Hernandez et al. [32] presented a method for generating natural language descriptions
of deep visual features, specifically focusing on convolutional layer neurons in DNNs. The method consists of
two distinct steps. First, we need to determine the exemplar representation of each neuron, wherein each neuron
is represented through the set of input regions on which its activation values surpass a fixed threshold W (i.e., set
it to the 0.99 percentile of activations for the neuron 58). We define exemplar representation as follows:
Definition 1. Consider a neural network 5 : - → . , where - represents the input space and . represents the output
space. Let 58 (G) denote the activation value of the 8-th neuron in network 5 given an input G from the input space. In
this context, we define a neuron representation (referred to as R) as follows:

X8 = {G ∈ - : 58 (G) > W8 } (3)

With this explicit representation of neuron 58 , the next step is to create a description d8 , where d8 denotes the
encoded vector of a neuron’s description. In computer vision applications, X8 is typically a set of images. Although

ACM Trans. Softw. Eng. Methodol.

Neuron Semantic-Guided Test Generation for Deep Neural Networks Fuzzing • 5

Fig. 2. An example of the neuron semantics.

humans can easily describe such images, directly optimizing d8 := 0A6<0G8 ? (d |X8)2 may not be the most effective
approach due to the semantic gap, and complexity in capturing the specific behavior of computer vision models.
The generated neuron description should capture the specificity of neuron function, particularly in relation to
other neurons in the same model. Therefore, Hernandez et al. [32] optimize the pointwise mutual information [14]
between descriptions d8 and representation sets X8 .
Definition 2.The description of the neuron 58 in terms of maximum mutual information is defined as follows:

3 (58) = argmax
d8

(log? (d8 |X8) − log? (d8)) (4)

In sum, to search fine-grained natural language descriptions for neurons, we maximize the pointwise mutual
information of the image regions where the neurons are active.

3 MOTIVATION
Currently, fuzzing techniques heavily rely on neuron coverage as a guiding metric to assess the diversity and
adequacy of the test set.The prevailing coverage criteria prioritizemaximizing coverage to allow fuzzing-generated
input samples to explore the model’s internal state comprehensively, effectively identifying potential bugs and
vulnerabilities.

However, existing neuron coverage criteria lack interpretability, making it unclear which semantic features
are captured by activated neurons. This lack of interpretability hinders the understanding of how the model
processes and leverages semantic information from different neurons.

2? (d |X8) is the possibility of using natural language descriptions d to describe the images X8 . Given the most active images corresponding
to a neuron, the corresponding natural language description is obtained by manually summarizing all the content displayed within the
highlighted area in the images.

ACM Trans. Softw. Eng. Methodol.

6 • Huang and Sun, et al.

Furthermore, Yuan et al. [90] demonstrate that neurons in DNN collaborate to comprehend the semantics of
high-dimensional inputs (e.g., images). This collaboration may lead to existing coverage covering some activation
states/paths that have similar or even identical neuron semantics despite their large activation differences from
those that have been previously covered, leading to redundant generated test samples. This limitation becomes
apparent when the number of test samples is restricted, thus hindering the ability to thoroughly test the DNN and
challenge its decision boundaries. Figure 2 provides an illustrative example of a Class Activation Map (CAM) [96]
learned by neurons from different layers, describing various semantic information aspects related to the object
”cockatoo.” The CAM effectively captures the bird’s salient features, including spoilers, stripes, and crest. Notably,
during model training, specific neurons interact to learn distinct features or concepts [10, 32]. Consequently, for
a certain test input (i.e., cockatoo), different neurons may be activated within the same layer, but their CAMs
could overlap, indicating consistent neuron semantics. To bolster this finding, the statistical plot (shown at the
bottom) in Figure 2 displays the semantic statistics of neurons obtained by decomposing one convolutional layer
with netdissect3. The plot demonstrates that multiple neurons co-encode similar or identical semantic concepts,
corroborating previous studies [28, 73]. These findings suggest that existing neuron coverage criteria may result
in the formation of decision paths with similar or identical neuron semantics. The current coverage criteria
predominantly emphasize the number of activated neurons [90] (or cover more decision paths like the red dotted
lines in Figure 2), but overlook the specific semantic features recognized by individual neurons. In other words, it
lacks the capability to discern and account for the consistency of semantic information represented by different
activated neurons, potentially leading to redundancy in the generated test samples.

In light of the aforementioned issues, namely:
(1) Lacking the interpretability,
(2) Existing redundant semantic information of neurons,

To address the above issue, we introduce a guidance criterion for DNN fuzzing namedDecision Path Discrepancy
(DPD).
Definition 3. Consider a neural network 5 , an original image set $ and a corresponding mutated image set" , for
each pair of original image >8 and mutated image<8 , we generate their decision paths % (>8), % (<8), then we get
�%� as follows:

�%� ($,") = 1
|$ |

|$ |∑
8=1

I[� (% (>8), % (<8)) < g] (5)

Here, I represents an indicator function, � is a measure based on semantic similarity techniques, and g is a
predetermined threshold used to determine if the semantic discrepancy between two decision paths is significant.
If � (% (>8), % (<8)) is less than g , it indicates a significant semantic discrepancy between the two decision paths.

Unlike traditional neuron coverage criteria that merely quantify the activation of neurons, DPD could identify
critical neurons and employ natural language descriptions to elucidate the semantic information of visual concepts
they capture. This method not only provides a deeper insight into the decision-making process of DNNs but also
ensures a more meaningful assessment of test sets by focusing on the semantic discrepancy between decision
paths. Consequently, DPD encourages the generation of more diverse and interpretable test inputs that effectively
probe the model’s decision boundaries and uncover potential faults with a nuanced understanding of model
behavior.

4 METHODOLOGY
In this section, we elaborate on the proposed neuron semantic guided test generation approach for DNN fuzzing.
We take an overview of NSGen and then describe each of its key components in detail.
3Netdissect [9] matches the pattern of neuron activations to the pattern of a pre-defined label mask

ACM Trans. Softw. Eng. Methodol.

Neuron Semantic-Guided Test Generation for Deep Neural Networks Fuzzing • 7

Fig. 3. The architecture of NSGen.

4.1 Overview of NSGen
Figure 3 illustrates the overall architecture of NSGen, and Algorithm 1 specifies the details. NSGen drives fuzzing
via Decision Path Discrepancy (DPD), which consists of two key components: neuron-description pairs generation
and test input generation. We begin by generating neuron-description pairs, as illustrated in Figure 1. Next, we
select neurons for both the original image and the mutated image based on their contributions to the prediction
results of the tested DNN. Finally, we assemble the neuron descriptions and map them into the text-visual
multimodal space to calculate the similarity.

The detailed workflow of NSGen is described in Algorithm 1. We utilize the similarity metric B8< as the guiding
criterion to direct the input mutation process. The inputs to NSGen include the mutation rules T (c.f. Section 5.2),
fuzzing seed S, the number of trials, Contrastive Language-Image Pre-Training model (CLIP4) as text encoder, and
the tested DNND. Before initiating the fuzzing loop, we first set the similarity threshold (Line 2, c.f. Section 4.3.4)
and generate neuron-description pairs (Line 3, c.f. Section 4.2) for subsequent use. During the fuzzing process,
given the limited testing resources, we set a termination condition, e.g., when the number of iterations of the
algorithm reaches 10K or the running time exceeds 6 hours (Line 4). Once the termination condition is reached,
the fuzzing process stops. Otherwise, the fuzzer samples from the fuzzing seed (Line 5) and mutates (Lines 6-8).
Since random mutations may yield meaningless seeds, the fuzzer judiciously assesses the validity of each mutated
seed (Line 10). For each valid mutant derived from the original seed, NSGen retrieves the corresponding neuron
description from the neuron-description pairs bank (Lines 11-14, c.f. Section 4.3.1). Subsequently, a template is
constructed, and the cosine similarity between the mutant and the original seed is calculated. The similarity score
is then validated against a predetermined threshold to determine whether the mutant qualifies as an expected
test input (Lines 15-21, c.f. Section 4.3.2 and Section 4.3.3).

4CLIP [62] is a neural network trained on a variety of (image, text) pairs. https://github.com/openai/CLIP.

ACM Trans. Softw. Eng. Methodol.

https://github.com/openai/CLIP

8 • Huang and Sun, et al.

Algorithm 1 : Neuron semantic-guided test input generation
Require: mutation rules T , fuzzing seed S, =D<, tested DNN D, pre-trained language-image model CLIP
Ensure: a set of generated inputs �
1: � ← ∅
2: // set similarity threshold (c.f. Section.4.3.4)
3: g = B4C)ℎA4Bℎ>;3 ()
4: Generate neuron-description pairs B by Equation (4)
5: while not terminate() do
6: B = B0<?;4 (S)
7: for each 8 ∈ 1 .. =D< do
8: C = B0<?;4 (T)
9: B̂ ← C (B)

10: // assess the validity of mutated seeds (c.f. Section.5.2)
11: if 8B_E0;83 (B̂, B) then
12: // select neurons and return the index of neurons
13: B_83, B̂_83 = B4;42C#4DA>=(D, B, B̂)
14: // retrieve descriptions from B by index
15: 3B , 3B̂ = A4CA84E4�4B2A8?C8>=(B, B_83, B̂_83)
16: // construct templates (c.f. Section.4.3.2)
17: 4B , 4B̂ = CLIP(3B , 3B̂)
18: B8< = �>B8=4 (4B , 4B̂)
19: if B8< < g then
20: S.033 (B̂)
21: � ← � ∪ {B̂}
22: Break
23: end if
24: end if
25: end for
26: end while

4.2 Neuron-Description Pairs Generation
In this section, we will generate and store the descriptions of each neuron in the DNN. In this section, we will
generate and store the descriptions of each neuron in the DNN. The process is concretized with Figure 4.

4.2.1 Build Exemplar Representations of Neurons. As described in Section 2.3, for each neuron, we select the :
top-activating images (i.e., neuron representation X), where : = 15, following the same setting as the previous
paper [32] for describing the neuron semantics. Additionally, for each activated image, we assign a corresponding
mask< 9 to emphasize the regions of highest activation. As illustrated in Figure 4, a series of bird images (top-
activating images) and their corresponding masks are presented. Each mask accurately highlights the areas in
the image with the most significant neuronal activity, such as the beak and legs. Our goal is to characterize the
semantics of neurons based on the highlighted regions of the : top-activating images. The procedure involves the
following detailed steps:

1) Decide sets of images: In the traditional SAT model [84], the : features represent distinct spatial localities
within a single image. In contrast, in our approach, each feature a 9 is associated with a top-activating input image
G 9 .

ACM Trans. Softw. Eng. Methodol.

Neuron Semantic-Guided Test Generation for Deep Neural Networks Fuzzing • 9

2) Highlight regions of greatest activation: For each of the top-activating images G 9 , a corresponding mask< 9

is available, which highlights the regions of greatest activation in the image. To integrate these masks into the
pooling function, we downsample each mask< 9 using bilinear interpolation [72] to match the spatial shape of
the corresponding feature map 6; (G 9). The downsampled mask is denoted as 3>F=B0<?;4 (< 9). Next, we apply
the mask to each channel 2 at layer ; by element-wise multiplication (symbolized as �) with 3>F=B0<?;4 (< 9),
resulting in a length 2 vector. Finally, we perform spatial summation along each channel to obtain the pooled
features. This process can be described as follows, vec denotes vector form:

?>>;8=62 (< 9 , 6; (G 9)) = 1>vec(3>F=B0<?;4 (< 9) � 6;,2 (G 9)) (6)

3) Encode multiple resolutions: The annotation vector for the 9-th image G 9 is derived by pooling the features
extracted from each convolutional layer of the pre-trained image encoder. More precisely, 6; (G) represents the
output of layer ; in the encoder with a total of ! layers, and ?>>; denotes a pooling function that leverages the
mask to aggregate the features. The annotation vector for the 9-th image G 9 is as follows:

a 9 =
[
?>>;8=6(< 9 , 61 (G 9)); . . . ;?>>;8=6(<8 , 6! (G 9))

]
(7)

Each a 9 is thus a length
∑

; �; vector, where �; represents the number of channels at layer ; of 6. Now, we obtain
annotation matrix G, namely:

G = [a1; . . . ; a 9 ; . . . ; a:] (8)
As depicted in Figure 4, annotation matrix G will be used as input to the decoder attention mechanism.

Fig. 4. The workflow of Neuron-Descriptions Pairs Generation.

4.2.2 Neuron-Descriptions Pairs Generation. In this step, we decode and rank the natural language descriptions
of the neurons according to Equation (4) as depicted in Figure 4, involving two decoding processes. We compute
the probability ? (d |X) that humans use natural language descriptions 3 to describe the image region (i.e., the :
top-activating images), and the probability ? (d) of using descriptions d to describe any neuron.

To determine the human usage of natural language description d for image regions, we construct the required
annotation matrix G for the SAT model [84] as discussed in Section 4.2.1. Subsequently, we employ the same
process as the SAT model to decode ? (d |X). This involves using a single LSTM with an input embedding size
of 128 and a hidden size of 512. Additionally, for the attention mechanism within the SAT model, we linearly
map the current hidden state and the annotation matrix to vectors of size 512 before computing the attention
weights. For human usage in describing any neuron with description d, we use a two-layer LSTM [33] to represent
? (d). This involves an input embedding size of 128, a hidden state size of 512, and a cell size of 512. We use an
open-source, manually annotated dataset MILANNOTATIONS [32] to train these two decoders. This dataset
comprises representation sets X derived from neurons across seven vision models (including classification models
like ResNet152 [31] and generative models like BigGAN [15]) trained on two large datasets (ImageNet and

ACM Trans. Softw. Eng. Methodol.

10 • Huang and Sun, et al.

Places365 [97]), encompassing a total of 20,000 neurons, each associated with a manually annotated natural
language description d. We use these (X, d) pairs to train the decoder ? (d |X), and rely solely on human-annotated
natural descriptions d to train the decoder ? (d). And specific training details can be found at [1]. This extensive
dataset ensures the generalizability of our approach across various model architectures and complex datasets,
while our experiments (c.f. Section 7.7) further support this conclusion.

During the process of decoding descriptions, the search is constrained to a set of captions with high probabilities
under ? (d |X), and these are ranked according to Equation (4) [46]. Specifically, we conduct a beam search on
? (d |X) and use the full beam (i.e., set beam size to 50) after the final search step as a set of candidate descriptions.
From this set, we select the top-1 description.

4.3 Test Input Generation
4.3.1 Neuron Selection. After generating and storing the descriptions, in this section, we focus on selecting
the neurons that hold significance for the input. A neuron is deemed important if it significantly influences the
model’s prediction results on the input, i.e., its output demonstrates a high contribution value. To identify such
critical neurons, we leverage integrated gradients [24, 75] to compute each neuron’s contribution score to the
final prediction.

In line with Definition 1, let us consider a DNN 5 and an input image G ∈ R= , along with an empty input image
G ′ ∈ R= . To compute integrated gradients, we calculate gradients at various points along a straight-line path
from G ′ to G and then integrate these gradients. By accumulating these micro explanations, integrated gradients
capture the net difference between the prediction score at the baseline and that at the input G , elucidating how
the function 5 varies from the informationless baseline to its final value. Formally, the integrated gradient for the
nCℎ base feature (e.g., a pixel) of an input G and baseline G ′ can be defined as:

∇n (G) = (Gn − G ′n) ·
∫ 1

l=0

m5 (G ′ + l (G − G ′))
mGn

3l (9)

Here, m5 (G)
mGn

represents the gradient of 5 along the nCℎ dimension at G .
Integrated gradients only provide attributions for base features, such as the pixels in an object recognition

network. Note that our goal is to calculate the contribution of hidden layer neurons to the final prediction result.
Therefore, let’s consider a specific neuron 58 in a hidden layer of a DNN, the contribution q 58

n for an input point n
(i.e., a pixel) can be computed as follows:

q
58
n (G) = (Gn − G ′n) ·

∫ 1

l=0

m5 (G ′ + l (G − G ′))
m58

· m58
mGn

3l (10)

Now, we can define the mean contribution for the hidden neuron (e.g., a single filter) as:

q 58 (G) = 1
�486ℎC58 ×,83Cℎ58

∑
�486ℎC58

∑
,83Cℎ58

∑
n

q
58
n (G) (11)

With the calculation method described above, we can determine the contribution of neurons in convolutional
layers for the original (mutated) images. However, to reduce the computational cost, we only obtain the attributions
for neurons in the selected : layers of the DNN, aligning with the setting proposed in [10]. In particular, the :
values are determined as follows: For ResNet50, VGG16_BN, and MobileNet_v2, the values of : are set to 5, 5,
and 10, respectively. In Section 6.4.3, we discuss the impact of different : values on NSGen. Note that for each
selected convolutional layer, we only choose neurons with a top-1 contribution score.

ACM Trans. Softw. Eng. Methodol.

Neuron Semantic-Guided Test Generation for Deep Neural Networks Fuzzing • 11

4.3.2 Template Construction. Once we have identified the important neurons for each input, the next step involves
constructing a template to assemble the corresponding descriptions of these neurons. Intuitively, incorporating
descriptions of visual contexts can provide valuable additional information about the test input, leading to
more precise natural language descriptions. For example, adding “in the grass” to “a photo of a cat” can help
distinguish it from other photos of cats taken in different contexts [64]. Therefore, we assemble the natural
language descriptions of the test input from two perspectives: the class labels predicted by the model and the
descriptions of some critical neurons. The neuron descriptions offer insights into the semantic features on which
the model’s predictions are based, while the class labels provide contextual information. To construct text prompts,
we utilize the template “a photo of < . . . > with < . . . >.” The former placeholder represents the class labels,
while the latter encompasses the natural language descriptions of neurons. Specifically, we shuffle the order of
the class labels predicted by the model and connect them using the conjunction “or”, and for retrieved neuron
descriptions from the description bank, we concatenate them in the order of DNN layers with commas. Thus far,
we have constructed the neuron semantics of the test input into a neuron semantic decision path.

4.3.3 Similarity Calculation. After assembling the neuron semantic decision paths for both the original image
t>A6 and its mutated counterpart t<DC into templates, we utilize CLIP as the default text encoder (refer to Section
6.3 for a detailed comparison with other text encoders) to map these templates into the text-visual multimodal
space. This allows us to calculate fine-grained similarity between the decision paths. We calculate the cosine
similarity using the following formulas:

B8<(e>A6, e<DC) =
e)>A6 · e<DC

‖e>A6‖ × ‖e<DC ‖
(12)

Here, the vectors e>A6 and e<DC represent the template of t>A6 and t<DC after the template construction process,
respectively.

4.3.4 Hyper-parameter Setting. For the selection of the hyperparameter g , we follow a systematic approach.
Specifically, we begin by randomly sampling 1% of each class from the CIFAR10/CIFAR100 training sets and
1‰ of each class from the ImageNet training set. For the Oxford 102 Flower dataset, which has a smaller overall
dataset size, we sample a larger proportion, 50%, to ensure sufficient coverage. After sampling, each selected
image undergoes mutation through our entire mutation space 5. This is accomplished using 95 distinct mutation
rules that we have predefined (refer to our code [1]). These mutation rules (c.f. Section 5.2) encompass a range
of pixel-level adjustments, affine transformations, and style transfers, each applied with fixed parameters to
ensure consistency and meaningful variance. This procedure allows us to extensively evaluate the model’s
sensitivity to varied input perturbations, ensuring that the testing is comprehensive. Through a detailed analysis
of the distribution of similarity scores obtained, we determine the threshold g based on the lower quartile of
the similarities. The threshold values are determined as follows: g = 0.81 for CIFAR10, g = 0.71 for CIFAR100,
g = 0.87 for Oxford 102 Flower, and g = 0.72 for ImageNet. This meticulous approach to hyperparameter selection
ensures the reliability and relevance of the threshold values.

5 IMPLEMENTATION
We have conducted extensive experiments to evaluate the performance of NSGen. This section introduces the
experiment settings. To conduct the experiments, we implement NSGen upon Python 3.8.13 and PyTorch (ver.
1.11.0). All experiments are performed on a Ubuntu 20.04.1 LTS with Nvidia GeForce RTX 3090 (GPU), Intel

5For CIFAR10, CIFAR100, and Oxford 102 Flower datasets, the mutation space can be traversed in 2 hours, while for the ImageNet dataset, it
takes less than 4 hours.

ACM Trans. Softw. Eng. Methodol.

12 • Huang and Sun, et al.

XEON 6226R 2.90GHz (CPU), 32GiB DDR4-3200 (Memory). To facilitate result verification and enable comparison
with future research, we have made the code and data available at [1].

5.1 Datasets and DNN Models
We choose four widely recognized and publicly available datasets for evaluation in our study, namely, CIFAR10 [42],
CIFAR100 [42], Oxford 102 Flower [55], and ImageNet [22] (as presented in Table 1). For each of these datasets, we
have focused on well-established DNN models that have been extensively utilized in prior research [81, 82, 89, 90].
Our research places a significant focus on the generation of test inputs within the context of complex DNNs and
datasets, with a keen examination of the scalability and practicality of NSGen.

CIFAR10 and CIFAR100 both fall under the category of general-purpose image classification datasets. Each
dataset includes a total of 60,000 images, with 50,000 used for training and 10,000 for testing. The images in
both datasets are three-channel RGB images, each measuring 32 × 32 × 3 in dimensions. CIFAR10 consists
of 10 distinct classes, while CIFAR100 presents a more complex challenge by featuring 100 different classes.
To obtain competitive performance on CIFAR10 and CIFAR100, we study three well-known DNN models (i.e.,
VGG16_BN [71], ResNet50 [31], MobileNet_v2 [68]) as the subject models.

Table 1. Subject datasets and DNN models.

Dataset Dataset Description DNN Model Top-1 Test Acc.

CIFAR10
General image with 10-class, VGG16_BN* 93.81%

image size is 32x32, ResNet50 93.78%
the color is RGB MobileNet_v2 93.37%

CIFAR100
General image with 100-class, VGG16_BN* 74.01%

image size is 32x32, ResNet50 74.98%
the color is RGB MobileNet_v2 74.29%

Oxford 102 Flower
Consisting of 102 flower categories, VGG16_BN* 74.39%

image size is 224x224, ResNet50 82.78%
the color is RGB MobileNet_v2 83.02%

ImageNet
1000-class large-scale image class. VGG16_BN* 73.36%

image size is 128x128, ResNet50 75.69%
the color is RGB MobileNet_v2 71.43%

*All image models have batch normalization (BN) layers.
Oxford 102 Flower is an image classification dataset consisting of 102 flower categories. It comprises a total

of 8,189 images, with 1,020 allocated for training, 1,020 for validation, and 6,149 for testing. Each flower image
is three-channel of size 224 × 224 × 3. This dataset has gained recognition for its remarkable diversity, as it
exhibits a wide range of variations in terms of scale, pose, and lighting across its images. Additionally, it poses a
unique challenge by encompassing categories that demonstrate notable intraclass variations, along with several
categories that bear close relationships, thus constituting a fine-grained classification task [85]. Incorporating the
Oxford 102 Flower dataset into our experiments serves a dual purpose. First, it allows us to evaluate NSGen’s
proficiency in effectively handling medium-sized datasets that feature a moderate number of classes. Second, it
provides a platform for assessing NSGen’s potential in generating neuronal semantic decision paths for similar
samples.

ImageNet. We seek to provide further evidence of NSGen’s scalability by venturing into the realm of practical-
sized datasets. ImageNet is a noteworthy choice, as it serves as a benchmark in large-scale visual recognition

ACM Trans. Softw. Eng. Methodol.

Neuron Semantic-Guided Test Generation for Deep Neural Networks Fuzzing • 13

challenges, specifically, the ILSVRC dataset [67], designed for general-purpose image classification. The intricacy
of ImageNet lies in its vast training dataset, consisting of over one million instances, and a testing dataset
comprising 50,000 samples. Additionally, the dataset features large data points, each with dimensions of 128 × 128
× 3 (roughly 16 times the dimensionality of CIFAR10/CIFAR100). Consequently, any automated testing tool faces
a formidable challenge when dealing with ImageNet-sized datasets. In particular, our objective is to investigate
whether NSGen could facilitate test input generation on the ImageNet, in conjunction with practical-sized DNN
models6, such as VGG16_BN and ResNet50.

5.2 Input Mutation Rules
In line with previous studies [89, 90], we use the mutation rules outlined in Table 2 to generate mutation images.

Pixel Level mutation scheme involves three operations to mutate input images and assess the robustness of
DNNs [21, 56, 77]. These operations include changing the image brightness, adjusting the image contrast, and
applying blurring through convolution with a sliding kernel.
Affine Type applies invertible transformations to mutate images, such as translating, rotating, scaling, and

shearing. These transformations preserve the collinearity of objects, thereby retaining the correct semantics of
images after mutation [77, 82].
Style Transfer is initially introduced by Zhang et al. [93] to transfer severe weather conditions from source

images to target images, with a particular focus on driving scenes. Following the previous works [89, 90], we
have integrated image style transfer as one of our mutation rules and extended its applicability to encompass
general image style transfer. The style transfer mutation incorporates a wide variety of 5,935 styles, which allows
us to create diverse input images while preserving the underlying semantic content.

Notable, to ensure the validity of the generated mutations and address the concerns about the repetition of
original samples and potential image quality degradation, we have implemented specific controls in our mutation
process: 1) The number of changed pixels in each mutated image is restricted to be less than U times the total
number of pixels in the original image. This condition prevents excessive alterations that could lead to loss of
semantic integrity. 2) The maximum change allowed in the value of any pixel is capped at V times 255, ensuring
that changes are subtle and preserve the original image’s visual coherence. In our experiments, we follow the
setting taken in previous work [90] and set U to 0.2 and V to 0.4. These settings ensure that the mutations are not
too extreme, preserving the essential characteristics of the original image while preventing quality degradation
despite generating multiple mutations from a single sample, thereby introducing enough diversity to challenge
the tested DNNs.

Table 2. Transformations T adopted.

Scheme Original B →Mutated Image B̂ Remark

Pixel Level
B

→
blur brightness contrast

Robustness

Affine Type
B

→
rotation scale translation

Shape bias

Style Transfer
B

→
stylized1 stylized2 stylized3

Texture bias

6All ImageNet-trained models were officially provided by PyTorch. https://pytorch.org/vision/stable/models.html.

ACM Trans. Softw. Eng. Methodol.

https://pytorch.org/vision/stable/models.html

14 • Huang and Sun, et al.

5.3 Baselines
In this section, we present a concise overview of the previous criteria utilized in coverage-guided fuzzing (CGF),
which will be compared with NSGen. Additionally, we discuss the specific setups of each criterion.
• NC (Neuron Coverage) employs a threshold) that is applied to rescaled neuron outputs, restricting them to

the range [0, 1] [58]. In our experiments, we set the threshold value) to 0.75 to determine whether a neuron is
considered “covered” or “activated” for a particular test input.
• KMNC (K-Multisection Neuron Coverage) divides the range of normal neuron outputs into sections. In

our evaluation, we adopt = 100, which is consistent with the settings used in previous studies [45, 81, 82].
• NBC/SNAC (Neuron Boundary Coverage/Strong Neuron Activation Coverage) does not require any specific

parameters for its calculation. These criteria focus on different aspects of neuron activation and aim to measure
the boundary regions of neuron activations and the strength of activations, respectively.
• TKNC/TKNP (Top-k Neuron Coverage/Top-k Neuron Patterns) consider a neuron as activated if it ranks

among the top-K outputs among neurons within the same layer. In our evaluation, we set the values of as
10 and 50, respectively, following the approach proposed by Ma et al [45]. These values were chosen to strike
a balance between achieving good coverage and maintaining computational efficiency during the evaluation
process.
•CC (Cluster-based Coverage) is a coverage criterion that involves a parameter) , which represents the distance

threshold used to create clusters. As suggested in TensorFuzz [56] (Note that CC is the guideline criterion), we
set the value of) to 10 for CIFAR10, 100 for CIFAR100, 102 for Oxford 102 Flower, and 1000 for ImageNet.
• LSC/DSC/MDSC (Likelihood Surprise Coverage/Distance-ratio Surprise Coverage/Mahalanobis Distance

Surprise Coverage) [37–39] involve two crucial parameters: the bucket count (<) and the maximal SA value (*).
However, we encounter challenges in tuning these hyperparameters, and the authors do not provide specific
guidance regarding their selection. To simplify the presentation, we opt to use the bucket size () = *

"
) instead

and report the covered buckets directly, rather than the ratios of covered buckets as originally proposed in the
paper.
• CAC (Causal-Aware Coverage) [34], captures the causal relations of neurons, which are formed over neuron

edges, and performs statistical independence tests to decide the causal relations derived from DNN edges. To
incorporate a discrete updatable independence test method called X2-test, CAC groups continuous neuron values
into splits, and we set = 8 which is consistent with the settings used in [34].
• NLC (NeuraL Coverage) [90], also known as “neural coverage”, is distinct from other criteria as it emphasizes

the overall activity of neuron groups within each layer and takes into account the relationships between neurons.
Notably, NLC does not require any parameters for its calculation.

Moreover, to mitigate the computational cost associated with determining the output ranges of each neuron,
we randomly selected 1,000 training samples to estimate the neuron output ranges for KMNC/NBC/SNAC. This
sampling approach helps to reduce the computational complexity while still providing a representative coverage
estimation. Notably, all coverage criteria will utilize the mutation rules described in Section 5.2 for generating
mutants.

5.4 Evaluation Metrics
We anticipate that NSGen could enhance testing adequacy. To verify this, we utilized the following metrics [30, 90]:

1) Triggered Fault : A triggered fault occurs when a test input leads to a fault in the DNN, causing incorrect
predictions. The number of triggered faults (denotes as #Faults) serves as a direct evaluation metric [90],
reflecting the count of distinct errors or abnormal behaviors discovered during the fuzzing procedure.

2) Fault Detection Rate: Also, it is important to measure the rate of triggered faults (denotes as RFT) [27].
Larger RFT means that the generated test inputs have a tendency to challenge and uncover potential faults within

ACM Trans. Softw. Eng. Methodol.

Neuron Semantic-Guided Test Generation for Deep Neural Networks Fuzzing • 15

the DNN. Moreover, a higher RFT within a given time period means higher efficiency in revealing faults. RFT is
calculated by dividing the number of triggered faults by the total number of generated test inputs. The formula
for RFT is:

'�) =
#�0D;CB

#�4=4A0C43)4BC �=?DCB
(13)

3) Time Cost : Similar to the RFT, a higher fault-revealing efficiency (denoted as FRE) signifies the criterion’s
capacity to efficiently uncover faults within a given time frame. FRE is computed by dividing the total time spent
on a criterion by the number of triggered faults, yielding the following formula:

�'� =
)>C0;)8<4 �>BC

#�0D;CB
(14)

4) Diversity: A higher diversity of erroneous behaviors indicates a broader vulnerability surface of DNN
models [81, 90]. This diversity is measured using the number of covered classes (denotes as #Classes) in a
collection of fault-triggering images [90]. In cases where the number of covered classes is equal, we further
assess the skew of the output class distribution using Pielou’s evenness score [61]. This score is a theoretically
grounded measure of biodiversity derived from normalized Shannon’s entropy, scaled to a range between 0 and 1
by dividing the entropy of the output distribution by the maximum entropy given the total number of classes. A
high evenness score signifies high impartiality or low bias. The output impartiality (denotes as OI) metric for a
test suite) with |� | possible classes is defined as follows [30]:

$� ()) =
∑

C ∈2 %C=2 log %C=2
1
|� | log

1
|� |

(15)

Here, |� | represents the number of classes, %C=2 denotes the percentage of test inputs C predicted to belong to
class 2 , and a higher entropy value indicates higher diversity.

6 EVALUATION
We primarily study the following research questions (RQs).

• RQ1: To what extent does NSGen outperform baseline methods in terms of both effectiveness and
efficiency in detecting faults?
• RQ2: To what extent does NSGen reveal the diversity of erroneous behaviors?
• RQ3: How does the choice of different text encoders affect the effectiveness of NSGen?
• RQ4: What are the effects of different hyperparameter configurations on NSGen?

6.1 RQ1: Effectiveness and Efficiency of NSGen
Setup: We investigate the effectiveness and efficiency of using existing coverage criteria and NSGen as feedback
guidance for input mutations. For each baseline, we summarize its hyperparameter settings in Section 5.3.
Additionally, we employ a systematic approach to set distinct similarity thresholds for NSGen, denoted as g ,
across various datasets. Specifically, we set g to 0.81 for CIFAR10, 0.71 for CIFAR100, 0.87 for Oxford 102 Flower,
and 0.72 for ImageNet (c.f. Section 4.3.4). The fuzzing procedure commences by constructing an initial seed
pool. During the fuzzing cycle, seeds drawn from this pool are subjected to mutations. Each seed undergoes
transformations across three mutation themes: pixel-level, affine type, and style transfer, resulting in a total of 95
mutation styles (cf. Section 5.2). Ensuring that the mutated images retain meaningful content is essential; hence,
we configure U to 0.2 and V to 0.4 as per established settings. After processing, for the baseline methods, the
DNN evaluates the mutated seed and collects coverage information. If the coverage increases, it will be re-added
to the pool for subsequent use. In contrast, for NSGen, the retention of mutated seeds is determined using the

ACM Trans. Softw. Eng. Methodol.

16 • Huang and Sun, et al.

Table 3. Fuzzing results. Faults, Outputs, and RFT denote triggered faults, fuzzing outputs, and rate of triggered faults,
respectively. Best assessments are marked .

Models Criteria CIFAR10 CIFAR100 Oxford 102 Flower ImageNet
#Faults/#Outputs RFT Coverage #Faults/#Outputs RFT Coverage #Faults/#Outputs RFT Coverage #Faults/#Outputs RFT Coverage

ResNet

NC 1252/1897 0.6600 0.6327 3012/3591 0.8388 0.8133 1813/2635 0.6880 0.4235 3160/4041 0.7820 0.5833
KMNC 5157/9889 0.5215 0.9717 7369/10000 0.7369 0.9511 5636/10000 0.5636 0.9678 6877/10000 0.6877 0.9415
NBC 2297/4918 0.4671 0.8460 6332/8501 0.7449 0.9053 4282/7236 0.5918 0.9461 6008/8554 0.7024 0.8231
SNAC 1656/3795 0.4364 0.8516 4408/6179 0.7134 0.9260 3106/5410 0.5741 0.9560 4496/6581 0.6832 0.8689
TKNC 1042/1608 0.6480 0.2534 3482/4159 0.8372 0.5330 1858/2803 0.6629 0.3411 3032/3882 0.7810 0.4983
TKNP 0/1 0 1.0 0/1 0 1.0 0/1 0 1.0 0/1 0 1.0
CC 55/84 0.6548 84.0 9320/9999 0.9321 9999.0 6863/10000 0.6863 10024.0 7824/10000 0.7824 10001.0
LSC 101/117 0.8632 117.0 814/1035 0.7865 1035.0 3662/4937 0.7417 4937.0 6818/10000 0.6818 10000.0
DSC 877/888 0.9876 888.0 38/45 0.8444 45.0 13/26 0.5000 26.0 36/44 0.8182 44.0
MDSC 5146/5733 0.8976 5733.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A
CAC 1080/2775 0.3892 0.5580 1587/2611 0.6078 0.3620 1138/2526 0.4505 0.3241 1504/2504 0.6006 0.1820
NLC 5010/10000 0.5010 211.48 7505/10000 0.7505 9639.2 5915/9966 0.5935 174393.9 6651/9980 0.6664 1820913.3

NSGen 8075 /10000 0.8075 10.0 9653 /9999 0.9654 9.9990 8394 /9990 0.8402 9.9900 9815 /9935 0.9879 9.9350

VGG

NC 765/1088 0.7031 0.4902 478/581 0.8227 0.7687 696/935 0.7444 0.4344 1953/2386 0.8185 0.8566
KMNC 4017/8481 0.4736 0.9690 6577/9366 0.7022 0.9324 5741/9489 0.6050 0.9411 7110/9999 0.7111 0.8365
NBC 748/2202 0.3397 0.6024 1765/2815 0.6270 0.7709 1364/2762 0.4938 0.8298 2500/4294 0.5822 0.5034
SNAC 646/1757 0.3677 0.9017 1358/2142 0.6340 0.8908 1007/2047 0.4919 0.7894 2114/3716 0.5689 0.7007
TKNC 837/1230 0.6805 0.2960 882/1080 0.8167 0.8642 385/621 0.6200 0.2878 2245/2791 0.8044 0.8105
TKNP 1/1 1 1.0 0/1 0 1.0 1/1 1 1.0 0/1 0 1.0
CC 106/167 0.6347 224.0 9104/10000 0.9104 12628.0 6114/10000 0.6114 25050.0 8227/10000 0.8227 17996.0
LSC 525/569 0.9227 569.0 5469/6402 0.8543 6402.0 5994/10000 0.5994 10000.0 7284/10000 0.7284 10000.0
DSC 1381/1393 0.9914 1393.0 135/141 0.9574 141.0 40/50 0.8000 50.0 48/56 0.8571 56.0
MDSC N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
CAC 2628/5293 0.4965 0.8907 7199/10000 0.7199 0.6246 N/A N/A N/A N/A N/A N/A
NLC 5344/9979 0.5355 132625.7 7341/9967 0.7365 198764.7 5988/9668 0.6194 421299968.0 6369/9394 0.6780 11601800.0

NSGen 8393 /9995 0.8397 9.9950 9644 /9997 0.9647 9.9970 7872 /9175 0.8580 9.1750 9665 /10000 0.9665 10.0

MobileNet

NC 254/464 0.5474 0.6502 327/457 0.7155 0.7368 610/901 0.6770 0.8308 620/791 0.7838 0.8713
KMNC 5243/9916 0.5287 0.8974 7269/10000 0.7269 0.7388 5770/10000 0.5770 0.9691 7620/10000 0.7620 0.9477
NBC 1962/4557 0.4305 0.7551 3988/5890 0.6771 0.6767 3233/5470 0.5910 0.9255 5124/6958 0.7364 0.8147
SNAC 1359/3291 0.4129 0.7524 2637/4011 0.6574 0.6904 2220/4020 0.5522 0.9462 3503/5041 0.6949 0.8555
TKNC 300/546 0.5495 0.2698 600/810 0.7407 0.3770 1250/2055 0.6083 0.6115 1242/1640 0.7573 0.6875
TKNP 0/1 0 1.0 0/1 0 1.0 0/1 0 1.0 0/1 0 1.0
CC 25/53 0.4717 53.0 8427/10000 0.8427 10000.0 6716/10000 0.6716 10047.0 8070/10000 0.8070 10002.0
LSC 77/82 0.939 82.0 1830/2365 0.7738 2365.0 4128/5852 0.7054 5852.0 7649/10000 0.7649 10000.0
DSC 1408/1418 0.9929 1418.0 21/29 0.7241 29.0 21/36 0.5833 36.0 42/46 0.9130 46.0
MDSC 2830/3460 0.8179 3460.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A
CAC 1731/3803 0.4552 0.2842 2662/4066 0.6547 0.2037 1791/3926 0.4562 0.5747 2677/4009 0.6677 0.3500
NLC 5418/10000 0.5418 120.39 7493/10000 0.7493 25093.2 6031/9874 0.6108 1971819.6 7302/9801 0.7450 6650560.5

NSGen 8671 /9997 0.8674 9.9970 9654 /10000 0.9654 10.0 8695 /9981 0.8712 9.9810 8867 /8993 0.9860 8.9930

procedure outlined in Algorithm 1. The fuzzing process is initiated with 1,000 randomly selected inputs from the
test dataset as fuzzing seeds7. To ensure practicality, we establish a termination condition for fuzzing, halting it
when it reaches 10,000 iterations or exceeds a 6-hour limit, aligning with the setting utilized in [90]. To mitigate
the non-trivial bias in this random process, we repeat each experiment five times with different randomly selected
sets of seeds and then calculate the average results across these iterations. We evaluate performance using
three key metrics: the number of triggered faults (#Faults), the rate of triggered faults (RFT), and fault-revealing
efficiency (FRE). #Faults and RFT help us assess the effectiveness of each guidance criterion in directing the
fuzzing framework to generate fault-triggering images, while FRE measures the efficiency of generating such
images.

6.1.1 Effectiveness. Table 3 shows the #Faults and RFT of NSGen and baselines with different DNN and dataset
configurations. We highlight testing criteria with the best results. It is worth noting that completing all the
criteria, including LSC, DSC, and MDSC, poses practical challenges. These criteria require the entire training set
for initialization, and for each test input, LSC and DSC involve iterating over all neuron output traces generated
using the training data, making their execution time unacceptable, especially for ImageNet. Moreover, MDSC
relies on storing a class conditional covariance matrix to represent the training data, but due to the number
of classes in CIFAR100, Oxford 102 Flower, and ImageNet, it demands an excessive amount of GPU memory,

7Apart from the necessary implementation and hyperparameter settings for NSGen, we adhere to and strictly follow the experimental
framework adopted by [90]

ACM Trans. Softw. Eng. Methodol.

Neuron Semantic-Guided Test Generation for Deep Neural Networks Fuzzing • 17

(a) FRE (seconds) on testing ResNet50 (b) FRE (seconds) on testing VGG16_BN

(c) FRE (seconds) on testing MobileNet_v2

Fig. 5. Comparison in terms of FRE (y-axis shows the average time to generate a fault-revealing test input)

rendering its evaluation infeasible. As a result, we do not report the results for MDSC on ResNet50, VGG16_BN,
and MobileNet_v2 trained on these three datasets.

Among the compared criteria, images mutated under the guidance of NSGen exhibit the highest #Faults
compared to other criteria regardless of the datasets and the models, particularly NC and NBC. For example,
when compared to the state-of-the-art coverage criterion NLC, NSGen leads to a remarkable increase in #Faults,
ranging from 21.4% to 61.2%. This difference in performance can be attributed to the way these criteria categorize
neurons as activated. NC and NBC consider a neuron activated if its output exceeds a certain threshold or falls
outside a specified range. However, DNNs often incorporate normalization techniques, causing the outputs of
neurons to concentrate within specific regions. As a result, without access to fine-grained feedback such as
gradients, mutated images may struggle to switch an inactive neuron to an active state. In the case of NLC, it may
be due to the difficulty of using layers as the unit of calculation to capture subtle differences between various test
inputs.

Additionally, NSGen consistently demonstrates strong performance in terms of RFT across different datasets
and models. For example, RFT values are consistently above 0.8, and NSGen excels on more complex datasets
like CIFAR100, Oxford 102 Flower, and ImageNet. The complexity of these datasets allows neurons to focus
on diverse fine-grained features, effectively distinguishing between neurons’ semantic paths. On the CIFAR10
dataset, the RFT of DSC approaches 1.0. This is because DSC requires generating test inputs that elicit “surprise”
behavior from the DNN, leading to test inputs that focus on uncommon or rare scenarios, resulting in fewer

ACM Trans. Softw. Eng. Methodol.

18 • Huang and Sun, et al.

inputs being generated, but with a higher probability of exposing DNN faults. Unfortunately, CAC, the first
coverage criterion rooted in a causal perspective, falls short when dealing with complex and high-dimensional
systems, such as DNNs trained on extensive datasets. Therefore, in this experimental setup, generating numerous
test inputs becomes impractical for CAC. On average, NSGen outperforms CAC by generating 387.98% more
#Faults. TKNC and CC also exhibit decent performance, as they partly capture patterns and clusters that reflect
neuron interdependencies.

At the same time, the coverage results (DPD is the coverage achieved by NSGen) in Table 3 provide further
substantiate findings from previous studies [30, 47, 69, 87, 88], highlighting that certain neuron coverage criteria
are capable of achieving full coverage with a relatively small number of test inputs. This observation aligns
with our motivation to explore more efficient testing methodologies that do not aim for maximum coverage
but enhance the actual quality of the model. For instance, in Table 3, SNAC achieved coverage of 0.9462 on the
MobileNet_v2/Flowers102 using only 4,020 test inputs. In contrast, KMNC required a full 10,000 test inputs to
reach a coverage of 0.9691. This disparity not only illustrates the varying efficiencies of different coverage metrics
but also supports our assertion that increasing the coverage does not invariably correlate with improved model
quality.

6.1.2 Efficiency. Based on the experimental data generated in Section 6.1.1, we further measure the fault-revealing
efficiency (FRE) for generating a fault-revealing image during the fuzzing process, whose results are shown in
Figures 5(a), 5(b), and 5(c). Among them, the part below the x-axis indicates that the criterion takes less than 1
second to generate a fault-revealing image, and the longer the column length, the shorter the time; conversely,
the part above the x-axis indicates that the generation time is greater than 1 second, and the longer the column
length, the longer the time. From these figures, NSGen performs competitive fault-revealing efficiency compared
to other criteria regardless of the datasets and models. For example, in Figure 5(a), on average, it takes 1.302
seconds to generate a fault-revealing image, ranking 3/12. On the CIFAR100 dataset, NSGen performs even
better, generating a fault-revealing image in just 0.8 seconds. NLC stands out as the most efficient criterion, as its
fault-revealing test input generation time is consistently below 1 second for all datasets, indicated by the columns
residing below the x-axis. However, when it comes to effectiveness, NSGen outperforms NLC by generating
an average of 2,585 more fault-revealing images. We also find that while DSC exhibits a higher RFT value than
NSGen on the CIFAR10 dataset (c.f. Section 6.1.1), it’s essential to note that, in terms of efficiency, generating a
fault-revealing image with DSC takes, on average, 672.48% more time than using NSGen. In summary, NSGen’s
FRE can rank in the top 3 out of 12 criteria across all datasets on average.

Overall, the guidance of neuron semantic differences in NSGen largely improves the effectiveness and efficiency
of test input generation, which is also the reason why most criteria underperform NSGen.

Answer to RQ1: Under the same time constraints, NSGen outperforms the other 12 coverage criteria in
terms of the number of triggering DNN failures, exhibiting a remarkable increase in the number of triggered
faults by 21.4% to 61.2% compared to the state-of-the-art coverage-guided fuzzing criterion. Moreover, partial
neural coverage criteria can achieve full coverage with relatively few test inputs. Additionally, NSGen’s time
efficiency can rank in the top 3 out of 12 criteria.

6.2 RQ2: Diversity of Erroneous Behaviors.
Setup: As described in [6, 30, 82, 90], the generated test inputs should be diverse in terms of the outputs. Existing
work [69] has demonstrated that neuron coverage can be improved with a few samples. However, test inputs
containing only one class of samples (e.g., bird) are not enough to comprehensively reveal diverse faults of the
DNN (e.g., the errors in other classes). Additionally, as mentioned in [82], coverage criteria that are sensitive to
output diversity can guide the testing tools to generate more diverse test inputs belonging to different classes,

ACM Trans. Softw. Eng. Methodol.

Neuron Semantic-Guided Test Generation for Deep Neural Networks Fuzzing • 19

Table 4. Diversity results. Classes and OI denote covered classes and output impartiality, respectively. Best assessments are
marked .

Models Criteria CIFAR100 Oxford 102 Flower ImageNet CIFAR10
#Classes OI #Classes OI #Classes OI #Classes OI

ResNet

NC 99 — 100 — 647 — 10 0.9737
KMNC 99 — 101 — 709 — 10 0.9428
NBC 99 — 101 — 750 — 10 0.9779
SNAC 100 0.9127 100 — 723 — 10 0.9818
TKNC 99 — 100 — 723 — 10 0.9723
TKNP 1 — 1 — 1 — 1 —
CC 99 — 102 0.8663 720 — 10 0.9869
LSC 93 — 102 0.8476 694 — 10 0.8477
DSC 14 — 21 — 30 — 10 0.7813
MDSC N/A N/A N/A N/A N/A N/A 10 0.8399
CAC 95 — 90 — 433 — 10 0.9610
NLC 100 0.8764 101 — 717 — 10 0.9226
NSGen 100 0.9195 102 0.8618* 751 — 10 0.8515*

VGG

NC 90 — 93 — 582 — 10 0.9707
KMNC 99 — 102 0.9374 699 — 10 0.9640
NBC 100 0.8816 101 — 584 — 10 0.9787
SNAC 97 — 100 — 583 — 10 0.9790
TKNC 95 — 94 — 619 — 10 0.9727
TKNP 1 — 1 — 1 — 10 0.9640
CC 99 — 102 0.9204 695 — 10 0.9941
LSC 99 — 101 — 671 — 10 0.7581
DSC 17 — 31 — 25 — 10 0.8374
MDSC N/A N/A N/A N/A N/A N/A 10 0.9613
CAC 99 — N/A N/A N/A N/A 10 0.9385
NLC 100 0.8108 102 0.9342 610 — 10 0.8693
NSGen 100 0.8871 102 0.8991* 702 — 10 0.8782*

MobileNet

NC 86 — 95 — 334 — 10 0.9762
KMNC 99 — 102 0.8993 767 — 10 0.9400
NBC 99 — 102 0.8964 767 — 10 0.9762
SNAC 99 — 101 — 705 — 10 0.9811
TKNC 96 — 102 0.8904 509 — 10 0.9809
TKNP 1 — 0 — 1 — 0 —
CC 100 0.8436 102 0.8399 770 — 10 0.9741
LSC 97 — 102 0.8451 764 — 10 0.8525
DSC 14 — 28 — 27 — 9 0.6573
MDSC N/A N/A N/A N/A N/A N/A 10 0.9613
CAC 98 — 102 0.9346 599 — 10 0.9385
NLC 98 — 102 0.8941 747 — 10 0.9061
NSGen 100 0.8466 102 0.8486* 776 — 10 0.8540*

*Higher OI is better if two #Classes are equal, otherwise, higher #Classes is better.

while insensitive coverage criteria may generate biased test inputs. Hence, we evaluate the output diversity of
fuzzing guided by NSGen as well as other coverage criteria in this RQ. We assess the diversity using two key
metrics: the number of covered classes (#Classes) and the output impartiality (OI). It’s important to note that
our primary focus is on #Classes. Therefore, in Table 4, our initial calculation centers around #Classes. If there’s
a tie in #Classes, we proceed to analyze OI. In the cases where the #Classes differs, we fill the table with short
horizontal lines. For our diversity analysis, we continue to utilize the experimental data derived from RQ1 (c.f.
Section 6.1).

Result: The results presented in Table 4 reveal that when NSGen is employed as the guidance mechanism for
fuzzing, it produces fault-revealing images covering all categories in the CIFAR10, CIFAR100, and Oxford 102

ACM Trans. Softw. Eng. Methodol.

20 • Huang and Sun, et al.

Flower datasets. Moreover, on the ImageNet dataset, NSGen’s fault-revealing images encompass a majority of the
classes, surpassing the state-of-the-art method, NLC, by an average of 51 classes. For example, when considering
the VGG/ImageNet combination, NSGen surpasses NLC by 15.08% in coverage classes. When the #Classes is
the same, NSGen’s performance, as indicated by the OI, demonstrates competitiveness with other standards.
However, for the CIFAR10 dataset, most coverage criteria manage to cover all 10 classes, and in terms of OI,
NSGen slightly lags behind some coverage criteria. One possible explanation for this observation is that the
CIFAR10 dataset may not possess sufficient richness and complexity compared to the more extensive ImageNet
dataset. As a result, the differences in performance between NSGen and other criteria are less pronounced on
CIFAR10.

We also find that NSGen’s diversity performance improves as the dataset complexity increases. Particularly
when applied to larger and more intricate datasets like CIFAR100 and ImageNet, this underscores NSGen’s
potential to identify a broader range of flaws in real-world critical DNN systems.

Answer to RQ2: In summary, NSGen outperforms the remaining 12 coverage criteria in terms of output
diversity, achieving full class coverage on CIFAR10, CIFAR100, and Oxford 102 Flower datasets while surpassing
the state-of-the-art criterion on ImageNet by an impressive average of 51 additional classes.

6.3 RQ3: Impact of Different Text Encoders
Setup: NSGen utilizes CLIP (c.f. Section 4.3.3) to vectorize the templates of the original and mutated images to
measure the similarity between them. Therefore, to answer RQ3, we investigate how various language models
and word embedding methods affect NSGen’s performance. We consider three language models: BERT [23],
Roberta-L [48], and GPT2 [63]. These models are chosen because they are pre-trained on extensive, unlabeled text
data, allowing them to dynamically capture rich semantic information from text. In contrast, the word embedding
methods we explore are FastText [35] and GloVe [60], which provide fixed representations of text. We assess the
influence of different encoders on NSGen’s performance using three key metrics: the number of triggered faults
(#Faults), the number of covered classes (#Classes), and output impartiality (OI). The experimental setup remains
consistent with that of RQ1 and RQ2, with the primary change being the substitution of the encoder in NSGen.

Result: The findings are summarized in Table 5. Overall, our method’s integration of CLIP as the text vector-
ization component has shown superior performance, especially for more complex datasets such as CIFAR100,
Oxford 102 Flower, and ImageNet. For example, consider the performance of NSGen on the ImageNet dataset.
NSGen excels by generating an average of 8640 more fault-triggering images compared to BERT and 3476 more
than FastText. In terms of diversity, NSGen covers 497 more classes on average compared to BERT and 134
more classes compared to FastText. These results underscore CLIP’s effectiveness in capturing and leveraging
relevant information from both textual and visual domains. It is important to note that when CLIP is used as the
text vectorization component on the CIFAR10 dataset, the final guidance results fall slightly short compared to
traditional word embedding methods like FastText and GloVe. This discrepancy can be attributed to the limited
diversity in the available neuron descriptions associated with the CIFAR10 dataset. As the CIFAR10 dataset is
relatively simple in terms of image classification tasks, it may not capture the comprehensive scene information
required for neurons to express semantic features adequately.

Indeed, it is intriguing that despite their extensive pretraining, large language models demonstrate performance
comparable to simple word embeddings. This suggests that the full potential of pre-trained language context has
not been fully harnessed for neuron semantic guidance. This observation opens up an exciting avenue for future
research, where further exploration and investigation are warranted to fully utilize the untapped potential of
large language models in neuron semantic-guided tasks.

ACM Trans. Softw. Eng. Methodol.

Neuron Semantic-Guided Test Generation for Deep Neural Networks Fuzzing • 21

Table 5. Impact of different text encoders. Faults, Outputs, and OI denote triggered faults, fuzzing outputs, and output
impartiality, respectively. CR10, CR100, FR102 and IN-1K denote CIFAR10, CIFAR100, Oxford 102 Flower and ImageNet-1k
dataset, respectively. Best assessments are marked .

Models Dataset ResNet VGG MobileNet
#Faults/#Outputs #Classes OI #Faults/#Outputs #Classes OI #Faults/#Outputs #Classes OI

(a) Language Models

+ BERT [23]

CR10 3490/3449 10 0.86 9009/9915 10 0.78 1297/1417 10 0.81
CR100 5923/6323 98 — 6041/6493 98 — 697/768 80 —
FR102 670/828 84 — 67/86 39 — 124/155 52 —
IN-1K 796/812 311 — 1569/1607 376 — 62/62 49 —

+ Roberta-L [48]

CR10 1882/2069 10 0.86 7865/8636 10 0.80 822/879 10 0.79
CR100 4820/5077 99 — 9150/9568 100 0.88 3896/4076 100 0.84
FR102 344/401 75 — 53/58 27 — 301/362 66 —
IN-1K 559/569 243 — 1113/1136 321 — 31/31 28 —

+ GPT2 [63]

CR10 4947/5543 10 0.87 8880/9952 10 0.77 1944/2150 10 0.79
CR100 7281/10000 98 — 7287/10000 98 — 7381/10000 100 —
FR102 5670/10000 102 0.91 6202/10000 102 0.92 5624/10000 102 0.89
IN-1K 678/687 268 — 1677/1731 387 — 30/30 25 —

(b) Word Embeddings

+ FastText [35]

CR10 8369 /10000 10 0.84 8112/10000 10 0.77 8748 /9990 10 0.83
CR100 7933/10000 99 — 7866/10000 99 — 8027/10000 99 —
FR102 6605/10000 102 0.87 4787/7052 101 — 6850/10000 102 0.85
IN-1K 7550/8060 703 — 8726/9421 691 — 1641/1660 433 —

+ GloVe [60]

CR10 6809/7579 10 0.87 9018 /9943 10 0.79 2415/2626 10 0.81
CR100 9431/9753 100 0.90 9443/9930 99 — 1981/2075 95 —
FR102 3854/4624 101 — 744/1100 99 — 551/721 82 —
IN-1K 1678/1721 424 — 3011/3120 507 — 125/125 76 —

(c) Language-Image Models

+ CLIP [62]

CR10 8075/10000 10 0.85* 8393/9995 10 0.80 8671/9997 10 0.86
CR100 9653 /9999 100 0.92 9644 /9997 100 0.89 9654 /10000 100 0.85
FR102 8394 /9990 102 0.86* 7872 /9175 102 0.90* 8695 /9981 102 0.85*
IN-1K 9815 /9935 751 — 9665 /10000 702 — 8867 /8993 776 —

*Higher OI is better if two #Classes are equal, otherwise, higher #Classes is better.

Answer to RQ3:NSGen utilizes CLIP as the default text encoder.The performance comparisonwith alternative
three language model architectures and two word embedding approaches confirms the validity of our selection.

6.4 RQ4: Impact of NSGen Configurations
In this section, we study hyperparameters that can affect the effectiveness of NSGen. We examine five key
hyperparameters: Number of Top-Activating Images, LSTM Configurations, Number of Selected Layers, Number
of Class Labels, and Threshold Stability Across Different Sample Sets.

6.4.1 Number of Top-Activating Images. Top-activating images play a crucial role in representing specific visual
features or patterns recognized by neurons. NSGen aggregates common features from these images and generates
natural language descriptions for neurons (c.f. Section 4.2.1). A significant challenge arises when there are too
many top-activating images, making it difficult to extract shared features and reducing the quality of the natural
language descriptions [4]. This section explores how different quantities of top-activating images affect the
quality of the generated descriptions. Based on previous research [8, 57], we aimed to create natural language
descriptions for neurons in the final layer of the model to evaluate their quality. This is because it is difficult to
establish a definitive ground truth for natural language descriptions of neurons, while the output layer neurons’
ground truth is explicit and aligned with the class labels. To evaluate the alignment between the true class

ACM Trans. Softw. Eng. Methodol.

22 • Huang and Sun, et al.

Table 6. Cosine similarity of natural descriptions generated on different numbers of top-activating images. The higher the
similarity, the better.

Top-k Images
ImageNet/ResNet50 Flowers102/MobileNet_v2 CIFAR10/VGG16_BN CIFAR100/ResNet50

CLIP cos mpnet cos CLIP cos mpnet cos CLIP cos mpnet cos CLIP cos mpnet cos

k=1 0.7163 0.2518 0.6587 0.3388 0.8330 0.3426 0.7842 0.2666

k=5 0.7222 0.2674 0.6675 0.3670 0.8213 0.3296 0.7788 0.2551

k=10 0.7237 0.2704 0.6660 0.3653 0.8184 0.3521 0.7837 0.2613

k=15 0.7241 0.2701 0.6675 0.3659 0.8286 0.3873 0.7856 0.2546

k=20 0.7231 0.2703 0.6670 0.3661 0.8242 0.3717 0.7847 0.2696

Table 7. Cosine similarity of natural descriptions generated on different configurations of LSTM. The higher the similarity,
the better.

LSTM Config.
ImageNet/ResNet50 Flowers102/MobileNet_v2 CIFAR10/VGG16_BN CIFAR100/ResNet50

CLIP cos mpnet cos CLIP cos mpnet cos CLIP cos mpnet cos CLIP cos mpnet cos

IES=128, HS=512 0.7241 0.2701 0.6675 0.3659 0.8286 0.3873 0.7856 0.2546

IES=128, HS=128 0.7285 0.2650 0.6670 0.3620 0.8018 0.2469 0.7856 0.2369

IES=128, HS=256 0.7266 0.2579 0.6675 0.3339 0.8340 0.3676 0.7949 0.2717

IES=128, HS=1024 0.7144 0.2145 0.6616 0.3407 0.8286 0.2508 0.7905 0.2297

IES=64, HS=512 0.7256 0.2718 0.6670 0.3618 0.8232 0.3315 0.7837 0.2213

IES=256, HS=512 0.7207 0.2754 0.6660 0.3623 0.7832 0.2790 0.7827 0.2154

IES=512, HS=512 0.7251 0.2542 0.6646 0.3593 0.8408 0.3376 0.7925 0.2201

names of neurons and the generated natural language descriptions, we measure the cosine similarity between
the neuron’s true class name and the sentence embedding space of the natural language description generated by
the method [8, 57]. For embeddings, we use two different encoders: the CLIP ViT-B/32 text encoder (denoted
CLIP cos) and the all-mpnet-base-v2 sentence encoder (denoted mpnet cos). The experimental results (see Table
6) illustrate a trend where the quality of the natural language descriptions of neurons, generated by varying the
count of top-activating images, initially improves but subsequently diminishes with an increase in the number of
images. Specifically, in Flowers102/MobileNet_v2 and CIFAR10/VGG16_BN, the description quality reaches its
peak when the number of top-activating images is between 10 to 15 and then starts to decline. Thus, choosing
the right number of top-activating images is essential to precisely depict and explain the activation patterns of
neurons. Using too few top-activating images may result in incomplete coverage, while using too many may
introduce noise and compromise the quality of the description.

6.4.2 LSTM Configurations. NSGen uses an LSTM-based decoder with an input embedding size (IES) of 128 and
a hidden size (HS) of 512 to generate natural language descriptions of neurons (c.f. Section 4.2.2). This section
analyzes the effect of different LSTM settings on the quality of these descriptions. The impact is examined by
keeping one setting constant while varying the other, following the methodologies outlined in Section 6.4.1. The
experimental results are shown in Table 7. Regarding input embedding size, increasing it appropriately can enhance
the model’s ability to capture nuanced semantics. For example, in ImageNet/ResNet50 and CIFAR10/VGG16_BN,
an increase in input embedding size is associated with improved quality in the generated descriptions. This
improvement is likely a result of the model’s enhanced ability to represent a wide range of vocabulary and complex
syntactic structures within embeddings. However, it is important to recognize that there is a limit beyond which
further expansion does not lead to significant improvements in generation quality. This observation indicates that

ACM Trans. Softw. Eng. Methodol.

Neuron Semantic-Guided Test Generation for Deep Neural Networks Fuzzing • 23

a larger embedding size provides a more extensive representation space, but also requires more data to effectively
assimilate these representations without overfitting. Regarding the hidden state size, increasing the hidden
size significantly improves the model’s ability to generate complex sentence structures, which is particularly
important for describing highly abstract visual features. In CIFAR10/VGG16_BN and CIFAR100/ResNet50, a
relatively larger hidden size results in significant improvements in sentence embedding similarity (i.e., mpnet
cos). However, excessively large hidden layers increase the model’s parameter count, which in turn increases the
risk of overfitting. A comparison of different combinations of input embedding and hidden sizes showed that an
intermediate input embedding size (e.g., 128) combined with a relatively large hidden size (e.g., 512) achieves
optimal performance. This configuration maintains the model’s descriptive generation capabilities while also
addressing the overfitting issues associated with excessive parameters.

Fig. 6. The performance of NSGen under different layer numbers.

6.4.3 Number of Selected Layers. DNNs are composed of multiple layers, each of which contributes differently to
the network’s ability to process and interpret input data. Layers closer to the input tend to capture more general
and broadly applicable features, while deeper layers focus on more abstract and specific features [32]. NSGen
selects neurons from specific : layers selected in the DNN to construct semantic decision paths. As outlined in
Section 4.3.1, the values of : for ResNet50, VGG16_BN, and MobileNet_v2 are set to 5, 5, and 10, respectively. To
assess the impact of different numbers of model layers on NSGen, we adjust the number of layers included in the
neuron selection phase in accordance with the model’s layer execution order. Neurons from these selected layers
are then utilized to guide the semantic decision-making process, adhering to the NSGen framework. The primary
metric for this evaluation is the number of triggered faults (#Faults), which serves to determine the impact of
different : values on NSGen’s effectiveness. Experimental results, as depicted in Figure 6, clearly demonstrate
that the value of : significantly influences the #Faults across different networks. For example, when : = 5, the
#Faults is increased by 1.07% to 13.14% in comparison to other values of : . Overall, as the : value increases, the
#Faults have been increasing, but will gradually stabilize. This indicates that increasing the number of layers can
provide richer semantic information, allowing NSGen to distinguish normal inputs from mutated inputs from the
perspective of decision path discrepancy (DPD). Notably, the NSGen variant with : = 1 triggers more faults than
variants with more layers. One potential explanation is that low-level, general features captured at lower levels
play a critical role in early fault detection because they serve as the basis for complex decisions at higher levels.

6.4.4 Number of Class Labels. Class labels are vital in the construction of templates (see Section 4.3.2), and their
number directly influences the performance of NSGen. In our previous experiments, we employed top-1 class
labels for CIFAR10, CIFAR100, and Oxford 102 Flower datasets, and top-3 class labels for the ImageNet dataset.

ACM Trans. Softw. Eng. Methodol.

24 • Huang and Sun, et al.

Table 8. The performance of NSGen under different class label numbers.

Dataset Model Top-k
(class labels) #Faults/#Outputs #Classes

CIFAR10 MobileNet
top-1 8671/9997 10
top-2 8594/9967 10
top-3 4189/4810 10

ImageNet ResNet

top-1 9641/9993 740
top-2 9614/9972 730
top-3 9815/9935 751
top-4 7202/7356 690

This choice is supported by prior studies [64], which have shown that using an appropriate number of categories
provides more information about the input, leading to the inclusion of richer visual concepts. By utilizing class
labels effectively, NSGen can enhance its performance and produce more comprehensive and informative results.
Our experiments have revealed that introducing an excessive number of class labels can lead to conflicting visual
concepts, which in turn, negatively impacts the performance of NSGen. For example, when considering the
CIFAR10 dataset, which contains 10 distinct categories, employing top-3 class labels results in a notable decline
in NSGen’s performance (see Table 8). Hence, it is essential to strike a balance in selecting the number of class
labels to ensure the effective functioning of NSGen and achieve optimal results. The appropriate choice of class
labels plays a crucial role in enhancing the performance and effectiveness of the NSGen, enabling it to detect
more failures of DNNs.

Table 9. Thresholds on different datasets at different sampling rates (SR).

Dataset SR=1% SR=2% SR=3% SR=4% SR=5%
CIFAR10 0.8097 0.8059 0.8042 0.8063 0.8142
CIFAR100 0.7073 0.7112 0.7167 0.7066 0.7125

6.4.5 Threshold Stability Across Different Sample Sets. The threshold g plays a crucial role in determining
whether to retain the generated mutated images, significantly impacting the performance of NSGen. As detailed
in Section 4.3.4, NSGen samples a specific sample ratio (i.e., SR=1%) of the training set examples and traverses
the mutation space defined by 95 predetermined mutation rules to establish the lower quartile of the similarity
distribution as the threshold for the dataset. In this section, we examine the stability of these generated thresholds
across different sampling rates. Due to the extensive time required for mutation processing on the ImageNet and
Oxford 102 Flower datasets, our experiments are confined to the CIFAR10 and CIFAR100 datasets. Specifically, we
incrementally extract 1%, 2%, 3%, 4%, and 5% of the data from each category in the CIFAR10/CIFAR100 training set
and determine the final threshold following the methodology outlined in Section 4.3.4. The results are presented
in Table 9, where the gray columns are the final thresholds we determined. We observed that the specific value
of g may vary slightly with different random samples, typically within a margin of ±0.01. Employing the lower
quartile method minimizes this variation, ensuring a consistent threshold that keeps the calculated g-values
within an acceptable range. This approach enhances the robustness of our experiments, confirming the reliability
of our threshold-setting process under varied conditions.

ACM Trans. Softw. Eng. Methodol.

Neuron Semantic-Guided Test Generation for Deep Neural Networks Fuzzing • 25

Answer to RQ4: This section examines the impact of NSGen’s configurations, revealing that: 1) Optimal
descriptions with 10-15 top-activating images strike the perfect balance between detail and clarity. 2) An
input embedding size of 128 and a hidden size of 512 in LSTM settings facilitate detailed and accurate
descriptions. 3) For ResNet50, VGG16_BN, and MobileNet_v2, the number of selected layers is set to 5, 5, and
10, respectively, which optimizes NSGen’s fault detection capabilities. 4) A balanced choice of class labels is
crucial to maintaining the quality of NSGen outputs. 5) The threshold g maintains stable performance across
varying sample sizes in CIFAR10 and CIFAR100, with variations within a ±0.01 margin, ensuring NSGen’s
reliability.

7 DISCUSSION

7.1 Interpretability of NSGen
Existing coverage criteria commonly share a limitation regarding the lack of interpretability of their test results.
For example, the NC criterion oversimplifies the continuous output of neurons into binary states of activated
or unactivated [90]. It can not provide a human-understandable decision path in analyzing the test results and
accurately identify the neurons responsible for decision errors [81].

To address these shortcomings, NSGen takes a different approach by mapping the semantic information of
neurons that significantly impact DNN’s final prediction results into natural language descriptions. It organizes
these descriptions in the order of layers, emulating DNN’s layer-based decision transfer and forming a decision
path based on neuron semantics.

As shown in Table 10, the class activation maps [96] illustrate the semantic features captured by neurons, with
corresponding descriptions (d) generated by NSGen based on these semantic features (c.f. Section 4.2) labeled
alongside. NSGen deconstructs the decision path that predicts “bulbu” for the original image input, revealing the
underlying semantics that influences the model’s decision. For instance, the presence of “stick” and “eye” enables
the DNN to classify the image as an “animal on a tree,” and subsequently, “beak” narrows the possible classes to
“bird”, leading to the final decision of “bulbul” based on above features. However, after mutating the original image,
the prediction result becomes “indri.” This discrepancy arises because subsequent neurons primarily capture
features related to the tail and black-and-white stripes, leading to an incorrect model decision. By providing
a detailed and interpretable decision path based on neuron semantics, NSGen enhances the understanding of
DNN’s decision-making process, making it valuable for model analysis and improvement.

Table 10. DNN decision (identified by NSGen) for a bulbul image and the mutated one with blur.

Input Neuron-semantic Features Identified by NSGen Pred.

original stick

→
eye

→

beak

→
head and
stripes

bulbul

mutated stick

→

tail, stripes

→
ear, stripes

→
black-and-

white stripes

indri

ACM Trans. Softw. Eng. Methodol.

26 • Huang and Sun, et al.

7.2 Contribution of Main Components
We delved into the individual contributions of its core components: Critical Neuron Selection (CNS) and Natural
Language Description Generation (NLDG). To do this, we created two NSGen variants for comparative analysis:
• w/o CNS: This variant excludes the CNS process from NSGen, directly uses the natural language descrip-

tions corresponding to all neurons in the selected layer to assemble the decision path, which subsequently
guides fuzzing execution.
• w/o NLDG: Conversely, this variant omits NLDG, relying instead on the Jaccard similarity of decision

paths post-CNS to determine the generation of fault-revealing examples.
Empirical results, as detailed in Table 11, underscore NSGen’s superiority over all state-of-the-art models,

as evidenced by its higher number of triggered faults (#Faults) and broader class coverage (#Classes). NSGen
outperforms all two variants in #Faults, with improvements ranging from 31.42% to 935.34%, demonstrating the
contribution of each of the main components in NSGen. Moreover, CNS contributes more than NLDG, reflecting
its major role in reducing semantic redundancy (c.f. Section 3). Meanwhile, the integration of NLDG allows
NSGen to capture the decision-making process of the model from a fine-grained and interpretable perspective,
thereby enhancing the overall performance of NSGen.

Table 11. Ablation test for NSGen in terms of #Faults and #Classes

Variants
ImageNet/ResNet50 Flowers102/MobileNet_v2 CIFAR10/VGG16_BN CIFAR100/ResNet50

#Faults/#Outputs #Classes #Faults/#Outputs #Classes #Faults/#Outputs #Classes #Faults/#Outputs #Classes

w/o CNS 948/955 330 4701/5277 99 0/0 0 1000/1008 90

w/o NLDG 6925/10000 687 5920/10000 102 4923/9999 10 7345/10000 99

NSGen 9815/9935 751 8695/9981 102* 8393/9995 10* 9653/9999 100

7.3 Effectiveness of NSGen with Same Fuzzing Outputs
In RQ1, we assess the effectiveness of NSGen by examining the number of faults triggered by test inputs. These
inputs are generated from the same initial batch of seeds within an identical duration or a number of iterations
(c.f. Section 6.1). During our experiments, we observed that some criteria generated only a minimal number of
test inputs. To ensure an equitable comparison, we standardize the output by requiring each coverage criterion to
produce the same number of test inputs (i.e., 1,000) in this experimental setup [95]. It is important to note that
certain criteria could achieve maximum coverage with just a few inputs. To address this and maintain a consistent
generation process, we reset the coverage for these criteria upon reaching maximum coverage if 1,000 inputs
had not yet been generated, and continue the experiment until the count was met. The remaining experimental
conditions mirror those of RQ1, and we evaluate the effectiveness of each criterion using three key metrics: the
number of triggered faults (#Faults), the covered classes (#Classes), and output impartiality (OI).

The experimental results are presented in Table 12. On the CIFAR10 dataset, the number of faults triggered by
the test inputs from DSC is between 14.98% and 19.63% higher than those triggered by NSGen, though DSC shows
limitations in terms of diversity. As noted in prior studies [90], DSC tends to favor inputs that notably diverge
from the training data. In the context of fuzzing, this results in increasingly rare test inputs and a significant bias
in the output distribution. Conversely, NSGen proves to be the most potent criterion on the CIFAR100, Oxford
102 Flower, and ImageNet datasets. Specifically, NSGen’s test inputs triggered between 50.80% and 90.26% more
faults than those generated by the state-of-the-art (SOTA) methods. Additionally, NSGen consistently excels in
diversity metrics; for example, on the ImageNet dataset, NSGen’s inputs covered 104 to 140 more classes than the
SOTA model’s inputs.

ACM Trans. Softw. Eng. Methodol.

Neuron Semantic-Guided Test Generation for Deep Neural Networks Fuzzing • 27

Table 12. Fuzzing results. Faults, Outputs, Classes, and OI denote triggered faults, fuzzing outputs, covered classes, and
output impartiality, respectively. Best assessments are marked .

Models Criteria CIFAR10 CIFAR100 Oxford 102 Flower ImageNet
#Faults/#Outputs #Classes OI #Faults/#Outputs #Classes OI #Faults/#Outputs #Classes OI #Faults/#Outputs #Classes OI

ResNet

NC 564/1000 10 0.9692 723/1000 97 — 539/1000 102 0.9186 666/1000 339 —
KMNC 334/1000 10 0.9667 551/1000 91 — 408/1000 102 0.9424 533/1000 281 —
NBC 367/1000 10 0.9640 542/1000 91 — 393/1000 102 0.9464 520/1000 273 —
SNAC 371/1000 10 0.9748 538/1000 88 — 417/1000 102 0.9450 530/1000 294 —
TKNC 590/1000 10 0.9714 690/1000 96 — 563/1000 101 — 633/1000 338 —
TKNP 0/1 1 — 0/1 1 — 0/1 1 — 0/1 1 —
CC 662/1000 10 0.9695 798/1000 96 — 417/1000 101 — 559/1000 291 —
LSC 754/1000 10 0.8920 777/1000 93 — 442/1000 101 — 552/1000 279 —
DSC 957 /1000 10 0.8962 628/1000 92 — 435/1000 102 0.9478 546/1000 292 —
MDSC 870/1000 10 0.8914 N/A N/A N/A N/A N/A N/A N/A N/A N/A
CAC 330/1000 10 0.9713 557/1000 94 — 362/1000 102 0.9629 513/1000 287 —
NLC 330/1000 10 0.9654 523/1000 95 — 384/1000 102 0.9574 503/1000 269 —

NSGen 800/1000 10 0.8601* 945 /1000 96* — 587 /1000 102 0.9135* 957 /1000 409 —

VGG

NC 667/1000 10 0.9731 725/1000 93 — 625/1000 101 — 685/1000 344 —
KMNC 363/1000 10 0.9469 571/1000 87 — 440/1000 101 — 527/1000 270 —
NBC 367/1000 10 0.9667 606/1000 90 — 507/1000 101 — 523/1000 267 —
SNAC 393/1000 10 0.9642 626/1000 92 — 552/1000 102 0.9243 563/1000 291 —
TKNC 622/1000 10 0.9669 806/1000 96 — 512/1000 102 0.9448 669/1000 318 —
TKNP 1/1 1 — 0/1 1 — 1/1 1 — 0/1 1 —
CC 642/1000 10 0.9675 782/1000 92 — 443/1000 101 — 616/1000 301 —
LSC 885/1000 10 0.7677 675/1000 91 — 437/1000 101 — 551/1000 273 —
DSC 987 /1000 10 0.8127 814/1000 83 — 582/1000 102 0.9333 595/1000 292 —
MDSC N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
CAC 315/1000 10 0.9592 531/1000 87 — N/A N/A N/A N/A N/A N/A
NLC 401/1000 10 0.9352 573/1000 87 — 439/1000 101 — 540/1000 275

NSGen 828/1000 10 0.7734* 967 /1000 91* — 662 /1000 102 0.9079* 964 /1000 379 —

MobileNet

NC 436/1000 10 0.9781 642/1000 93 — 593/1000 102 0.8972 708/1000 385 —
KMNC 362/1000 10 0.9546 565/1000 86 — 385/1000 101 — 584/1000 318 —
NBC 400/1000 10 0.9703 572/1000 88 — 395/1000 102 0.9562 616/1000 326 —
SNAC 392/1000 10 0.9582 575/1000 88 — 391/1000 102 0.9472 613/1000 341 —
TKNC 455/1000 10 0.9800 705/1000 96 — 566/1000 102 0.8959 750/1000 400 —
TKNP 0/1 1 — 0/1 1 — 0/1 1 — 0/1 1 —
CC 710/1000 10 0.9667 616/1000 90 — 371/1000 101 — 610/1000 321 —
LSC 747/1000 10 0.8944 627/1000 85 — 382/1000 101 — 577/1000 324 —
DSC 990 /1000 10 0.7500 618/1000 90 — 425/1000 101 — 652/1000 309 —
MDSC 826/1000 10 0.8546 N/A N/A N/A N/A N/A N/A N/A N/A N/A
CAC 397/1000 10 0.9528 555/1000 93 — 366/1000 102 0.9572 614/1000 331 —
NLC 388/1000 10 0.9455 615/1000 88 — 377/1000 101 — 609/1000 326 —

NSGen 861/1000 10 0.8323* 962 /1000 89* — 620 /1000 102 0.8849* 965 /1000 431 —

7.4 Effectiveness of Decision Path Similarity
NSGen aggregates visual concepts representing DNN prediction paths from a neuron perspective and describes
them through natural language. This suggests that mutated images, which exhibit pronounced divergences in
decision paths, serve as more potent instruments for unearthing discrepancies and revealing faults within DNNs,
and thus we refer to [30] to assess the correlation of decision path similarity with faults in DNNs. To this end,
we select the model that demonstrates the best performance on each dataset. For complex datasets like Oxford
102 Flower and ImageNet-IK, we retrieve 10 samples per category from the testing set, totaling � × 10 samples.
For simpler datasets such as CIFAR10 and CIFAR100, we extract 100 samples per category, totaling � × 100
samples. The value of � represents the number of categories. Utilizing NSGen, we delineate decision paths for
these samples and calculate their similarities, yielding (similarity, success) pairs, and compute the point-biserial
correlation coefficients [41] and analyze their p-values; herein, similarity quantifies the similarity of decision
paths between the mutated and original images, while success denotes the model’s classification of the image as
an erroneous prediction. Figure 7 visualizes the relationship between decision path similarity and model faults.
Decision path similarity and defect detection show a strong correlation, especially on ImageNet-IK and Oxford
102 Flower datasets, which demonstrates that mutated images showing significant differences in decision paths
are more effective in revealing DNN faults, as well as reflecting to some extent that NSGen holds the potential for
generating test inputs in real scenarios.

ACM Trans. Softw. Eng. Methodol.

28 • Huang and Sun, et al.

Fig. 7. Comparative Boxplot of correlation between decision path similarity and DNN bugs (x-axis shows whether the model
predicted incorrectly, 1 means the prediction was wrong, and 0 is the opposite.)

7.5 Model Robustness Enhancement
We study the value of generated fault-triggering mutants, using them through retraining strategies to enhance the
robustness of the target model. For each subject, we split the test set into two equal parts (S1 and S2) to avoid data
leakage between the augmented training set and the evaluation set built with the same technique. Specifically,
we select the first 1000 images from S1 and use NSGen to generate 1000 examples, which are all fault-revealing
images. These images are integrated with the training set to form the augmented training set, which is used to
retrain the original model. At the same time, we use two advanced adversarial test input generation methods,
PGD [51] and BIM [43], to generate universal adversarial test inputs for S2. These methods have been widely
used in existing work [37, 45, 86, 90]. Therefore, for a given subject, there are a total of three evaluation sets,
namely S2, PGD→S2, and BIM→S2, which have the same size. After obtaining the retrained model, we measured
its accuracy on each of the above three evaluation sets to measure its ability to reduce failures.

Table 13 demonstrates the effectiveness of mutants generated by NSGen in enhancing model robustness. The
first row of the table (except column S2) identifies the evaluation data sets constructed using the corresponding
techniques. Among them, the Ori row and NSGen row show the accuracy of the original model and the retrained

ACM Trans. Softw. Eng. Methodol.

Neuron Semantic-Guided Test Generation for Deep Neural Networks Fuzzing • 29

model on each evaluation set respectively. We observe that NSGen can generally significantly enhance the
model’s resistance to test sets generated by PGD and BIM attack algorithms on various datasets such as CIFAR10,
CIFAR100, Flowers102, and ImageNet-1K. For example, for the Flowers102 data set, the ResNet50 model improved
from the initial 0% accuracy to an astonishing 43.56% on the PGD→S2 test set. Similarly, the model improved
from 19.49% to 83.06% on the BIM→S2 test set. This significant improvement highlights the potential of NSGen.
On average, the performance of models retrained by NSGen improved by 1.76% on the S2 evaluation set, 8.55%
on PGD→S2, and 20.45% on BIM→S2. These data not only fully verify the practicality and effect of NSGen
technology in improving the model’s defense capabilities against various adversarial attacks, but also demonstrate
its broad applicability in practical applications.

Table 13. Accuracy after adversarial training: ‘Ori’ denotes the original model, ‘S2’ denotes the equalized test set, ‘PGD→S2’
and ‘BIM→S2’ denote test sets generated by PGD and BIM attack algorithms, respectively. ↑ indicates accuracy improvements,
and ↓ denotes decreases.

Model Dataset Criterion S2 PGD→ S2 BIM→ S2

ResNet50

CIFAR10 Ori 0.9392 0.0038 0.8476
NSGen 0.9382 ↓ 0.0088 ↑ 0.8766 ↑

CIFAR100 Ori 0.7436 0.0016 0.5910
NSGen 0.7296 ↓ 0.0034 ↑ 0.6080 ↑

Flowers102 Ori 0.8277 0.0 0.1949
NSGen 0.8806 ↑ 0.4356 ↑ 0.8306 ↑

ImageNet-1K Ori 0.7606 0.0002 0.3204
NSGen 0.7686 ↑ 0.0003 ↑ 0.4002 ↑

VGG16_BN

CIFAR10 Ori 0.9392 0.0196 0.8288
NSGen 0.9422 ↑ 0.0232 ↑ 0.8706 ↑

CIFAR100 Ori 0.7298 0.0008 0.5210
NSGen 0.7196 ↓ 0.0050 ↑ 0.5818 ↑

Flowers102 Ori 0.7383 0.0 0.0904
NSGen 0.8299 ↑ 0.4072 ↑ 0.7593 ↑

ImageNet-1K Ori 0.7338 0.0002 0.2089
NSGen 0.7404 ↑ 0.0002 0.2549 ↑

MobileNet_v2

CIFAR10 Ori 0.9374 0.0002 0.7532
NSGen 0.9386 ↑ 0.0052 ↑ 0.8372 ↑

CIFAR100 Ori 0.7394 0.0 0.4272
NSGen 0.7354 ↓ 0.0008 ↑ 0.5306 ↑

Flowers102 Ori 0.8319 0.0 0.1507
NSGen 0.9093 ↑ 0.1626 ↑ 0.8109 ↑

ImageNet-1K Ori 0.7208 0.0002 0.2223
NSGen 0.7210 ↑ 0.0002 0.2500 ↑

Average 0.0176 ↑ 0.0855 ↑ 0.2045 ↑

7.6 Unveiling Faults Detected by NSGen
In this section, we delve into NSGen’s distinctive capability to identify faults that other established criteria
overlook. We select the ResNet50/ImageNet combination for our analysis, as NSGen has demonstrated optimal
performance with this setup in prior experiments. To discern and understand the unique faults identified by NSGen,
we employ UMAP [52] visualizations of the faults generated during the fuzz testing process. For comparative
analysis, we choose KMNC, DSC, and NLC as benchmark metrics due to their strong performance in previous
experiments. Notably, NSGen is capable of detecting error types that KMNC, DSC, and NLCC tend to ignore, as
represented by the red dots Figure 8.

ACM Trans. Softw. Eng. Methodol.

30 • Huang and Sun, et al.

Further investigation into these distinct red dot clusters reveals that NSGen excels at generating test inputs
that mislead the model into making incorrect predictions through spurious correlation between features and
labels [54, 80]. For instance, as illustrated in the class activation maps and their accompanying descriptions
(refer to Table 10), NSGen identifies semantic features such as “stick” and “eyes,” which initially lead to the
classification of the subject as an “animal on a tree.” Subsequently, the feature “beak” narrows it down to “bird,”
culminating in the final identification as “bulbul” based on the “head” feature. However, when the original image
is altered, the model’s top layer misinterprets lower-level features like “ear” and “black-and-white stripes” as
indicative of “indri,” due to the species’ characteristic black and white fur and arboreal habitat. This erroneous
association causes the model to classify any animal with similar features as likely being an “indri,” showcasing
how NSGen adeptly detects spurious correlations between features and labels by tapping into the neuron’s
semantic decision-making process. This highlights NSGen’s unique ability to expose complex faults that other
metrics might not capture, emphasizing its value in enhancing model robustness against deceptive inputs.

Fig. 8. The UMAP visualization of mutated features.

7.7 Accuracy Evaluation of Neuron-Description Generation
We validated the accuracy of neuron-description pairs using a dual evaluation strategy of quantitative and
qualitative evaluation. Specifically, we used the ResNet50 model, known for its leading accuracy on the ImageNet
dataset, as the subject of our study. For the purpose of evaluation, we randomly selected 100 neuron-description
pairs generated by NSGen. The evaluation panel consisted of three Ph.D. students and six M.S. students, each
with a background in computer vision and DNN-related projects. The average time for a participant to complete
the evaluation was estimated to be about 25 minutes.

During the evaluation phase, participants were shown the 15 most active images associated with a neuron
and asked the question: “Does the generated description: ‘{ }’ accurately match this set of images?” Participants
could answer “yes”, “maybe”, or “no”. These responses were then converted into numerical scores according
to the following scheme: yes = 1, maybe = 0.5, and no = 0. The collective results of this experiment showed an
average score of 0.8561 across all evaluations, confirming the effectiveness and precision of the neuron-description
generation mechanism within NSGen. In addition, Figure 9 provides a qualitative representation of the neuron-
description pairs generated by NSGen. From a qualitative perspective, these illustrative examples shed light on the
model neuron’s ability to recognize and articulate salient features across different image categories. For example,

ACM Trans. Softw. Eng. Methodol.

Neuron Semantic-Guided Test Generation for Deep Neural Networks Fuzzing • 31

the neuron-description pairing for ‘ResNet-ImageNet, layer 4, neuron 570’ adeptly encapsulates the quintessence
of mountainous terrain, while ‘ResNet-ImageNet, layer 4, neuron 1725’ accurately describes the recurring motif
of toilet paper in different scenarios. Similarly, the images for ‘ResNet-ImageNet, layer 1, neuron 112’ highlight
the model’s ability to identify and encapsulate the theme of blue-colored objects in different environments. The
accuracy of these neuron-description pairs plays a pivotal role in guiding the fuzz testing process by pinpointing
inputs that traverse distinct decision-making pathways within a DNN. This, in turn, unveils potential faults and
vulnerabilities. Furthermore, the lucidity of these descriptions significantly augments the interpretability of the
DNN’s decision-making mechanism, offering a more intuitive grasp of model behavior.

Fig. 9. Examples of the neuron-descriptions pairs.

7.8 Case Study of Mutated Images’ Quality
Previous research [30] has emphasized the importance of the quality of mutated images. Therefore, we randomly
select some images from the first 20 mutated images. Figure 10 illustrates mutated images obtained from fuzzing
guided by different criteria, including partial criteria such as DSC and NLC, as well as NSGen. DSC aims to
generate test inputs that deviate from the distribution of existing training data, which could lead to the generation
of images that lie outside the dataset’s boundaries, making them inconsistent with the real image distribution
and resulting in unnatural appearances.

On the other hand, NLC attempts to approximate the distribution of neuron outputs from a layer perspective.
However, it may lose valuable neuron-specific information, leading to visually incoherent and unnatural regions
in the mutation images. In contrast, NSGen utilizes the semantic information of neurons, resulting in mutation
images with better-captured image features and structure. This approach reduces the risk of information loss and,
as a result, mutation images guided by NSGen exhibit higher quality.

7.9 Threats to Validity
Internal Threats: Our study faces internal threats to validity related to our implementation, including aspects
such as neuron selection, natural language description generation, template construction, coverage criteria,
and experimental framework. Neuron selection relies on gradient attribution, which, as suggested by [13],
may occasionally veer away from the data manifold, partly emphasizing background information over image
characteristics. This potential threat is acknowledged, and we mitigate it by using templates (c.f. Section 4.3.2) to
supplement the most crucial semantic information, specifically the class predicted by the DNN, thus enriching
the descriptions of image features. Another internal threat concerns the accuracy of the neuron descriptions
generated by NSGen (c.f. Section 4.2). These descriptions, derived from models trained on open-source datasets
(i.e., MILANNOTATIONS [32]), might not consistently align with the specific semantic functions of the neurons

ACM Trans. Softw. Eng. Methodol.

32 • Huang and Sun, et al.

Fig. 10. Mutated images of fuzzing guided by different criteria.

in the tested DNNs. Such inconsistencies could detract from the interpretability and validity of the insights
provided by NSGen. To mitigate this threat, we validate the accuracy of neuron description pairs in Section 7.7
using a dual evaluation strategy of quantitative and qualitative assessment. This review process ensures that the
descriptions accurately reflect the semantic features captured by the neurons. Meanwhile, to minimize risks in
our implementation, we conduct an evaluation of the correctness and adhere to the experimental framework
outlined in the literature [90].
External Threats: External threats encompass potential issues regarding our choice of assessment objects and
tools. Specifically, the selection of datasets and models can introduce uncertainty. To mitigate this, we choose
widely used datasets (CIFAR10, CIFAR100, Oxford 102 Flower, and ImageNet) and employ three commonly utilized
DNNs (VGG16_BN, ResNet50, and MobileNet_v2). ImageNet, being a large-scale dataset, is included to enhance
the diversity. These choices align with prior studies on DNN test input generation [29, 82, 90]. Additionally, we
acknowledge the potential threat posed by mutation rules (in RQ1, RQ2, and RQ3). To address this concern, we
align with the setup used in previous research [38, 90]. The validity of generated data is another area of concern,
and to mitigate this risk, we strictly adhere to the experimental settings outlined in [90]. Moreover, utilizing
existing tools introduces potential threats. Given that our method, the models used, and the tools in reference [90]
are all PyTorch-based, we extend the neuron coverage criteria and manually re-implement the reference [34] in
PyTorch Tool. We release the experimental code for review by fellow researchers to alleviate these concerns.
ConstructionThreats: Construction threats primarily stem from randomness, baseline selection, and parameter
choices. To address randomness, we repeat each experiment five times in each RQ and calculate the average results.
We also compare NSGenwith state-of-the-art methods to showcase the benefits of NSGen. Lastly, hyperparameters
for NSGen and baselines could introduce validity threats. To minimize these, we align with the settings used in
existing works [34, 38, 45, 82, 90] for baselines. For NSGen, we systematically adjust hyperparameters g to suit
different datasets. In the future, we plan to evaluate our approach with more configurations. The application
of NSGen could be a threat. NSGen has been primarily tailored and evaluated for image classification tasks (c.f.
Section 2.1) using convolutional neural networks (CNNs). CNN neurons are specialized for detecting local features
through convolutional filters. In contrast, neurons in recurrent neural networks (RNNs) and Transformers employ
recurrent or self-attention mechanisms to manage temporal and inter-positional dependencies in sequential
data. This structural divergence means that the current version of NSGen may not be directly applicable to
models with RNN and Transformer architectures. To mitigate this threat, we can explore the utilization of large
language models to interpret neurons within smaller models effectively [11]. This approach can enhance NSGen’s
adaptability to a broader range of network structures.

ACM Trans. Softw. Eng. Methodol.

Neuron Semantic-Guided Test Generation for Deep Neural Networks Fuzzing • 33

8 RELATED WORK
The realm of DNN testing has garnered considerable attention, with various innovative approaches emerging
in recent years. Notably, DeepXplore [59] introduced a pioneering white-box testing technique guided by the
coverage criterion NC. Building upon this foundation, DeepGauge [45] extended NC and put forth a set of more
fine-grained coverage criteria, including KMNC. Subsequently, inspired by these seminal works, a multitude of
DNN testing endeavors have concentrated on the development of diverse coverage criteria. Examples include
DeepCover [74], DeepCT [49], DeepMutation [50], DeepPath [78], Surprise Coverage [37, 38], Causal-Aware
Coverage [34], Neural Coverage [90], and layer-level coverage criteria [69].

Building upon these criteria, a range of testing techniques have been devised to generate test cases that aim
to enhance coverage, collectively referred to as Coverage-Guided Testing (CGT) techniques [25, 77]. Notably,
TensorFuzz [56] employed approximate nearest neighbors algorithms for coverage calculation. DeepHunter [82]
introduced novel seed sampling strategies while integrating coverage criteria from DeepGauge [45]. DLFuzz [29]
emerged as the pioneer of differential fuzzing testing frameworks, focusing on input mutation to maximize
neuron coverage and prediction discrepancies simultaneously. In a related vein, DeepJanus [66] characterized the
frontier of DNN misbehaviors by identifying pairs of inputs that are closely related, one leading to a correct DNN
output and the other to a DNN failure. The latest neuron coverage, such as Surprise Adequacy (SA) metrics [38],
aim to evaluate the ”surprise” level of a new input by measuring the distance between its neuron output trace
and the traces of all training data. On the other hand, Neural Coverage (NLC) [90] approximates the distribution
of neuron outputs from a layer perspective.

SINVAD [36] ventured into the realm of search-based input space navigation, harnessing Variational Autoen-
coders (VAEs) to construct a plausible input space mirroring the true training distribution. SINVAD navigates
this space in pursuit of images that meet specific criteria while retaining plausibility. DeepHyperion [98] defined
feature spaces tailored to DNN systems and employed Illumination Search to identify high-performing test
cases via map cells representing the feature space. Additionally, reference [26] harnessed generative machine
learning to create diverse test inputs that vary in high-level features, allowing the detection of failures that elude
other methods. DeepHyperion-CS [99] enhanced DeepHyperion by promoting inputs that contributed more
significantly to feature space exploration during previous search iterations.

It is noteworthy that numerous DNN testing works have concentrated on the design of coverage criteria and
test input generation algorithms [79, 83, 94] to uncover vulnerabilities in DNN systems. However, to the best
of our knowledge, there exists limited research explicitly dedicated to leveraging the semantic information of
critical neurons to guide the generation of test inputs.

9 CONCLUSION AND FUTURE WORK
In this paper, we propose NSGen, an innovative neuron semantic-guided test generation approach specifically
designed for DNN fuzzing. The primary objective of NSGen is to generate targeted test inputs that focus on
critical neurons within the DNN by utilizing natural language descriptions. To assess the effectiveness of NSGen,
we conducted a comprehensive set of experiments using three real-world DNN models. The experimental results
demonstrate that NSGen exhibits a remarkable increase in the number of triggered faults by 21.4% to 61.2%
compared to the state-of-the-art coverage-guided fuzzing criterion. Additionally, the test inputs generated
by NSGen effectively pinpoint the faults in DNNs by specifically targeting critical neurons. These findings
underscore the significant potential of neuron semantic-guided testing for DNNs, offering valuable insights for
further research and development in the domains of DNN testing. In the future, we will evaluate our approach to
more deep learning tasks, DNNs, and datasets. We will also strengthen our approach by exploring the utilization of
a large language model or a model and dataset-independent method for generating natural language descriptions.

ACM Trans. Softw. Eng. Methodol.

34 • Huang and Sun, et al.

ACKNOWLEDGMENTS
This work was supported in part by the National Natural Science Foundation of China (No. 62372071), the
Chongqing Technology Innovation and Application Development Project (No. CSTB2022TIAD-STX0007 and No.
CSTB2023TIAD-STX0025), the Natural Science Foundation of Chongqing (No. CSTB2023NSCQ-MSX0914) and
the Fundamental Research Funds for the Central Universities (No. 2023CDJKYJH013).

REFERENCES
[1] Accessed: 2024. NSGen. https://github.com/unknownhl/NSGen.
[2] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Gerald Penn, and Dong Yu. 2014. Convolutional neural networks

for speech recognition. IEEE/ACM Transactions on audio, speech, and language processing 22, 10 (2014), 1533–1545.
[3] Uber Accident. 2018. After Fatal Uber Crash, a Self-Driving Start-Up Moves Forward.
[4] Reduan Achtibat, Maximilian Dreyer, Ilona Eisenbraun, Sebastian Bosse, Thomas Wiegand, Wojciech Samek, and Sebastian Lapuschkin.

2023. From attribution maps to human-understandable explanations through concept relevance propagation. Nature Machine Intelligence
5, 9 (2023), 1006–1019.

[5] Mike Aizatsky, Kostya Serebryany, Oliver Chang, Abhishek Arya, and Meredith Whittaker. 2016. Announcing OSS-Fuzz: Continuous
fuzzing for open source software. Google Testing Blog (2016).

[6] Nadia Alshahwan and Mark Harman. 2014. Coverage and fault detection of the output-uniqueness test selection criteria. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis. 181–192.

[7] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473 (2014).

[8] Nicholas Bai, Rahul A Iyer, Tuomas Oikarinen, and Tsui-WeiWeng. 2024. Describe-and-Dissect: Interpreting Neurons in Vision Networks
with Language Models. arXiv preprint arXiv:2403.13771 (2024).

[9] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2014. The oracle problem in software testing: A survey.
IEEE transactions on software engineering 41, 5 (2014), 507–525.

[10] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and Antonio Torralba. 2020. Understanding the role of
individual units in a deep neural network. Proceedings of the National Academy of Sciences 117, 48 (2020), 30071–30078.

[11] Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever, Jan Leike, Jeff Wu, and William
Saunders. 2023. Language models can explain neurons in language models. URL https://openaipublic. blob. core. windows. net/neuron-
explainer/paper/index. html.(Date accessed: 14.05. 2023) (2023).

[12] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-based greybox fuzzing as markov chain. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security. 1032–1043.

[13] Sebastian Bordt, Uddeshya Upadhyay, Zeynep Akata, and Ulrike von Luxburg. 2023. The Manifold Hypothesis for Gradient-Based
Explanations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 3696–3701.

[14] Gerlof Bouma. 2009. Normalized (pointwise) mutual information in collocation extraction. Proceedings of GSCL 30 (2009), 31–40.
[15] Andrew Brock, Jeff Donahue, and Karen Simonyan. 2018. Large scale GAN training for high fidelity natural image synthesis. arXiv

preprint arXiv:1809.11096 (2018).
[16] Oliver Chang, Abhishek Arya, Kostya Serebryany, and Josh Armour. 2017. OSS-Fuzz: Five months later, and rewarding projects.
[17] Hongxu Chen, Yuekang Li, Bihuan Chen, Yinxing Xue, and Yang Liu. 2018. Fot: A versatile, configurable, extensible fuzzing framework.

In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 867–870.

[18] Edward Choi, Mohammad Taha Bahadori, Le Song, Walter F Stewart, and Jimeng Sun. 2017. GRAM: graph-based attention model for
healthcare representation learning. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data
mining. 787–795.

[19] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. 2012. Multi-column deep neural networks for image classification. In 2012 IEEE
conference on computer vision and pattern recognition. IEEE, 3642–3649.

[20] Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing: Deep neural networks with multitask
learning. In Proceedings of the 25th international conference on Machine learning. 160–167.

[21] Samet Demir, Hasan Ferit Eniser, and Alper Sen. 2019. Deepsmartfuzzer: Reward guided test generation for deep learning. arXiv preprint
arXiv:1911.10621 (2019).

[22] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical image database. In 2009
IEEE conference on computer vision and pattern recognition. Ieee, 248–255.

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805 (2018).

ACM Trans. Softw. Eng. Methodol.

https://github.com/unknownhl/NSGen

Neuron Semantic-Guided Test Generation for Deep Neural Networks Fuzzing • 35

[24] Kedar Dhamdhere, Mukund Sundararajan, and Qiqi Yan. 2018. How important is a neuron? arXiv preprint arXiv:1805.12233 (2018).
[25] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019. Deepstellar: Model-based quantitative analysis of stateful

deep learning systems. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 477–487.

[26] Isaac Dunn, Hadrien Pouget, Daniel Kroening, and Tom Melham. 2021. Exposing previously undetectable faults in deep neural networks.
In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis. 56–66.

[27] Xinyu Gao, Yang Feng, Yining Yin, Zixi Liu, Zhenyu Chen, and Baowen Xu. 2022. Adaptive test selection for deep neural networks. In
Proceedings of the 44th International Conference on Software Engineering. 73–85.

[28] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier neural networks. In Proceedings of the fourteenth
international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 315–323.

[29] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. Dlfuzz: Differential fuzzing testing of deep learning systems. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 739–743.

[30] Fabrice Harel-Canada, Lingxiao Wang, Muhammad Ali Gulzar, Quanquan Gu, and Miryung Kim. 2020. Is neuron coverage a meaningful
measure for testing deep neural networks?. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 851–862.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 770–778.

[32] Evan Hernandez, Sarah Schwettmann, David Bau, Teona Bagashvili, Antonio Torralba, and Jacob Andreas. 2022. Natural language
descriptions of deep visual features. In International Conference on Learning Representations.

[33] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation 9, 8 (1997), 1735–1780.
[34] Zhenlan Ji, Pingchuan Ma, Yuanyuan Yuan, and Shuai Wang. 2023. CC: Causality-Aware Coverage Criterion for Deep Neural Networks.

In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 1788–1800.
[35] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag of tricks for efficient text classification. arXiv preprint

arXiv:1607.01759 (2016).
[36] Sungmin Kang, Robert Feldt, and Shin Yoo. 2020. Sinvad: Search-based image space navigation for dnn image classifier test input

generation. In Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops. 521–528.
[37] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system testing using surprise adequacy. In 2019 IEEE/ACM 41st

International Conference on Software Engineering (ICSE). IEEE, 1039–1049.
[38] Jinhan Kim, Robert Feldt, and Shin Yoo. 2023. Evaluating Surprise Adequacy for Deep Learning System Testing. ACM Transactions on

Software Engineering and Methodology 32, 2 (2023), 1–29.
[39] Jinhan Kim, Jeongil Ju, Robert Feldt, and Shin Yoo. 2020. Reducing dnn labelling cost using surprise adequacy: An industrial case study

for autonomous driving. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 1466–1476.

[40] Igor Kononenko. 2001. Machine learning for medical diagnosis: history, state of the art and perspective. Artificial Intelligence in medicine
23, 1 (2001), 89–109.

[41] Diana Kornbrot. 2014. Point biserial correlation. Wiley StatsRef: Statistics Reference Online (2014).
[42] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features from tiny images. (2009).
[43] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. 2018. Adversarial examples in the physical world. In Artificial intelligence safety

and security. Chapman and Hall/CRC, 99–112.
[44] Seokhyun Lee, Sooyoung Cha, Dain Lee, and Hakjoo Oh. 2020. Effective white-box testing of deep neural networks with adaptive

neuron-selection strategy. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis. 165–176.
[45] Ma Lei, Juefei-Xu Felix, Sun Jiyuan, Chen Chunyang, Su Ting, Zhang Fuyuan, Xue Minhui, Li Bo, Li Li, Liu Yang, et al. 2018. Deepgauge:

Comprehensive andmulti-granularity testing criteria for gauging the robustness of deep learning systems. arXiv preprint arXiv:1803.07519
(2018).

[46] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2015. A diversity-promoting objective function for neural
conversation models. arXiv preprint arXiv:1510.03055 (2015).

[47] Zenan Li, Xiaoxing Ma, Chang Xu, and Chun Cao. 2019. Structural coverage criteria for neural networks could be misleading. In 2019
IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER). IEEE, 89–92.

[48] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin
Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019).

[49] Lei Ma, Felix Juefei-Xu, Minhui Xue, Bo Li, Li Li, Yang Liu, and Jianjun Zhao. 2019. Deepct: Tomographic combinatorial testing for deep
learning systems. In 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 614–618.

[50] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao Xie, Li Li, Yang Liu, Jianjun Zhao, et al. 2018. Deepmutation:
Mutation testing of deep learning systems. In 2018 IEEE 29th international symposium on software reliability engineering (ISSRE). IEEE,

ACM Trans. Softw. Eng. Methodol.

36 • Huang and Sun, et al.

100–111.
[51] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017. Towards deep learning models

resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017).
[52] Leland McInnes, John Healy, and James Melville. 2018. Umap: Uniform manifold approximation and projection for dimension reduction.

arXiv preprint arXiv:1802.03426 (2018).
[53] Sharan Narang, Colin Raffel, Katherine Lee, Adam Roberts, Noah Fiedel, and Karishma Malkan. 2020. Wt5⁈ training text-to-text models

to explain their predictions. arXiv preprint arXiv:2004.14546 (2020).
[54] Yannic Neuhaus, Maximilian Augustin, Valentyn Boreiko, and Matthias Hein. 2023. Spurious Features Everywhere - Large-Scale

Detection of Harmful Spurious Features in ImageNet. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).
20235–20246.

[55] Maria-Elena Nilsback and Andrew Zisserman. 2008. Automated flower classification over a large number of classes. In 2008 Sixth Indian
conference on computer vision, graphics & image processing. IEEE, 722–729.

[56] Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. 2019. Tensorfuzz: Debugging neural networks with coverage-
guided fuzzing. In International Conference on Machine Learning. PMLR, 4901–4911.

[57] Tuomas Oikarinen and Tsui-Wei Weng. 2022. Clip-dissect: Automatic description of neuron representations in deep vision networks.
arXiv preprint arXiv:2204.10965 (2022).

[58] Kexin Pei. 2017. Deepxplore code release. https://github.com/peikexin9/deepxplore/.
[59] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Automated whitebox testing of deep learning systems. In

proceedings of the 26th Symposium on Operating Systems Principles. 1–18.
[60] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word representation. In Proceedings of

the 2014 conference on empirical methods in natural language processing (EMNLP). 1532–1543.
[61] Evelyn C Pielou. 1966. The measurement of diversity in different types of biological collections. Journal of theoretical biology 13 (1966),

131–144.
[62] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela

Mishkin, Jack Clark, et al. 2021. Learning transferable visual models from natural language supervision. In International conference on
machine learning. PMLR, 8748–8763.

[63] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019. Language models are unsupervised
multitask learners. OpenAI blog 1, 8 (2019), 9.

[64] Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan Huang, Jie Zhou, and Jiwen Lu. 2022. Denseclip:
Language-guided dense prediction with context-aware prompting. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 18082–18091.

[65] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and Herbert Bos. 2017. Vuzzer: Application-aware
evolutionary fuzzing.. In NDSS, Vol. 17. 1–14.

[66] Vincenzo Riccio and Paolo Tonella. 2020. Model-based exploration of the frontier of behaviours for deep learning system testing. In
Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 876–888.

[67] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al. 2015. Imagenet large scale visual recognition challenge. International journal of computer vision 115 (2015),
211–252.

[68] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. 2018. Mobilenetv2: Inverted residuals and
linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 4510–4520.

[69] Jasmine Sekhon and Cody Fleming. 2019. Towards improved testing for deep learning. In 2019 IEEE/ACM 41st International Conference
on Software Engineering: New Ideas and Emerging Results (ICSE-NIER). IEEE, 85–88.

[70] Kosta Serebryany. 2016. Continuous fuzzing with libfuzzer and addresssanitizer. In 2016 IEEE Cybersecurity Development (SecDev). IEEE,
157–157.

[71] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 (2014).

[72] PR Smith. 1981. Bilinear interpolation of digital images. Ultramicroscopy 6, 2 (1981), 201–204.
[73] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: a simple way to prevent

neural networks from overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.
[74] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and Daniel Kroening. 2018. Concolic testing for deep

neural networks. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. 109–119.
[75] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution for deep networks. In International conference on machine

learning. PMLR, 3319–3328.
[76] Robert Swiecki and F Gröbert. 2016. Honggfuzz. Available online a t: http://code. google. com/p/honggfuzz (2016).

ACM Trans. Softw. Eng. Methodol.

https://github.com/peikexin9/deepxplore/

Neuron Semantic-Guided Test Generation for Deep Neural Networks Fuzzing • 37

[77] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated testing of deep-neural-network-driven autonomous
cars. In Proceedings of the 40th international conference on software engineering. 303–314.

[78] Dong Wang, Ziyuan Wang, Chunrong Fang, Yanshan Chen, and Zhenyu Chen. 2019. DeepPath: Path-driven testing criteria for deep
neural networks. In 2019 IEEE International Conference On Artificial Intelligence Testing (AITest). IEEE, 119–120.

[79] Matthew Wicker, Xiaowei Huang, and Marta Kwiatkowska. 2018. Feature-guided black-box safety testing of deep neural networks. In
Tools and Algorithms for the Construction and Analysis of Systems: 24th International Conference, TACAS 2018, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part I 24. Springer,
408–426.

[80] Kai Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. 2020. Noise or signal: The role of image backgrounds in object
recognition. arXiv preprint arXiv:2006.09994 (2020).

[81] Xiaofei Xie, Tianlin Li, JianWang, Lei Ma, Qing Guo, Felix Juefei-Xu, and Yang Liu. 2022. NPC: N euron P ath C overage via Characterizing
Decision Logic of Deep Neural Networks. ACM Transactions on Software Engineering and Methodology (TOSEM) 31, 3 (2022), 1–27.

[82] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019.
Deephunter: a coverage-guided fuzz testing framework for deep neural networks. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 146–157.

[83] Xiaofei Xie, Lei Ma, Haijun Wang, Yuekang Li, Yang Liu, and Xiaohong Li. 2019. Diffchaser: Detecting disagreements for deep neural
networks. International Joint Conferences on Artificial Intelligence Organization.

[84] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015.
Show, attend and tell: Neural image caption generation with visual attention. In International conference on machine learning. PMLR,
2048–2057.

[85] Qin Xu, Jiahui Wang, Bo Jiang, and Bin Luo. 2023. Fine-grained visual classification via internal ensemble learning transformer. IEEE
Transactions on Multimedia (2023).

[86] Ming Yan, Junjie Chen, Xuejie Cao, Zhuo Wu, Yuning Kang, and Zan Wang. 2023. Revisiting deep neural network test coverage from
the test effectiveness perspective. Journal of Software: Evolution and Process (2023), e2561.

[87] Shenao Yan, Guanhong Tao, Xuwei Liu, Juan Zhai, Shiqing Ma, Lei Xu, and Xiangyu Zhang. 2020. Correlations between deep neural
network model coverage criteria and model quality. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 775–787.

[88] Zhou Yang, Jieke Shi, Muhammad Hilmi Asyrofi, and David Lo. 2022. Revisiting neuron coverage metrics and quality of deep neural
networks. In 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 408–419.

[89] Yuanyuan Yuan, Qi Pang, and Shuai Wang. 2022. Unveiling hidden dnn defects with decision-based metamorphic testing. In Proceedings
of the 37th IEEE/ACM International Conference on Automated Software Engineering. 1–13.

[90] Yuanyuan Yuan, Qi Pang, and Shuai Wang. 2023. Revisiting neuron coverage for dnn testing: A layer-wise and distribution-aware
criterion. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 1200–1212.

[91] Michal Zalewski. 2017. American fuzzy lop.
[92] Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019. From recognition to cognition: Visual commonsense reasoning. In

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 6720–6731.
[93] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid. 2018. DeepRoad: GAN-based metamorphic testing

and input validation framework for autonomous driving systems. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. 132–142.

[94] Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen Wang, Jin Song Dong, and Ting Dai. 2020. White-box fairness
testing through adversarial sampling. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. 949–960.

[95] Yuhan Zhi, Xiaofei Xie, Chao Shen, Jun Sun, Xiaoyu Zhang, and Xiaohong Guan. 2023. Seed Selection for Testing Deep Neural Networks.
ACM Transactions on Software Engineering and Methodology 33, 1 (2023), 1–33.

[96] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. 2016. Learning deep features for discriminative
localization. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2921–2929.

[97] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. 2017. Places: A 10 million image database for scene
recognition. IEEE transactions on pattern analysis and machine intelligence 40, 6 (2017), 1452–1464.

[98] Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, and Paolo Tonella. 2021. Deephyperion: exploring the feature space of deep
learning-based systems through illumination search. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 79–90.

[99] Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, and Paolo Tonella. 2023. Efficient and effective feature space exploration for
testing deep learning systems. ACM Transactions on Software Engineering and Methodology 32, 2 (2023), 1–38.

ACM Trans. Softw. Eng. Methodol.

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Neural Networks
	2.2 Coverage-guided Testing
	2.3 Natural Language Description for Neurons

	3 Motivation
	4 Methodology
	4.1 Overview of NSGen
	4.2 Neuron-Description Pairs Generation
	4.3 Test Input Generation

	5 Implementation
	5.1 Datasets and DNN Models
	5.2 Input Mutation Rules
	5.3 Baselines
	5.4 Evaluation Metrics

	6 Evaluation
	6.1 RQ1: Effectiveness and Efficiency of NSGen
	6.2 RQ2: Diversity of Erroneous Behaviors.
	6.3 RQ3: Impact of Different Text Encoders
	6.4 RQ4: Impact of NSGen Configurations

	7 Discussion
	7.1 Interpretability of NSGen
	7.2 Contribution of Main Components
	7.3 Effectiveness of NSGen with Same Fuzzing Outputs
	7.4 Effectiveness of Decision Path Similarity
	7.5 Model Robustness Enhancement
	7.6 Unveiling Faults Detected by NSGen
	7.7 Accuracy Evaluation of Neuron-Description Generation
	7.8 Case Study of Mutated Images' Quality
	7.9 Threats to Validity

	8 Related Work
	9 Conclusion and Future Work
	References

