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Trace data is critical for fault localization (FL) to analyze suspicious statements potentially responsible for a failure. However,
existing trace representation meets its bottleneck mainly in two aspects: (1) the trace information of a statement is restricted
to a local context (i.e., a test case) without the consideration of a global context (i.e., all test cases of a test suite); (2) it just
uses the ‘occurrence’ for representation without strong FL semantics.

Thus, we propose UNITE: an inlUential coNtext-GuIded Trace rEpresentation, representing the trace from both global
and local contexts with inluential semantics for FL. UNITE embodies and implements two key ideas: (1) UNITE leverages the
widely-used weighting capability from local and global contexts of information retrieval to relect how important a statement
(a word) is to a test case (a document) in all test cases of a test suite (a collection), where a test case (a document) and all
test cases of a test suite (a collection) represent local and global contexts respectively; (2) UNITE further elaborates the trace
representation from ‘occurrence’ (weak semantics) to ‘inluence’ (strong semantics) by combing program dependencies. The
large-scale experiments on 12 FL techniques and 20 programs show that UNITE signiicantly improves FL efectiveness.

CCS Concepts: · Software and its engineering→ Software testing and debugging.

Additional Key Words and Phrases: fault localization; trace representation; statement weighting; program dependence;
suspiciousness;

1 INTRODUCTION

In software development and maintenance, debugging is one of the most expensive and time-consuming pro-
cesses [18, 38, 48]. To reduce the cost, researchers have developed many fault localization (FL) techniques to
provide automated assistance in seeking the faults that cause a failure [13, 23, 40, 52, 55, 57, 68].

Fig. 1 shows the typical process of FL. Suppose that we have a faulty program and a test suite for initialization.
Then, FL executes the test suite on the program to collect and abstract the execution traces as a coverage matrix
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Fig. 1. The typical process of FL.

for trace representation, where an element denotes a statement covered (i.e., the value of ‘1’ denoting occurrence)
or not covered (i.e., the value of ‘0’ representing non-occurrence) by a speciic test case. Trace representation also
constructs an error vector to represent the test results (i.e., ‘1’ for fail and ‘0’ for pass). Next, FL takes as input
the trace representation, and uses an evaluation model (e.g., correlation coeicients [15, 16, 35, 39] and neural
networks [53, 56, 65ś67]) to evaluate the suspiciousness of each statement of being faulty. Finally, FL outputs the
suspicious statements as a ranking list of all statements in descending order of suspiciousness.
Although trace representation is an indispensable component of the FL process, it still has some limitations.

Existing trace representation uses the binary state of a statement (i.e., occurrence or non-occurrence) in a test case,
which is restricted to a local context (i.e., a test case) without the consideration of a global context (i.e., all test
cases of a test suite). For example, suppose that we have two statements �1 and �2, where �1 is only executed by the
test case �1 and �2 is not only executed by �1 but also executed by many other test cases. Considering the global
context of a test suite, �1 should be more important than �2 for �1 since �1 only occurs in �1. For another example,
suppose that we have two test cases � ′1 and �

′
2, where �

′
1 executes 10 statements including the statement �′1 and �

′
2

covers 100 statements including �′1. Based on the global context of a test suite, �′1 should be more important for � ′1
in comparison to � ′2 since �

′
1 executes less statements than � ′2. However, existing trace representation using binary

state of a statement cannot capture such importance information. Therefore, its information is limited, e.g., it
cannot show to what degree of the importance of a statement is in an execution. Even if some approaches [11, 45]
seek to enrich the representation from the local context of a test case itself, the lack of global context of all test
cases of a test suite can cause some biases posing a negative efect on the efectiveness of fault localization [22], i.e.,
their representation actually performs worse than the widely-used binary trace representation [22]. Furthermore,
existing trace representations mainly use the ‘occurrence’ semantics whereas the occurrence of a statement in
a test case does not necessarily mean that the execution of the statement inluences the program output. For
example, suppose that a failing test case �� executes two statements �� 1 and �� 2, where the variable causing
the faulty output of �� is only computed by �� 1. In this case, we should exclude �� 2 since its execution does not
inluence the faulty output. Nevertheless, the existing trace representation using statement coverage cannot
capture such inluence information. Thus, it lacks a strong FL semantics, restricting a deep analysis of suspicious
evaluation model in evaluating the suspiciousness of a statement being faulty.

Therefore, this paper proposes UNITE: an inlUential coNtext-GuIded Trace rEpresentation for efective FL,
exploiting global and local contexts guided trace representation with inluential semantics. Similar to the coverage
matrix in Fig. 1, UNITE abstracts trace representation as a matrix by redeining the element which combines
global and local contexts with inluential semantics. Inspired by the widely-used word weighting capability
from both local and global contexts of term frequency-inverse document frequency [41, 44] in information
retrieval, UNITE applies this promising capability on trace representation in fault localization. Based on the term
frequency-inverse document frequency, the idea of UNITE embodying the global and local contexts is that (1) if a
statement is executed by many test cases, its weight should be lower for these test cases since it is diicult to
distinguish the statement in these test cases; (2) if a statement is executed by a few test cases and the executed
statements in these test cases have a small size, its weight should be higher for these test cases since the statement
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is more important to these test cases. With the weights of a statement in all test cases of a test suite, UNITE
can build linkages between the statement and the test results (i.e., passing or failing) of test cases. To realize
this idea, irst, UNITE reformulates the trace information of a statement as the weight of a word in information
retrieval. For an analogy, UNITE uses three sources of information for FL: a statement (a word), a test case (a
document) and all test cases of a test suite (a collection). UNITE deines the trace representation of a statement
as the weight of the statement (the word) by increasing proportionally to the number of times a statement (the
word) occurs in the test case (the document), and being ofset by the number of the test cases (the documents) in
all test cases of a test suite (the collection) that contain the statement (the word), which helps to adjust for the
fact that some statements (words) occur more frequently in general. Thus, UNITE elaborates the local context
as term frequency that increases proportionally to the number of times a statement occurs in a test case (i.e.,
statement frequency), and the global context as inverse document frequency that is ofset by the number
of the test cases in all test cases of a test suite that contain the statement (i.e., inverse test case frequency).

Thus, UNITE elaborates the local context as term frequency that increases proportionally to the frequency
of a statement occurs in a test case (i.e., statement frequency), and the global context as inverse document

frequency that is ofset by the number of the test cases in all test cases of a test suite that contain the statement
(i.e., inverse test case frequency). Although UNITE considers trace representation from both local and global
contexts, it still relies on the occurrence frequency of a statement or a test case. Therefore, UNITE further
combines program dependencies into trace representation for upgrading the FL semantics. Speciically, UNITE
uses program slicing [2, 47, 61] to identify those statements whose execution inluences the incorrect output
according to program dependencies. Then, UNITE updates higher weights of those statements with inluential
semantics, and thus upgrades the ‘occurrence’ (weak semantics) into the ‘inluence’ (strong semantics).

Since UNITE follows the widely-used matrix structure of most FL techniques, it means that UNITE may serve
as a universal representation for most FL techniques. To evaluate the potential and the efectiveness of UNITE, we
apply UNITE to 12 state-of-the-art FL techniques (e.g., Dstar [54], CNN-FL [65], ProFL [28] and DeepRL4FL [26])
and conduct large-scale experiments on 20 benchmark programs. The results show that UNITE signiicantly
improves FL efectiveness, e.g., the average improvement for the important Top-N metric [17], i.e., Top-1, Top-3,
Top-5 and Top-10, increases up to 2.19%, 11.18%, 11.47% and 14.18%, respectively.

The main contributions of this paper can be summarized as:

• We propose UNITE: an inluential context-guided trace representation for FL by combining global and local
contexts with inluential semantics.

• We demonstrate the potential of UNITE as a universal representation for a wide spectrum of the state-of-
the-art FL techniques.

• We evaluate the efectiveness of UNITE across various 20 real-life large programs, showing that the UNITE
is efective at improving FL.

• We open source the replication package online1, including the source code, datasets and running examples.

The structure of the rest paper is organized as follows. Section 2 introduces related work. Section 3 depicts our
approach UNITE. Section 4 and Section 5 present our large-scale experiments and the discussion. And Section 6
concludes the whole study and mentions future work.

2 RELATED WORK

This section surveys closely related work on fault localization (FL) from its two parts: trace representation and
suspiciousness evaluation. More other work can be found in the survey [55].

1https://github.com/oy-sarah/UNITE
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2.1 Trace Representation
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Fig. 2. FL Trace Representation on� test cases of a test suite.

FL usually deines a matrix (i.e., a coverage matrix and an error vector) to represent the trace of each statement
in each test case of a test suite and their corresponding test results. Next, FL takes as input the trace representation
for its suspiciousness evaluation. The trace representation records the runtime information and test results of a
test suite including the execution information of statements.
Fig. 2 shows the deinition of the FL trace representation (i.e., a � × (� + 1) matrix). Speciically, given a

program P with N statements (�1, �2, ..., �� ), it is executed by a test suite T with M test cases (�1, �2, ..., �� ), which
contain at least one failing test case (see Fig. 2). The element �� �=1 means that the statement � � occurs in (i.e., is
covered by) the test case �� , and �� �=0 otherwise. The M×N matrix records the execution information of each
statement in the test suite T. The error vector e represents the test results. The element �� equals to 1 if the test
case �� failed, and 0 otherwise. The error vector shows the test results of each test case (i.e., failure or non-failure).

Even if some research [11, 45, 64, 69] tries to enrich trace representation of FL by using other information (e.g.,
statement frequency), these approaches like the binary representation still have some limitations: (1) the trace
information of a statement is restricted to a local context (i.e., a test case) without the consideration of a global
context (i.e., all test cases of a test suite); (2) they just use the ‘occurrence’ for representation without strong
FL semantics. Even worse, recent work [22] shows that these approaches (e.g., [11, 45]) cause some bias posing
a negative efect on fault localization efectiveness, i.e., their elaboration on trace representation is not better
than the binary state of FL trace representation. This motivates our work to solve the above two problems by
proposing an FL trace representation to combine both local and global contexts and upgrade the ‘occurrence’
(weak semantics) into ‘inluence’ (strong semantics).

2.2 Suspiciousness Evaluation

Based on the trace representation in Fig. 2, researchers develop many suspiciousness evaluation models to
evaluate the suspiciousness of a statement of being faulty. We can roughly classify the suspiciousness evaluation
models into two categories.

One category is suspiciousness evaluation using correlation coeicients, which are widely studied by
the spectrum-based fault localization (SFL) researchers [15, 16, 35, 39]. Correlation coeicients are suspiciousness
evaluation formulas, and SFL uses the trace representation to deine four variables for the formulas as follows:

��� (� � ) =
︁

�∈�� (� � )
(1 − �� � ), �� (� � ) = {� | (�� � = 0) ∧ (�� = 0)} (1)

��� (� � ) =
︁

�∈�� (� � )
�� � , �� (� � ) = {� | (�� � > 0) ∧ (�� = 0)} (2)

��� (� � ) =
︁

�∈�� (� � )
(1 − �� � ), �� (� � ) = {� | (�� � = 0) ∧ (�� = 1)} (3)
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Table 1. Suspiciousness evaluation using correlation coeficients.

Name Formulas Name Formulas

ER1’

Naish1

{

−1 � � ��� > 0

��� � � ��� ≤ 0
GP02 2

(

�� � +
√
���

)

+ √
���

Optimal_P �� � −
���

���+���+1 GP03

︂

�

�

��2
� �

− √
���

�

�

�

GP13 �� �

(

1 + ���
2���+���

)

GP19 �� �

︃

�

���� − �� � + ��� − ���
�

�

ER5

Wong1 �� � Dstar
�∗
��

��� +���Russel_Rao
���

��� +��� +���+���

Binary

{

0, � � ��� > 0

1, � � ��� ≤ 0
Ochiai

���√
(��� +��� ) (��� +���)

�� � (� � ) =
︁

�∈� � (� � )
�� � , � � (� � ) = {� | (�� � > 0) ∧ (�� = 1)} (4)

Eq. (1), Eq. (2), Eq. (3) and Eq. (4) show the computation of ��� , ��� , ��� , and �� � for the statement � (i.e.,
� � ), denoting the number of passing/failing test cases in which the statement was/wasn’t executed. Based on
the four variables for each statement (i.e., ��� , ��� , ��� , and �� � ), SFL deines many suspiciousness evaluation
formulas using correlation coeicients to evaluate the suspiciousness of each statement being faulty. Researchers
have conducted both theoretical [59, 60] and empirical [39] analysis on inding the optimal SFL formulas using
correlation coeicients, and identiied seven efective ones, namely ER1’, ER5, GP02, GP03, GP19, Ochiai and
Dstar. Table 1 shows all the seven efective suspiciousness evaluation formulas using correlation coeicients2.
Based on these formulas, some researchers incorporate more useful information into suspiciousness evaluation,
e.g., the popular and promising approach ProFL [28] leverages repair information as feedback.

The other one category is suspiciousness evaluation using neural networks, which are recently studied
by the deep learning-based fault localization (DLFL) researchers [25, 46, 66, 71]. Based on the trace representation,
this category tries to utilize artiicial neural network with hidden layers [9, 20, 24, 34, 49, 67] to learn a fault
localization model relecting the statistical coincidences between test results (i.e., failing or passing) and the
executions of the diferent statements of a program (i.e., occurrence or non-occurrence). We will introduce four
representative suspiciousness evaluation models used in our experiments, namely MLP-FL [70], CNN-FL [65],
BiLSTM-FL [67] and DeepRL4FL [26].
Fig. 3 shows the architecture of suspiciousness evaluation of DLFL using neural networks: one input layer,

deep learning components with several hidden connected layers, and one output layer. In the input layer, the
coverage matrix and the error vector of FL trace representation in the Fig. 2 are used as the training samples
and their corresponding labels, respectively. In other words, h rows of the matrix M×N and its corresponding
error vector are used as an input, which are the coverage information of h test cases and their corresponding test
results starting from the i-th row, where i ∈ {1,1+h,1+2h,...,1+(⌊M/h⌋+1)×h}. In deep learning components with
several hidden connected layers, MLP-FL, CNN-FL and BiLSTM-FL use multi-layer perceptron, convolutional
neural network and bi-directional long short-term memory respectively. DeepRL4FL integrate these basic neural

2The * in D* formula is usually assigned to 2.
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Fig. 3. Suspiciousness evaluation using neural networks.

networks using multiple dimensions of features. In the output layer, DLFL uses Sigmoid function [24] because
values sent into a Sigmoid function will be 0 to 1. Each element in the result vector of the Sigmoid function
has diference with the corresponding element of the target vector. Back propagation algorithm is used to
ine-tune the parameters of the model, and the goal is to minimize the diference between training result y and
error vector e. The network is trained iteratively. Finally, DLFL using neural networks learns a trained model
relecting the relationship between statement coverage and test results. With the trained model, DLFL evaluates
the suspiciousness of each statement.
Our work focuses on developing an efective universal representation for these suspciousness evaluation

models, and can be widely used by these models.

3 APPROACH

3.1 Formulation

  N statements    errors      N statements     errors 

ێێۏ
x11ۍێ x12 … x1N

x21 x22 … x2N⋮ ⋮ ⋱ ⋮
xM1 xM2 … xMNۑۑے

ېۑ
ێێۏ
e1ۍێ

e2⋮
eMۑۑے
ېۑ
→ ێێۏ
GLinfluence(xۍێێ

11
) GLinfluence(x12) … GLinfluence(x

1N
)

GLinfluence(x21) GLinfluence(x22) … GLinfluence(x
2N

)⋮ ⋮ ⋱ ⋮
GLinfluence(xM1) GLinfluence(xM2) … GLinfluence(xMN)ۑۑے

ېۑۑ ێێۏ
e1ۍێ

e2⋮
eMۑۑے
ېۑ

   

  Original trace representation       UNITE representation 

Fig. 4. The original FL trace representation and the UNITE representation ofM test cases of a test suite.

First, we should formulate the problem. Given a program P with N statements (�1, �2, ..., �� ), it is executed by
M test cases T (�1, �2, ..., �� ). Fig. 4 shows the original FL trace representation and the UNITE representation. let
us recall the original FL trace representation (see the left matrix of Fig. 4). �� �=1 indicates that the statement � �
occurs in the test case �� , and 0 otherwise. The error vector e represents the test results. The element �� equals to
1 if the test case �� failed, and 0 otherwise. Since the original FL trace representation serves as a universal input
for most FL techniques, UNITE will keep its structure for wide FL applicability. Thus, as shown in Fig. 4, the core
work of UNITE is to redeine the elements of the original FL trace representation with inluential global and local
contexts.
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3.2 UNITE with Global and Local Contexts

In the ield of information retrieval, term frequency-inverse document frequency (TF-IDF) [41] is a popular word
weighting technique designed to relect the importance of a word to a document (i.e., local context) in a collection
(i.e., global context). Inspired by the TF-IDF, UNITE utilizes its promising weighting capability by elaborating the
trace representation to relect the importance of a statement to a test case (i.e., local context) in all test cases of a
test suite (i.e., global context). Thus, for an analogy, the basic idea of UNITE with global and local contexts can
be roughly summarized as that if a statement (keyword) occurs only in a few test cases (documents), then it is
easy to lock the FL target (search target), and the weight of the statement (word) should be relatively large. If a
statement (word) exists in a large number of test cases (documents), then it is not clear to ind the goal with the
statement (word), and the weight of the statement (word) should be small. As a reminder, a statement occurring
in a test case means that a statement is covered by the test case. Since UNITE considers the times of a statement
occurs in (is covered by) a test case, the speciic content (e.g., whitespace and variable names) of a statement itself
will not afect UNITE.

To realize the above idea, UNITE deines the local context as the term frequency which increases propor-
tionally to the frequency of a statement occurs in the test case (i.e., statement frequency); and the global

context as inverse document frequency which is ofset by the number of the test cases in all test cases of a test
suite that contain the statement (i.e., inverse test case frequency). Speciically, UNITE deines the following
������� , ��������� , ������� as the local context, the global context and the combination of the global and local
contexts, respectively.

�������
(

�� �
)

= �� � ∗ 1
1+��� (� (�� ) ) (5)

���������
(

�� �
)

= ���( �
�� (� � ) ) (6)

�������
(

�� �
)

= �������
(

�� �
)

∗���������
(

�� �
)

(7)

Based on the �� � of the original FL trace representation (i.e., the binary value of 1 or 0 of � � in test case �� ), Eq. (5)
calculates ������� (�� � ), denoting the TF value of the statement � � in the test case �� (i.e., statement frequency

of � � in test case �� ), where N (�� ) means the number of executed statements in the test case �� . Eq. (6) calculates
��������� (�� � ), representing the IDF value of the statement � � in the test suite (i.e., inverse document frequency

of � � in the whole test suite), where DF (� � ) indicates the number of test cases executing the statement � � . In
Eq. (5) and Eq. (6), we adopt the widely-used ��� function in TF-IDF. Eq. (7) calculates ������� (�� � ) via the the
multiplication of ������� (�� � ) and ��������� (�� � ), denoting the TF-IDF value of the statement � � in the test case ��

Based on the Eq. (7), UNITE redeines an element of �� � as������� (�� � ) by combing the global and local contexts
into trace representation.

3.3 UNITE with Influence Semantics

We can observe that the global and local contexts are constructed from statement coverage information. Although
the statement coverage information is useful and efective, an occurrence of a statement in a test case does not
necessarily mean that the execution of the statement will inluence the output of the test case. For example,
for a statement ���, its execution does not inluence the incorrect output. Even if the statement ��� has a high
value of ������� , the statement ��� should have the lowest weight because its execution is independent of the
incorrect output. Thus, the new trace representation (i.e., ������� (�� � )) still relies on the ‘occurrence’ semantics
(i.e., the occurrence frequency of a statement or a test case), and thus cannot capture such ‘inluence’ semantics
(i.e., whether the execution of a statement inluences the output or not). To further improve FL efectiveness, this
motivates us to integrate ‘inluence’ semantics into the trace representation via using program slicing [2, 61]

ACM Trans. Softw. Eng. Methodol.
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to capture whether the execution of a statement inluences the output or not. Therefore, UNITE uses program
slicing [2, 61] to elaborate the trace representation by upgrading the ‘occurrence’ into the ‘inluence’ semantics.
Program slicing [2, 61] extracts the data and/or control dependencies of program statements to identify a

subset of statements whose execution afects the output. It names the subset of statements as a slice. A slice is a
program dependency graph showing how those statements inluence the output according to data and/or control
dependencies. Therefore, UNITE uses dynamic slicing [2, 61] on the output statement whose output value is
incorrect to identify those statements afecting the faulty output value as an inluential slice. Thus, an inluential
slice is deined as follows:

An inluential slice: statements that directly or indirectly afect the computation of the faulty output
value of a failure through chains of dynamic data and/or control dependencies.

For the computation of an inluential slice, we use the following slicing criterion.

��� ���������� = (������, ������������, � �����) (8)

Where, ������ is an output statement whose value of a variable (i.e., ������������ ) is incorrect in the execution
of a failing test case (i.e., � �����). Dynamic slicing collects runtime information along the execution path of a
test case, i.e., the set of the executed statements of a test case. It means that a test case with a smaller set of
executed statements is usually easier for a dynamic slicing tool to perform eicient instrumentation and produce
compressed traces for space optimization. Thus, for multiple failing test cases, the one with the least executed
statements usually is beneicial for the eiciency of constructing an inluential slice. From the eiciency aspect,
UNITE chooses the failing test case having the least executed statements to construct a slicing criterion in the
Eq. (8), and inputs this slicing criterion into program slicing technique to construct an inluential slice.

Based on the inluential slice, UNITE deines Eq. (9) to combine inluential semantics into trace representation.

����� ������
(

�� �
)

= GLoccur
(

�� �
)

∗ �����
(

�� �
)

(9)

Where, ����� (�� � ) = 1 if the statement � � ∈ ��� ����������; and 0 otherwise. Eq. (9) assigns the lowest value to
those statements not in the inluential slice because their executions do not inluence the faulty output.

Finally, as shown in Fig. 4, UNITE deines ����� ������ (�� � ) to replace the original �� � , and models a new trace
representation (i.e., a new matrix) with inluential global and local contexts. FL techniques (e.g., SFL and DLFL in
Section 2) take as input the UNITE representation to analyze and evaluate the suspiciousness of a statement of
being faulty.

3.4 An Illustrative Example

Fig. 5 shows an example illustrating how UNITE is applied. As shown in Fig. 5, we have a program � with a fault at
the statement �6, and its function is to calculate the maximal value of three variables. The left six cells below each
statement represent whether the statement is covered by the test case (1 for covered and 0 otherwise), evaluated
by the original trace representation. The right six cells represent the����� ������ values of each statement in each
test case, evaluated by UNITE (see Eq. (9)). The rightmost cells below � indicate whether the test case is failing or
not (1 for failing and 0 otherwise). In this illustrative example, we choose MLP-FL and ER5 as the representative
for DLFL and SFL, which are described in Section 2. MLP-FL(UNITE) and ER5(UNITE) mean that MLP-FL and
ER5 use the UNITE trace representation. UNITE uses the failing test case �5 to calculate the inluence slice. Here,
we can observe that UNITE representation is more concise and precise than binary representation by purifying
uninluenctial statements and showing a magnitude of the importance of a statement in a test case.
After acquiring the trace representation, FL techniques take as input the representation to analyze and

evaluate the suspiciousness of each statement of being faulty. For example, MLP-FL(UNITE) takes as input
UNITE representation and its concrete process is as follows: irst, UNITE constructs the MLP model with the
number of input layer nodes being eight, three hidden layers with the number of each one’s nodes being 10,
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Program P (maximal value of a,b,c) Bug information 

       s1: Read(a);                                     s7: max = a; 

       s2: Read(b);                                     s8: else {max = b;} 

       s3: Read(c) ; 

       s4: if(c>a)and (c>b){ 

       s5: max = c;}  

       s6: else if (a<b){ 

s6 is faulty. 

Correct form: 

else if (a>b){ 

T a,b,c s1 s2 s3 s4 s5 s6 s7 s8 T s1 s2 s3 s4 s5 s6 s7 s8 R 

t1 1,2,3 1 1 1 1 1 0 0 0 t1 0 0 0 0 0 0 0 0 0 

t2 -2,-7,5 1 1 1 1 1 0 0 0 t2 0 0 0 0 0 0 0 0 0 

t3 5,-6,-8 1 1 1 1 0 1 0 1 t3 0 0 0 0 0.06 0 0 0 1 

t4 5,4,3 1 1 1 1 0 1 0 1 t4 0 0 0 0 0.06 0 0 0 1 

t5 4,7,1 1 1 1 1 0 1 1 0 t5 0 0 0 0 0.06 0.17 0 0 1 

t6 -1,2,1 1 1 1 1 0 1 1 0 t6 0 0 0 0 0.06 0.17 0 0 1 

MLP-FL 
value 0.62 0.64 0.61 0.69 0.57 0.59 0.60 0.58 MLP-FL 

(UNITE) 

0.56 0.28 0.19 0.46 0.79 0.95 0.97 0.88 

rank 3 2 4 1 8 6 5 7 5 7 8 6 4 2 1 3 

ER5 
value 0.67 0.67 0.67 0.67 0 0.67 0.33 0.33 ER5 

(UNITE) 

0 0 0 0 0 0.11 0.08 0 

rank 1 2 3 4 8 5 6 7 6 7 8 4 5 1 2 3 

The influential slice with t5: 

{s1, s2, s3, s4, s5, s6} 

Fig. 5. An Example illustrating our approach.

and the number of output layer nodes being 1; then, we input the vector �1 (0,0,0,0,0,0,0,0) and its result 0, then
vector �2 (0,0,0,0,0,0,0,0) and its result 0 into the input layer until all the vectors of UNITE representation are all
inputted into the network. After that, we train the network iteratively to acquire the relationship between the
execution inluence of a statement and the test results. Thirdly, we construct the virtual test set which is an eight
dimensional unit matrix, then put it into the network, and inally obtain the suspiciousness values. Based on these
information, MLP-FL(UNITE) outputs a ranking list of all statements in descending order. The original MLP-FL
uses the binary representation to perform a similar process to evaluate the suspiciousness of each statement of
being faulty. The results show that the faulty statement �6 is ranked 2nd by UNITE and ranked 6th by the original
MLP-FL.

Based on the binary representation and UNITE representation, ER5 and ER5(UNITE) both output a ranking list
of all statements in descending order. The results show that the faulty statement �6 is ranked 1st by UNITE and
ranked 5th by the original ER5 using the binary representation. It should be noted that when the statements have
the same suspiciousness value, we adopt the widely strategy by ranking them in the ascending order of their line
numbers. As shown in Fig. 5, although �1, �2, �3, �4 and �6 have the same highest suspiciousness value in ER5,
�6 is ranked 5th for its larger line number. Thus, for diferent strategies of breaking the tie, the ranks of those
statements with the same suspiciousness value may be slightly diferent.
We can irst observe that global and local contexts of UNITE work. Since the statements �1, �2, �3 and �4 are

executed by all the 6 test cases, their ������� values are 0 in comparison to the other statements, and thus
their ����� ������ are 0. Furthermore, the statement �6 and �7 acquire a decimal value, rather than a binary value,
showing how important of a statement is in a test case. Then, the inluence semantics of UNITE works. Due
to using the inluential slice, the execution of �5 and �8 do not inluence the faulty output of �5, their �����
values are 0 and thus their ����� ������ are 0 Thus, based on this illustrative example, we can observe that the
two parts of UNITE (i.e., global and local contexts, and inluential semantics) both contribute to FL efectiveness,
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leading to better FL efectiveness over the original trace representation. Section 4.3.2 ofers an evaluation on the
contribution of each part of UNITE to FL efectiveness.

4 EXPERIMENTS

4.1 Experimental Setup

Table 2. Subject programs.

Program Description Versions KLOC Test Type

python General-purpose language 8 407 355 Real

gzip Data compression 5 491 12 Real

libtif Image processing 12 77 78 Real

space ADL interpreter 35 6.1 13585 Real

spoon Java code analysis & transformation 31 76 1114 Real

dubbo Apache incubator dubbo 1 0.6 90 Real

jackson-databind General data binding 13 99 1711 Real

oak Apache jackrabbit oak 1 1.8 2403 Real

debezium Platform for change data capture 4 53 508 Real

byte-buddy Runtime code generation for the JVM 3 140 8066 Real

AutomatedCar Passenger vehicle behavior simulator 1 2 48 Real

cash-count Accounting software back-end 2 0.7 16 Real

nanoxml v1 XML parser 7 5.4 206 Seeded

nanoxml v2 XML parser 7 5.7 206 Seeded

nanoxml v3 XML parser 10 8.4 206 Seeded

nanoxml v5 XML parser 7 8.8 206 Seeded

chart JFreeChart 26 96 2205 Real

math Apache commons math 106 85 3602 Real

lang Apache commons-lang 65 22 2245 Real

time Joda-Time 27 53 4130 Real

Benchmarks The experiments choose the subject programs for the two reasons: (1) they are the widely used
large-sized programs (e.g., [24, 33, 35ś37, 39, 42, 55, 65, 66]) in fault localization; (2) they are easy to be acquired
for enabling comparable and reproducible studies. Table 2 summarizes the 20 subject programs. For each program,
it provides a brief functional description (column ‘Description’), the number of faulty versions used (column
‘Versions’), the number of thousand lines of statements (column ‘KLOC’), the number of test cases (column ‘Test’)
and the type of the faults (column ‘Type’). The irst four programs are real faults, among which python, gzip
and libtif are collected from ManyBugs3, and space is acquired from the SIR4. The next seven programs are
real faults from BEARS5. Then, the next four programs are seeded faults of the four sperate releases of nanoxml

acquired from the SIR. The last four programs (i.e., chart, math, lang and time) are acquired from Defectcs4J6. As
a reminder, since the recent studies [10, 71] have identiied over-itting benchmarks (e.g., Defects4J) for FL, we
use the recently recommended benchmarks [29] (e.g., BEARS) to alleviate this problem. Therefore, we do not

3ManyBugs, https://repairbenchmarks.cs.umass.edu/ManyBugs/.
4SIR, http://sir.unl.edu/portal/index.php.
5BEARS, https://github.com/bears-bugs/bears-benchmark.
6Defects4J, http://defects4j.org.
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include the experimental results of Defects4J in Section 4.3 and provide a discussion on the efect of benchmarks
over-itting on our approach using Defects4J in Section 5.1.
We use JSlice7 and Javaslicer8 for slicing Java programs, and WET9 for slicing C Programs. Due to running

environments, the tools cannot slice some faulty versions, and we remove these versions in our evaluation.
Baselines According to the extensive existing studies [23, 26, 28, 31, 32, 39, 43, 51, 59, 60, 65, 66], the experiments
use the 12 state-of-the-art FL approaches as the baselines, i.e., ER5, GP02, GP03, Dstar, ER1’, GP19, Ochiai, MLP-FL,
CNN-FL, BiLSTM-FL, ProFL and DeepRL4FL.We implement the 12 baselines including the parameters as described
in their publications.
Environment The physical environment of the experiments is on a computer containing a CPU of Intel I5-2640
with 128G physical memory, and two 12G GPUs of NVIDIA TITAN X Pascal. The operating system is Ubuntu
16.04.3. We conducted the experiments on the MATLAB R2016b.

4.2 Evaluation Metrics

We adopt four widely used metrics to evaluate the efectiveness of UNITE, namely Top-N accuracy [17, 38], Mean

Average Rank (MAR) [24], Mean First Rank (MFR) [24] and Relative Improvement (RImp) [4, 7, 21]. A higher
value of Top-N Accuracy means better localization efectiveness, while a lower value denotes better localization
efectiveness for the other four metrics.
Top-N Accuracy It denotes the percentage of faults located within the irst N position of a ranked list of all
statements in descending order of suspiciousness returned by a FL approach.
Mean Average Rank (MAR) It is the mean of the average rank of all faults using a FL approach.
Mean First Rank (MFR) For a fault with multiple faulty statements, locating the irst one is critical since
the others may be located after that. MFR is the mean of the irst faulty statement’s rank of all faults using a
localization approach.
Relative Improvement (RImp) It is to compare the total number of statements that need to be examined to
ind all faults using UNITE versus the number that need to be examined by without using UNITE.

4.3 Experimental Results

4.3.1 RQ1. What is the FL efectiveness of UNITE compared with the original state-of-the-art FL

baselines?

We compare 12 state-of-the-art FL baselines using UNITE with the original ones to answer RQ1.
Top-N Accuracy, MAR and MFR Parnin and Orso [38] conducted a user study of evaluating the usefulness of
fault localization techniques in assisting developers, and recommended using the rank of the faulty statement to
evaluate fault localization efectiveness. Since then, Top-N, MAR and MFR are widely used in fault localization.
Afterwards many comprehensive user studies (e.g., [17, 58]) show that it is useful to help developers in debugging
by using these metrics. Thus, our experiments use Top-N, MAR, and MFR to compare the 12 baselines between
using UNITE and using the original representation. Table 3 presents their distribution among 12 fault localization
approaches using original trace representation and UNITE representation, respectively. As shown in Table 3,
UNITE achieves promising best localization efectiveness in all 12 scenarios in comparison to the baselines
without using UNITE. Take one FL technique ER5 as an example. UNITE shows an increase of 1.64%, 9.84%, 8.20%
and 9.91% improvement over ER5 for the Top-1, Top-3, Top-5 and Top-10 metrics respectively. The MAR and MFR

are 134 and 125 respectively, achieving (421-134)/421=68.17% and (263-125)/263=52.47% relative improvement
over ER5 respectively.

7http://jslice.sourceforge.net/.
8https://github.com/hammacher/javaslicer/.
9http://wet.cs.ucr.edu/.
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Table 3. Top-N, MAR and MFR comparison of 13 FL approaches using UNITE over without using UNITE

Comparison top-1 top-3 top-5 top-10 MAR MFR

ER5 1.09% 5.46% 9.29% 11.95% 421 263
ER5(UNITE) +1.64% +9.84% +8.20% +9.91% 134 125

GP02 1.09% 6.01% 8.20% 11.29% 464 289
GP02(UNITE) +2.19% +8.74% +11.47% +11.66% 124 111

GP03 1.09% 5.76% 10.14% 12.57% 417 251
GP03(UNITE) +1.64% +11.18% +7.11% +7.66% 131 119

Dstar 2.73% 6.56% 14.27% 23.50% 386 243
Dstar(UNITE) +0.55% +5.94% +3.76% +4.92% 125 113

ER1’ 2.73% 5.21% 7.10% 11.29% 425 317
ER1’(UNITE) +0.00% +5.72% +7.11% +10.63% 127 115

GP19 2.73% 6.56% 12.57% 13.11% 417 278
GP19(UNITE) +0.55% +6.98% +6.18% +10.39% 126 121

Ochiai 2.73% 6.56% 13.70% 19.13% 397 227
Ochiai(UNITE) +0.55% +9.29% +4.01% +7.1% 122 112

MLP-FL 1.09% 4.32% 6.56% 9.29% 471 335
MLP-FL(UNITE) +1.10% +7.16% +8.19% +11.48% 137 129

CNN-FL 2.73% 6.01% 11.48% 17.53% 407 251
CNN-FL(UNITE) +0.55% +10.93% +6.55% +3.78% 123 117

BiLSTM-FL 1.09% 3.28% 6.15% 8.74% 493 354
BiLSTM-FL(UNITE) +1.10% +7.65% +8.06% +14.18% 133 124

ProFL 3.54% 7.64% 16.75% 25.95% 365 227
ProFL(UNITE) +0.78% +9.85% +6.75% +4.1% 122 107

DeepRL4FL 7.10% 15.41% 22.95% 26.23% 323 219
DeepRL4FL(UNITE) +0.00% +4.81% +3.83% +6.56% 103 96

Fig. 6. RImp comparison of 12 FL baselines using UNITE vs without using UNITE.

RImp distribution For a detailed improvement, we adopt RImp to evaluate UNITE. Fig. 6 shows the RImp

distribution of UNITE: the RImp on the 12 FL baselines without using UNITE. As shown in Fig. 6, the RImp

score is less than 100% in all approaches, meaning that UNITE improves localization efectiveness of all the 13
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FL baselines. The statements that need to be examined decrease ranging from 14.10% in MLP-FL to 70.47% in
DeepRL4FL. It also means that UNITE, obtains a maximum saving of 85.90% (100%-14.10%=85.90%) in MLP-FL
and the minimum saving is 29.53% (100%-70.47%=48.68%) in DeepRL4FL, which indicates that UNITE can save
from 29.53% to 85.90% of the number of statements examined among the fault localization approaches. Based on
the RImp scores, we can observe that there is a signiicant saving after using UNITE, showing that UNITE is
efective to improve fault localization.
Statistical comparison To investigate whether the diference between the baselines using UNITE and without
using UNITE is statistically signiicant, we adopt Wilcoxon-Signed-Rank Test [5], with a Bonferroni correction [1],
which is a non-parametric statistical hypothesis test for testing the diferences between pairs of measurements
F(x) and G(y). The experiments performed 12 paired Wilcoxon-Signed-Rank tests by using the ranks [30] of the
faulty statements as the pairs of measurements F(x) and G(y). Each test uses left-tailed p-value checking at the �
level of 0.05. Speciically, we use the list of the ranks of the faulty statements using UNITE in all faulty versions
of all programs as the list of measurements of F(x), while the list of measurements of G(y) is the list of the ranks
of the faulty statements without using UNITE in all faulty versions of all programs. If p<0.05, �1 that the ranks
of using UNITE signiicantly tends to be smaller than that of without using UNITE is accepted, meaning that
UNITE has BETTER efectiveness than without using UNITE; otherwise, �0 that ranks of using UNITE does not
signiicantly tend to be smaller than that of without using UNITE is accepted, meaning that using UNITE does
not perform better than without using UNITE.
Table 4 and Table 5 show the Wilcoxon-Signed-Rank Test results on this relationship, where the cells show

the p values of Wilcoxon-Signed-Rank Tests. The results show that the ranks of the faulty statements of all the
12 FL approaches using UNITE are signiicantly smaller than those of all the 12 baselines using original trace
representation in all programs, yielding BETTER results in all cases.

To further assess the diference quantitatively, we leverage the nonparametric Vargha-Delaney A-test, which is
recommended in [3], to evaluate the magnitude of the diference by measuring efect size (scientiic signiicance).
For A-test, the bigger deviation of A-statistic is from the value of 0.5, the greater diference is between the two
studied groups. Vargha and Delaney [50] suggest that A-test of greater than 0.64 (or less than 0.36) is indicative of
łmediumž efect size, and of greater than 0.71 (or less than 0.29) can be indicative of a promising łlargež efect size.

Table 6 shows the A-Test results of 12 FL approaches using UNITE vs without using UNITE. We could
observe that UNITE arrives at the promising łlargež efect size, thus showing better performance. Therefore, it is
statistically signiicant that UNITE outperforms FL without using UNITE.

Summary for RQ1 In RQ1, we explore the efectiveness of UNITE over original 12 FL baselines. We can safely

conclude that the 12 techniques with UNITE signiicantly outperform the original ones, showing that incorporating

inluential global and local contexts guided trace representation into FL is potential to improve FL efectiveness.

4.3.2 RQ2. Does each part of UNITE contribute to FL efectiveness?

UNITE has two major parts: combining global and local contexts into representation and incorporating
inluential semantics into representation. It is desirable to see whether each part of UNITE contributes to FL
efectiveness. Therefore, We implement UNITE with each part as UNITE(GLContexts) and UNITE(Inluence),
respectively. There are two cases: (1) we compare UNITE(GLContexts) and UNITE(Inluence) with the original
trace representation to check whether each part improves the original one; (2) we compare UNITE with each
part (i.e., UNITE(GLContexts) and UNITE(Inluence)) to check whether UNITE successfully combines two parts
to achieve better efectiveness than each part. We use the ranks of the faulty statements as measurements, and
conduct Wilcoxon-Signed-Rank Test with a Bonferroni correction at the � level of 0.05 for each comparison of
the above two cases. Furthermore, for each comparison of the above two cases, we adopt the nonparametric
Vargha-Delaney A-test to evaluate the magnitude of their diference by measuring efect size.
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Table 4. Wilcoxon-Signed-Rank Test results of the six of 12 FL approaches using UNITE vs without using UNITE (part 1).
Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion

ER5
(UNITE)

vs
ER5

gzip 0.008 0.997 5.00e-04 BETTER

GP02
(UNITE)

vs
GP02

gzip 0.027 0.899 0.018 BETTER
libtif 0.018 0.978 0.005 BETTER libtif 0.011 0.969 0.009 BETTER
python 0.010 0.958 0.012 BETTER python 0.018 0.963 0.003 BETTER
space 4.38e-04 1.000 2.41e-04 BETTER space 4.38e-04 1.000 2.41e-04 BETTER

nanoxml_v1 0.017 0.929 0.010 BETTER nanoxml_v1 0.045 0.707 0.048 BETTER
nanoxml_v2 0.018 0.963 0.019 BETTER nanoxml_v2 0.039 0.789 0.041 BETTER
nanoxml_v3 0.008 0.989 0.003 BETTER nanoxml_v3 0.46 0.705 0.039 BETTER
nanoxml_v5 0.013 0.985 0.007 BETTER nanoxml_v5 0.009 0.985 3.01e-04 BETTER

spoon 0.008 0.997 5.0e-04 BETTER spoon 0.011 0.995 6.43e-03 BETTER
dubbo 0.008 0.997 0.003 BETTER dubbo 0.014 0.950 0.009 BETTER

jackson-databind 0.013 0.929 0.009 BETTER jackson-databind 0.025 0.896 0.023 BETTER
oak 0.018 0.963 0.009 BETTER oak 0.011 0.969 0.009 BETTER

debezium 0.011 0.969 0.007 BETTER debezium 0.018 0.966 0.003 BETTER
byte-buddy 0.012 0.989 0.003 BETTER byte-buddy 0.011 0.969 0.009 BETTER

AutomatedCar 0.017 0.977 0.008 BETTER AutomatedCar 0.018 0.963 0.019 BETTER
cash-count 0.013 0.981 0.009 BETTER cash-count 0.046 0.705 0.039 BETTER

total 4.20e-12 1.000 2.15e-12 BETTER total 2.99e-09 1.000 1.53e-09 BETTER

GP03
(UNITE)

vs
GP03

gzip 0.012 0.899 0.013 BETTER

Dstar
(UNITE)

vs
Dstar

gzip 0.012 0.899 0.013 BETTER
libtif 0.011 0.969 0.009 BETTER libtif 0.011 0.969 0.09 BETTER
python 0.018 0.967 4.00e-04 BETTER python 0.018 0.963 3.00e-04 BETTER
space 4.38e-04 1.000 2.41e-04 BETTER space 4.38e-04 1.000 2.41e-04 BETTER

nanoxml_v1 0.045 0.707 0.046 BETTER nanoxml_v1 0.045 0.707 0.046 BETTER
nanoxml_v2 0.011 0.969 0.009 BETTER nanoxml_v2 0.043 0.789 0.039 BETTER
nanoxml_v3 0.047 0.663 0.042 BETTER nanoxml_v3 0.047 0.663 0.042 BETTER
nanoxml_v5 0.013 0.985 0.003 BETTER nanoxml_v5 0.013 0.985 0.003 BETTER

spoon 0.008 1.000 4.58e-04 BETTER spoon 0.008 0.962 0.007 BETTER
dubbo 0.008 0.970 0.005 BETTER dubbo 0.045 0.728 0.041 BETTER

jackson-databind 0.012 0.989 0.003 BETTER jackson-databind 0.024 0.896 0.035 BETTER
oak 0.011 0.961 0.009 BETTER oak 0.015 0.909 0.010 BETTER

debezium 0.018 0.963 0.003 BETTER debezium 0.007 0.985 0.003 BETTER
byte-buddy 0.011 0.969 0.014 BETTER byte-buddy 0.045 0.707 0.048 BETTER

AutomatedCar 0.011 0.969 0.009 BETTER AutomatedCar 0.018 0.963 0.003 BETTER
cash-count 0.046 0.705 0.039 BETTER cash-count 0.047 0.663 0.042 BETTER

total 2.32e-08 1.000 1.25e-08 BETTER total 1.61e-07 1.000 8.19e-08 BETTER

ER1’
(UNITE)

vs
ER1’

gzip 0.017 0.899 0.016 BETTER

GP19
(UNITE)

vs
GP19

gzip 0.008 0.978 0.007 BETTER
libtif 0.011 0.969 0.009 BETTER libtif 0.11 0.969 0.009 BETTER
python 0.018 0.963 0.003 BETTER python 0.018 0.963 0.003 BETTER
space 4.38e-04 1.000 2.41e-04 BETTER space 4.38e-04 1.000 2.41e-04 BETTER

nanoxml_v1 0.045 0.707 0.047 BETTER nanoxml_v1 0.011 0.966 0.011 BETTER
nanoxml_v2 0.011 0.969 0.009 BETTER nanoxml_v2 0.011 0.969 0.009 BETTER
nanoxml_v3 0.045 0.663 0.042 BETTER nanoxml_v3 0.012 0.953 0.009 BETTER
nanoxml_v5 0.003 0.985 0.008 BETTER nanoxml_v5 0.003 0.985 0.008 BETTER

spoon 0.008 0.962 0.004 BETTER spoon 0.008 0.997 0.005 BETTER
dubbo 0.045 0.702 0.041 BETTER dubbo 0.015 0.911 0.014 BETTER

jackson-databind 0.25 0.896 0.042 BETTER jackson-databind 0.013 0.929 0.010 BETTER
oak 0.015 0.909 0.009 BETTER oak 0.019 0.789 0.039 BETTER

debezium 0.009 0.985 0.003 BETTER debezium 0.012 0.953 0.010 BETTER
byte-buddy 0.010 0.969 0.009 BETTER byte-buddy 0.010 0.969 0.009 BETTER

AutomatedCar 0.007 0.989 0.003 BETTER AutomatedCar 0.012 0.963 0.003 BETTER
cash-count 0.025 0.896 0.043 BETTER cash-count 0.046 0.705 0.039 BETTER

total 3.25e-08 1.000 1.66e-08 BETTER total 4.79e-11 1.000 2.45e-11 BETTER

Table 7 and Table 8 show the statistical results of each one of the above two cases, respectively. As shown in Ta-
ble 7, the ranks of the faulty statements of all the 12 FL baselines using each part of UNITE (i.e.,UNITE(GLContexts)
and UNITE(Inluence)) are signiicantly smaller than those of all the original FL approaches, yielding BETTER
results in all scenarios. Furthermore, each part of UNITE (i.e., UNITE(GLContexts) and UNITE(Inluence)) acquire
łmediumž and łlargež efect sizes over those of all original FL approaches. Similarly, as show in Table 8, UNITE
signiicantly outperforms its each part (i.e., UNITE(GLContexts) and UNITE(Inluence)), yielding BETTER results
and łlargež efect sizes in all scenarios.

Summary for RQ2 In RQ2, we explore the contribution of each part of UNITE to FL efectiveness. Based on

the above results, we can conclude that (1) each part of UNITE (i.e., UNITE(GLContexts) and UNITE(Inluence))
signiicantly contributes to FL efectiveness; (2) UNITE successfully combines the contributions of UNITE(GLContexts)

and UNITE(Inluence), signiicantly outperforming each separated part.

4.3.3 RQ3. Why is UNITE better than original state-of-the-art FL baselines?
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Table 5. Wilcoxon-Signed-Rank Test results of the other six of 12 FL approaches using UNITE vs without using UNITE (part

2).

Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion

Ochiai
(UNITE)

vs
Ochiai

gzip 0.008 0.978 0.007 BETTER

MLP
(UNITE)

vs
MLP

gzip 0.008 0.978 0.005 BETTER
libtif 0.011 0.969 0.004 BETTER libtif 0.011 0.966 0.009 BETTER
python 0.002 0.993 0.002 BETTER python 0.012 0.963 0.009 BETTER
space 4.38e-04 1.000 2.41e-04 BETTER space 4.38e-04 1.000 2.41e-04 BETTER

nanoxml_v1 0.042 0.707 0.047 BETTER nanoxml_v1 0.009 0.971 0.009 BETTER
nanoxml_v2 0.033 0.789 0.039 BETTER nanoxml_v2 0.013 0.961 0.011 BETTER
nanoxml_v3 0.034 0.853 0.020 BETTER nanoxml_v3 0.012 0.989 0.003 BETTER
nanoxml_v5 0.005 0.985 0.003 BETTER nanoxml_v5 0.005 0.985 0.003 BETTER

spoon 0.006 0.971 0.004 BETTER spoon 0.015 0.909 0.011 BETTER
dubbo 0.045 0.819 0.029 BETTER dubbo 0.017 0.943 0.019 BETTER

jackson-databind 0.013 0.949 0.010 BETTER jackson-databind 0.008 0.970 0.005 BETTER
oak 0.019 0.789 0.039 BETTER oak 0.018 0.963 0.009 BETTER

debezium 0.010 0.969 0.009 BETTER debezium 0.012 0.965 0.003 BETTER
byte-buddy 0.010 0.969 0.009 BETTER byte-buddy 0.005 0.989 0.002 BETTER

AutomatedCar 0.010 0.923 0.013 BETTER AutomatedCar 0.002 0.991 0.002 BETTER
cash-count 0.024 0.896 0.025 BETTER cash-count 0.006 0.985 0.003 BETTER

total 3.90e-09 1.000 1.99e-09 BETTER total 3.55e-10 1.000 1.83e-10 BETTER

CNN
(UNITE)

vs
CNN

gzip 0.008 0.978 0.005 BETTER

BiLSTM
(UNITE)

vs
BiLSTM

gzip 0.007 0.978 0.005 BETTER
libtif 0.011 0.969 0.004 BETTER libtif 0.011 0.969 0.004 BETTER
python 0.012 0.952 0.003 BETTER python 0.002 0.998 3.25e-04 BETTER
space 4.36e-04 1.000 2.41e-04 BETTER space 4.38e-04 1.000 2.41e-04 BETTER

nanoxml_v1 0.011 0.957 0.006 BETTER nanoxml_v1 0.011 0.957 0.006 BETTER
nanoxml_v2 0.011 0.956 0.010 BETTER nanoxml_v2 0.011 0.956 0.010 BETTER
nanoxml_v3 0.011 0.953 0.007 BETTER nanoxml_v3 0.011 0.953 0.007 BETTER
nanoxml_v5 0.006 0.985 0.003 BETTER nanoxml_v5 0.006 0.985 0.003 BETTER

spoon 0.010 0.969 0.004 BETTER spoon 0.009 0.909 0.011 BETTER
dubbo 0.008 0.951 0.019 BETTER dubbo 0.008 0.972 0.003 BETTER

jackson-databind 0.036 0.791 0.029 BETTER jackson-databind 0.004 0.985 0.006 BETTER
oak 0.008 0.942 0.019 BETTER oak 0.008 0.981 0.003 BETTER

debezium 0.004 0.985 0.003 BETTER debezium 0.011 0.964 0.003 BETTER
byte-buddy 0.008 0.970 0.005 BETTER byte-buddy 0.006 0.978 0.004 BETTER

AutomatedCar 0.006 0.971 0.005 BETTER AutomatedCar 0.018 0.913 0.003 BETTER
cash-count 0.004 0.985 0.003 BETTER cash-count 0.006 0.978 0.005 BETTER

total 9.50e-10 1.000 4.88e-10 BETTER total 4.19e-10 1.000 2.15e-10 BETTER

ProFL
(UNITE)

vs
ProFL

gzip 0.008 0.978 0.007 BETTER

DeepRL4FL
(UNITE)

vs
DeepRL4FL

gzip 0.009 0.969 0.011 BETTER
libtif 0.009 0.969 0.011 BETTER libtif 0.003 0.989 0.004 BETTER
python 0.011 0.963 0.009 BETTER python 0.035 0.859 0.021 BETTER
space 4.36e-04 1.000 2.41e-04 BETTER space 4.36e-04 1.000 2.41e-04 BETTER

nanoxml_v1 0.009 0.969 0.011 BETTER nanoxml_v1 0.35 0.708 0.043 BETTER
nanoxml_v2 0.009 0.978 0.004 BETTER nanoxml_v2 0.007 0.973 0.003 BETTER
nanoxml_v3 0.011 0.953 0.007 BETTER nanoxml_v3 0.025 0.814 0.015 BETTER
nanoxml_v5 0.004 0.985 0.003 BETTER nanoxml_v5 0.015 0.896 0.027 BETTER

spoon 0.009 0.987 0.003 BETTER spoon 0.035 0.789 0.039 BETTER
dubbo 0.035 0.789 0.039 BETTER dubbo 0.004 0.989 0.002 BETTER

jackson-databind 0.015 0.896 0.024 BETTER jackson-databind 0.005 0.969 0.010 BETTER
oak 0.005 0.969 0.010 BETTER oak 0.008 0.981 0.003 BETTER

debezium 0.008 0.978 0.006 BETTER debezium 0.008 0.972 0.009 BETTER
byte-buddy 0.003 0.979 0.007 BETTER byte-buddy 0.003 0.989 0.002 BETTER

AutomatedCar 0.003 0.989 0.002 BETTER AutomatedCar 0.042 0.705 0.043 BETTER
cash-count 0.015 0.896 0.015 BETTER cash-count 0.012 0.911 0.004 BETTER

total 1.31e-07 1.000 7.35e-08 BETTER libtif 1.65e-07 1.000 6.36e-08 BETTER

Table 6. A-Test results of 12 FL approaches using UNITE vs without using UNITE.

Comparison A-Test Comparison A-Test Comparison A-Test Comparison A-Test

ER5(UNITE) vs ER5 0.86 GP02(UNITE) vs GP02 0.87 GP03(UNITE) vs GP03 0.91 Dstar(UNITE) vs Dstar 0.85
ER1’(UNITE) vs ER1’ 0.88 GP19(UNITE) vs GP19 0.91 Ochiai(UNITE) vs Ochiai 0.88 MLP(UNITE) vs MLP 0.93
CNN(UNITE) vs CNN 0.89 BiLSTM(UNITE) vs BiLSTM 0.96 ProFL(UNITE) vs ProFL 0.83 DeepRL4FL(UNITE) vs DeepRL4FL 0.81

The experimental results show that UNITE outperforms the original trace representation. It is natural to seek
why is UNITE better than original trace representation. Let us use the deinitions (e.g., �� � and ����� ������ (�� � ))
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Table 7. Statistical results of the 12 FL approaches using each part of UNITE vs using original representation.

Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test

UNITE
(Inluence)

vs
original

representation

ER5 0.010 0.978 0.009 BETTER 0.83

UNITE
(GLContexts)

vs
original

representation

ER5 0.018 0.968 0.009 BETTER 0.73
GP02 0.012 0.785 0.018 BETTER 0.78 GP02 0.014 0.917 0.003 BETTER 0.74
GP03 0.026 0.865 0.004 BETTER 0.67 GP03 0.015 0.935 0.003 BETTER 0.74
Dstar 0.027 0.893 0.031 BETTER 0.65 Dstar 0.034 0.746 0.026 BETTER 0.63
ER1’ 0.009 0.903 0.004 BETTER 0.81 ER1’ 0.034 0.743 0.029 BETTER 0.63
GP19 0.015 0.899 0.028 BETTER 0.64 GP19 0.031 0.824 0.046 BETTER 0.63
Ochiai 0.015 0.912 0.005 BETTER 0.64 Ochiai 0.012 0.876 0.009 BETTER 0.76
MLP-FL 0.011 0.969 0.009 BETTER 0.87 MLP-FL 0.043 0.785 0.030 BETTER 0.65
CNN-FL 0.013 0.902 0.018 BETTER 0.62 CNN-FL 0.028 0.897 0.029 BETTER 0.76

BiLSTM-FL 0.010 0.974 0.002 BETTER 0.81 BiLSTM-FL 0.016 0.894 0.008 BETTER 0.78
ProFL 0.017 0.929 0.014 BETTER 0.67 ProFL 0.038 0.770 0.037 BETTER 0.62

DeepRL4FL 0.026 0.893 0.025 BETTER 0.63 DeepRL4FL 0.045 0.812 0.039 BETTER 0.61

Table 8. Statistical results of the 12 FL approaches using UNITE vs using each part of UNITE.

Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test

UNITE
vs

UNITE
(Inluence)

ER5 0.013 0.909 0.004 BETTER 0.74

UNITE
vs

UNITE
(GLContexts)

ER5 0.016 0.913 0.005 BETTER 0.71
GP02 0.018 0.903 0.009 BETTER 0.82 GP02 0.011 0.869 0.041 BETTER 0.73
GP03 0.029 0.859 0.021 BETTER 0.71 GP03 0.015 0.835 0.038 BETTER 0.74
Dstar 0.023 0.893 0.020 BETTER 0.73 Dstar 0.014 0.846 0.036 BETTER 0.71
ER1’ 0.039 0.824 0.043 BETTER 0.71 ER1’ 0.014 0.885 0.039 BETTER 0.72
GP19 0.016 0.906 0.009 BETTER 0.81 GP19 0.011 0.895 0.009 BETTER 0.81
Ochiai 0.015 0.903 0.005 BETTER 0.78 Ochiai 0.012 0.911 0.016 BETTER 0.73
MLP-FL 0.010 0.969 0.008 BETTER 0.82 MLP-FL 0.013 0.907 0.012 BETTER 0.71
CNN-FL 0.031 0.864 0.046 BETTER 0.72 CNN-FL 0.018 0.847 0.036 BETTER 0.71

BiLSTM-FL 0.017 0.915 0.014 BETTER 0.73 BiLSTM-FL 0.013 0.902 0.014 BETTER 0.78
ProFL 0.013 0.919 0.009 BETTER 0.72 ProFL 0.019 0.886 0.046 BETTER 0.72

DeepRL4FL 0.017 0.899 0.024 BETTER 0.72 DeepRL4FL 0.017 0.878 0.045 BETTER 0.73

in Section 3. For a statement � � , we irst deine the following four formulas:

�����ℎ�������� (� � ) =
︁

�∈{� |��=1}
�� �

�����ℎ������� (� � ) =
︁

�∈{� |��=1}
����� ������ (�� � )

�����ℎ�������� (� � ) =
︁

�∈{� |��=0}
�� �

�����ℎ������� (� � ) =
︁

�∈{� |��=0}
����� ������ (�� � )

(10)

�����ℎ�������� (� � ) and �����ℎ������� (� � ) denote the cumulative weights of the statement � � acquired in all
failing test cases by using original representation and UNITE, respectively. Similarly, �����ℎ�������� (� � ) and
�����ℎ������� (� � ) represent the cumulative weights of the statement � � acquired in all passing test cases by
using original representation and UNITE, respectively. For a statement, a high �����ℎ�� means that it is strongly
related to failing test cases whereas a high �����ℎ�� represents it is strongly related to passing test cases10. Thus,
it desirable to design a trace representation that will always assign the faulty statements with a high �����ℎ��

and a low �����ℎ�� . This may be the reason why UNITE outperforms the original trace representation. In other
words, the values of the ranks and exam of the faulty statements in descending order of �����ℎ������� should
be smaller than those in descending order of �����ℎ�������� , and the values of the ranks of the faulty statements
in descending order of �����ℎ������� should be higher than those in descending order of �����ℎ�������� .

10This analysis excludes those statement whose �����ℎ�� and �����ℎ�� are both 0 because they have nothing with failing and passing
test cases and will be irst excluded by FL techniques.
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To verify the above analysis, based on the four formulas in Eq. (10), we calculate the �����ℎ�� and �����ℎ�� of
each statement in all faulty versions of a program using the original representation and UNITE, respectively. We
conduct two paired Wilcoxon-Signed-Rank tests with a Bonferroni correction by using the pairs of measurements
F(x) and G(y), and each test uses left-tailed p-value checking at the � level of 0.05. One test adopts the ranks and
exam of the faulty statements using �����ℎ������� in all faulty versions of a program as the list of measurements
of F(x), while the list of measurements of G(y) is the list of the ranks and exam of the faulty statements using
�����ℎ�������� in all faulty versions of the program. The other test utilizes the ranks of the faulty statements
using �����ℎ������� in all faulty versions of a program as the list of measurements of F(x), while the list of
measurements of G(y) is the list of the ranks and exam of the faulty statements using �����ℎ������� in all faulty
versions of the program. For each of the above comparison, we further adopt the nonparametric Vargha-Delaney
A-test to evaluate the magnitude of their diference by measuring efect size.

Table 9. Statistical results of the comparison between UNITE and the original representation using �����ℎ�� and �����ℎ�� .

Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test

�����ℎ�������

vs
�����ℎ�������

gzip 0.014 0.939 0.001 BETTER 0.81
libtif 0.016 0.921 0.007 BETTER 0.78
python 0.007 0.965 0.001 BETTER 0.82
space 0.012 0.914 0.003 BETTER 0.76

nanoxml_v1 0.011 0.951 0.007 BETTER 0.77
nanoxml_v2 0.012 0.916 0.008 BETTER 0.76
nanoxml_v3 0.011 0.903 0.009 BETTER 0.78
nanoxml_v5 0.010 0.925 0.008 BETTER 0.76

spoon 0.004 0.985 0.003 BETTER 0.85
dubbo 0.011 0.924 0.008 BETTER 0.78

jackson-databind 0.018 0.892 0.026 BETTER 0.76
oak 0.017 0.914 0.002 BETTER 0.74

debezium 0.008 0.970 0.003 BETTER 0.82
byte-buddy 0.012 0.893 0.022 BETTER 0.77

AutomatedCar 0.016 0.907 0.012 BETTER 0.76
cash-count 0.017 0.879 0.029 BETTER 0.76

Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test

�����ℎ�������

vs
�����ℎ��������

gzip 0.012 0.953 0.007 BETTER 0.74
libtif 0.033 0.865 0.037 BETTER 0.71
python 0.018 0.906 0.009 BETTER 0.76
space 0.029 0.899 0.038 BETTER 0.72

nanoxml_v1 0.025 0.883 0.046 BETTER 0.72
nanoxml_v2 0.025 0.894 0.041 BETTER 0.74
nanoxml_v3 0.023 0.917 0.024 BETTER 0.74
nanoxml_v5 0.020 0.953 0.006 BETTER 0.76

spoon 0.012 0.957 0.007 BETTER 0.77
dubbo 0.033 0.889 0.038 BETTER 0.72

jackson-databind 0.036 0.846 0.037 BETTER 0.71
oak 0.016 0.908 0.007 BETTER 0.76

debezium 0.018 0.917 0.014 BETTER 0.75
byte-buddy 0.037 0.802 0.043 BETTER 0.71

AutomatedCar 0.028 0.835 0.038 BETTER 0.72
cash-count 0.034 0.849 0.045 BETTER 0.71

Table 9 shows the statistical results of the comparison between UNITE and original trace representation
using failing and passing cumulative weights, respectively. As shown in Table 9, the values of the ranks of the
faulty statements using �����ℎ������� and �����ℎ������� are signiicantly smaller than �����ℎ�������� and
�����ℎ������� , respectively, yielding BETTER results and łlargež efect sizes in all programs.

Summary for RQ3 In RQ3, we explore the reason of why UNITE performs better than original FL techniques. The

results show that the reason of UNITE outperforms the original trace representation may lie in that UNITE will

always assign the faulty statements with a high �����ℎ�� and a low �����ℎ�� .
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Table 10. The statistical results of the 12 FL approaches on Defects4J using UNITE vs without using UNITE.

Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test

UNITE
vs

original
representation

ER5 0.017 0.914 0.017 BETTER 0.78
GP02 0.019 0.895 0.038 BETTER 0.76
GP03 0.022 0.879 0.014 BETTER 0.74
Dstar 0.010 0.913 0.013 BETTER 0.75
ER1’ 0.013 0.902 0.012 BETTER 0.76
GP19 0.012 0.914 0.018 BETTER 0.77
Ochiai 0.013 0.927 0.010 BETTER 0.76
MLP-FL 0.016 0.925 0.014 BETTER 0.75
CNN-FL 0.012 0.894 0.026 BETTER 0.77

BiLSTM-FL 0.009 0.966 0.008 BETTER 0.82
ProFL 0.025 0.843 0.046 BETTER 0.74

DeepRL4FL 0.027 0.834 0.047 BETTER 0.72

5 DISCUSSION

5.1 Benchmark Over-fiting Efect on UNITE

Does benchmark over-iting efect impact UNITE? Recent work [10] shows that the widely-used benchmark
Defects4J (i.e., chart, math, lang and time in the Table 2) is over-itting for SFL including the seven state-of-the-art
FL baselines (i.e., ER5, GP02, GP03, Dstar, ER1’, GP19 and Ochiai) used by our experiments. In other words, SFL
shows inconsistencies between the benchmark Defects4J and other benchmarks in terms of FL efectiveness. For
example, 34.8% and 47.8% of bugs in Defects4J are localized at top 10 using Ochiai and Dstar while only a few
bugs in other benchmarks can be localized even in top 100 [10, 71]. It is interesting to see whether UNITE still
efectively works under the efect of benchmark over-itting.
We apply UNITE to the 12 FL techniques on Defects4J, and compare their FL efectiveness. Speciically, we

perform 12 paired Wilcoxon-Signed-Rank tests by using the ranks and exam of the faulty statements as the
pairs of measurements F(x) (i.e., UNITE) and G(y) (i.e., each of 12 original FL baselines). Each test uses left-tailed
p-value checking at the � level of 0.05.

Table 10 shows the statistical results on this relationship. As shown in Table 10, the p-values are all less than
0.05 and the A-test values are all greater than 0.71. It means that the ranks of the faulty statements of all the 12
FL approaches using UNITE are signiicantly smaller than those of all the original FL approaches on Defects4J,
yielding BETTER results and łlargež efect sizes in all scenarios. Thus, UNITE can still efectively work under the
efect of benchmark over-itting.
Does the reason of a high �������� and a low �������� still work for UNITE under the benchmark over-

iting efect? In RQ3, the results show that the reason of UNITE outperforms the original trace representation
may lie in that UNITE will always assign the faulty statements with a high �����ℎ�� and a low �����ℎ�� . This
reason may still work for explaining that the efect of benchmark over-itting does not impact UNITE. Thus, we
also conduct two pairedWilcoxon-Signed-Rank tests with a Bonferroni correction on Defects4J by using left-tailed
p-value checking at the � level of 0.05. One test adopts the ranks of the faulty statements using �����ℎ�������

in all faulty versions of Defects4J as the list of measurements of F(x), while the list of measurements of G(y) is
the list of the ranks of the faulty statements using �����ℎ�������� in all faulty versions of Defects4J. The other
test utilizes the ranks of the faulty statements using �����ℎ������� in all faulty versions of Defects4J as the list
of measurements of F(x), while the list of measurements of G(y) is the list of the ranks of the faulty statements
using �����ℎ������� in all faulty versions of Defects4J.

Table 11 shows the statistical results of the comparison between UNITE and original trace representation using
�����ℎ�� and �����ℎ�� on Defects4J, respectively. As shown in Table 11, the p-values are all less than 0.05 and
the A-test values are all greater than 0.71, yielding BETTER results and łlargež efect sizes in all programs of
Defects4J. Thus, under the efect of benchmark over-itting, UNITE will still always assign the faulty statements
with a high �����ℎ�� and a low �����ℎ�� .
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Table 11. Statistical results of the comparison between UNITE and the original representation using �����ℎ�� and �����ℎ��

on Defects4J.

Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test

�����ℎ�������

vs
�����ℎ��������

chart 0.012 0.906 0.009 BETTER 0.79
�����ℎ�������

vs
�����ℎ��������

chart 0.024 0.879 0.034 BETTER 0.74
math 0.010 0.916 0.008 BETTER 0.79 math 0.022 0.898 0.014 BETTER 0.76
lang 0.008 0.946 0.003 BETTER 0.78 lang 0.011 0.967 0.009 BETTER 0.81
time 0.011 0.906 0.009 BETTER 0.78 time 0.008 0.963 0.006 BETTER 0.78

Table 12. Average time cost of using UNITE and without using UNITE.

Comparison ER5(UNITE)/ER5 GP02(UNITE)/GP02 GP03(UNITE)/GP03 Dstar(UNITE)/Dstar
Time Cost 35.7s/4.7s 31.8s/4.2s 41.2s/5.3s 32.3s/4.4s
Comparison ER1’(UNITE)/ER1’ GP19(UNITE)/GP19 Ochiai(UNITE)/Ochiai MLP-FL(UNITE)/MLP-FL
Time Cost 44.7s/5.9s 45.3s/6.2s 36.1s/4.9s 3.5h/2.1h
Comparison CNN-FL(UNITE)/CNN-FL BiLSTM-FL(UNITE)/BiLSTM-FL ProFL(UNITE)/PRoFL DeepRL4FL(UNITE)/DeepRL4FL
Time Cost 5.9h/4.1h 18.7h/11.3h 3.6h/2.3h 6.2h/4.6h

5.2 Eficiency of UNITE

Due to the use of both global and local contexts with inluential semantics, it is necessary to evaluate the eiciency
of UNITE. Table 12 shows the average time cost of 12 baselines using and without using UNITE, where s and h
denote seconds and hours respectively. As shown in Table 12, for the seven baselines (i.e., ER5, GP02, GP03, Dstar,
ER1’, GP19 and Ochiai), even if the time cost changes from several seconds into dozens of seconds after using
UNITE, the time cost is still low. For the other baselines (i.e., MLP-FL, CNN-FL, BiLSTM-FL, ProFL, DeepFL4FL),
the time costs of using UNITE and without using UNITE are within the same order of magnitude. Thus, the time
cost of UNITE is acceptable in comparison to the original baselines.

5.3 Application of UNITE in Automated Program Repair

Automated program repair (APR) [19] is a concrete software engineering task by automatically repairing programs.
APR usually consists of three phases: fault localization, patch generation and patch validation. Being the irst
step, fault localization provides a suspicious rank list of statements for APR. Speciically, the APR techniques
generate patches in the suspicious rank list from top to down and many APR techniques [12, 27, 62] set clear time
limitation. It means that, after using UNITE, the improvement of Top-N and MFR metrics could help the APR
techniques, since the APR techniques relay on the suspicious rank list and have limited time for each bug during
the repair. Thus, we adopt the concrete software engineering task(i.e., APR) to illustrate meaningful improvement
of our approach.

We use two typical APR techniques (i.e., Nopol [62] and Tbar [27]) and apply UNITE to their fault localization
modules (i.e., Ochiai [35]). We adopt Defects4J, widely used by the existing APR studies including Nopol [62]
and Tbar [27], to conduct the comparison. We further exclude those faulty versions which the slicing tools
cannot slice, and apply Nopol and Tbar to these faulty versions, where Nopol generated plausible patches for the
programs of chart, lang and math and Tbar produced plausible patches for the programs of chart, lang, math
and time. Thus, we perform 100 repeated repairs for each of those faulty versions which are inally ixed by
Nopol [62] or Tbar [27].
To evaluate the efect of UNITE on APR eiciency, we adopt two widely used metrics (i.e., repair time and

NPC) [27, 62]. We show diferent parts of repair time in seconds: fault localization time (i.e., the time cost of fault
localization), patch acquisition time (i.e., the time cost of patch generation and validation), total time (i.e., the
time cost of the whole APR process including fault localization time and patch acquisition time). NPC denotes
the number of patch candidates generated by an APR technique until the irst plausible patch is found. Table 13
shows the eiciency distribution of APR techniques with and without using UNITE. As shown in Table 13, for
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Table 13. Eficiency distribution of repair time and NPC among the original APR techniques and the ones using UNITE.

Comparison Fault Localization Time (s) Patch Acquisition Time (s) Total Time (s) NPC

Nopol
chart 13.15 5.69 19.84 1
lang 15.38 29.30 44.68 1
math 69.84 293.45 363.29 1

Nopol(UNITE)
chart 47.37 3.25 50.62 1
lang 52.64 18.67 71.31 1
math 121.43 238.91 360.34 1

TBar

chart 15.79 783.75 799.54 587.25
lang 16.54 848.49 865.03 714.75
math 86.81 798.09 884.90 79.60
time 12.08 7244.91 7256.99 6812.63

Tbar(UNITE)

chart 56.23 542.61 598.84 327.39
lang 57.19 585.83 643.02 485.92
math 142.25 505.78 648.03 61.37
time 47.85 4473.38 4521.23 2341.25

repair time, although our approach increases fault localization time, the patch acquisition time decreases and the
total time decreases except for two programs using Nopol; for NPC, our approach reduces the NPC in Tbar and
keeps the same NPC in Nopol. These results show that UNITE can improve the APR eiciency.

Table 14. Efectiveness distribution of plausibly fixed bugs among the original APR techniques and the ones using UNITE.

Comparison Fixed Bugs

Nopol
chart 5,9,13,17
lang 44,51,58
math 40

Nopol(UNITE)
chart 5,9,13,17
lang 44,51,58
math 40,50

TBar

chart 1,4,7,8,9,11,12,13,14,15,19,20,24,25
lang 7,10,22,33,39,43,44,45,47,51,58,59,63
math 2,3,4,5,6,8,11,15,22,28,30,32,33,34,35,49,50,57,58,59,60,62,63,65,70,73,75,77,79,80,82,85,89,95,96,98
time 7,11,17

Tbar(UNITE)

chart 1,4,7,8,9,11,12,13,14,15,19,20,24,25,26
lang 7,10,22,33,39,43,44,45,47,51,58,59,63, 13, 18, 27
math 2,3,4,5,6,8,11,15,22,28,30,32,33,34,35,49,50,57,58,59,60,62,63,65,70,73,75,77,79,80,82,85,89,95,96,98,52,88,94
time 7,11,17,2,19

To evaluate the efect of UNITE on the APR efectiveness, we adopt the widely used metric, i.e., the number
of plausibly ixed bugs generated by an APR technique [27, 62]. Table 14 shows the speciic ixed bugs of the
original APR techniques and the ones using UNITE. As shown in Table 14, after applying UNITE, for Nopol, it
has plausibly ixed one more bug (i.e., math_50); for Tbar, it has plausibly ixed nine more bugs (i.e., chart_26,
lang_13, lang_18, lang_27, math_52, math_88, math_94, time_2 and time_19). Thus, UNITE can improves the
APR efectiveness.

5.4 An Example of ualitative Analysis for UNITE

To show whether the diference is meaningful after applying UNITE, we demonstrate a qualitative example to
show the detailed information of 12 FL approaches locating the faults. Speciically, we use the faulty version two
of the program nanoxml_v2 whose faulty statement is the line 309 as the qualitative example, showing the faulty
program with call relationship and the locations where the 12 FL approaches locate the faults.
Table 15 summarized the detailed results of 12 FL approaches with and without UNITE, where the column

‘Ranking List’ is the ranking list of the statements in descending order of suspiciousness until inding the faulty
statement and the column ’Rank’ denotes the rank of faulty statement in the ranking list. As shown in Table 15,
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Table 15. Detailed FL results of the qualitative example.

Comparison Ranking list Rank

ER5
52 58 64 96 97 98 99 100 101 125 126 147 148 191 192 218 220 221 239 240 243 245 246 253 256 263 277 279 285 286

40
289 290 292 331 333 344 345 348 349 390

ER5(UNITE) 344 390 2
GP02 348 349 344 345 390 5

GP02(UNITE) 344 390 2
GP03 348 349 344 345 390 5

GP03(UNITE) 344 390 2
Dstar 348 349 344 345 390 5

Dstar(UNITE) 344 390 2
ER1’ 348 349 344 345 390 5

ER1’(UNITE) 344 390 2

GP19
52 58 64 96 97 98 99 100 101 125 126 147 148 191 192 239 240 243 277 279 453 455 456 457 459 464 467 473 475 292

58
484 485 489 491 505 507 256 590 592 594 348 349 245 246 479 480 481 600 602 605 606 289 290 476 522 344 345 390

GP19(UNITE) 344 390 2
Ochiai 348 349 344 345 390 5

Ochiai(UNITE) 344 390 2
MLP-FL 125 126 191 218 220 221 239 240 453 455 456 457 459 243 344 345 390 17

MLP-FL(UNITE) 218 220 239 240 243 344 390 7
CNN-FL 239 240 243 277 279 344 345 390 8

CNN-FL(UNITE) 243 277 279 344 390 5

BiLSTM-FL
52 64 58 220 239 246 253 240 221 147 148 169 158 202 243 245 256 277 278 279 281 304 305 307 308 312 313 316 289

37
286 285 290 291 292 344 345 390

BiLSTM-FL(UNITE) 239 240 243 245 277 279 285 344 390 9
ProFL 348 349 344 345 390 5

ProFL(UNITE) 344 390 2
DeepRL4FL 243 245 246 344 345 390 6

DeepRL4FL(UNITE) 243 245 344 390 4

after applying UNITE, the length of the ranking list decreases and the rank of the faulty statement increases,
showing UNITE is more efective.
Although Table 15 shows the ranking list, we cannot visually see the locations of the ranking list and call

relationship in the faulty program. Thus, Fig 7 shows visual FL results of the 12 FL approaches with and without
UNITE. In Fig 7, for each of the 12 FL approaches, we use the same symbol (i.e., a colored rectangle with a solid
or dotted line) to mark the locations (i.e., the statements) of the ranking list (i.e., the one in Table 15) in the faulty
program. In addition, when there is a call between diferent functions, we use an arrow with a solid line to denote
the call action. As a reminder, for those FL approaches with the same ranking list, we use the symbol to represent
their ranking list, e.g., GP02, GP02, ER1’, Dstar, Ochiai, ProFL. Taking ER5 as an example, Table 15 shows that
its ranking list has 40 statements, meaning that the faulty statement is ranked 40th. Therefore, in Fig 7, the 40
statements are marked with the same yellow and solid line rectangle, showing the distribution of the locations of
the ranking list in the program via using ER5. As shown in Fig 7, after applying UNITE, we can visually see that
the searching scope of locating the fault is signiicantly reduced.
Thus, based on the FL results of the qualitative example, we can safely conclude that UNITE signiicantly

improves FL efectiveness. For enabling the qualitative analysis on other programs, we include the complete
information about UNITE, faulty locations and the subject programs in the online package11.

5.5 Threats to Validity

Threats to internal validity. Threats to internal validity relate to potential errors in our implementation.
First, one potential threat to validity is the potential errors in the implementation of UNITE and 12 baselines.
To mitigate the threat, for eight SFL techniques, we implement them based on the widely used SFL source code

11https://github.com/oy-sarah/UNITE/tree/master/subjectPorgrams.
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Faulty line

ER5 GP19 GP02, GP03, ER1', Dstar, Ochiai, ProFL CNN-FL MLP-FL BiLSTM-FL DeepRL4FL

ER5(UNITE),GP19(UNITE),GP02(UNITE), GP03(UNITE), ER1'(UNITE), Dstar(UNITE), Ochiai(UNITE), ProFL(UNITE)

CNN-FL(UNITE) MLP-FL(UNITE)

BiLSTM-FL(UNITE) DeepRL4FL(UNITE)

Fig. 7. Visual FL results of the qualitative example.

GZoltar 12; for four DLFL techniques, we use and enhance the source code from the previous studies to implement
them on source code [65, 66]. We also double-checked the implementation and fully tested our code, but there
could be errors that we did not notice.
Threats to external validity. Threats to external validity relate to generalizability of our results. We use FL
techniques using neural networks (i.e.,MLP-FL, CNN-FL, BiLSTM-FL and DeepRL4FL), whose outputs are not
stable, meaning that the localization results are not the same through diferent training times. That drawback is

12https://gzoltar.com/
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caused by characteristic of deep learning technology. To make the results more reliable, we follow the convention
strategy by repeating the experiments ten times and using the average score as the experimental results.
Another threat to external validity is the subject programs used for our experiments. Our subject programs

are commonly used in the ield of software debugging, which are all from the real-life development. However,
the experimental results may not apply to all programs because there are still many unknown and complicated
factors in realistic debugging that could afect the experiment results. For example, in our approach, a speciic
failing test case is needed for the obtain of an inluential slice to exclude irrelevant statements for a smaller
inspecting scope. However, such a choice strategy is suitable for single-fault scenarios since the chosen failing test
case can only reveal its own root cause. Consequently, if there are more than one fault contained in a program,
the remaining faults will be ignored, i.e., our approach can be afected by multiple-faults scenarios. Speciically,
for multiple faults, we have two typical problems. The one is that dynamic information is partially related to
multiple faults, i.e., a failing test case only executes part of all the faulty statements of multiple faults. Dynamic
FL approaches including UNITE cannot obtain the dynamic information of unexecuted faulty statements, and
thus it is diicult for dynamic approaches to be efective at locating those faulty statements not executed by the
failing test case. The other one is that multiple faults have complicated efect (e.g., fault interference and coupling
efect [6, 8, 63]), which is still diicult to be accurately analyzed. Dynamic slicing used by our approach UNITE
also sufer from this problem, and may miss part of all the faulty statements of multiple faults. Consequently,
UNITE is inefective at locating those faulty statements of multiple faults missed by dynamic slicing. To alleviate
the problem, we may leverage clustering technology (e.g., [14]) to alleviate the efect by transforming the context
of multiple faults into that of single faults. Thus, it is worthwhile to incrementally extend our study to more
applications (e.g., multiple-faults programs) to seek additional insights.
Threats to construct validity. Threats to construct validity relate to the suitability of our evaluation. We
adopt the widely used metrics (i.e., TopN, MAR, MFR and RImp) to evaluate UNITE. According to the extensive
use of the measurements, the threat is acceptably mitigated.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose UNITE: an inlUential coNtext-GuIded Trace rEpresentation, to represent the trace
from both global and local contexts with inluential semantics for efective FL. UNITE embodies two key ideas:
(1) not only local context but also global context is useful for FL trace representation. (2) program dependencies
are potential for upgrading ‘occurrence’ semantics. To implement the two key ideas UNITE uses the widely-used
weighting capability of information retrieval to combine global and local contexts, and further leverages program
slicing to incorporate inluence semantics into the trace representation through program dependencies. We apply
UNITE to 12 state-of-the-art FL techniques and conduct large-scale experiments on 20 benchmark programs. The
results show that UNITE signiicantly improves 12 FL techniques, e.g., the average relative improvement for the
most important Top-N metric [17], i.e., Top-1, Top-3, Top-5 and Top-10, achieves 35.58%, 119.90%, 47.43% and
50.66%, respectively.
In the future, we plan to design sophisticated weighting functions for a further optimization on global and

local contexts. We also plan to compose inluence semantics with other solutions proposed in the literature to
improve FL efectiveness (e.g., feature selection).
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