
Revisiting the Identification of the Co-Evolution of Production and

Test Code

WEIFENG SUN, Chongqing University, China
MENG YAN∗, Chongqing University, China
ZHONGXIN LIU, Zhejiang University, China
XIN XIA, Zhejiang University, China
YAN LEI, Chongqing University, China
DAVID LO, Singapore Management University, Singapore

Many software processes advocate that the test code should co-evolve with the production code. Prior work usually studies

such co-evolution based on production-test co-evolution samples mined from software repositories. A production-test co-

evolution sample refers to a pair of a test code change and a production code change where the test code change triggers

or is triggered by the production code change. The quality of the mined samples is critical to the reliability of research

conclusions. Existing studies mined production-test co-evolution samples based on the following assumption: if a test class

and its associated production class change together in one commit, or a test class changes immediately after the

changes of associated production class within a short time interval, this change pair should be a production-test
co-evolution sample. However, the validity of this assumption has never been investigated.

To ill this gap, we present an empirical study, investigating the reasons for test code updates occurring after the associated

production code changes, and revealing the pervasive existence of noise in the production-test co-evolution samples identiied

based on the aforementioned assumption by existing works. We deine a taxonomy of such noise, including 6 categories (i.e.,

adaptive maintenance, perfective maintenance, corrective maintenance, indirectly related production code update, indirectly

related test code update, and other reasons). Guided by the empirical indings, we propose CHOSEN (an identiiCation

metHodOf production-teSt co-EvolutioN) based on a two-stage strategy. CHOSEN takes a test code change and its associated

production code change as input, aiming to determine whether the production-test change pair is a production-test co-

evolution sample. Such identiied samples are the basis of or are useful for various downstream tasks. We conduct a series

of experiments to evaluate our method. Results show that: 1) CHOSEN achieves an AUC of 0.931 and an F1-score of 0.928,

signiicantly outperforming existing identiication methods. 2) CHOSEN can help researchers and practitioners draw more

accurate conclusions on studies related to the co-evolution of production and test code. For the task of Just-In-Time (JIT)

obsolete test code detection, which can help detect whether a piece of test code should be updated when developers modify the

production code, the test set constructed by CHOSEN can help measure the detection method’s performance more accurately,

only leading to 0.76% of average error compared with ground truth. In addition, the dataset constructed by CHOSEN can be

used to train a better obsolete test code detection model, of which the average improvements on accuracy, precision, recall,

and F1-score are 12.00%, 17.35%, 8.75%, and 13.50% respectively.

∗corresponding author.

Authors’ addresses: Weifeng Sun, weifeng.sun@cqu.edu.cn, Chongqing University, China; Meng Yan, Chongqing University, China, mengy@

cqu.edu.cn; Zhongxin Liu, Zhejiang University, China, liu_zx@zju.edu.cn; Xin Xia, Zhejiang University, China, xin.xia@acm.org; Yan Lei,

Chongqing University, China, yanlei@cqu.edu.cn; David Lo, Singapore Management University, Singapore, davidlo@smu.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2023/7-ART $15.00

https://doi.org/10.1145/3607183

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3607183
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3607183&domain=pdf&date_stamp=2023-07-03

2 • Weifeng Sun, Meng Yan, Zhongxin Liu, Xin Xia, Yan Lei, and David Lo

CCS Concepts: · Software and its engineering → Software evolution; Empirical software validation; Software

version control.

Additional KeyWords and Phrases: Empirical software engineering, Mining software repositories, Software evolution, Software

testing

1 INTRODUCTION

A software system must evolve or it will become less useful over time [42, 55, 74, 88]. During evolution, the
production code is constantly modiied and updated to address new requirements or possible issues that may
arise. Test code, as an essential artifact, should co-evolve with the production code to ensure that the associated
production code meets speciication, which is referred to as co-evolution of production and test code [81], hereon
PT co-evolution. Despite the importance of PT co-evolution, developers may forget or ignore updating test code,
which brings in obsolete test code [81], thereby increasing the cost of development and maintenance [50, 65].

PT co-evolution has been attracting continued interests from both academia and industry. On the one hand,
researchers [42, 55, 88] have proposed various visualization techniques to display production and test ile changes
over time (PT co-evolution) and group iles that change together. Such visualizations can help analysts recognize
diferent PT co-evolution scenarios, obtaining relevant observations. Further, Wang et al. have proposed a state-of-
the-art method for Just-In-Time (JIT) obsolete test code detection (for short, OTCD), named SITAR [81]. SITAR
enables learning a model from the historical data of PT co-evolution in a project and help detect whether a piece
of test code should be updated when developers modify the production code.
Identifying and mining production-test co-evolution samples is the basis of existing studies related to PT co-

evolution, such as PT co-evolution visualization [42, 55, 88] and JIT obsolete test code detection [81]. A production-

test co-evolution sample, hereon PT co-evolution sample, refers to a pair of a test code change and a production code
change where the test one triggers or is triggered by the production one. Unfortunately, given a test code change
and a production code change, it is hard to automatically determine whether they co-evolve or not, because: 1)
Associating a test code snippet with a production code snippet is already a non-trivial task if there are no explicit
links between them (e.g., their names follow some conventions). 2) Precisely determining whether a test code
co-evolves with its associated production code requires comprehending their changes and understanding their
relationship, which is also diicult.
To enable the mining of PT co-evolution samples, existing work related to PT co-evolution widely use the

following strategies to identify PT co-evolution samples: 1) Focusing on unit test classes and taking advantage of
naming conventions to ease the association of test and production classes. For example, given a unit test class
FooTest, only its tested production class (i.e., Foo) will be considered when constructing PT co-evolution samples.
For convenience, hereon, we refer to such tested production code as associated production code. 2) Collecting PT

co-evolution samples based on the following assumption [42, 55, 81, 88]:

Assumption .1

If a test class and its associated production class change together in one commit [42, 55, 88], or a test class

changes immediately after the changes of associated production class within a short time interval (denoted

by �), this change pair should be a production-test co-evolution sample [81].

For example, in Wang et al.’s work [81], if a test class is updated within 48 hours after the change of its associated
production class, such change pair is considered as a PT co-evolution sample.
However, we ind that even if we only focus on unit test classes and associate test and production classes

based on naming conventions, the widely used assumption (shown in Assumption .1) does not always hold. For
example, Figure 1 shows a commit collected from the Easy-rules [24] project, where a test class (i.e., JexlActionTest)

ACM Trans. Softw. Eng. Methodol.

Revisiting the Identification of the Co-Evolution of Production and Test Code • 3

and its associated production class (i.e., JexlAction) change simultaneously. In the production class (Listing 1),
a developer modiied the logger message by updating łevaluatež to łexecutež to help users understand the
JexlException. In Listing 2, the test code encapsulated the technical facts (i.e., łSystem.out") into the new Jexl
namespaces. Note that, PT co-evolution implies that production code modiications and test code modiications
are necessarily correlated couplings, i.e., the test code change triggers or is triggered by the production one. For
the abovementioned example, although the production code and test code are modiied with a similar purpose:
to facilitate future project maintenance, the content of their modiications is not related. In other words, the
inference that the production code modiied the logger message of the JexlException must cause the test code to
encapsulate the technical facts does not hold. Figure 2 shows another example. Speciically, in the production
code (Listing 3), the developer made two changes: they replaced the private ield fakeValuesServicewith faker
and modiied the constructor to initialize faker. Meanwhile, in Listing 4, the test code extracted the method with
the @Before annotation1 into a base test class and inherited from that base class. This modiication of the test
code is a code refactoring activity, which aims to improve test code readability, reduce code duplication, and
facilitate future maintenance of the test cases’ common behavior. In contrast, the changes made to the production
code involve the updates of a private property and a method, which should not result in the test code removing
faker, or before method. Therefore, the changes made to the test code are independent of the changes made
to the production code. Overall, we can see that in each example, the test code change is not triggered by the
production code change.

1Annotating a public void method with @Before causes that method to be run before the test method

Fig. 1. False co-evolution example in easy-rules project.

Listing 1. JexlAction.java change (simplified, commit 1a06601).

i ndex c a2b f 9b . . 8 4 f d 1 5 c 100644
− pu b l i c vo id ex e cu t e (F a c t s f a c t s) throws Excep t i on {
+ p u b l i c vo id ex e cu t e (F a c t s f a c t s) {

Ob j e c t s . r equ i r eNonNu l l (f a c t s , " f a c t s cannot be n u l l ") ;
MapContext c t x = new MapContext (f a c t s . asMap ()) ;
t r y {

c omp i l e d S c r i p t . e x e cu t e (c t x) ;
} c a t ch (J e x l E x c e p t i o n e) {

− LOGGER . e r r o r (" Unable to e v a l u a t e e x p r e s s i o n : ' " + e x p r e s s i o n + " ' on f a c t s : "+ f a c t s , e) ;
+ LOGGER . e r r o r (" Unable to exe cu t e e x p r e s s i o n : ' " + e x p r e s s i o n + " ' on f a c t s : "+ f a c t s , e) ;

throw e ;
}

}

Listing 2. JexlActionTest.java change (simplified, commit 1a06601).

i ndex 7 b99721 . . d35142c 100644
− pu b l i c vo id t e s t J e x l F u n c t i o n E x e c u t i o n () throws Excep t i on {
+ p u b l i c vo id t e s t J e x lAc t i onExe cu t i onWi thCus t omFunc t i on () throws Excep t i on {
− Act ion p r i n tA c t i o n = new J e x lA c t i o n (" var h e l l o = f un c t i o n () {
− System . out . p r i n t l n (\ " He l l o from JEXL ! \ ") ; } ; h e l l o () ; ") ;
+ P r i n t S t r e am o r i g i n a l S t r e am = System . out ;
+ ByteArrayOutputS t ream outpu tS t r eam = new ByteArrayOutputS t ream () ;
+ System . s e tOu t (new Pr i n t S t r e am (ou tpu tS t r eam)) ;
+ Map< S t r i ng , Ob jec t > namespaces = new HashMap < >() ;
+ namespaces . put (" s ou t " , System . out) ;
+ J e x l Eng i n e j e x l E n g i n e = new J e x l B u i l d e r () . namespaces (namespaces) . c r e a t e () ;
+ Act ion p r i n tA c t i o n = new J e x lA c t i o n (" var h e l l o = f un c t i o n () {
+ sou t : p r i n t l n (\ " He l l o from JEXL ! \ ") ; } ; h e l l o () ; " , j e x l E n g i n e) ;

ACM Trans. Softw. Eng. Methodol.

4 • Weifeng Sun, Meng Yan, Zhongxin Liu, Xin Xia, Yan Lei, and David Lo

Fig. 2. False co-evolution example in java-faker project.

Listing 3. Hacker.java change (simplified, commit f574317).

i ndex 3 a84b23 . . 2 ec2597 100644
p u b l i c c l a s s Hacker {

+ p r i v a t e f i n a l Faker f a k e r ;
− p r i v a t e f i n a l F a k eV a l u e s S e r v i c e I n t e r f a c e f a k eV a l u e s S e r v i c e ;
− pu b l i c Hacker (F a k eV a l u e s S e r v i c e I n t e r f a c e f a k eV a l u e s S e r v i c e) {
− t h i s . f a k eV a l u e s S e r v i c e = f a k eV a l u e s S e r v i c e ;
+ Hacker (Faker f a k e r) {
+ t h i s . f a k e r = f a k e r ;

}
}

Listing 4. HackerTest.java change (simplified, commit f574317).

i ndex 2 a f 4d21 . . 8 6 3 9 2 1 3 100644
− pu b l i c c l a s s HackerTes t {
− p r i v a t e Faker f a k e r ;
− @Before
− pu b l i c vo id b e f o r e () {
− f a k e r = new Faker () ;
− }
+ p u b l i c c l a s s HackerTes t ex t end s Ab s t r a c t F a k e rT e s t {

. . .
}

These examples mean that the PT co-evolution samples collected by prior work based on the Assumption .1

may contain noise, or in other words, false positives. Like any data-driven task, existing studies related to PT

co-evolution are highly data-dependent. For example, for JIT obsolete test code detection [81], in order to learn
complex features of production code changes, we require large production-test change pairs that have been labeled
as either PT co-evolution or PT non-co-evolution. As for PT co-evolution visualization [42, 55, 88], developers and
test engineers rely on diferent PT co-evolution scenarios mined from PT co-evolution samples. Moreover, some
linking methods use PT co-evolution samples to construct the traceability between test code and production code
(hereafter called test-to-code traceability) by assuming that test code and their associated production code usually
co-evolve together throughout time [66, 83]. However, the noise might potentially impact the data quality and
subsequently pose a threat to prior work’s indings and conclusions. Data quality is an integral component of any
data-driven system. The misinformation or noise can make benchmark performance results misleading [37, 70].
This can cause obsolete test code detection models to fail to generalize to real-world scenarios if they have not
been trained with realistic, high-quality data. Furthermore, false positives may make linking methods incorrectly
construct test-to-code traceability or confuse developers when identifying co-evolution scenarios in PT co-evolution
visualization. Motivated by this, this work revisits the identiication of the co-evolution of production and test code.
To keep in line with prior work, we also focus on unit test classes and use naming conventions to associate test
and production code. First, we investigate to what extent the assumption shown in Assumption .1 is satisied
through an empirical study. Speciically, we carefully select 44 projects with good testing eforts [62] from GitHub,
construct a total of 33,567 PT co-evolution samples based on the assumption, and manually inspect a statistically
signiicant sample made up of 380 PT co-evolution candidates, representing the population with 95% conidence
and 5% margin of error. The results show that depending on the selected time interval � , 11.34%-96.40% of the
constructed PT co-evolution samples are false positives, i.e., the test code change is not triggered by the associated
production code change. Then, based on our inspection, we deine a taxonomy of the cases where the assumption
shown in Assumption .1 does not hold. The taxonomy consists of 6 categories, including adaptive maintenance,

ACM Trans. Softw. Eng. Methodol.

Revisiting the Identification of the Co-Evolution of Production and Test Code • 5

perfective maintenance, corrective maintenance, indirectly related production code update, indirectly related test
code update, and other reasons.
The empirical study shows that the assumption of prior studies does not always hold in practice and the

methods used by prior work to identify PT co-evolution samples may introduce noise. This prompted us to
investigate what is the impact of such noise to the conclusion of the downstream tasks. We select the JIT obsolete
test code detection (for short, OTCD) task [81] as the example, because this task can help demonstrate the impact
of noise in a quantitative manner. OTCD can remind developers to update obsolete tests just after they change
the production code, which can help developers 1) ind the obsolete tests that would not fail and 2) ind the
obsolete tests that would fail without executing them. Speciically, we manually re-label 741 production-test change
pairs collected and labeled by the identiication method of SITAR (the state-out-the-art JIT OTCD method), and
investigate the impacts of the mislabeled pairs on prior work’s conclusions. From the results, the production-test
change pairs mislabeled by the existing method signiicantly impacts the detection performance. The maximum
precision decline is 13.33%. To reduce such noise, we propose an identiiCation metHod Of production-teSt
co-EvolutioN, namely CHOSEN. Besides time intervals often adopted by previous works, CHOSEN attempts to
understand the relationship between production and test code changes. Speciically, given a test code change
�ℎ����� , CHOSEN irst constructs its production-test change pair ⟨�ℎ����� , �ℎ����� ⟩, where �ℎ����� is the latest
change of the associated production code that occurs in the same commit of or before �ℎ����� . Then, CHOSEN

determines whether �ℎ����� is triggered by �ℎ����� based on the time interval between �ℎ����� and �ℎ����� and
5 ine-grained strategies learned from our empirical study (e.g., production-test change pair with non-semantic
relevance is not co-evolving).

We evaluate the efectiveness of CHOSEN on PT co-evolution identiication by comparing the PT co-evolution

samples identiied by CHOSEN with manually labeled ground truth (another set of 380 samples re-selected and
labelled). The results show that CHOSEN achieves an F1-score of 0.928 and an AUC (area under the precision-
recall curve) of 0.931, signiicantly better than existing identiication methods. Moreover, we demonstrate how
CHOSEN can be used to facilitate the downstream tasks related to co-evolution of production and test code. We
select the OTCD task as the representative. Speciically, we irst leverage CHOSEN to re-label 741 production-test
change pairs collected and labeled by the identiication method of SITAR and investigate the usefulness of
CHOSEN in the OTCD task. Experimental results show that: 1) Measuring the OTCD model on the test set
labeled by existing identiication methods leads to average performance errors of 6.01%, 8.40%, 6.96%, and 3.61%
in terms of accuracy, precision, recall, and F1-score, respectively. In contrast, those errors are only 0.68%, 0.99%,
0.62%, and 0.76% on the test set labeled by CHOSEN. 2) After training the OTCD model on the training set labeled
by CHOSEN, the model’s precision, recall, and F1-score is improved by 17.35%, 8.75%, and 13.50%, respectively.

In summary, this paper makes the following contributions:
(1) We conduct an empirical study to investigate the validity of the assumption that is widely used by prior

work [42, 55, 81, 88] (i.e., if a test class changes together or immediately after the changes of associated

production class within a short time interval, this change pair should be a production-test co-evolution

sample.) to collect and label production-test co-evolution samples. Results show that 11.34%-96.40% of the PT
co-evolution samples constructed by such assumption are false positives.
(2) We perform an in-depth analysis on the cases where the assumption used by prior work does not hold

and summarize 6 types of test code change patterns which are not triggered by the changes of the associated
production code. To the best of our knowledge, this is the irst work that investigates such test code change
patterns.

(3) We propose a method, namely CHOSEN, based on our empirical study’s indings to identify production-test

co-evolution samples. Experimental results show that, compared to existing identiication methods, CHOSEN

achieves signiicantly better F1-score and AUC. Moreover, for the task of JIT obsolete test code detection, the test

ACM Trans. Softw. Eng. Methodol.

6 • Weifeng Sun, Meng Yan, Zhongxin Liu, Xin Xia, Yan Lei, and David Lo

set labeled by CHOSEN can help measure the detection model’s performance more accurately, and the training
set labeled by CHOSEN can help improve the performance of the detection model.

(4) Finally, we built a dataset with over 46k production-test change pairs, includingmore than 1kmanually labeled
pairs (380 pairs for empirical studies, 380 pairs to verify CHOSEN efectiveness, and 741 pairs to demonstrate the
usefulness of CHOSEN for downstream tasks). We open these data and our scripts for follow-up work2.

The paper is organized as follows: In Section 2, we describe the empirical study that is performed to explore to
what extent the Assumption .1 is satisied. We demonstrate the impacts of mislabeled pairs on prior work’s
conclusions and elaborate on our co-evolution sample identiication method in Section 3. Section 4 evaluates the
efectiveness of our method on co-evolution identiication and the usefulness of CHOSEN on downstream tasks
related to production-test co-evolution. In Section 5, we discuss the limitations of this paper, the implications for
researchers and practitioners, and the threats to validity. Section 6 presents a brief review of related work. Finally,
Section 7 concludes the paper and mentions future work.

2 EMPIRICAL STUDY

The goal of the empirical study is to investigate the validity of assumption that is test code and associated
production code are co-evolving if a test class and its associated production class change together in one
commit [42, 55, 88], or a test class changes immediately after the changes of associated production class within a
short time interval (denoted by �). We irst build a dataset of PT co-evolution samples based on the assumption.
Then, some samples are randomly selected and manually labeled to check whether the test code update is
attributable to the change of the associated production code. For the samples where the test code change is not
triggered by the associated production code change, we further analyze the reasons behind the test code change.
This empirical study helps us answer the following two research questions:

RQ1.1: Are production-test change pairs whose test class changes immediately after the changes of associated

production class always PT co-evolution samples? This RQ aims to investigate to what extent the assumption
(shown in Assumption .1) is satisied.

RQ1.2: What types of test code updates are not triggered by the changes of their associated production code. This
research question aims to characterize the cases where the assumption (shown in Assumption .1) does not hold.

Table 1. Statistics of evaluation results for 150 projects.

Metrics
Per Project

Mean Median Std. Dev.

Branch Coverage 54.18% 54.00% 25.63%

������� 77980339 10514949 202116309

������� 21080109 3894575 49098123
�������

��������
28.69% 27.42% 17.56%

�ℎ�������� 6584 2988 9606

�ℎ�������� 1448 652 2095
�ℎ��������
�ℎ���������

21.39% 21.13% 12.03%

ACM Trans. Softw. Eng. Methodol.

Revisiting the Identification of the Co-Evolution of Production and Test Code • 7

2.1 Data Collection and Cleaning

2.1.1 Project Selection. In terms of project selection, we irst follow and clone the available projects used byWang
et al. [34, 81]. These projects are all Apache Software Foundation (ASF) Java projects. Considering that only using
the ASF projects to construct a dataset may introduce data bias, thereby missing some PT co-evolution practices
that do not appear in the ASF projects, we further supplement 1,500 Java projects used by Wen et al. [82]. After
iltering out duplicate projects, we obtain a total of 1,952 projects. Next, we select the project using the following
criteria: 1) Project Directory Layout. We only consider Java projects managed by Maven. Maven projects follow the
standard directory layout [31], which allows us to conveniently ind its associated production code using naming

convention; 2) Popularity. The number of stars [27] of a repository relects its popularity on GitHub. Following
previous research [82], we select projects with more than ten stars to avoid possible irrelevant/toy projects; 3)
Long change history. Following previous work [56ś58, 75], we exclude projects with a commit history of fewer
than three years to ensure that the selected projects are well-maintained; 4) Compilability. The selected projects
can be compiled, and all test cases can be run successfully, allowing us to obtain the project’s test coverage and
perform subsequent testing analysis. In order to run the test cases, we need to manually restore the compilation
environment of the project, which is time-consuming and resource-intensive. Therefore, we select one project
from 1,952 projects in a random manner and verify whether the project satisies the aforementioned criteria.
The project that meets the criteria is retained; otherwise, it is discarded. We utilized a server with two 32-core
processors and 256GB memory to compile the projects eiciently. We hired three experienced master students to
perform compilation. During the project selection process, we attempted to compile a total of 487 projects but
successfully compiled only 150. The entire compilation process, including setting up the environment, debugging
errors, coniguring test coverage tools, running all unit test cases, and collecting coverage information, required
approximately three weeks of efort in total. Despite the considerable efort, applying rigorous project selection
criteria is necessary to guarantee the reliability and validity of our empirical study.

We expect to build a dataset from projects with the best testing eforts [62]. To this end, a preliminary analysis
is conducted to evaluate how well these projects are tested. Based on previous studies [62], a project can be
considered extensively tested if it meets the following conditions: 1) ratio of changes occurring in test and
production code is over 20%; 2) ratio between the amount of test and production code is over 25%; 3) branch
coverage determined with Jacoco [29] is over 67%. Due to test failure and compilation errors, we record branch
coverage on each project’s inal version rather than on all versions. The results of three metrics are presented in
Table 1. Finally, we retain 44 projects satisfying the above threshold among 150 projects.

2.1.2 Dataset Construction. Following previous work [81], we utilize the following strategies to associate test and
production classes: 1) File Path Matching. The mined project needs to follow the standard directory layout [31],
where src/main stores production iles and src/test stores test iles. 2) File Name Matching. The naming
convention is used to identify the associated production class by removing the łTest" preix/suix of test class’s
name. Subsequently, we construct the PT co-evolution samples based on the assumption shown in Assumption .1.
For a test code change ���� , the production code change that occurs in the same commit of or before ���� will be
paired with ���� . Note that previous studies adopt diferent settings for the time interval � between production
code change and test code change. Thus, we relax the restriction on � to explore the amount of noise introduced
depending on diferent time intervals.
Here we introduce an example to illustrate the sample construction. On the timeline (as shown in Figure 3),

each circle represents a ile modiication, and the changes that occur in the same commit are put in the same
vertical line. Among these ile changes, suppose {�, � , �} (solid circles) denotes the updates of production class Foo,
while {�, � , � } (dashed circles) denotes the changes of test class FooTest. For �, its updates are traced back to �,

2https://anonymous.4open.science/r/CHOSEN-DE81

ACM Trans. Softw. Eng. Methodol.

8 • Weifeng Sun, Meng Yan, Zhongxin Liu, Xin Xia, Yan Lei, and David Lo

a eb c

d

f
0 1 2 3 4

Fig. 3. An example to illustrate production-test change link.

due to that � immediately follows �. The change � would be paired with � since production and test modiications
are involved in the same commit. Before the change � , there are three production code modiications, i.e, {�, � , �},
while only � would be paired with � . This is because � is committed after � , which is a later modiication of Foo.
As a result, � should be considered a co-evolved production change of � , rather than � and � .

To ensure that the test code is a unit test class, all ile names over the history are stored to check whether
the production ile exists in the project’s historical structure. We keep the code changes that involve at least
one Abstract Syntax Tree (AST) operation using GumTreeDif [43] to ilter out the changes which only modify
comments or formats. Finally, from the 44 projects, we extract 33,567 co-evolution samples and analyze 380
randomly sampled change pairs, representing the population with 95% conidence and 5% margin of error.

2.2 Analysis of Production-Test Change Pairs

We invite three volunteers with research experiences related to software evolution and 5-years of Java program-
ming experience, including one ph.D student and two master students. Then, the 380 samples are distributed to
these three volunteers respectively. During the analysis of production-test change pairs, each volunteer needs to
manually review 380 samples, summarize the reasons for test code changes, and ultimately agree on the reasons.
For each sample, we provide commit messages, code difs, and changed iles to volunteers and allow them to
search the corresponding Git repository. We provide instructions to guide volunteers to label each sample as
follows: 1) reviewing the commit messages and changed iles to understand the change intention and the context
of the sample, respectively, 2) checking code difs and analyzing the correlation between the production-test
changes, 3) according to such correlation analysis, judging whether the production changes trigger the test
changes, if so, label this sample as positive, otherwise negative, 4) for each negative sample in our empirical
study, summarizing the reason of its test change and deining a tag to represent the reason. When analyzing a
change pair, each volunteer irst deines the tag independently. Subsequently, the volunteer compares it with
the shared tags. If similar tags exist, the volunteer adopts the tags that have been deined, otherwise adds the
newly-deined tag into the shared tags. Fleiss Kappa [45] is used to measure the overall agreement between these
tags. The Kappa value is 0.78, indicating substantial agreement. Once the volunteers did not agree on the tags of
a change pair, the pair would be discussed to reach a common decision. In previous empirical works [79, 80],
when the manual analysis work is nearing its end, researchers claim that the collected cards/tags reach saturation
when new cards/tags do not appear anymore. We found that after analyzing approximately 80% of the change
pairs, the volunteers did not add new tags. Thus, motivated by previous works [79, 80], we believe our manual
analysis has reached saturation.
After having tagged all samples, we organize the tags into several groups through card sorting [54] to form

a taxonomy of test code change patterns. We apply open card sort [73] to sort index cards into categories.
Speciically, each card has a title (name of the category). We carefully read the title and the tag (concrete reasons
of test code update) to determine whether the tag belongs to this title. All the groups with low-level subcategories
will be aggregated into high-level subcategories. In the end, all analytical work was completed in two weeks.

ACM Trans. Softw. Eng. Methodol.

Revisiting the Identification of the Co-Evolution of Production and Test Code • 9

2.3 RQ1: Categories of Test Code Update

In this section, we provide the results of our empirical study to answer RQ1.1 and RQ1.2.
First, we count the distribution of 33,567 PT co-evolution samples constructed based on Assumption .1. The

results are shown in Figure 4, where the �-axis represents the time interval � between production code change
and test code change, and the �-axis is the number of PT co-evolution samples. From Figure 4, we can observe that:
consistent with the previous observations [81], when � = 0� , the constructed PT co-evolution samples are the
most. As � increases, the number of postponed PT co-evolution samples decreases. In addition, there are some PT
co-evolution candidates in which the time interval between production changes and corresponding test changes is
more than four days. Overall, most test changes occur within a short time interval when the production code
changes.

Then, according to constructed 33,567 PT co-evolution samples, we adopt a stratiied sampling way to randomly
select 380 change pairs (representing the population with 95% conidence and 5% margin of error). Speciically, we
calculate the ratio of samples grouped by the time intervals � to the total samples, and randomly select change
pairs based on the ratio to ensure that the time distribution properties of the 380 samples are consistent with the
original set. The subsequent empirical study is performed based on the selected 380 samples.
RQ1.1: Are production-test change pairs whose test class changes immediately ater the changes of

associated production class always PT co-evolution samples?
Table 2 provides the number of true positive and false positive samples and shows the distributions of PT

co-evolution samples (Last column). The change pairs are grouped by the time intervals � between the production
code change and the test code change. � is set as 0� , 12ℎ, 24ℎ, 48ℎ, and 480ℎ.
From Table 2, we can ind that: 1) The false positive rates range from 11.34% to 96.40% for diferent time

intervals. 2) When � becomes large, the percentage of PT co-evolution samples decreases. Additionally, most

17132

2155

619 644

3239

9778

T = 0s
�� � � �

�
 � ��
	
��	� �

� � �
 � �
�	

��	� �
� � �
 � �

�	

��	� �
� � �
 � �

��	
480h < T

0

3000

6000

9000

12000

15000

18000

T
h

e
 N

u
m

b
e
r

o
f

P
T

 C
o

-e
vo

lu
ti

o
n

 S
a

m
p

le
s

Fig. 4. The distribution of PT co-evolution samples constructed based on Assumption .1.

ACM Trans. Softw. Eng. Methodol.

10 • Weifeng Sun, Meng Yan, Zhongxin Liu, Xin Xia, Yan Lei, and David Lo

Table 2. Sample distributions according to time interval.

Time Interval Total SamplesCo-evolutionNon-co-evolution
���/� ����_��/� ���/���(���)(�) (�) (���) (����_��)

� = 0 194 172 22 88.66% 11.34% 89.12%

0 < � ≤ 12ℎ 24 11 13 45.83% 54.17% 5.70%

12ℎ < � ≤ 24ℎ 7 1 6 14.29% 85.71% 0.52%

24ℎ < � ≤ 48ℎ 7 1 6 14.29% 85.71% 0.52%

48ℎ < � ≤ 480ℎ 37 4 33 10.81 % 89.19% 2.07%

� > 480ℎ 111 4 107 3.60% 96.40% 2.07%

Sum 380 193 187 50.79% 49.21% ÐÐ

PT co-evolution occurs within a small time interval (i.e., � < 12ℎ). When � exceeds 480 hours, a production-test
change pair is not likely to be a PT co-evolution sample.

Overall, although PT co-evolution is common, many test code changes are not triggered by the production code
changes. In addition, when production code and test code are modiied in a small time interval, they are more
likely to construct a PT co-evolution sample. However, Table 2 reveals a production-test change pair for which the
� is small is not necessarily a PT co-evolution sample. For example, even for � = 0� , the false positive rate is more
than 11%. We perform a closer inspection on the PT co-evolution samples with � > 480ℎ, and ind that most of
them add or delete iles.

¬ Depending on the selected time interval � , 11.34%-96.40% of the constructed PT co-evolution samples are
false positives, i.e., their test code changes are not triggered by their associated production code changes.

RQ1.2: What types of test code updates are not triggered by the changes of their associated production
code?
RQ1.1 has conirmed that there exist some change pairs where the test code change is not attributable to the

change of their associated production code. For these change pairs, the assumption (shown in Assumption .1)
does not hold. To answer RQ1.2, we further analyse these change pairs and deine a taxonomy, which summarizes
the change patterns of these change pairs accounting for 6 categories.
As shown in Figure 5, the taxonomy involves maintenance [39], indirectly related production code

updates, indirectly related test code updates, and others, where maintenance activities are further subdivided
into 1) adaptive maintenance, which introduces new features into the system and keep software usable
in a changed or changing environment; 2) perfective maintenance, which improves the performance or
maintainability of the system; 3) corrective maintenance, which ixes discovered bugs and errors in a program.
These three categories are consistent with previous studies, such as [59, 64]. More concrete change patterns are
denoted either as intermediate nodes or leaves. The intermediate nodes or leaves are always located to the right
of the parent node. For each change pattern, we present the speciic number (immediately following the pattern
name), along with the descriptions of its representative examples.
1) Adaptive Maintenance (54): The maximum number of test code updates in this category are related to

changes of used test framework/library, accounting for 44.44%=24/54. One example is from the Cactoos
project, in which for the test code CycledTest [19], the developer updated the package imports, replacing
łjunit.Test" with łjunit.jupiter.api.Test", and removed the public modiier for each test method. JUnit Jupiter, as the
critical component of JUnit 5, does not require test methods to be public [30]. As a result, the developers modiied
the test code to meet the feature of the new testing framework. In contrast, the corresponding production code

ACM Trans. Softw. Eng. Methodol.

Revisiting the Identification of the Co-Evolution of Production and Test Code • 11

Other

Production Code

Modification of

Application Logic

Code Refactor

Due to Renamed Class

Due to Renamed

Method

Move Code from One

Class to Other Class

Extract Parameters to

Enum Structure

Due to Renamed

Variable

Modification of

Function Signature

Update the Type

of Return Value of the

Method

Adding Static Modifiers

to Methods

Other Reasons

Add a New Test Case to

Trigger an Unfixed Bug

29

2

Variable Modifier

Modification

Due to local Variable

Due to Parameter

of Method

Test Code Refactor Transform static

method call into object

method call

Lambda Expression

Methods/asserts are

Extracted to a New

Test Class

Due to Replaced Magic

Number

More Syntax Features

of High Version of JDK

 Suppress Warnings

Add the Generic

Parameters

Adjust the Order

Formate Imports

Update Namespaces

Enrich Print

Information

Corrective

Maintenance

Due to the Checkstyle/

Sonar Warnings

Simplified Code to Ease

Maintenance

Fix Faults

Modify code to match

code style requriments

Remove "Test" prefix

from method name

 Add Missing

Annotations

5

5

2

3

2

15

13

31

19

6

3

Simplify and Eliminate

Boxing Warning

2

13

3

1

7

1

1

5

3

7

1

Update Version

 of Used Test

Framework/Library

14

Intro of New Testing

Features due to

Insufficient Testing

9

Update Code Due to

Changes of Used Test

Framework/Library

24

New API Call

21

Adaptive

Maintenance

54

Adaptive

Maintenance

54

Other Test Code

9

Other Test Code

9

Code Refactor

5

Modification of

Function Signature

Due to Renamed Class

Perfective

Maintenance

62

Perfective

Maintenance

62

Clean Up Redundant

Code

17

Clean Up Redundant

Code

17

Due to Redundant

Statements

10

Due to Redundant

Statements

10

Due to Generic

Parameters

5

Due to Generic

Parameters

5

Due to Redundant

Imports

1

Due to Redundant

Imports

1

Due to Redundant

Variable

1

Due to Redundant

Variable

1

1

Add @Test

Annotations

Enrich test name to

improve readability

1

Test scope is changed

to package-private

3

1

Delete method

Utilize New Test

Framework/Library

10

2

1

22

3

1

Due to Renamed

Method

Due to Renamed

Method

4

4

1

8

6

4

1

1

2

Fig. 5. RQ1.2: Taxonomy of test update unrelated to corresponding production modification.

Cycled [14] carried out an API replacement due to refactoring activities in the other production code IterableOf.
Interestingly, we also notice that some test code changes introduce new test methods which are not caused by
the associated production code. For example, the test code EntryStreamTest [26] added a new test case, while
the production code EntryStream [25] just update import statements. We further checked the commit message
and found that the test methods are added to improve the branch coverage of the project.
2) Perfective Maintenance (62): In this category, test code is updated to facilitate the future maintenance

of test code. One of the change patterns is cleaning up redundant test code. In the Commons-collections
project [20], the production code changes and test code changes were added in the same commit with the message
łRemove redundant generic type arguments". However, the test code and the production code modiied diferent
objects. For example, the production code StaticHasher modiied a TreeSet type variable, while the test code
StaticHasherTest modiied an ArrayList type variable. PT co-evolution needs to meet the condition: the test
code change triggers or is triggered by the production code change. For the above example, there is no coupling
correlation between the variable modiied by the test code and that of the production code. In other words,
we cannot infer that the modiication made by StaticHasher to remove the generic parameters of TreeSet
caused the modiication made by StaticHasherTest to remove the generic parameters of ArrayList. Thus,
such production-test change is not an example of PT co-evolution, but rather a cleanup activity by developers
for code units containing redundant generic type parameters. A more frequent test code change pattern is
modiier changes to local variables and method parameters. For this pattern, the most common action

ACM Trans. Softw. Eng. Methodol.

12 • Weifeng Sun, Meng Yan, Zhongxin Liu, Xin Xia, Yan Lei, and David Lo

is adding the łinalž modiier. Final variables are read-only by design. When changing a inal variable’s value,
the compiler will throw an error. For example, the test code ValidateTest [23] added the łinal" modiier to
the custom variable, but the corresponding production code Validate [16] underwent code refactoring: using
Objects.requireNonNull() instead of custom conditional statements checking whether an object is empty.
In 13 commits, test code is updated due to code refactoring activities, such as, the test code

TestDefaultParametersManager [15] utilized the Lambda expression to replace anonymous internal classes,
making the code more concise and compact. Yet, the function parameters of DefaultPar
ametersManager [11] added the inal modiier. When multiple test classes contain the same property (e.g., test
cases), developers usually extract commonalities and form a new test class inherited or imported by the test
classes. For instance, a commit [17] extracted common divide-by-fraction test cases to CommonTestCases. Another
test code change [22] attempted to encapsulate commonly used asserts (e.g., assertFalse) in a test helper class.
Then, Transform2STest directly called the encapsulated method rather than writing redundant test asserts. In
contrast, the production code Transform2S [21] perform a perfective maintenance activity: removing redundant
local variables. In addition, this category involves adding generic type arguments, formatting imports,
reordering test cases, enriching print information, and enriching test name to improve readability, etc.

3) Corrective Maintenance (31): The test code updates ixing functional and non-functional faults lie in this
category. Overall, many test code modiications are due to Checkstyle [28] or SonarQube [33] warnings. It is
worth noting that Suppress Warnings is diferent from the Fix Checkstyle/SonarQubeWarnings pattern. For
example, the test code TestBinaryAnd added the annotation of ł@SuppressWarnings(łunchecked")" to ignore all
unchecked warnings coming from that class [3]. However, the source of warning remains. The corresponding
production code [1] added the missing annotation ł@Override".
4) Indirectly Related Production Code Updates (29): For a test code FooTest, we indicate the other

production class that is depended by FooTest but is not its associated production code (i.e., class Foo) as indirectly
related production code. This category groups test code changes triggered by the modiications of their indirectly
related production code. We observed that test code usually calls methods in non-associated production code to
complete testing state initialization. This category includes the cases where the test code updates are triggered
by the changes of such methods. For example, TimeSeries changed the function signature: from valueOf to
numOf, resulting in an update to the test code InSlopeRuleTest [13]. The production code InSlopeRule located
in the same commit [12] modiied the import information by replacing łorg.ta4j.core.Num.Ab
stractNum.NaN" with łorg.ta4j.core.Num.NaN.NaN".
An example of this category comes from the Joda-time project. A commit [4] was created to ix a bug of

Days.daysBetween. However, the commit did notmake any changes to Days; instead, the BaseSingleFieldPeriod
was updated. In the test code TestDays, the developers addedmore test cases for the targetmethod Days.daysBetween.
We carefully check the implementation details of the target method and observe that it directly called the
BaseSingleFieldPeriod.between, and then performed a type conversion of the returned result. In essence, the
application logic of the target method is realized by between. Therefore, the updates of BaseSingleFieldPeriod
have probabilities to introduce the modiications of TestDays. Another example is from the Commons-csv

project [2], where a commit modiied both the production code and the test code. For the production class
CSVParser, developers only deleted some obsolete code. In contrast, a lot of contents that are related to the
CSVFormat in the test class are modiied. After a closer inspection of CSVFormat, we ind that it performed a
code refactoring activity in this commit, resulting in updates to all code that used this production class.
5) Indirectly Related Test Code Updates (9): The test code that is dependent by the target test code is

denoted as indirectly related test code. Similar to category 4, test code updates due to the refactoring activities

of other test code account for the major part, especially for test code with inheritance/dependent relationships.
For instance, a commit [8] modiied the function signature, leading to the updates of all the test code (such
as GraggBulirschStoerStepInterpolatorTest) that uses this function. The corresponding production code

ACM Trans. Softw. Eng. Methodol.

Revisiting the Identification of the Co-Evolution of Production and Test Code • 13

GraggBulirschStoerStepInterpolat

or [7] changed the function access rights from łprotected" to łpublic".
6) Others (2): The test code updates that are designed to trigger production bugs/errors are placed in this

category. In commons-compress project, a test method testCompress264 [6] was added with the commit message
ładd a (failing) Unit Test". As the comments show, the łCOMPRESS-264" issue would be triggered by the added
test case. In the next commit, the developer ixed this issue and updated the name of the test case. Obviously, the
test code update in this case is not caused by the modiications of associated production code; instead, it would
trigger subsequent production code changes. However, the corresponding production code ZipFile [5] extracted
the custom exception code to a new helper class.

¬ For the change pairs where the test code changes are not triggered by the changes of their associated
production code, the reasons for their test code updates are varied, from which perfective maintenance accounts
for the major part. Besides, other ile changes (e.g., indirectly related test and production code) may also cause
test code updates. Assumption .1 attributes test code changes to updates of associated production code without
comprehending their changes and understanding their relationship, thus introducing false positives.

3 CO-EVOLUTION IDENTIFICATION METHOD

Our empirical study has conirmed that the assumption of prior studies does not always hold in practice and the
methods used by prior work to identify PT co-evolution samples may introduce noise. This motivates us to explore
whether the introduced noise has a signiicant impact on the conclusions of the downstream tasks. As opposed
to visualisation, the detection task allows us to measure the impact of noise quantitatively and will therefore
be adopted as the experimental object. Obviously, conducting studies based on a manually labeled dataset can
mitigate this threat. But this requires expensive human resources and time costs. In addition, it is not feasible to
rely only on manually labeled data for machine learning and deep learning based methods, which usually require
a large number of samples to train good models. Based on the indings from our empirical study, we propose a
method to identify PT co-evolution samples accurately. We refer to this approach as CHOSEN, an identiiCation
metHod Of production-teSt co EvolutioN.

3.1 RQ2: Impact of Noise on JIT Detection Methods

We select the JIT obsolete test code detection task (for short, OTCD) [81] as the example task. Prior work showed
that developers may forget/ignore updating test code [50, 81]. OTCD can remind developers to update obsolete
tests just after they change the production code, which can help developers 1) ind the obsolete tests that would
not fail and 2) ind the obsolete tests that would fail without executing them. Thus, OTCD can be beneicial for
improving test coverage and reducing test costs. Our empirical study has conirmed that SITAR’s identiication
method [81] would introduce some noise. Hence, we perform a preliminary experiment to answer the following
questions:

RQ2: What is the impact of noise on existing JIT OTCD methods?
Experiment Settings. Since SITAR has no publicly available tools or source code, we implemented SITAR

based on their descriptions and obtained similar detection performance on the dataset provided by Wang et al.
Following Wang et al. [81], we adopt random forest [53] with default hyper-parameters set by the scikit-learn as
the detection model. We make our re-implementation publicly available for further inspection3.

Data Collection. Since the experiment requires manually labeled datasets, we select three projects on which
SITAR achieves good, moderate, and poor detection performance, namely Flink, Log4j2, and jsoup respectively.
This selection way can verify that the efect of noise is universal, regardless of the detection method performs

3https://anonymous.4open.science/r/CHOSEN-DE81

ACM Trans. Softw. Eng. Methodol.

14 • Weifeng Sun, Meng Yan, Zhongxin Liu, Xin Xia, Yan Lei, and David Lo

Table 3. Performances of detection method trained on noise training set, tested on Noise vs. Annotated test set.

Projects Metrics
Annotated test set Noise test set Error �-value

(�) (�) (|� − � |) (� vs. �)

Jsoup

Acc. 58.64% 54.55% 4.09% < 0.05

Prec. 38.63% 51.96% 13.33% < 0.001

Rec. 50.24% 45.81% 4.43% < 0.05

F1. 43.68% 48.69% 5.01% < 0.001

Log4j2

Acc. 60.73% 57.29% 3.44% < 0.05

Prec. 51.11% 57.94% 6.83% < 0.05

Rec. 67.17% 60.22% 6.95% < 0.05

F1. 58.05% 59.06% 1.01% < 0.001

Flink

Acc. 66.34% 55.85% 10.49% < 0.05

Prec. 72.52% 77.56% 5.04% < 0.001

Rec. 57.69% 48.20% 9.49% < 0.001

F1. 64.26% 59.45% 4.81% < 0.001

well or poorly. Moreover, we observe that most test modiication time remains in the initial phase of the project
history for the provided dataset [34]. Then, we construct the product-test change pairs for each latest version of
the project, strictly following the steps in the paper [81].

Data Splitting.We divide the production-test change pairs into positive and negative samples using the SITAR’s
identiication method. Unlike SITAR, which randomly splits change pairs to obtain the training set and test set,
we sort samples in the ascending order of production change commit and put the irst 80% samples into the
training set; meanwhile, shule the remaining 20% samples into the test set. This way ensures all production code
updates in the training set occurred before those in the test set, similar to prior studies [49, 87]. Subsequently,
we randomly sample 132, 262, and 347 pairs from the test set for jsoup, log4j2, and Flink respectively, which
represent the population with a 95% conidence level and 5% margin of error. Given that our empirical study has
conirmed that SITAR’s identiication method introduces some noise, we refer to these sampled test sets as noise
test sets. To establish the ground truth, we manually re-label the sampled noise test set and refer to the resulting
test sets as the annotated test set.
Evaluation Metrics. Following the previous work [81], we compare SITAR’s performance on the noise test

set and the annotated test set in terms of accuracy, precision, and recall, and F1-score to quantify the efect of
noise on the detection method. Considering the randomness of random forest, we ran each experiment 10 times
to obtain averages for analysis. In addition, we compute �-value (probability value) examine the signiicance of
the performance diferences.
Results. Table 3 presents the average performances of SITAR on the noise/annotated test set, where the

last column gives the calculated p-values. On the annotated test sets of the three projects, SITAR’s precision
decreases by at most 13.33% and recall increases. The p-values are less than 0.05 in terms of all evaluation metrics,
implying that the diferences in detection performance are signiicant on these test sets. The above observations
can be explained as follows. The precision metric is computed by ��

�
, where �� and � refer to the number of

true positives and the total number of positive predictions, respectively. Since the classiier stays unchanged, �
is equal for both test sets. After relabeling the test set (i.e., removing noise), the size of positive samples would
become smaller than before, leading to a decrease in terms of precision.

Explanation. It is important to note that there is a discrepancy between our obtained detection performance
and published results [81]. This is because: 1) the sizes of our used datasets are diferent. Our newly constructed

ACM Trans. Softw. Eng. Methodol.

Revisiting the Identification of the Co-Evolution of Production and Test Code • 15

dataset contain the latest commits of each project, and thus contains more samples. 2) SITAR split their dataset
randomly, which may lead to information leakage, whereas we use the production modiication time to split our
dataset.

¬ The noise causes detection performance on the testing set to be signiicantly diferent from its actual
performance, with an average diference of 6.01%, 8.40%, 6.96%, 3.61% in accuracy, precision, recall, and F1-score
respectively.

3.2 Proposed Approach

3.2.1 Problem Formulation. Given a production-test change pair ⟨�ℎ����� , �ℎ����� ⟩, where �ℎ����� is the test
code change and �ℎ����� is the latest change of the associated production code that occurs in the same commit of
or before �ℎ����� , then,CHOSEN determines whether �ℎ����� is triggered by �ℎ����� , i.e., a positive/co-evolution
sample.

3.2.2 Usage Scenario. Practitioners and researchers can use CHOSEN to construct PT co-evolution samples

accurately. Such samples are the basis of or are useful for various downstream tasks.
JIT obsolete test code detection [81]. CHOSEN can be used to assist developers in performing JIT obsolete

test code detection [81]. The test set built fromCHOSEN can measure the performance of models more accurately.
The dataset constructed by CHOSEN can train a better detection model.

Mining co-evolution scenarios [42, 55, 88]. Based on the PT co-evolution samples constructed by CHOSEN,
developers and test engineers can explore diferent PT co-evolution scenarios, including synchronous and phased,
to gain insight into the testing process. For detailed instances and explanations of synchronous and phased PT

co-evolution, please refer to the literature [88].
Fault localization [72]. Considering the bug ixing cases, these often occur with additions/modiications of

tests (to validate the repair action). Thus, when a test execution fails, CHOSEN can roughly locate the class-level
fault production code by identifying the production code that often evolves in concert with the failure test case.
Linking production and test code [83]. CHOSEN has the potential to establish relevance links between

tests and code units. Given a series of candidate links {⟨�, �1⟩, ⟨�, �2⟩, ..., ⟨�, ��⟩}, where � refers to the test code and
�� represents various production code, developers can utilize CHOSEN to mine the amount of co-evolution of
production and test code for each candidate link. Intuitively, the greater the number of co-evolution, the greater
the likelihood of correlation, as the co-evolution of tests and code units relects a probable link between them. The
rationale is that the PT co-evolution sample refers to a pair of a test code change and a production code change
where the test code change triggers or is triggered by the production code change, which means that there is
a relevance coupling between them. For example, when developers ix bugs in production code, they usually
introduce or modify test code to evaluate the ixed parts. Similarly, when developers implement a new feature or
update an existing one, they may introduce or update test code related to that feature simultaneously or later.
Even if identiied PT co-evolution by CHOSEN is irrelevant (i.e., false positives), these should be eliminated by
the number of PT co-evolution as it is unlikely that the same irrelevant changes will be repeated. Thus, the more
frequently � and �� co-evolve, the stronger the relevance coupling between them. In other words, �� is more likely
to be the associated production code of � .

3.2.3 Approach. Our method includes two stages, namely initial label estimation and multi-strategy-based
label determination.

Stage 1-Initial label estimation: Based on our empirical observations, when a test class is updated within 12
hours (94.82% PT co-evolution samples are less than 12ℎ) after modifying its associated production code, CHOSEN

regard it as an initial positive sample. Otherwise, it is an initial negative sample.

ACM Trans. Softw. Eng. Methodol.

16 • Weifeng Sun, Meng Yan, Zhongxin Liu, Xin Xia, Yan Lei, and David Lo

Stage 2-Multi-strategy based label determination: Through stage 1, an initial label is assigned to each
production-test change pair. Subsequently, we propose ive strategies to adjust the label of change pair based on
the experience gained from our empirical studies.

Strategy 1:The type of the associated production code change or the test code change is non-modiication
type and there are no production/test changes between their commits −→ ‘POSITIVE’. Intuitively, the
deletion and addition of the test ile should be closely related to the associated production ile. Hence the non-
modiication type (e.g., ADD or DELETE) of production-test change pairs are likely to be PT co-evolution samples.
Our empirical investigation also conirms this intuition: Among the four non-modiication change pairs with
� > 12ℎ, all the change pairs are PT co-evolution samples. For more details, please refer to our empirical study
dataset4. Besides, we have added a constraint with there are no production/test changes between their commits

Strategy 2: There are additional production codemodiications between production code change commit
and test code change commit −→ ‘NEGATIVE’. As shown in Table 2, the �� of 94.82% co-evolution samples

are committed less than 12 hours apart. Once there are multiple production code modiications before the test
updates, it is reasonable to consider that earlier production change is insuicient to introduce test modiications.

Strategy 3: The changes of the production or test code involve only import changes, and the intersection
of import modiication is empty −→ ‘NEGATIVE’. As shown in Figure 5, the test code change patterns involve
some modiications related to import activities, such as updates of used test libraries/frameworks, removal of

redundant imports, and formatting imports. We observe that a commit might updates the import statements
in multiple iles. However, these modiications are not related to each other, such as [18]. Hence, for Strategy 3,
we aim to adjust the label of production-test change pairs containing changes of import statements. CHOSEN

needs irst to ensure the production or test code only modiies the import statements. Once the intersection
regarding import changes is empty, CHOSEN identify this production-test change pair as a negative sample.
Strategy 4: There is no semantic relevance between the changes of the production and test code.−→

‘NEGATIVE’. Generally, test code is responsible for validating whether the production code behaves as expected,
which means that test code should be semantically related to the associated production code. For example, adding
a new test method to cover a production method or updating test asserts to validate production code changes.
Hence, we consider the initial positive change pairs with no semantic relevance as non-co-evolution samples.

To measure the semantic relevance between the test and the production code changes, we collect the changed
contents of the class body, remove the changes of comments or format as well as the import statement, and
tokenize collected changed contents by spaces and punctuation. CHOSEN regards a production-test change pair
as a negative sample, when the tokenized change set of production and test code have nothing in common.
Strategy 5: The type of modiication involves annotations, modiiers, refactoring operations −→

‘NEGATIVE’. The empirical study shows that certain modiication activities should not cause PT co-evolution.
Among 22 false positives with � = 0� , 10 (45.5%) samples are the change pattern of "Variable Modiier

Modiication" (as shown in Figure 5). Additionally, the maintenance activities can update the annotations in
the test code, such as adding some missing annotations and suppressing warnings. Moonen et al. have
indicated that even though refactorings are behavior preserving, they potentially invalidate tests [65]. Hence,
we consider a change pair as a negative sample when the test code only contains refactoring actions. We utilize
the RefactoringMiner [77, 78] to mine refactorings of two given revisions of the project. Compared to other
refactoring detection tools (such as RefDif [71]), RefactoringMiner has some unique features: 1) it does not
depend on the similarity threshold of the code, 2) it supports low-level refactoring that occurs within the method
body. 3) it can detect nested refactoring operations in a single commit. The experimental results also show that
RefactoringMiner achieves the highest average precision and recall in identifying refactoring operations [77]. For

4https://anonymous.4open.science/r/CHOSEN-DE81

ACM Trans. Softw. Eng. Methodol.

Revisiting the Identification of the Co-Evolution of Production and Test Code • 17

Algorithm 1: IDENTIFICATION METHOD

Input: ������� /*The dataset to be iltered*/
� /*An predeined parameter*/

Output: ��������� , ���������={}, {}
1: for (each element ⟨���� , ����� , ����⟩, where � ∈ [1, �]) do
2: if (���� ∈ {NEGATIVE} and ������� or �������� ∉ {MODIFY} and HasNonProBetween (���� ,�����) then
3: ��������� ← ⟨����� ,����� ,‘POSITVE’⟩
4: end if

5: if (���� ∈ {POSITVE}) then
6: if (HasProBetween(���� ,�����)) then
7: ��������� ← ⟨���� , ����� , ‘NEGATIVE’⟩
8: end if

9: if (getChangeType(����) or getChangeType(�����) ∈ {Import}) then
10: ��������� ← getDiffToken(����)

11: ���������� ← getDiffToken(�����)

12: if getIntersectionRatio(��������� , ����������) == 0 then

13: ��������� ← ⟨���� , ����� ,‘NEGATIVE’⟩
14: end if

15: end if

16: ���������� ← getDiffToken(����)

17: ����������� ← getDiffToken(�����)

18: if (getIntersectionRatio(���������� ,�����������) ≤ �) then
19: ��������� ← ⟨���� , ����� ,‘NEGATIVE’⟩
20: end if

21: if (getChangeType(����) or getChangeType(�����) ∈ {Modifier, Annotation} and
getChangeType(�����)) ∈ {Refactoring}) then

22: ��������� ← ⟨���� , ����� ,‘NEGATIVE’⟩
23: end if

24: end if

25: end for

26: Return ��������� , ���������

the test code change, we irst extract its modiication list. If the modiication list is empty after removing all the
modiications related to refactoring operations, we classify the change pair as a negative sample.

Algorithm 1 provides details of Stage 2. We suppose a production-test change pair {���� , ����� , ���� }, where the
elements in the triple refer to the associated production code change, test code change, and the label estimated by
Stage 1, respectively. We collect the changed lines for ����� , indicated by �ℎ�������� . When the ���� is NEGATIVE,
CHOSEN checks the ile change type of ���� and ����� . Once one of the change types is not the MODIFY and the
change pair has no other production/test changes between their commits, it is identiied as a PT co-evolution

sample (line 2-4). We consider those initial positive samples satisfying Strategy 2 as negative samples (line 6-8).
The remaining positive samples would be applied to Strategy 3, Strategy 4, and Strategy 5. Speciically, we use
the GumTree to extract the edit actions of ���� and ����� , denoted ��������� and ���������� respectively. When
the ��������� or ���������� only involves import edits and the intersection of import edits is empty, we identify
the change pair as a negative sample (line 9-15). We exclude from the co-evolution set those samples owing the

ACM Trans. Softw. Eng. Methodol.

18 • Weifeng Sun, Meng Yan, Zhongxin Liu, Xin Xia, Yan Lei, and David Lo

non-semantic relevance using Strategy 4 (line 16-20). When ��������� or ���������� is caused by annotation or
modiier activities, we adjust the change pair’s label. Furthermore, RefactoringMiner [77, 78] is utilized to mine
refactorings of two given revisions of a project. RefactoringMiner can obtain the set of changed rows (denoted
�� �����) due to refactoring. If �ℎ�������� ⊆ �� ����� , the change pair can be considered a negative sample (line
21-23).

4 EVALUATION

We conduct a series of experiments to evaluate the performance of our proposed identiication method. This
section provides details about the experimental settings and results.

4.1 Research uestions

Given a production-test change pair, we expect the CHOSEN can precisely determine whether the test code
co-evolves with the production code. Thus, it is required to examine the efectiveness of CHOSEN in identifying
PT co-evolution samples. To demonstrate that our proposed method remains available for downstream tasks, we
further explore the performance of our approach in other tasks, e.g., JIT OTCD. The experimental studies help us
answer the following four research questions:

• RQ3: How efective is CHOSEN at identifying PT co-evolution?
• RQ4: How useful is CHOSEN in JIT OTCD?
⋄ RQ4.1: Could the test set constructed by CHOSEN be used to measure the performance of the detection

method more accurately?
⋄ RQ4.2: Could the dataset constructed by CHOSEN be used to train a better OTCD model?
⋄ RQ4.3: How does CHOSEN perform on other projects?

4.2 RQ3: The Efectiveness of CHOSEN

4.2.1 Baselines. We implement two baselines to compare with our method:
Random guess (RG). Random guess is a particular baseline that directly employs the data distribution

obtained from our empirical study to identify PT co-evolution samples. This baseline is usually used when there is
no previous method for the research question [84]. Speciically, the ratio of co-evolution samples in our empirical
study is 51.05%, and then, the RG baseline will randomly select approximately 51.05% of production-test change
pairs as positive samples. Note that the AUC of RG is always 0.5 [84].To reduce the bias of randomly selecting,
we run each experiment 10 times and report the average results.

SITAR’s identiication method (SITAR_IM), following the Assumption .1. Recently, Wang et.al [81]
proposed SITAR, a machine-learning-based approach, to detect whether a piece of test code should be updated
when developers modify the production code. SITAR consists of two components: 1) the construction of PT
co-evolution samples (positives) and PT non-co-evolution samples (negatives); 2) designing several structural code
features and training a detector to detect obsolete test code, based on the mined samples. SITAR uses the following
strategies to identify PT co-evolution samples: 1) positive sample, if a test class is updated within 48 hours since its
associated production class is changed; 2) negative sample, the test code has not changed within 480 hours. Since
Wang et.al [81] does not name the component of identifying PT co-evolution samples, we name it as SITAR_IM for
the sake of description. In this paper, unless otherwise speciied, SITAR refers to the obsolete test code detection
method, and SITAR_IM refers to the method for identifying PT co-evolution samples in SITAR.

4.2.2 Experimental Setup. The design and settings of the experiments are described in this section.
Data Collection.We propose CHOSEN based on 380 labeled samples used in empirical study. Evaluating

CHOSEN on these observed samples would lead to overitting, which is undesirable. Thus, following the
Section 2.1, we re-select and label another set of 380 samples from the 33,567 production-test change pairs while

ACM Trans. Softw. Eng. Methodol.

Revisiting the Identification of the Co-Evolution of Production and Test Code • 19

Table 4. Efectiveness of CHOSEN vs. RG and SITAR_IM.

Method Acc.
Positive Negative

AUC
Prec. Rec. F1. Prec. Rec. F1.

RG 48.68% 46.39% 49.72% 48.00% 51.08% 47.74% 49.35% 50.00%

CHOSEN 92.89% 89.29% 96.69% 92.84% 96.74% 89.45% 92.95% 93.07%

Improvement 90.81% 92.46% 94.44% 93.41% 89.41% 87.37% 88.35% 86.13%

SITAR_IM 81.63% 73.95% 99.44% 84.82% 99.05% 62.65% 76.75% 81.04%

CHOSEN 92.71% 89.18% 97.74% 93.26% 97.32% 87.35% 92.06% 92.54%

Improvement 13.57% 20.59% -1.70% 9.95% -1.75% 39.42% 19.95% 14.19%

Table 5. The confusion matrix of CHOSEN vs. RG and SITAR_IM.

Actual Classiication

of 380 samples

CHOSEN Prediction RG Prediction
Positive Negative Positive Negative

Positive 175 6 90 91
Negative 21 178 104 95

Actual Classiication

of 343 samples

CHOSEN Prediction SITAR_IM Prediction
Positive Negative Positive Negative

Positive 173 4 176 1
Negative 21 145 62 104

ensuring that there are no overlap or duplicate samples between these 380 samples and that of our empirical
study. These 380 samples will be used as ground truth to verify the efectiveness of CHOSEN and RG. Notably,
SITAR_IM does not provide an identiication strategy for change pairs with 48ℎ < � < 480ℎ. Therefore, we
ilter the 380 samples, retaining only the change pairs that satisfy SITAR_IM’s identiication requirements. In
summary, we re-collect and label 380 samples for RQ3. We compare the efectiveness of CHOSEN and RT on the
380 samples while comparing the efectiveness of CHOSEN and SITAR_IM on the iltered dataset consisting of
343 samples.
Evaluation MetricsWe use accuracy, precision, recall, F1-score, and area under the precision-recall curve

(AUC) [69] as evaluation measures. The accuracy directly relects the amount of noise introduced. The precision
and recall allow us to evaluate the proportion of true positives among all positive predictions and all positive
examples retrieved, respectively. Since precision and recall are trade-ofs, the F1-score is a valuable metric as it
enables us to igure out which methods handle the trade-of best. Finally, we employ the area under the precision-
recall curve (AUC) since it provides a threshold-independent perspective of each technique’s performance.

4.2.3 Answer to RQ3. How efective is CHOSEN at identifying PT co-evolution? Table 4 provides the per-
formance comparison of CHOSEN and the baseline methods, including RG and SITAR_IM, when determining
whether a change pair is a PT co-evolution sample (Positive: co-evolution pair, Negative: non-co-evolution pair).
Table 5 reports the confusion matrix of CHOSEN, RG and SITAR_IM. In Table 4, we display the precision, recall,
F1-score of compared methods on both positive and negative classes. Since accuracy and AUC have identical
values for both categories, we present them in a separate column. Accuracy measures the overall correctness of the
classiier’s predictions, regardless of the class label, and therefore is the same for both classes [76]. Additionally,
to calculate AUC [48] metrics for diferent identiication methods, we assigned a prediction probability of 1.0

ACM Trans. Softw. Eng. Methodol.

20 • Weifeng Sun, Meng Yan, Zhongxin Liu, Xin Xia, Yan Lei, and David Lo

to positive predictions and 0.0 to negative predictions, as the identiication methods, including CHOSEN, do
not provide prediction probabilities for the identiication results. Using the assigned prediction probabilities
and information in the confusion matrix (Table 5), we determined AUC values for each identiication method.
Our results indicate that AUC values are the same for both positive and negative categories in this paper. In
terms of identifying PT co-evolution samples, results show that CHOSEN achieves 93.07% of AUC and improves
over RG by 86.13% and 93.41% in terms of AUC and F1-score, respectively. Because SITAR_IM does not identify
production-test change pairs with 48ℎ < � < 480ℎ, we ilter out such change pairs from the 380 samples to compare
with SITAR_IM. Table 4 shows that, although CHOSEN performs slight worse on recall, the F1-score and AUC of
CHOSEN are 93.26% and 92.54%, respectively, improving by 9.95% and 14.19%. The above results can be explained
as follows. SITAR_IM identiies all PT co-evolution samples that occur within 48 hours as positive samples,
thereby obtaining a high recall value. Its disadvantage is that it does not distinguish PT co-evolution samples

and non-co-evolution samples when the time interval is short, introducing noise. Since CHOSEN identify PT

co-evolution samples case by case, it can achieve higher precision by better distinguishing PT co-evolution samples

and non-co-evolution samples when the time interval is less than 48h. In terms of identifying PT non-co-evolution

samples, results show that CHOSEN improves over RG by 88.35% in terms of F1-score. Although CHOSEN

performs slight worse on precision than SITAR_IM, the recall and F1-score of CHOSEN are 87.35% and 92.06%,
respectively, improving by 39.42% and 19.95%. The above results can be explained as follows. SITAR_IM directly
identiies the production-test change pair with � > 480ℎ as PT non-co-evolution sample. Our empirical study has
conirmed that when the� exceeds 480 hours, the change pair has a high probability of being PT non-co-evolution

sample (more than 95%), so SITAR_IM has a high precision value. In contrast, the recall value of SITAR_IM is
much lower than that of CHOSEN, since SITAR_IM does not consider the negative samples that occurred within
48 hours.

¬ Our CHOSEN can efectively identify PT co-evolution. It improves SITAR_IM and RG by 13.57% and 90.81%
respectively in terms of accuracy, by 9.95% and 93.41% respectively in terms of F1-score. Moreover, CHOSEN

can efectively identify PT non-co-evolution. It improves SITAR_IM and RG by 39.42% and 87.37% respectively in
terms of recall, by 19.95% and 88.35% respectively in terms of F1-score.

4.3 RQ4: The Usefulness of CHOSEN in JIT OTCD

4.3.1 Experimental Setup. We provide more details of the design and settings of the experiments in this section.
Data Collection. To answer RQ4.1 and RQ4.2, we have followed the dataset used in RQ2 (more descriptions

in Data Splitting of Section 3.1). As for RQ4.3, we select the 14 projects widely used in PT co-evolution related
research studies [35, 81, 83]. Table 6 summarizes the detailed information of these 14 projects. We construct
production-test change pairs for each project and undersample the majority class to balance the sample label
distributions. We adopt the same way of splitting data as mentioned in Section 3.1. We adopt SITAR_IM to divide
dataset to obtain noise training set and noise test set. Then, the noise training set and noise test set after
applying our proposed method are indicated as CHOSEN training set and CHOSEN test set, respectively. A
dataset with the preix annotated means that the dataset has been relabeled manually.

EvaluationMetrics. Following the previous work [81], we compare SITAR’s performance in terms of accuracy,
precision, recall, and F1-score to quantify the usefulness of identiication methods. Considering the randomness
of random forest, we ran each experiment 10 times to obtain averages for analysis. In addition, we compute both
�-value (probability value) and efect size to examine the signiicance of the performance diferences. Speciically,
we utilize the paired Mann Whitney-Wilcoxon test [36] to verify whether there are statistically signiicant
diferences among the investigated methods. The �-value is less than 0.05, implying a signiicant diference

ACM Trans. Softw. Eng. Methodol.

Revisiting the Identification of the Co-Evolution of Production and Test Code • 21

between the two compared methods. Meanwhile, the non-parametric Clif’s delta efect size is used to evaluate
the amount of the diference5 between the two approaches.

4.3.2 Answer to RQ4.1. Could the test set constructed by CHOSEN be used to measure the performance of
the detection method more accurately? We evaluate SITAR’s detection performance on the noise/CHOSEN

test set. The detection performance on the annotated test set is considered as the ground truth. Table 7 shows
that the noise test set leads to average performance errors of 6.01%, 8.40%, 6.96%, and 3.61% in terms of accuracy,
precision, recall, and F1-score, respectively. In contrast, those errors are only 0.68%, 0.99%, 0.62%, and 0.76% on the
test set labeled by CHOSEN. Statistical results show the �-value < 0.001 and the clif’s delta = 0.94, meaning that
the performance errors caused by the noise test set are signiicantly greater than those caused by the CHOSEN

test set. Therefore, compared to SITAR_IM, CHOSEN can be used to construct better test set, which can more
accurately measure the performance of OTCD models.

4.3.3 Answer to RQ4.2. Could the dataset constructed by CHOSEN be used to train a beter OTCDmodel?We
trained the detectionmodel on the noise/CHOSEN training set, respectively, and tested them on the annotated test
set. Table 8 lists the accuracy, precision, recall, and F1-score in percentage. The improvements in terms of accuracy
range from 1.30% to 18.03%, and the average improvement is 12.00%. The range of precision improvements is
between -1.71% and 30.39%. Meanwhile, START obtains the 13.50% average improvement in terms of F1-score.
Overall, the CHOSEN training set can be used to train a better detection model than the noise training set. One
possible reason is that the distribution of the dataset constructed by CHOSEN is more consistent with the true
distribution. For Flink, CHOSEN may introduce more noise when identifying change pairs of 12ℎ < � ≤ 48ℎ,
resulting in a slight decrease in precision.

4.3.4 Answer to RQ4.3. How does CHOSEN perform on other projects? In this section, we present the CHO-

SEN’s performance on other projects. Since it is too costly to manually label a test set for each project and

5We use the following mapping for the values of the delta that are less than 0.147, between 0.147 and 0.33, between 0.33 and 0.474 and above

0.474 as łNegligible (N)ž, łSmall (S)ž, łMedium (M)ž, łLarge (L)ž efect size, respectively [40].

Table 6. Selected projects for evaluation

Project From #Commits #Files #KLoC

ActiveMQ [81] 10951 4322 408.5

BioJava [35, 81] 6540 1298 145.1

CloudStack [81] 34641 5811 683.0

Math [81] 6622 1165 149.7

dnsjava [81, 83] 2031 280 33.1

Geode [81] 10735 9018 1381.1

Gson [62, 81] 1485 208 25.3

James [81] 12939 5447 446.6

JRuby [81] 50346 1750 264.0

PMD [62, 81] 17768 3289 348.5

Storm [81] 10462 2434 300.6

Usergrid [81] 10954 2097 175.2

IzPack [35, 81] 5667 1112 105.3

Zeppelin [81] 5012 916 158.0

ACM Trans. Softw. Eng. Methodol.

22 • Weifeng Sun, Meng Yan, Zhongxin Liu, Xin Xia, Yan Lei, and David Lo

Table 7. Performances of detection method trained on noise training set, tested on Noise vs. CHOSEN test set.

Projects Metrics
Annotated test set Noise test set CHOSEN test set Error Error �-value

(�) (�) (�) (|� − � |) (|� − � |) (� vs. �)

Jsoup

Acc. 58.64% 54.55% 59.32% 4.09% 0.68% < 0.05

Prec. 38.63% 51.96% 38.61% 13.33% 0.02% < 0.001

Rec. 50.24% 45.81% 51.71% 4.43% 1.47% < 0.05

F1. 43.68% 48.69% 44.21% 5.01% 0.53% < 0.001

Log4j2

Acc. 60.73% 57.29% 59.47% 3.44% 1.26% < 0.05

Prec. 51.11% 57.94% 48.52% 6.83% 2.59% < 0.05

Rec. 67.17% 60.22% 67.25% 6.95% 0.08% < 0.05

F1. 58.05% 59.06% 56.37% 1.01% 1.68% < 0.001

Flink

Acc. 66.34% 55.85% 66.25% 10.49% 0.09% < 0.05

Prec. 72.52% 77.56% 72.87% 5.04% 0.35% < 0.001

Rec. 57.69% 48.20% 57.38% 9.49% 0.31% < 0.001

F1. 64.26% 59.45% 64.20% 4.81% 0.06% < 0.001

Average 6.24% 0.76%

Table 8. Performances of detection method trained on Noise vs. CHOSEN training set, tested on annotated test set.

Projects Metrics Noise training set CHOSEN training set Improvement

Jsoup

Acc. 58.64% 68.41% 16.66%
Prec. 38.63% 50.37% 30.39%
Rec. 50.24% 56.19% 11.84%
F1. 43.68% 53.12% 21.62%

Log4j2

Acc. 60.73% 71.68% 18.03%
Prec. 51.11% 63.05% 23.36%
Rec. 67.17% 70.95% 5.63%
F1. 58.05% 66.77% 15.02%

Flink

Acc. 66.34% 67.20% 1.30%
Prec. 72.52% 71.28% -1.71%
Rec. 57.69% 62.75% 8.77%
F1. 64.26% 66.74% 3.86%

Section 4.3.2 has demonstrated that CHOSEN only lead to few performance errors (< 1%), we use CHOSEN to
label the test set for each project.
Table 9 reports the accuracy, precision, recall, and F1-score for all projects. We also provide the performance

improvements in terms of each metric, where positive improvements are marked in grey. Results show that the
detection models trained on CHOSEN training sets achieve the average improvements of 8.32%, 13.85%, and 9.31%
in terms of accuracy, precision, and F1-score, respectively. Compared with the noise training set, the CHOSEN

training set can help the detection model achieves better recall in 11 out of the 14 projects. The statistical analysis
displays that the �-values are less than 0.05, meaning that the CHOSEN training set is signiicantly better than
the noise training set on all metrics. The efect-size results show that the dataset constructed by CHOSEN brings

ACM Trans. Softw. Eng. Methodol.

Revisiting the Identification of the Co-Evolution of Production and Test Code • 23

large performance diferences on accuracy, medium performance diferences in precision and small performance
in F1-score.

Table 9. Performances of CHOSEN in 14 programs

Project
Noise training set (�)

Acc. Prec. Rec. F1.vs.
CHOSEN training set (�)

ActiveMQ
� 57.45% 55.10% 49.13% 51.94%
� 67.82% 68.75% 57.48% 62.61%

Improvement 18.05% 24.77% 17.00% 20.54%

BioJava
� 71.59% 46.92% 43.13% 44.95%
� 77.41% 63.36% 37.95% 47.47%

Improvement 8.13% 35.04% -12.01% 5.61%

CloudStack
� 71.44% 61.98% 60.00% 60.97%
� 71.56% 62.06% 60.65% 61.35%

Improvement 0.17% 0.13% 1.08% 0.61%

Math
� 73.33% 62.80% 68.68% 65.61%
� 74.19% 64.19% 68.83% 66.43%

Improvement 1.17% 2.21% 0.22% 1.25%

dnsjava
� 64.42% 18.25% 43.33% 25.68%
� 70.96% 23.99% 47.33% 31.84%

Improvement 10.15% 31.45% 9.23% 23.98%

Geode
� 67.92% 78.01% 68.37% 72.87%
� 69.94% 81.43% 67.77% 73.97%

Improvement 2.97% 4.38% -0.88% 1.51%

Gson
� 55.27% 51.99% 46.54% 49.11%
� 66.25% 68.80% 50.38% 58.17%

Improvement 19.87% 32.33% 8.25% 18.43%

IzPack
� 62.37% 58.20% 59.71% 58.95%
� 65.79% 61.95% 63.88% 62.90%

Improvement 5.48% 6.44% 6.98% 6.71%

JRuby
� 48.33% 28.50% 36.36% 31.95%
� 48.79% 30.46% 42.27% 35.41%

Improvement 0.95% 6.88% 16.25% 10.80%

PMD
� 64.13% 64.79% 56.79% 60.53%
� 67.03% 68.63% 58.76% 63.31%

Improvement 4.52% 5.93% 3.47% 4.60%

Storm
� 62.50% 57.78% 53.39% 55.50%
� 72.50% 69.30% 66.61% 67.93%

Improvement 16.00% 19.94% 24.76% 22.40%

Usergrid
� 65.57% 41.57% 67.37% 51.41%
� 74.76% 52.67% 65.62% 58.44%

Improvement 14.02% 26.70% -2.60% 13.66%

Zeppelin
� 60.22% 42.55% 63.37% 50.91%
� 69.59% 52.71% 64.31% 57.94%

Improvement 15.56% 23.88% 1.48% 13.79%

James
� 70.18% 69.71% 70.00% 69.85%
� 72.59% 72.12% 72.52% 72.32%

Improvement 3.43% 3.46% 3.60% 3.53%

Avg.
� 63.91% 52.73% 56.16% 53.59%
� 69.23% 60.03% 58.88% 58.58%

Improvement 8.32% 13.85% 4.86% 9.31%

Statistical
results

�-value 6.1035 × 10−5 6.1035 × 10−5 0.0148 5.4697 × 10−4

clif’s delta 0.51 0.34 0.14 0.28
Efect-size L M N S

ACM Trans. Softw. Eng. Methodol.

24 • Weifeng Sun, Meng Yan, Zhongxin Liu, Xin Xia, Yan Lei, and David Lo

¬ The test set constructed by CHOSEN measures the performance of OTCD models more accurately with an

average error of 0.76%. The dataset constructed by CHOSEN can train a better detection model, with performance

improvements of 12.00%, 17.35%, 8.75%, and 13.50% in terms of accuracy, precision, recall, and F1-score, respectively.

¬ The dataset constructed by CHOSEN improves the performance of the detection model on other projects, where

the average accuracy, precision, recall, and F1-score of the model improve by 8.32%, 13.85%, 4.86%, and 9.31%

respectively.

5 DISCUSSION

In this section, we further discuss the deinition of Assumption .1, the limitation of empirical study, the limitation
of our approach, the implications for practitioners and researchers, and the threats to the validity of this work.

5.1 The definition of Assumption .1

The deinition of Assumption .1 is based on prior research [42, 55, 81, 88] that employs time-based commit
analysis to identify PT co-evolution samples. Existing work argues that PT co-evolution should occur together in
one commit [42, 55, 88], or in a short time interval [81]. Actually, Assumption .1 was formulated to be able to
mine PT co-evolution samples, since automatically determining PT co-evolution is a non-trivial task that requires
precisely comprehending production and test code changes. Furthermore, Assumption .1 is reasonable because
it aligns with the idea that if the modiication of the production code results in obsolete test code, the obsolete test
code should be promptly updated accordingly, since obsolete test code would increase the cost of development
and maintenance [50, 65]. On the other hand, if the time interval between a production code change and a test
code change is too long, their modiications are likely to be uncorrelated. Careful readers may wonder if the
deinition of Assumption .1 is a bit too strict. However, since the identiied PT co-evolution samples typically
serve as the foundation for downstream tasks like JIT obsolete test code detection and fault localization [85, 86],
etc., the strict assumption can reduce noise and is favorable.

5.2 Limitation of Empirical Study

To enable the mining of PT co-evolution samples, existing PT co-evolution-related works widely use the following
strategies to identify PT co-evolution samples: 1) Focusing on unit test classes and taking advantage of naming
conventions to ease the association of test and production classes. 2) Collecting PT co-evolution samples based on
the Assumption .1, i.e., if a test class and its associated production class change together in one commit, or a
test class changes immediately after the changes of the associated production class within a short time interval
(denoted by�), this change pair should be a PT co-evolution sample. We conduct the empirical study with the goal
of investigating whether the production-test change pairs that satisfy the assumption are always PT co-evolution

samples. Therefore, we need to follow the abovementioned assumption to construct the PT co-evolution samples.
During the construction process, we identify all test code changes for each commit in the repository’s main
branch. For each test code change, denoted as �ℎ�������� , we iterate through the commits before (and including)
the �ℎ�������� to ind the latest production code changes. Note that there may be a situation where a set of
changes applied to the production class in diferent commits results in a change in the corresponding test class.
In such case, only the pair of the last production code change and the test code change is regarded as our PT
co-evolution candidate following this assumption. Other pairs of production code changes and test code changes
fall outside the scope of the Assumption .1. It is worth mentioning that, these change pairs do not threaten
the validity of our empirical indings, as the purpose of our empirical study is to investigate whether the PT
co-evolution samples that satisfy Assumption .1 introduce noise. We plan to explore other pairs in our future
work.

ACM Trans. Softw. Eng. Methodol.

Revisiting the Identification of the Co-Evolution of Production and Test Code • 25

5.3 Limitation of Our Approach

5.3.1 The Selection of Test-to-Code Traceability Link Method. CHOSEN accepts a production-test change pair
⟨�ℎ����� , �ℎ����� ⟩ as input. To construct a production-test change pair, CHOSEN needs to associate a production
code snippet and a test code snippet. However, all existing test-to-code traceability link techniques have weak-
nesses that make them unsuitable for use as a general solution [83]. Therefore, following previous studies [81], we
utilize a most common technique, i.e., naming convention. The speciic conventions may vary between projects.
However, the standard convention is that a test class should share the same name as the associated production
class, with test prepended or appended [61, 68]. The naming convention can ensure that, for each test code
change, once a production code is found by removing the test preix or suix of the test code, this production
code must be the associated production code. Since Maven projects follow the standard directory layout, we only
consider the projects written in Java language and managed by Maven in this paper.
However, it does not mean that our approach only applies to Java projects. For example, mainstream python

testing frameworks (e.g., pytest [32]) also follow naming conventions, where test methods/functions or test
classes are expected to match the łtest_*.py" or ł*_test.py" pattern. As for projects that do not adhere to these
conventions, we can leverage other test-to-code traceability link techniques [52, 67, 83]. For example, based on
the assumption that the test code should be similar to the associated production code, Csuvik et al. [41] use word
embeddings to create traceability links between the test classes and associated production classes. Therefore,
CHOSEN can be easily migrated to other languages/types of projects by accurately modeling the traceability
relationship between test and production code.

5.3.2 Interpretation of the Identification Strategies. Given a production-test change pair, we propose a two-stage
identiication strategy to determine whether the production code change triggers the test code change. The
proposed method is learned from the indings of the empirical study. In this section, we will discuss the intuition
and interpretation of some identiication strategies.

Table 10. PT co-evolution identification performance under diferent time intervals in 380 samples constructed in the empirical

study.

Time Interval
Acc. Prec. Rec. F1.

(�)

� = 0 88.68% 88.66% 89.12% 88.89%

� = 12ℎ 88.16% 83.94% 94.82% 89.05%

� = 24ℎ 86.84% 81.78% 95.34% 88.04%

� = 48ℎ 85.53% 79.74% 95.85% 87.06%

� = 480ℎ 77.89% 70.26% 97.93% 81.82%

Threshold in Stage 1. The Stage 1 of CHOSEN uses the time interval to initially estimate the label of
product-test change pair. When the time interval between the test code change and the production code change is
less than a threshold � (in this paper, � = 12ℎ), CHOSEN will treat it as an initial positive sample. Otherwise,
it is an initial negative sample. The determination of the � is based on our empirical study, in which we set
diferent values of � , i.e., � = {0, 12ℎ, 24ℎ, 48ℎ} and compare the identiication performance of PT co-evolution

using these values in terms of accuracy, precision, recall, and F1-score, based on 380 labeled samples. The results
of the comparison are presented in Table 10. From Table 10, we can observe that as � increases, the recall value
gradually increases while the precision value gradually decreases. On the one hand, when � > 12ℎ, increasing
the � can bring slight recall improvement; but dramatically reduces the precision. Although � = 0 gets the best
precision performance, it is not optimal for the F1-score. On the contrary, the best F1-score result is achieved at

ACM Trans. Softw. Eng. Methodol.

26 • Weifeng Sun, Meng Yan, Zhongxin Liu, Xin Xia, Yan Lei, and David Lo

� = 12ℎ. Although � = 12ℎ does not obtain satisfactory precision results, CHOSEN can further improve the
precision performance through the Stage 2’s identiication strategies.
Strategy 1 in Stage 2. The determination of Strategy 1 is based on the indings of our empirical study. We

retain the production-test change pairs constructed in the empirical study satisfying Strategy 1 and obtain a total
of 6,253 non-modiication change pairs (i.e., the production changes or test changes are non-modiication types).
We observe some interesting facts regarding non-modiication change pairs. We ind that most change pairs
involve the same non-modiication type of change for both production and test code, with 5,185 samples (82.92%).
For the remaining 1,068 samples, we randomly select 10 change pairs. By manually checking and analyzing test
change reasons, such selected samples are all PT co-evolution samples. Obviously, considering only the change
pairs of which the non-modiication type change must occur and must be the same on both production changes
and test changes as PT co-evolution samples, we may ignore some positives.
We further analyze the abovementioned observations. On the one hand, some change pairs of diferent non-

modiication types are due to the modiication type of production or test change being RENAME and COPY. Github
ofers ive types of ile change, including MODIFY, ADD, DELETE, RENAME, and COPY. RENAME is usually caused by

Fig. 6. PT co-evolution example of production code modifications leading to test class deletion in commons-compress project.

Listing 5. FramedLZ4CompressorOutputStream.java change (simplified, commit 176cd18).

i ndex e0622e10 . . f 5 0 a a 5 7 9 100644
− p r i v a t e s t a t i c f i n a l L i s t < I n t e g e r > BLOCK_SIZES = Arrays . a s L i s t (6 4 ∗ 1024 , 256 ∗ 1024 ,
− 1024 ∗ 1024 , 4096 ∗ 1 0 2 4) ;
+ p r i v a t e f i n a l Pa rame te r s params ;
+ p u b l i c enum B l o c k S i z e {
+ K64 (6 4 ∗ 1024 , 0) , K256 (2 5 6 ∗ 1024 , 1) , M1(1 0 2 4 ∗ 1024 , 2) , M4(1 0 2 4 ∗ 1024 , 4) ;

}
+ p u b l i c s t a t i c c l a s s Pa rame te r s {
+ p r i v a t e f i n a l B l o c k S i z e b l o c k S i z e ;
+ p u b l i c s t a t i c Pa rame te r s DEFAULT = new Parame te r s (B l o c k S i z e .M4) ;
+ p u b l i c Pa rame te r s (B l o c k S i z e b l o c k S i z e) {
+ t h i s . b l o c k S i z e = b l o c k S i z e ;
+ }
+ }
− pu b l i c FramedLZ4CompressorOutputStream (OutputStream out , i n t b l o c k S i z e)
− throws IOExcep t i on {
− i f (! BLOCK_SIZES . c o n t a i n s (b l o c k S i z e)) {
− throw new I l l e g a lA r gumen tEx c e p t i o n (" Unsupported b l o ck s i z e ") ;
− }
+ p u b l i c FramedLZ4CompressorOutputStream (OutputStream out , Pa rame te r s params)

throws IOExcep t i on {
+ t h i s . params = params ;
}

Listing 6. FramedLZ4CompressorOutputStreamTest.java change (simplified, commit 176cd18).

i ndex 5 f 2 8 0 2 e 2 . . 0 0 0 0 0 0 0 0
− package org . apache . commons . compress . compres so r s . l z 4 ;
− impor t j a v a . i o . ByteArrayOutputS t ream ;
− impor t j a v a . i o . IOExcep t i on ;
− impor t org . j u n i t . Te s t ;
− pu b l i c f i n a l c l a s s FramedLZ4CompressorOutputStreamTest {
− @Test (expec t ed = I l l e g a lA r gumen tEx c e p t i o n . c l a s s)
− pu b l i c vo id i l l e g a l B l o c k S i z e () throws IOExcep t i on {
− new FramedLZ4CompressorOutputStream (new ByteArrayOutputS t ream () , 32 ∗ 1 0 2 4) ;
− }
− }

ACM Trans. Softw. Eng. Methodol.

Revisiting the Identification of the Co-Evolution of Production and Test Code • 27

changes to the ile path, which can be seen as the deletion of iles located in the old path and the addition of iles
located in the new path. Meanwhile, COPY operation adds a new ile in the target ile path. Secondly, some change
pairs are due to developers modifying the production code resulting in the addition of a test class (which accounts
for 678/1,068 cases). For example, in the ta4j project, the production code XorRule removed the check method
and added a new isSatisfied method [9]. Three days later, the developers added a new test class XorRuleTest
and a test case that tests the focal method isSatisfied [10]. In addition, we observe some uncommon cases
where the developer simply removed the test class without removing the production class, accounting for 8.80%
(55/6,253). As shown in Figure 6, before the code is committed, the production code deines the BLOCK_SIZES
variable to store a set of block sizes. When the production code accepts a block size that does not fall within
the speciied range, an IllegalArgumentException is thrown, which is also tested by the corresponding test
case. Subsequently, the developer removed the conditional statement that threw the exception and added the
Parameters inner class and the BlockSize enumeration class to enforce the use of a predeined block size. The
changes to the production code make the test case redundant, and the test class contains only one test case. As a
result, the developer directly deleted the entire test class.

Strategy 2 in Stage 2. For Strategy 2, we deine a production-test change pair as a PT non-co-evolution sample

when there are additional production code modiications between the production code change commit and test
code change commit. The deinition of Strategy 2 is based on the following reasons: 1) Consistent with problem
formulation (as described in Section 3.2.1). Strategy 2 allows us to focus on the co-evolution of the test changes
with the most recent production changes; 2)Mapping to the PT co-evolution distribution of empirical study.
Our empirical study shows that PT co-evolution usually occurs in a short time interval (�), and the number of
PT non-co-evolution samples increases signiicantly whenever � increases slightly (as shown in Table 2). Thus,
when there are multiple production code modiications prior to the test changes, it is reasonable to consider that
the earlier production modiications are associated with the test modiications with low conidence. Strategy 2
ensures that CHOSEN constructs the PT co-evolution samples as precisely as possible. However, there may be
multiple consecutive production code changes that occur in diferent commits and are associated with a test code
update. In such a case, the last production and test code change must be a PT co-evolution sample, but CHOSEN

would identify other change pairs as negatives, which may sacriice some recall results while ensuring high
precision performance. Improving the recall performance of CHOSEN in identifying PT co-evolution samples will
be part of our future work.

5.4 Limitation of CHOSEN Application

Following previous research [42, 55, 81, 88],CHOSEN focuses on unit test classes and identiies the PT co-evolution
sampleswhere testmodiications are triggered by productionmodiications. Interestingly, in our empirical research,
we observe some cases where test code changes trigger subsequent production code modiications (i.e., category
6 in the taxonomy). Although such cases are not many, accounting for only 0.53%, limited by our study scope,
CHOSEN cannot identify them. However, our qualitative analysis can ofer insight for future researchers to
address this limitation. As mentioned in Section 2.3, developers may, in order to ix a bug in production code,
add a failed test case that triggers the bug [6]. Generally, with the addition of failed test cases, developers would
explicitly describe modiication intentions in commit messages and comments and assign an ID to denote the
bug. When subsequent developers ix the production bug, they can refer to the previously deined bug ID in the
corresponding commit message. This insight inspires us to identify test modiications that may trigger subsequent
production modiications by extracting their comments and commit messages. Then, developers can use the
assigned bug ID to traverse the commit history to search for production modiications.

ACM Trans. Softw. Eng. Methodol.

28 • Weifeng Sun, Meng Yan, Zhongxin Liu, Xin Xia, Yan Lei, and David Lo

5.5 Implications

Identifying PT co-evolution samples is crucial for helping developers understand the co-evolution process of a
project (e.g., how source code entities co-evolve). Furthermore, the mined PT co-evolution samples can be used in
downstream tasks to further facilitate co-evolution in a project, such as JIT OTCD. Our large-scale study in RQ1
conirms that the assumption used in the literature for identifying co-evolution samples is not always held, and
even when production code changes and test code changes happen simultaneously, they are not necessarily PT

co-evolution samples. In other words, production code changes do not always result in updates of corresponding
test code. Therefore, we are not claiming it is a bad practice to not update test code as a consequence of production
code changes. Additionally, our qualitative analysis reveals that the factors leading to test code updates are
diverse, providing us with some lessons learned. In the following, we discuss the implications for researchers
and/or practitioners from our indings.

5.5.1 Implications for Practitioners. Diversity of test code updates. Software engineers and developers should
be aware that test code updates can be diverse and not always triggered by production code changes. Our
empirical study has shown that a considerable number of test code changes are related to factors such as test
framework updates, refactoring, or bug ixing within the test code itself. In addition to the test code updates due
to adaptive, perfective, and corrective maintenance activities, there are also indirectly related production code
updates and indirectly related test code updates. Therefore, it is important to not solely rely on production code
changes as an indicator of when to update test code and to attribute test code changes simply to production code
changes. Additionally, developers should consider monitoring and analyzing the test code changes to ensure that
the tests remain relevant and efective in detecting defects. Overall, being proactive in maintaining and updating
test code can help to catch issues early and reduce the cost and efort of ixing bugs later in the development
cycle.
Diversity of software artifact co-evolution, including indirectly related production/test code. We

observed a series of cases where test code updates are due to other software artifacts, e.g., indirectly related
production code and indirectly related test code. For example, a function signature change of an indirectly related
production code leads to the modiications of a series of test iles that call the method [13]. Similarly, for a test
class with an inheritance relationship, changes in the parent class may cause updates in the subclass [8]. This
highlight that when developers update source code entities, they also need to consider the impact of other code
entities that are associated or inherited. The implications of this inding for software engineers and developers
are signiicant. It suggests that developers should broaden their scope when updating software artifacts and be
mindful of the potential ripple efects on other code entities. Speciically, they need to consider how updates
to indirectly related code artifacts may afect the behavior and functionality of the entire system. This broader
perspective can improve the quality and stability of software systems and reduce the potential for unexpected
bugs and errors. By recognizing the diversity of co-evolution and adopting a more holistic approach to software
updates, developers can enhance their software development skills and produce more robust and reliable software
systems.

5.5.2 Implications for Researchers. PT co-evolution identiication is still an open problem. Existing studies
related to PT co-evolution, including this paper, have primarily focused on code changes at the class level. However,
there are still signiicant challenges and gaps in understanding method-level PT co-evolution. Therefore, further
exploration of method-level PT co-evolution is necessary to provide better solutions for developers. Researchers
can work towards developing new techniques and tools that can help identify iner-grained co-evolution between
production code and test code, as well as the impact of test code changes on production code and vice versa,
ultimately facilitating the PT co-evolution process. As discussed in Section 1, a major research challenge in
identifying and mining PT co-evolution samples is how to associate a test code snippet and a production code

ACM Trans. Softw. Eng. Methodol.

Revisiting the Identification of the Co-Evolution of Production and Test Code • 29

snippet. In this paper, we utilize the naming convention (NC) approach, which exhibits high precision, particularly
in projects that strictly adhere to naming conventions. However, NC’s performance is limited in projects that do
not follow naming conventions. Therefore, there are many research opportunities here for researchers to further
improve PT co-evolution identiication by constructing more accurate test-to-code traceability links.

The dataset of other code entities co-evolution is necessary. Our empirical study shows that the assump-
tion used in previous studies for constructing PT co-evolution samples does not always hold and may introduce
noise. However, manually collecting PT co-evolution samples is time-consuming for researchers. Therefore, we
propose a method for automatically identifying PT co-evolution samples (i.e., CHOSEN). CHOSEN achieves
promising performances (accuracy: 92.89%) and has the potential to help researchers construct high-quality PT

co-evolution samples from the large amount of historical data stored in GitHub and other version control systems.
However, software is multi-dimensional, and so is the development process behind it. This multi-dimensionality
lies in the fact that other artifacts are required to develop high-quality source code, such as requirements, docu-
mentation, etc., [63]. Our qualitative analysis has shown that there are various forms of co-evolution scenarios,
such as the co-evolution of test code with indirectly related production code and the co-evolution of test code
with indirectly related test code. Therefore, in the future, it is necessary to construct standard datasets of diferent
forms of co-evolution to facilitate researchers to perform co-evolution-related work.

5.6 Threats to Validity

Despite our best eforts, we are aware of some threats to validity. In this section, we briely discuss them, which
are grouped into the following categories.

5.6.1 Threats to Internal Validity. Internal validity threats concern factors internal to our study that could
inluence our results.
Manual Analysis. The use of manual analysis could sufer from subjectivity bias for interpretation in

determining the test update reasons. To mitigate this threat, we employed three volunteers to conduct a two-
phase check. All test update reasons have a full inter-rater agreement.
Saturation Evaluation. To determine whether our manual analysis achieved saturation, we followed the

common practice of previous studies [79, 80]: near the end of the manual analysis, the cards/tags collection
can be considered saturation when new cards/tags no longer appeared. Similarly, we found that after analyzing
about 80% of the changed pairs, volunteers did not add any new tags. Thus, we claimed that our manual analysis
has reached saturation. Additionally, we randomly selected 10% of the PT non-co-evolution samples from the
evaluation dataset constructed by RQ3. Upon the analysis of these test change reasons, we found that the test
change patterns were always found in the taxonomy, providing further evidence that our manual analysis has
reached saturation.

Dependent Tools. The detection of refactoring operations relies entirely on of-the-shelf tools, and to reduce
the risk of tools, we choose state-of-the-art detection tools, which have wide applications and high accuracy. Our
method implementations involve the GumTree tool whose potential threat [44] may limit the efectiveness of our
approach.
Test-to-Code Traceability Construction. The third threat to internal validity is that constructing the

production-test change pair may introduce traceability noise, i.e., the production code that is not the associated
production code of the test code. Following previous work [81, 88, 89], we adopt the naming convention, a very
high precision traceability technique in class level [83], with the goal of containing minimal traceability noise,
although this technique can have a poor recall. On the other hand, this technique is inefective if the project
does not adhere to the naming conventions. Notwithstanding these limitations, as discussed in Section 5.3.1,
CHOSEN remains easily transferable to projects that use other programming languages and do not follow
naming conventions.

ACM Trans. Softw. Eng. Methodol.

30 • Weifeng Sun, Meng Yan, Zhongxin Liu, Xin Xia, Yan Lei, and David Lo

Identiication Strategies and the Mapping to the Taxonomy. Our empirical indings inform the ive
identiication strategies we propose. Strategies 1 and 2 are determined based on the distribution of PT co-evolution

samples, while strategies 3, 4, and 5 are derived from the summarized taxonomy. This paper focuses on the
co-evolution of a test class and its associated production class. Consequently, we developed strategies to identify
PT non-co-evolution samples based on the maintenance activities of test code in the taxonomy, including adaptive
maintenance, perfective maintenance, and corrective maintenance. Other code artifacts, such as indirectly related
production code as well as indirectly related test code, resulting in test code updates, are beyond the scope of this
paper. RefactoringMiner can detect most test change patterns related to maintenance activities of test code in
taxonomy, such as extracting methods, renaming methods/classes, and adding/removing annotations [77]. We
deine Strategy 4 to ensure that test and production changes are semantically relevant. However, some change
patterns, such as łix test code faults", are not covered by CHOSEN. Detecting and implementing these uncovered
change patterns and other test update categories will be part of our future work.CHOSEN is limited in identifying
cases where test modiications trigger production modiications, but we provide possible solutions in Section 5.4.
Finally, a potential threat to the validity of our study is that we only consider the last change to a production
code as a possible pair to a subsequent change to the related test class. This may result in overlooking potential
PT co-evolution patterns that occur with multiple changes to the production code. Although CHOSEN may not
capture the full extent of PT co-evolution, it ensures that the identiied PT co-evolution samples are suiciently
accurate. To address the limitation, future work could explore more sophisticated techniques to identify and track
co-evolution patterns across multiple changes to production code, which may involve analyzing code changes at
a iner-grained level or using more advanced machine learning techniques.

5.6.2 Threats to External Validity. External validity is speciically about to what extent our experimental results
can be generalized.
Subject Selection. The main threats to validity come from the subjects. An external threat is the represen-

tativeness of the projects since we have no clear evidence as to how representative the selected projects are.
However, the adopted projects are widely used in co-evolution-related research, and the labeled sample size
(more than 1k) is large enough to demonstrate our approach’s generality. As explained by Kalliamvakou et
al. [51], relying solely on the number of stars to select popular projects may not accurately relect a project’s true
popularity, which can be inluenced by factors other than project quality, such as social networks and marketing
eforts. To mitigate this potential threat, we applied multiple strict selection criteria, including a long change
history and compilability, and manually veriied if the star count of these projects increased within a short period
of time. Moreover, the selected project list is obtained from previous studies [81, 82] and is widely used in the
software engineering community.

Evaluation Dataset. To avoid overitting, CHOSEN has been evaluated on a diferent set of 380 samples from
the 33,567 production-test change pairs while ensuring that there are no overlap or duplicate samples between
these 380 samples and that of our empirical study. Careful readers may wonder, even though the two datasets are
diferent, they may represent similar information since both are statistically signiicant samples of the original
dataset. However, in evaluating the CHOSEN’s usefulness in JIT OTCD, we select and label three projects, of
which Flink and Log4j2 are not among the 44 projects of the empirical study. For the Flink and Log4j2 datasets
(a total of 609 labeled change pairs), the experimental results further conirm the efectiveness of CHOSEN in
identifying PT co-evolution samples: Table 7 shows that the test set constructed by CHOSEN more accurately
measures the performance of the OTCD model with an average error of 0.80%, while SITAR_IM leads to an error
of 6.00%. We also acknowledge the fact that the evaluation of CHOSEN requires more projects as well as a larger
labeled dataset. We are actively working on addressing these limitations in our continuing work.

ACM Trans. Softw. Eng. Methodol.

Revisiting the Identification of the Co-Evolution of Production and Test Code • 31

6 RELATED WORK

6.1 Establishing Traceability Links between Production Code and Test Code

Previous works have proposed methods to establish traceability between production and test code. Given a test
class, Qusef et al. [67] exploited dynamic slicing to identify a set of candidate production classes. Then, external
and internal textual information associated with the classes were used to identify the inal set of tested classes.
White et al. [83] utilized a wide range of techniques to establish links between tests and tested code, as well as
between test classes and tested classes. At the method level, developers can utilize various tools and frameworks
to annotate tests with links to the method-under-test. One such framework is EzUnit [38], which performs a
static analysis and suggests methods called by a test for annotation. When an error occurs in the test, EzUnit
highlights the linked methods. Ghafari et al. [47] also work at the method level, where they decompose test cases
into sub-scenarios to identify the tested function, using static data low analysis. These tools and techniques
provide valuable insights for establishing traceability at the method level.
Other test-to-code traceability approaches assume that a test should be similar to the corresponding tested

unit. Kicsi et al. [52] utilized Latent Semantic Indexing (LSI) on source code to establish traceability links between
test classes and production classes. The experimental results show that the ground truth link is ranked top
between 30% and 62% and suggests a low recall, with no investigation of precision. Csuvik et al. [41] used word
embeddings instead of LSI in the same approach and achieved better precision. Although naming convention can
achieve good traceability accuracy on the class level since developers usually follow naming conventions for
test classes, on the method level, there are various guidelines for naming test methods, leading to challenges in
achieving accurate traceability. Madeja et al. [61] investigated and found that only 49% of tests’ name included
the full name of the focal method, while 76% of tests’ name contained a partial name of a focal method. This
paper mainly focuses on the PT co-evolution at class level, so we adopt the naming convention with the goal of
containing minimal traceability noise. Diferent from these traceability studies, our purpose is not to associate
production code and test code, but to identify whether test code changes are triggered by the production code
changes.

6.2 Co-evolution of Production and Test Code

Levin and Yehudai studied co-evolution with semantic changes [59]. They focused on the co-evolution caused
by speciic maintenance activities, using the number of diferent types of activities as change features to mine
the pattern of PT co-evolution. Unlike their work, we explore test code updates occurring after the changes of
the associated production code, composing six root categories. Moreover, Mamdouh et al. [35] have presented
statistical evidence of a signiicant relationship between production code and its associated test suites. Speciically,
they utilized several metrics used to determine the size of production code or tests, such as the number of classes,
lines of code (LOC), number of methods, and number of packages, to understand and identify how test cases
evolve during production code changes (releases) in terms of size and complexity. Instead, our study focuses
on accurately identifying production-test co-evolution samples, where test code change triggers or is triggered
by production code change. Previous researchers have investigated the nature of the co-evolution between
production code and test code (i.e., synchronous or phased) [60, 88, 89]. In [60], Lubsen et al. used association
rule mining to examine the PT co-evolution in two case studies: an open-source system and an industrial software
system. In [89] and [88], the researchers proposed three views which are: change history view, growth history
view, and test coverage evolution view, and combine them to study how production-test co-evolves over time.
Further, they demonstrated and validated the use of such views on two open-source cases and one industrial
case, drawing several relevant observations about the testing processes used in development. However, the
abovementioned studies [60, 88, 89] are conducted based on identiied and mined PT co-evolution samples. To this
end, they directly identiied those production-test change pairs where the test class changes and its associated

ACM Trans. Softw. Eng. Methodol.

32 • Weifeng Sun, Meng Yan, Zhongxin Liu, Xin Xia, Yan Lei, and David Lo

production class changes together in one commit as production-test co-evolution samples. However, our empirical
study has shown that such an identiication method would introduce noise, which may pose a threat to their
conclusions. To mitigate this threat, we propose CHOSEN to identify PT co-evolution samples accurately. We
believe that CHOSEN can enhance the validity of existing works related to PT co-evolution.

Mars-avina et.al. [62] run each modiied test case to identify all the entities from the production code covered
by the test, thereby constructing PT co-evolution samples dynamically. Based on PT co-evolution samples, co-
evolution patterns are mined by ChangeDistiller [46]. Intuitively, compared with static analysis, a dynamic
solution may better identify PT co-evolution samples. However, dynamic methods need to run tests to collect
coverage information, are therefore more expensive [50]. Additionally, dynamic methods can achieve high recall
but may sacriice precision since they identify all the entities in the production code accessed by the test [62]. In
contrast, CHOSEN is a lightweight static approach that identiies PT co-evolution samples with high precision.
We believe CHOSEN and dynamic methods can complement each other. Wang et al. [81] conducted a large-scale
empirical study (including 975 open-source Java projects) to understand the practice of PT co-evolution. To
ease test maintenance whenever the production code changes, they further proposed a machine-learning-based
approach named SITAR for JIT obsolete test code detection. In their approach, SITAR focuses more on changing
lines of code in programming language constructs. SITAR consists of two components: 1) the construction of
PT co-evolution samples (positives) and PT non-co-evolution samples (negatives); 2) designing several structural
code features and training detectors to detect obsolete test code based on the mined PT co-evolution samples.
In Section 3.1, we have demonstrated that SITAR’s identiication method of PT co-evolution samples introduces
noise, which causes SITAR’s detection performance on the testing set to be signiicantly diferent from its actual
performance. Compared with SITAR, our work focuses on constructing the PT co-evolution samples. Moreover,
CHOSEN can measure the performance of OTCD models more accurately, and the dataset constructed by
CHOSEN can train a better detection model (as shown in Section 4.3).

7 CONCLUSION AND FUTURE WORK

This paper explores the reasonableness of the assumption which is widely used by prior works to collect and
label production-test co-evolution samples: if a test class and its associated production class change together in one
commit, or a test class changes immediately after the changes of associated production class within a short time
interval, this change pair should be a production-test co-evolution sample. To this end, we conduct an empirical
study and demonstrate that the assumption does not always hold in practice and the methods used by prior work
to identify PT co-evolution samples would introduce noise. Therefore, we propose an identiication method of PT
co-evolution, namely CHOSEN. We evaluate the efectiveness of CHOSEN on a manually labeled dataset. The
results show that CHOSEN can more accurately identify PT co-evolution samples. In addition, We demonstrate
that CHOSEN can be used to facilitate the downstream tasks. For the obsolete test code detection task, the test
set labeled by CHOSEN can help accurately measure the detection model’s performance with only 0.76% errors,
and the training set labeled by CHOSEN can help improve the performance of the detection model. When the
cost of manual labels is unafordable, we recommend that researchers construct PT co-evolution samples through
our method, thereby improving the validity of the indings. Limited by our study scope, CHOSEN cannot identify
the case where production modiications are triggered by test modiications (in our empirical study, two samples
satisfy this pattern, accounting for 0.53%). Therefore, one important direction for future work is on the extension
of CHOSEN to identify PT co-evolution where test modiications trigger production modiications. In addition, it
would be very promising to adopt other state-of-the-out linking methods that associate production code and test
code to construct production-test change pairs, thereby further improving the generalizability of CHOSEN.

ACM Trans. Softw. Eng. Methodol.

Revisiting the Identification of the Co-Evolution of Production and Test Code • 33

8 ACKNOWLEDGEMENTS

This work was supported in part by the National Key Research and Development Project (No. 2021YFB1714200),
the Fundamental Research Funds for the CentralUniversities (No. 2022CDJDX-005), the Chongqing Technology In-
novation and Application Development Project (No. CSTB2022TIAD-STX0007 and No. CSTB2022TIAD-KPX0067),
the National Natural Science Foundation of China (No. 62002034) and theNatural Science Foundation of Chongqing
(No. cstc2021jcyj-msxmX0538).

REFERENCES

[1] 2011. A commit in Commons-functor project, BinaryAnd.java. https://github.com/apache/commons-functor/commit/

cb42eacc6a82f98da131f32972915f6cde609fd9.

[2] 2012. A commit in Commons-csv project. https://github.com/apache/commons-csv/commit/

6a34b823c807325bc251ef43c66c307adcd947b8.

[3] 2012. A commit in Commons-functor project, TestBinaryAnd.java. https://github.com/apache/commons-functor/commit/

22ec28d8aabe5dcdf9f4723f573395822611f6b5.

[4] 2013. A commit in Joda-time project. https://github.com/JodaOrg/joda-time/commit/3a413d7844c22dc6ddd50bf5d0d55f3589e47ac.

[5] 2014. A commit in Commons-compress project, ZipFile.java. https://github.com/apache/commons-compress/commit/

885d2053f4fc29d986904c9b8cfe69bcfbe7b361.

[6] 2014. A commit in Commons-compress project, ZipFileTest.java. https://github.com/apache/commons-compress/commit/

bc741b19e88749d66b03bf8dc292f3ae0fc74156.

[7] 2015. A commit in Commons-math project, GraggBulirschStoerStepInterpolator.java. https://github.com/apache/commons-

math/commit/8e0b98bf6bd30713d94b72c7c410addb26c3c472.

[8] 2015. A commit in Commons-math project, GraggBulirschStoerStepInterpolatorTest.java. https://github.com/apache/commons-

math/commit/bf803b119be94bfd71902ea5db06075aada82672.

[9] 2015. A commit in ta4j project, XorRule.java. https://github.com/ta4j/ta4j/commit/db5576521118459df4b36120ed9e7b7fae5aedca.

[10] 2015. A commit in ta4j project, XorRuleTest.java. https://github.com/ta4j/ta4j/commit/1b3f7949962d01e3d5724437d1fc4d301c124c3b.

[11] 2018. A commit in Commons-coniguration project, DefaultParametersManager.java. https://github.com/apache/commons-

coniguration/commit/fa5dbfaf68973a204dc09acb42909f5bd39f70.

[12] 2018. A commit in ta4j project, InSlopeRule.java. https://github.com/ta4j/ta4j/commit/590cab635abe3fbdb30d2a0bed66bee8421c254e.

[13] 2018. A commit in ta4j project, InSlopeRuleTest.java. https://github.com/ta4j/ta4j/commit/

590cab635abe3fbdb30d2a0bed66bee8421c254e.

[14] 2019. A commit in Cactoos project, Cycled.java. https://github.com/yegor256/cactoos/commit/

b092754a6e18a39951e27733490be1961dadfeb0.

[15] 2019. A commit in Commons-coniguration project, TestDefaultParametersManager.java. https://github.com/apache/commons-

coniguration/commit/63bb3e88d13e6447f64bac47fcfd71b60c5a4c3e.

[16] 2019. A commit in Commons-lang project, Validate.java. https://github.com/apache/commons-lang/commit/

37442639705892348d2cd6d7717ff4d9841ca09.

[17] 2019. A commit in Commons-numbers project. https://github.com/apache/commons-numbers/commit/

7427fd0639557f25a2d7274597be70882527fd0.

[18] 2019. A commit in Dubbo project. https://github.com/apache/dubbo/commit/c91618b05f6137b291134ef10ebd28a918193ecd.

[19] 2020. A commit in Cactoos project, CycledTest.java. https://github.com/yegor256/cactoos/commit/

97454478d07f360b68f98504e803f26d6777ae9.

[20] 2020. A commit in Commons-collections project. https://github.com/apache/commons-collections/commit/

1d26fda9302433fda227c5724d2f5cd499b0148.

[21] 2020. A commit in Commons-geometry project, Transform2S.java. https://github.com/apache/commons-geometry/commit/

38f25f8fe5eccdde5213555b0a97f46214b37277.

[22] 2020. A commit in Commons-geometry project, Transform2STest.java. https://github.com/apache/commons-geometry/commit/

b36deb014b5c0a2332d225d871db14a58def5200.

[23] 2020. A commit in Commons-lang project, ValidateTest.java. https://github.com/apache/commons-lang/commit/

485876f9c2d90b211b5776567086ec0700767f3c.

[24] 2020. A commit in Easy-rules project. https://github.com/j-easy/easy-rules/commit/1a0660140c6786458a92b28c4f650b1c5e0c40bc.

[25] 2020. A commit in Streamex project, EntryStream.java. https://github.com/amaembo/streamex/commit/

836a2e5240321cdf2d6e54239110f62f94a540bb.

ACM Trans. Softw. Eng. Methodol.

https://github.com/apache/commons-functor/commit/cb42eacc6a82f98da131f32972915f6cde609fd9
https://github.com/apache/commons-functor/commit/cb42eacc6a82f98da131f32972915f6cde609fd9
https://github.com/apache/commons-csv/commit/6a34b823c807325bc251ef43c66c307adcd947b8
https://github.com/apache/commons-csv/commit/6a34b823c807325bc251ef43c66c307adcd947b8
https://github.com/apache/commons-functor/commit/22ec28d8aabe5dcdf9f4723f573395822611f6b5
https://github.com/apache/commons-functor/commit/22ec28d8aabe5dcdf9f4723f573395822611f6b5
https://github.com/JodaOrg/joda-time/commit/3a413d7844c22dc6ddd50bf5d0d55ff3589e47ac
https://github.com/apache/commons-compress/commit/885d2053f4fc29d986904c9b8cfe69bcfbe7b361
https://github.com/apache/commons-compress/commit/885d2053f4fc29d986904c9b8cfe69bcfbe7b361
https://github.com/apache/commons-compress/commit/bc741b19e88749d66b03bf8dc292f3ae0fc74156
https://github.com/apache/commons-compress/commit/bc741b19e88749d66b03bf8dc292f3ae0fc74156
https://github.com/apache/commons-math/commit/8e0b98bf6bd30713d94b72c7c410addb26c3c472
https://github.com/apache/commons-math/commit/8e0b98bf6bd30713d94b72c7c410addb26c3c472
https://github.com/apache/commons-math/commit/bf803b119be94bfd71902ea5db06075aada82672
https://github.com/apache/commons-math/commit/bf803b119be94bfd71902ea5db06075aada82672
https://github.com/ta4j/ta4j/commit/db5576521118459df4b36120ed9e7b7fae5aedca
https://github.com/ta4j/ta4j/commit/1b3f7949962d01e3d5724437d1fc4d301c124c3b
https://github.com/apache/commons-configuration/commit/fa5dbfaf68973a204dc09acb42909ff5bd39ff70
https://github.com/apache/commons-configuration/commit/fa5dbfaf68973a204dc09acb42909ff5bd39ff70
https://github.com/ta4j/ta4j/commit/590cab635abe3fbdb30d2a0bed66bee8421c254e
https://github.com/ta4j/ta4j/commit/590cab635abe3fbdb30d2a0bed66bee8421c254e
https://github.com/ta4j/ta4j/commit/590cab635abe3fbdb30d2a0bed66bee8421c254e
https://github.com/yegor256/cactoos/commit/b092754a6e18a39951e27733490be1961dadfeb0
https://github.com/yegor256/cactoos/commit/b092754a6e18a39951e27733490be1961dadfeb0
https://github.com/apache/commons-configuration/commit/63bb3e88d13e6447f64bac47fcfd71b60c5a4c3e
https://github.com/apache/commons-configuration/commit/63bb3e88d13e6447f64bac47fcfd71b60c5a4c3e
https://github.com/apache/commons-lang/commit/37442639705892348d2cd6d7717fff4d9841ca09
https://github.com/apache/commons-lang/commit/37442639705892348d2cd6d7717fff4d9841ca09
https://github.com/apache/commons-numbers/commit/7427fd0639557f25a2d7274597be70882527ffd0
https://github.com/apache/commons-numbers/commit/7427fd0639557f25a2d7274597be70882527ffd0
https://github.com/apache/dubbo/commit/c91618b05f6137b291134ef10ebd28a918193ecd
https://github.com/yegor256/cactoos/commit/97454478d07f360b68ff98504e803f26d6777ae9
https://github.com/yegor256/cactoos/commit/97454478d07f360b68ff98504e803f26d6777ae9
https://github.com/apache/commons-collections/commit/1d26ffda9302433fda227c5724d2f5cd499b0148
https://github.com/apache/commons-collections/commit/1d26ffda9302433fda227c5724d2f5cd499b0148
https://github.com/apache/commons-geometry/commit/38f25f8fe5eccdde5213555b0a97f46214b37277
https://github.com/apache/commons-geometry/commit/38f25f8fe5eccdde5213555b0a97f46214b37277
https://github.com/apache/commons-geometry/commit/b36deb014b5c0a2332d225d871db14a58def5200
https://github.com/apache/commons-geometry/commit/b36deb014b5c0a2332d225d871db14a58def5200
https://github.com/apache/commons-lang/commit/485876f9c2d90b211b5776567086ec0700767f3c
https://github.com/apache/commons-lang/commit/485876f9c2d90b211b5776567086ec0700767f3c
https://github.com/j-easy/easy-rules/commit/1a0660140c6786458a92b28c4f650b1c5e0c40bc
https://github.com/amaembo/streamex/commit/836a2e5240321cdf2d6e54239110f62f94a540bb
https://github.com/amaembo/streamex/commit/836a2e5240321cdf2d6e54239110f62f94a540bb

34 • Weifeng Sun, Meng Yan, Zhongxin Liu, Xin Xia, Yan Lei, and David Lo

[26] 2020. A commit in Streamex project, EntryStreamTest.java. https://github.com/amaembo/streamex/commit/

acd58e99a9ebfeed2c289f50f37a9516c50e72be.

[27] 2021. About stars (GitHub). https://help.github.com/articles/about-stars/.

[28] 2021. Checkstyle. http://checkstyle.sourceforge.net/.

[29] 2021. Jacoco. https://github.com/jacoco/jacoco.

[30] 2021. JUnit 5 User Guide. https://junit.org/junit5/docs/current/user-guide/.

[31] 2021. Maven-introduction to the standard directory layout. https://maven.apache.org/guides/introduction/introduction-to-the-standard-

directory-layout.html.

[32] 2021. Pytest. https://pytest.org/en/latest/explanation/goodpractices.html#test-discovery.

[33] 2021. SonarQube. https://www.sonarqube.org/.

[34] 2021. The dataset of SITAR. https://github.com/sqlab-sustech/Sitar-project.

[35] Mamdouh Alenezi, Mohammed Akour, and Hiba Al Sghaier. 2019. The impact of co-evolution of code production and test suites through

software releases in open source software systems. International Journal of Innovative Technology and Exploring Engineering (IJITEE) 9, 1

(2019), 2737ś2739.

[36] Andrea Arcuri and Lionel Briand. 2014. A hitchhiker’s guide to statistical tests for assessing randomized algorithms in software

engineering. Software Testing, Veriication and Reliability 24, 3 (2014), 219ś250.

[37] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and

Konrad Rieck. 2022. Dos and Don’ts of Machine Learning in Computer Security. In 31st USENIX Security Symposium, USENIX Security

2022, Boston, MA, USA, August 10-12, 2022. USENIX Association, 3971ś3988. https://www.usenix.org/conference/usenixsecurity22/

presentation/arp

[38] Philipp Bouillon, Jens Krinke, Nils Meyer, and Friedrich Steimann. 2007. EzUnit: A Framework for Associating Failed Unit Tests with

Potential Programming Errors. In Agile Processes in Software Engineering and Extreme Programming, 8th International Conference, XP 2007,

Como, Italy, June 18-22, 2007, Proceedings (Lecture Notes in Computer Science, Vol. 4536). Springer, 101ś104. https://doi.org/10.1007/978-3-

540-73101-6_14

[39] Jiachi Chen, Xin Xia, David Lo, John Grundy, and Xiaohu Yang. 2021. Maintenance-related concerns for post-deployed Ethereum smart

contract development: issues, techniques, and future challenges. Empirical Software Engineering 26, 6 (2021), 1ś44.

[40] Norman Clif. 2014. Ordinal methods for behavioral data analysis. Psychology Press.

[41] Viktor Csuvik, András Kicsi, and László Vidács. 2019. Source code level word embeddings in aiding semantic test-to-code traceability. In

Proceedings of the 10th International Workshop on Software and Systems Traceability, SST@ICSE 2019, Montreal, QC, Canada, May 27, 2019.

IEEE / ACM, 29ś36. https://doi.org/10.1109/SST.2019.00016

[42] Barrett Ens, Daniel Rea, Roiy Shpaner, Hadi Hemmati, James E. Young, and Pourang Irani. 2014. ChronoTwigger: A Visual Analytics

Tool for Understanding Source and Test Co-evolution. In 2014 Second IEEE Working Conference on Software Visualization. IEEE Computer

Society, 117ś126.

[43] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Monperrus. 2014. Fine-grained and accurate source

code diferencing. In ACM/IEEE International Conference on Automated Software Engineering, ASE ’14, Vasteras, Sweden - September 15 -

19, 2014. ACM, 313ś324.

[44] Yuanrui Fan, Xin Xia, David Lo, Ahmed E. Hassan, Yuan Wang, and Shanping Li. 2021. A Diferential Testing Approach for Evaluating

Abstract Syntax Tree Mapping Algorithms. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,

1174ś1185. https://doi.org/10.1109/ICSE43902.2021.00108

[45] Joseph L Fleiss. 1971. Measuring nominal scale agreement among many raters. Psychological bulletin 76, 5 (1971), 378.

[46] Beat Fluri, Michael Würsch, Martin Pinzger, and Harald C. Gall. 2007. Change Distilling: Tree Diferencing for Fine-Grained Source

Code Change Extraction. IEEE Trans. Software Eng. 33, 11 (2007), 725ś743.

[47] Mohammad Ghafari, Carlo Ghezzi, and Konstantin Rubinov. 2015. Automatically identifying focal methods under test in unit test cases.

In 15th IEEE International Working Conference on Source Code Analysis and Manipulation, SCAM 2015, Bremen, Germany, September 27-28,

2015. IEEE Computer Society, 61ś70. https://doi.org/10.1109/SCAM.2015.7335402

[48] Jin Huang and Charles X. Ling. 2005. Using AUC and Accuracy in Evaluating Learning Algorithms. IEEE Trans. Knowl. Data Eng. 17, 3

(2005), 299ś310. https://doi.org/10.1109/TKDE.2005.50

[49] Qiao Huang, Xin Xia, and David Lo. 2017. Supervised vs Unsupervised Models: A Holistic Look at Efort-Aware Just-in-Time Defect

Prediction. In 2017 IEEE International Conference on Software Maintenance and Evolution, ICSME 2017, Shanghai, China, September 17-22,

2017. IEEE Computer Society, 159ś170. https://doi.org/10.1109/ICSME.2017.51

[50] Victor Hurdugaci and Andy Zaidman. 2012. Aiding software developers to maintain developer tests. In 2012 16th European Conference

on Software Maintenance and Reengineering (2012). IEEE, IEEE Computer Society, 11ś20.

[51] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M German, and Daniela Damian. 2016. An in-depth study of

the promises and perils of mining GitHub. Empirical Software Engineering 21 (2016), 2035ś2071.

ACM Trans. Softw. Eng. Methodol.

https://github.com/amaembo/streamex/commit/acd58e99a9ebfeed2c289f50f37a9516c50e72be
https://github.com/amaembo/streamex/commit/acd58e99a9ebfeed2c289f50f37a9516c50e72be
https://help.github.com/articles/about-stars/
http://checkstyle.sourceforge.net/
https://github.com/jacoco/jacoco
https://junit.org/junit5/docs/current/user-guide/
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://pytest.org/en/latest/explanation/goodpractices.html#test-discovery
https://www.sonarqube.org/
https://github.com/sqlab-sustech/Sitar-project
https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://doi.org/10.1007/978-3-540-73101-6_14
https://doi.org/10.1007/978-3-540-73101-6_14
https://doi.org/10.1109/SST.2019.00016
https://doi.org/10.1109/ICSE43902.2021.00108
https://doi.org/10.1109/SCAM.2015.7335402
https://doi.org/10.1109/TKDE.2005.50
https://doi.org/10.1109/ICSME.2017.51

Revisiting the Identification of the Co-Evolution of Production and Test Code • 35

[52] András Kicsi, László Tóth, and László Vidács. 2018. Exploring the Beneits of Utilizing Conceptual Information in Test-to-Code

Traceability. In 6th IEEE/ACM International Workshop on Realizing Artiicial Intelligence Synergies in Software Engineering, RAISE@ICSE

2018, Gothenburg, Sweden, May 27, 2018. ACM, 8ś14. https://doi.org/10.1145/3194104.3194106

[53] Mijung Kim, Jaechang Nam, Jaehyuk Yeon, Soonhwang Choi, and Sunghun Kim. 2015. REMI: defect prediction for eicient API testing.

In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September

4, 2015. ACM, 990ś993.

[54] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2016. The emerging role of data scientists on software

development teams. In 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE). IEEE, ACM, 96ś107.

[55] Ahmed Lamkani and Serge Demeyer. 2010. Studying the co-evolution of application code and test cases. In Proceedings of the 9th

Belgian-Netherlands Software Evolution Seminar (BENEVOL 2010), Lille, France, Vol. 16.

[56] Valentina Lenarduzzi, Antonio Martini, Davide Taibi, and Damian Andrew Tamburri. 2019. Towards surgically-precise technical

debt estimation: early results and research roadmap. In Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine

Learning Techniques for Software Quality Evaluation, MaLTeSQuE@ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 27, 2019. ACM, 37ś42.

https://doi.org/10.1145/3340482.3342747

[57] Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. 2019. The Technical Debt Dataset. In Proceedings of the Fifteenth International

Conference on Predictive Models and Data Analytics in Software Engineering, PROMISE 2019, Recife, Brazil, September 18, 2019. ACM, 2ś11.

https://doi.org/10.1145/3345629.3345630

[58] Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. 2020. Some sonarqube issues have a signiicant but small efect on faults and

changes. a large-scale empirical study. Journal of Systems and Software 170 (2020), 110750.

[59] Stanislav Levin and Amiram Yehudai. 2017. The co-evolution of test maintenance and code maintenance through the lens of ine-grained

semantic changes. In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, IEEE Computer Society,

35ś46.

[60] Zeeger Lubsen, Andy Zaidman, and Martin Pinzger. 2009. Using association rules to study the co-evolution of production & test code. In

Proceedings of the 6th International Working Conference on Mining Software Repositories, MSR 2009 (Co-located with ICSE), Vancouver, BC,

Canada, May 16-17, 2009, Proceedings. IEEE Computer Society, 151ś154. https://doi.org/10.1109/MSR.2009.5069493

[61] Matej Madeja and Jaroslav Porubän. 2019. Tracing Naming Semantics in Unit Tests of Popular Github Android Projects. In 8th

Symposium on Languages, Applications and Technologies, SLATE 2019, June 27-28, 2019, Coimbra, Portugal (OASIcs, Vol. 74). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 3:1ś3:13. https://doi.org/10.4230/OASIcs.SLATE.2019.3

[62] Cosmin Marsavina, Daniele Romano, and Andy Zaidman. 2014. Studying Fine-Grained Co-evolution Patterns of Production and Test

Code. In 14th IEEE International Working Conference on Source Code Analysis and Manipulation, SCAM 2014, Victoria, BC, Canada,

September 28-29, 2014. IEEE Computer Society, 195ś204. https://doi.org/10.1109/SCAM.2014.28

[63] Tom Mens, Michel Wermelinger, Stéphane Ducasse, Serge Demeyer, Robert Hirschfeld, and Mehdi Jazayeri. 2005. Challenges in software

evolution. In Eighth International Workshop on Principles of Software Evolution (IWPSE’05). IEEE, 13ś22.

[64] Audris Mockus and Lawrence G. Votta. 2000. Identifying Reasons for Software Changes using Historic Databases. In 2000 International

Conference on Software Maintenance, ICSM 2000, San Jose, California, USA, October 11-14, 2000. IEEE Computer Society, 120ś130.

https://doi.org/10.1109/ICSM.2000.883028

[65] Leon Moonen, Arie van Deursen, Andy Zaidman, and Magiel Bruntink. 2008. On the interplay between software testing and evolution

and its efect on program comprehension. In Software evolution. Springer, 173ś202.

[66] Reza Meimandi Parizi, Sai Peck Lee, and Mohammad Dabbagh. 2014. Achievements and Challenges in State-of-the-Art Software

Traceability Between Test and Code Artifacts. IEEE Transactions on Reliability 63, 4 (2014), 913ś926. https://doi.org/10.1109/TR.2014.

2338254

[67] Abdallah Qusef, Gabriele Bavota, Rocco Oliveto, Andrea De Lucia, and Dave Binkley. 2014. Recovering test-to-code traceability using

slicing and textual analysis. Journal of Systems and Software 88 (2014), 147ś168.

[68] Bart Van Rompaey and Serge Demeyer. 2009. Establishing Traceability Links between Unit Test Cases and Units under Test. In 13th

European Conference on Software Maintenance and Reengineering, CSMR 2009, Architecture-Centric Maintenance of Large-SCale Software

Systems, Kaiserslautern, Germany, 24-27 March 2009. IEEE Computer Society, 209ś218.

[69] Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. 2008. Introduction to information retrieval. Vol. 39. Cambridge

University Press Cambridge.

[70] Lin Shi, Fangwen Mu, Xiao Chen, Song Wang, Junjie Wang, Ye Yang, Ge Li, Xin Xia, and Qing Wang. 2022. Are we building on the rock?

on the importance of data preprocessing for code summarization. In Proceedings of the 30th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-18, 2022. ACM,

107ś119. https://doi.org/10.1145/3540250.3549145

[71] Danilo Silva, João Paulo da Silva, Gustavo Jansen de Souza Santos, Ricardo Terra, and Marco Tulio Valente. 2021. RefDif 2.0: A

Multi-Language Refactoring Detection Tool. IEEE Trans. Software Eng. 47, 12 (2021), 2786ś2802.

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3194104.3194106
https://doi.org/10.1145/3340482.3342747
https://doi.org/10.1145/3345629.3345630
https://doi.org/10.1109/MSR.2009.5069493
https://doi.org/10.4230/OASIcs.SLATE.2019.3
https://doi.org/10.1109/SCAM.2014.28
https://doi.org/10.1109/ICSM.2000.883028
https://doi.org/10.1109/TR.2014.2338254
https://doi.org/10.1109/TR.2014.2338254
https://doi.org/10.1145/3540250.3549145

36 • Weifeng Sun, Meng Yan, Zhongxin Liu, Xin Xia, Yan Lei, and David Lo

[72] Jeongju Sohn and Mike Papadakis. 2022. Using Evolutionary Coupling to Establish Relevance Links Between Tests and Code Units. A

case study on fault localization. CoRR abs/2203.11343 (2022). arXiv:2203.11343

[73] Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Media.

[74] Xiaobing Sun, Xin Peng, Hareton Leung, and Bin Li. 2016. ComboRT: A New Approach for Generating Regression Test Cases for

Evolving Programs. Int. J. Softw. Eng. Knowl. Eng. 26, 6 (2016), 1001.

[75] Jie Tan, Daniel Feitosa, and Paris Avgeriou. 2022. Does it matter who pays back Technical Debt? An empirical study of self-ixed TD.

Information and Software Technology 143 (2022), 106738.

[76] Yingchen Tian, Yuxia Zhang, Klaas-Jan Stol, Lin Jiang, and Hui Liu. 2022. What Makes a Good Commit Message?. In 44th IEEE/ACM

44th International Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 2389ś2401. https:

//doi.org/10.1145/3510003.3510205

[77] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. 2022. RefactoringMiner 2.0. IEEE Transactions on Software Engineering 48, 3 (2022),

930ś950. https://doi.org/10.1109/TSE.2020.3007722

[78] Nikolaos Tsantalis, Matin Mansouri, Laleh M. Eshkevari, Davood Mazinanian, and Danny Dig. 2018. Accurate and Eicient Refactoring

Detection in Commit History. In Proceedings of the 40th International Conference on Software Engineering (Gothenburg, Sweden) (ICSE

’18). ACM, New York, NY, USA, 483ś494. https://doi.org/10.1145/3180155.3180206

[79] Zhiyuan Wan, Xin Xia, Ahmed E. Hassan, David Lo, Jianwei Yin, and Xiaohu Yang. 2020. Perceptions, Expectations, and Challenges in

Defect Prediction. IEEE Trans. Software Eng. 46, 11 (2020), 1241ś1266. https://doi.org/10.1109/TSE.2018.2877678

[80] Zhiyuan Wan, Xin Xia, David Lo, and Gail C. Murphy. 2021. How does Machine Learning Change Software Development Practices?

IEEE Trans. Software Eng. 47, 9 (2021), 1857ś1871. https://doi.org/10.1109/TSE.2019.2937083

[81] Sinan Wang, Ming Wen, Yepang Liu, Ying Wang, and Rongxin Wu. 2021. Understanding and Facilitating the Co-Evolution of Production

and Test Code. In 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 272ś283.

[82] Fengcai Wen, Csaba Nagy, Gabriele Bavota, and Michele Lanza. 2019. A large-scale empirical study on code-comment inconsistencies.

In Proceedings of the 27th International Conference on Program Comprehension, ICPC 2019, Montreal, QC, Canada, May 25-31, 2019. IEEE /

ACM, 53ś64. https://doi.org/10.1109/ICPC.2019.00019

[83] Robert White, Jens Krinke, and Raymond Tan. 2020. Establishing multilevel test-to-code traceability links. In ICSE ’20: 42nd International

Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020. ACM, 861ś872. https://doi.org/10.1145/3377811.3380921

[84] Xin Xia, Emad Shihab, Yasutaka Kamei, David Lo, and Xinyu Wang. 2016. Predicting crashing releases of mobile applications. In

Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. 1ś10.

[85] Meng Yan, Xin Xia, Yuanrui Fan, Ahmed E. Hassan, David Lo, and Shanping Li. 2022. Just-In-Time Defect Identiication and Localization:

A Two-Phase Framework. IEEE Trans. Software Eng. 48, 2 (2022), 82ś101. https://doi.org/10.1109/TSE.2020.2978819

[86] Meng Yan, Xin Xia, Yuanrui Fan, David Lo, Ahmed E. Hassan, and Xindong Zhang. 2020. Efort-aware just-in-time defect identiication

in practice: a case study at Alibaba. In ESEC/FSE ’20: 28th ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020. ACM, 1308ś1319.

[87] Yibiao Yang, Yuming Zhou, Jinping Liu, Yangyang Zhao, Hongmin Lu, Lei Xu, Baowen Xu, and Hareton Leung. 2016. Efort-aware

just-in-time defect prediction: simple unsupervised models could be better than supervised models. In Proceedings of the 24th ACM

SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. ACM,

157ś168. https://doi.org/10.1145/2950290.2950353

[88] Andy Zaidman, Bart Van Rompaey, Arie van Deursen, and Serge Demeyer. 2011. Studying the co-evolution of production and test code

in open source and industrial developer test processes through repository mining. Empir. Softw. Eng. 16, 3 (2011), 325ś364.

[89] Andy Zaidman, Bart Van Rompaey, Serge Demeyer, and Arie Van Deursen. 2008. Mining software repositories to study co-evolution of

production & test code. In 2008 1st international conference on software testing, veriication, and validation. IEEE, IEEE Computer Society,

220ś229.

ACM Trans. Softw. Eng. Methodol.

https://arxiv.org/abs/2203.11343
https://doi.org/10.1145/3510003.3510205
https://doi.org/10.1145/3510003.3510205
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1109/TSE.2018.2877678
https://doi.org/10.1109/TSE.2019.2937083
https://doi.org/10.1109/ICPC.2019.00019
https://doi.org/10.1145/3377811.3380921
https://doi.org/10.1109/TSE.2020.2978819
https://doi.org/10.1145/2950290.2950353

	Abstract
	1 Introduction
	2 Empirical study
	2.1 Data Collection and Cleaning
	2.2 Analysis of Production-Test Change Pairs
	2.3 RQ1: Categories of Test Code Update

	3 Co-evolution identification method
	3.1 RQ2: Impact of Noise on JIT Detection Methods
	3.2 Proposed Approach

	4 Evaluation
	4.1 Research Questions
	4.2 RQ3: The Effectiveness of CHOSEN
	4.3 RQ4: The Usefulness of CHOSEN in JIT OTCD

	5 Discussion
	5.1 The definition of Assumption .1
	5.2 Limitation of Empirical Study
	5.3 Limitation of Our Approach
	5.4 Limitation of CHOSEN Application
	5.5 Implications
	5.6 Threats to Validity

	6 Related Work
	6.1 Establishing Traceability Links between Production Code and Test Code
	6.2 Co-evolution of Production and Test Code

	7 Conclusion and Future Work
	8 Acknowledgements
	References

