
DeepScaling: Microservices AutoScaling for Stable
CPU Utilization in Large Scale Cloud Systems
Ziliang Wang

Chongqing University
Ant Group

Chongqing, China
wangziliang@cqu.edu.cn

Shiyi Zhu
Ant Group

Hangzhou, China
zhushiyi.zsy@antgroup.com

Jianguo Li∗
Ant Group

Hangzhou, China
lijg.zero@antgroup.com

Wei Jiang
Ant Group

Hangzhou, China
shouzhi.jw@antgroup.com

K. K. Ramakrishnan
University of California, Riverside

Riverside, CA, USA
kk@cs.ucr.edu

Yangfei Zheng
Ant Group

Hangzhou, China
yangfei.zyf@antgroup.com

Meng Yan
Chongqing University
Chongqing, China
mengy@cqu.edu.cn

Xiaohong Zhang∗
Chongqing University
Chongqing, China
xhongz@cqu.edu.cn

Alex X. Liu
Ant Group

Hangzhou, China
alexliu@antgroup.com

ABSTRACT
Cloud service providers conservatively provision excessive
resources to ensure service level objectives (SLOs) are met.
They often set lower CPU utilization targets to ensure ser-
vice quality is not degraded, even when the workload varies
significantly. Not only does this potentially waste resources,
but it can also consume excessive power in large-scale cloud
deployments. This paper aims to minimize resource costs
while ensuring SLO requirements are met in a dynamically
varying, large-scale production microservice environment.
We propose DeepScaling, which introduces three innova-
tive components to adaptively refine the target CPU uti-
lization to a level that is maintained at a stable value to
meet SLO constraints while using minimum resources. First,
DeepScaling forecasts the workload for each service using a
Spatio-temporal Graph Neural Network. Second, DeepScal-
ing estimates the CPU utilization by mapping the workload
intensity to an estimated CPU utilization with a Deep Neural
Network, while taking into account multiple factors in the
cloud environment (e.g., periodic tasks and traffic). Third,
DeepScaling generates an autoscaling policy for each ser-
vice based on an improved Deep Q Network (DQN). The
adaptive autoscaling policy updates the target CPU utiliza-
tion to be a maximum, stable value, while ensuring SLOs is
not violated. We compare DeepScaling with state-of-the-art
autoscaling approaches in the large-scale production cloud
environment of the Ant Group. It shows that DeepScaling
outperforms other approaches both in terms of maintain-
ing stable service performance, and saving resources, by a
∗Corresponding author.

significant margin. The deployment of DeepScaling in Ant
Group’s real production environment with 135 microservices
saves the provisioning of over 30,000 CPU cores per day,
on average.

1 INTRODUCTION
Large scale cloud systems that provide a range of services
(such as latency-sensitive payment services) have signifi-
cant challenges in balancing a number of concerns: ensur-
ing user quality of experience with a timely, responsive ser-
vice [36], ensuring appropriately provisioned resources with-
out significant over-provisioning (thus avoiding resource
wastage) [24, 37], and adapting to continual, yet potentially
significant variations in workloads. Several studies have
shown that servers with chronically low CPU utilization
waste power resources [33, 46, 47]. By reducing resources
for low-load services, re-allocating those saved servers to
high-load services can effectively improve the performance
of those high-load services. Alternatively, we can temporar-
ily shut servers down to save a large amount of power. To
this end, cloud service providers seek to utilize an automatic
scaling system to make the CPU utilization of the systems
being provisioned to the desired target level and ensure their
services’ Service Level Objectives (SLOs) are met.

Prior work on cloud autoscaling can be categorized as rule-
based schemes [5, 6, 17] or learning-based schemes [7, 21, 30,
34, 36, 37]. Rule-based autoscaling schemes use static upper
and lower thresholds for certain system performance metrics
(such as CPU and memory utilization) or application metrics
(such as request arrival rate) so that resources can be scaled

16

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
SoCC '22, November 7–11, 2022, San Francisco, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9414-7/22/11…$15.00
https://doi.org/10.1145/3542929.3563469

SoCC ’22, November 7–11, 2022, San Francisco,CA Ziliang Wang, et al

up when the metrics go above an upper threshold and scaled
down when the metrics go below a lower threshold. The
key limitation of rule-based autoscaling schemes is that they
require significant domain knowledge from experts to set
thresholds appropriately. Further, setting thresholds for each
microservice could be labor-intensive as there are more than
thousands of microservices for large-scale industrial sys-
tems. As different microservices may use a different amount
of resources (such as CPU and memory), the autoscaling
thresholds have to be set differently. Learning-based autoscal-
ing schemes can effectively reduce the load on humans, but
current researches rarely consider resource wastage (due to
service workload variations) and SLO assurances together
[36]. Production cloud environments observe considerable
diurnal variation in their workloads. The online payment
system of Ant Group requires tens of thousands of containers
to meet peak demand during certain periods of the day while
requiring a few thousand containers during the rest of the
day. The required number of containers can be even lower
in the late evening. Administrators tend to over-provision
service resources to meet SLOs during peak demand, lead-
ing to a chronic state of low utilization of various resources
(CPU/memory) most of the time.

Our paper addresses the above problems with DeepScal-
ing, an autoscaling framework for microservices. It seeks to
adapt to the workload by estimating resource requirements
at a fine granularity and maintaining resource utilizations
consistently at a target level to meet SLOs while reducing
over-provisioning. DeepScaling consists of two basic mon-
itors (a service monitor and an SLO monitor) and a target
utilization level controller, along with three innovative
components: a workload forecaster, a CPU utilization esti-
mator, and a scaling decision-maker.
DeepScaling proposes a new autoscaling goal aimed at

maximizing and maintaining resource utilization at a stable
value while meeting SLO assurances, starting from an initial
coarse target level. The initial coarse target is set empirically
based on historical usage data. DeepScaling then adaptively
refines the target level to increase the utilization of resources
until the SLO is just violated. This is performed in a tight
control loop, with an SLO monitor and target level controller
for each service. DeepScaling generates autoscaling poli-
cies with the aforementioned three innovative components.
Therefore, DeepScaling achieves its goal of each service run-
ning at a stable resource utilization around the refined target
level, even when the workload for the service varies greatly.

There are three major challenges for autoscaling to main-
tain CPU utilization around a stable target level. First, it is
challenging to forecast the workload of different services ac-
curately. Many existing works only consider simpler regres-
sion techniques to forecast the workload [1, 22]. However, a
cloud-native microservice architecture introduces complex

interactions, including those between microservices, which
existing works do not effectively capture. Such interactions
impact how accurately we can forecast workloads. To address
this issue, we propose to use Spatio-temporal graph neural
networks (STGNN) for workload forecasting, modeling the
interactions with the service call-graph and the inherited
multi-variant relationships among the workload metrics (in-
cluding the representation of multiple RPCworkloads as well
as other workloads). By capturing such relationships, our
workload forecasting is much more accurate in providing
additional time for the pod to be initiated proactively while
scaling-up resources.
Second, it is challenging to accurately characterize a ser-

vice’s workload so that it can reflect CPU utilization properly.
Forecasting the CPU utilization for a microservice directly
based on its historical CPU data results in significant fore-
casting errors (usually ≥ 30% in our trials) due to the fact
that it is difficult to handle the high variability of the instan-
taneous CPU utilization when multiplexing several services
together, as well as the influence of background tasks on
a server. Existing autoscaling approaches typically use the
number of remote procedure calls (RPCs) to characterize
service workload and establish the mapping from RPC to
CPU utilization [16, 18, 39, 40]. However, characterizing only
the RPCs is insufficient, since different requests invoke dif-
ferent aspects of the service to execute tasks. Some services
are compute-dominant while others are I/O-dominant. To
address this issue, we collected multi-dimensional workload
metrics for each service, including RPC requests, file I/O, DB
access, message requests, HTTP requests, as well as specific
auxiliary features (instance count, service ID, timestamp)
to comprehensively characterize the service’s workload for
accurate estimation of the CPU utilization. We design a deep
probabilistic network based model as the CPU utilization
estimator, to accurately estimate CPU consumption even
under special conditions, such as with periodic tasks and
internal system events.

Third, it is challenging to decide on the precise resources
required for each service based on the estimated CPU utiliza-
tion, which of course is the ultimate goal of autoscaling. The
relationship between the required service pods and CPU uti-
lization is usually complex and non-linear, especially when
the service resources are at critical utilization levels. To ad-
dress this issue, we propose an improved DQN model with a
dedicated loss function based on the target level, enabling
us to find the optimal resource requirement quickly. As each
service is associated with a unique ID in the DQN, this allows
modeling multiple services with a single shared model.
As can be seen, DeepScaling uses a three-step approach,

which consists of a DQN model to predict the required re-
sources quickly, an STGNN model for workload forecasting

17

DeepScaling: Microservices AutoScaling for Stable CPU Utilization SoCC ’22, November 7–11, 2022, San Francisco,CA

and the DNN algorithm for accurate CPU utilization esti-
mation. This not only helps in proactively provisioning re-
sources to accommodate the delays involved for the actual
task of instantiating the required pods, but also helps us
overcome the challenges of providing a single, truly com-
prehensive end-to-end (E2E) solution since there are not
enough samples we can obtain of SLO violations to build
such a single E2E model.
Our work is performed in the context of a large-scale

production cloud service system from the Ant Group. The
system consists of 3000+ microservices running on over 1
million virtual containers, while the workload typically ex-
ceeds 1 million user access requests per minute. The Ant
payment service requires 7×24 availability, and the SLO in
terms of the success rate for accesses every second is re-
quired to be higher than 99.9995%. We primarily focus on
autoscaling to ensure that this large-scale system meets its
stringent SLOs. In addition to the challenge of large-scale and
stringent SLOs, different microservices are heterogeneous
with significantly different workload intensities (request rate
per second). Finally, even the same microservice is observed
to have large variability in the workload during each day, as
well as have seasonal variations.

Our work makes the following major contributions:
• We propose DeepScaling, a deep neural network based
framework for autoscaling of large-scale cloud systems.
DeepScaling achieves maximum resource savings by main-
taining CPU utilization at a stable target without loss in
the quality of service.

• We propose a spatio-temporal graph neural network that
forecasts the workload for each service accurately by learn-
ing the relationship between different workload metrics as
well as among services, with the use of service call-graphs.

• We propose a deep neural network as the CPU utilization
estimator for different services, and a reinforcement learn-
ing model for generating the autoscaling policy. Thus, the
two models generate the optimal autoscaling policy for
services with different workloads, by collaboratively com-
puting the metrics of multi-dimensional workloads and
specific auxiliary features.

• We conducted extensive experiments on the production
cloud service, demonstrating the significantly improved
performance of DeepScaling. The production system sup-
ports the world-leading online payment services from Ant
Group. DeepScaling improves the time we operate at a sta-
ble CPU utilization by 24.6% per day, and saves 14.0% more
resources compared to the state-of-the-art autoscaling ap-
proach. This further confirms the practical applicability
and scalability of DeepScaling. A deployment of DeepScal-
ing on 135 production microservices at the Ant Group for
over six months showed that it saves the provisioning of

over 30,000 CPU cores per day on average (measured in
CPU core hours, 30K * 24 CPU core hours are saved each
day), compared to not using DeepScaling.

2 BACKGROUND AND RELATEDWORK
Many studies confirm low utilization in cloud systems that
are observed when service resources are manually or rule-
based provisioning. Sun et al. [42] analyze the usage of a
YARN cluster at Alibaba, and report that resource utilization
is less than 55% about 80% of the time. Lu et al. [27] analyzes
an Alibaba trace, showing that for most instances, the peak
resource utilization is 80% or less. Autoscaling microservices
for cloud systems has been studied extensively in the past
few years. There are several surveys [9, 12, 19, 26]. Our work,
similar to a number of other works, focuses on cluster-level
resource management with horizontal pod autoscaling (HPA)
for deployed applications. As noted earlier, existing autoscal-
ing efforts can be classified broadly into rule-based versus
learning-based approaches.
Rule-basedAutoscalingApproaches.Most traditional auto-
scaling approaches are rule-based reactive approaches [5,
6, 17], which scale the service resources based on specific
events. For these approaches, the key goal is to find a proper
threshold value that triggers the scaling mechanism, such as
a fixed CPU utilization threshold or an average response time
(RT). The rule-based autoscaling approach requires empirical
experience, which is difficult to scale.
Learning-Based Autoscaling Approaches. Many exist-
ing learning-based autoscaling approaches [1, 14, 25, 28, 34–
37, 45] focus on avoiding service anomalies. Abnormal states
include service response time (RT) exceeding a threshold, the
CPU utilization being too high, or having too many out-of-
memory events [15, 20, 37]. There are two typical anomaly-
state driven autoscaling schemes: FIRM [36] and Autopilot
[37]. FIRM uses machine learning techniques to detect ser-
vice performance anomalies (e.g., the RT of a microservice
is abnormally long) so that when such anomalies do happen,
we can scale up by adding more pods or computing resources
in general. The key limitation of FIRM is that autoscaling
occurs only after performance anomalies happen. This has
the potential to have the service anomaly lasting for an ex-
tended period of time. Autoscaling at a large-scale may take
minutes for cold start of pods, and at least a few seconds
for warm starts. Another limitation of FIRM is that it does
not provide a policy to scale down when more resources are
allocated to a microservice than necessary. Autopilot takes
the time-series of the CPU utilization of a microservice as
input, uses a simple heuristic mechanism to output the target
CPU utilization, and then uses this target CPU utilization to
calculate the number of pods required as a linear function.
Pods are added or reduced, with the goal of minimizing the

18

SoCC ’22, November 7–11, 2022, San Francisco,CA Ziliang Wang, et al

risk that a microservice suffers from anomalies. Based on
our implementation and experiments with Autopilot, despite
its simplicity, Autopilot still suffers from relatively poor sys-
tem stability because the estimation of the number of pod
required is frequently inaccurate. This is due to two facts:
(1) the relationship between CPU utilization and computing
resources is usually non-linear, while Autopilot stays with
linear assumption; (2) the relationship differs for different
microservices due to the different demands they have for
computing and I/O resources.
In addition, a large number of workload driven autoscal-

ing approaches have been proposed. For example, Abdul-
lah [1] uses regression trees to model the relationship be-
tween the number of pods and RT, and then generates the
recommended number of pods to avoid the overtime of ser-
vice RT. GRAF [34] leverages the current state of the work-
load, microservices trace data for modeling microservices,
and their invocation structure using graph neural networks
(GNN). GRAF focuses on predicting the tail latency. It seeks
to proactively optimize the total CPU resources available for
each microservice while satisfying the latency SLO. These ap-
proaches usually do not take the distribution of the transition
states (of RT) into account, which are far from precisely mod-
eling. The CPU utilization has different properties with RT. It
will change along with the change of the service’s workload.
Therefore, a simple idea is to establish a performance model
to characterize the service CPU utilization or memory uti-
lization changes [14, 16, 23, 38, 41, 45]. For instance, Jiang et
al. [11] proposed benchmarking the individual performance
profile of each pod instance and forecasting the workload.
Gevros et al. [14] proposed an efficient discrete-time model
based on a weighted max-min fair resource allocations for
each single resource, shared among a number of users with
a heterogeneous Additive Increase Multiplicative Decrease
(AIMD) controller. Yu et al. [45] proposed an approach to
automatically identify the services that need scaling and
scale them to meet the service level agreement (SLA), with
an optimal cost for the system. However, we observe that
these methods emphasize maintaining the SLO first, without
significant savings of service resources.
DeepScaling is inspired by the learning-based autoscal-

ing approach proposed in [1] and [35]. The main difference
between DeepScaling and these approaches are two folds.
First, DeepScaling introduces multiple metrics for accurate
workload characterization instead of just the RPC metric
as in [1, 35]. Second and importantly, DeepScaling aims to
maintain the SLO and stabilize the CPU utilization for each
service close to a maximum utilization target.

Figure 1: System architecture of DeepScaling.

3 DEEPSCALING OVERVIEW
Both our experimental and deployed cloud environments
use virtualization for hosting and managing services [2]. We
conduct experiments on a system in which each CPU server
supports multiple virtual containers or pods, with each pod
supporting one microservice. The workflow of DeepScaling
is illustrated in Figure 1 and Algorithm 1.

3.1 Modules of DeepScaling
In this section, we describe the overall system architecture
of DeepScaling and its core modules. As shown in Figure 1,
DeepScaling uses the following modules.

Load Balancer: The Load Balancer for each service en-
forces a policy to equitably distribute requests to the pods
provisioned for the corresponding service. A service is de-
ployed and auto-scaled in the same data center zone, which
generally has the same hardware configuration. The Load
Balancer1 distributes requests so that each instance of a ser-
vice, and thus each pod of a service, carries approximately
the same workload and has the same CPU utilization.

Service Monitor: The Service Monitor focuses on collect-
ing metrics for all services in real time, including seven work-
load metrics (§ 4), CPU utilization, information on achieving
SLOs, and instance counts. The collected data are aggre-
gated to a minute granularity. All workload metrics data are
summed, and the CPU utilization data is averaged across all
the instances of each service.

Workload Forecaster: We analyze the call-graph and
the main workload metrics for each microservice. Then, a

1The load balancer is associated with the service-message gate-
way implemented by Ant Group. Details can be found at
https://github.com/mosn/mosn.

19

DeepScaling: Microservices AutoScaling for Stable CPU Utilization SoCC ’22, November 7–11, 2022, San Francisco,CA

Workload Forecaster
…

…

…
…

Instance
count

Service
ID

Time
stamp

CPU Utilization Estimator

(ID,s,a,r,s_)

Scaling Decider

Experience Replay
Update

ID

ID

Time

ID

Count

MultivariateNormalDiag

mean

1 2 3

+
MainNet

TargetNet

weights

Multi-view fusion

Spatial Graph-Conv

Temporal Conv

Temporal Conv

Graph Convolution Kernel

Spatial Convolution and Temporal Convolution

Conv3d
Softmax

Spatial Graph-Conv

Figure 2: Integration of Forecaster, Estimator, and Scaling Decider. 𝑠: CPU utilization 𝑠𝑡 at time 𝑡 ; 𝑎: action 𝑎𝑡 at 𝑡 ; 𝑟 : reward for
𝑎𝑡 ; 𝑠_: the CPU utilization after the 𝑎𝑡 is executed.

spatial-temporal graph neural network (STGNN) is used to
forecast the workload metrics for each microservice. The call-
graph helps to model the traffic relationship among services.
The STGNN thus produces a highly accurate forecast of
workload metrics for each time epoch (e.g., 30 min.) The
workload metrics thus forecast are fed to the CPU utilization
estimation module.

CPUUtilization Estimator: This module estimates CPU
consumption based on 7 workload metrics along with 3 spe-
cific auxiliary features (service ID, timestamp, and instance
count). The nonlinear relationship between these 10 (=7+3)
indicators and the CPU utilization is modeled by a deep
probabilistic regression network. The input to the network
is the metric value from the workload forecaster and the
latest number of instances given by the Scaling Decider. The
output is the estimated CPU utilization.

ScalingDecider: In this module, a reinforcement learning
(RL) model is adopted to generate autoscaling policies. Going
into more detail, a model-based DQN model works with the
CPU utilization estimator to quickly determine the optimal
number of service instances. We design a reward function for
rapidly determining the optimal solution. To allow a shared
policy generation model acorss multiple services, we include
the service identifier to the experience pool of the DQN
model.

Target level Controller: The CPU target level (𝑇) is a
core parameter value for DeepScaling. The initial value of
𝑇 is the maximum CPU utilization value seen historically
for normal execution of the service in the past. DeepScal-
ing provides a buffer value (𝜏 = 5%) to allow for possible
model errors and other noise. The recommended instance

Algorithm 1 DeepScaling Workflow
1: The Target Level Controller 1○ gets the initial value 𝑇

and service status 𝑆 = 1
2: Initialize SLO monitor 3○ and instance count 𝐼0, and tar-

get level increase 𝛿 = 5, the buffer size 𝜏 = 5
3: Training Workload Forecaster 4○, CPU Utilization Esti-

mator 5○ and Scaling Decider 6○
4: while True do
5: if SLO monitor 3○ detects SLO violation then
6: 𝑇 = 𝑇 − 𝛿 , 𝑆 = 0
7: end if
8: if 𝑆 = 1 then
9: 𝑇 = 𝑇 + 𝛿

10: end if
11: if 𝑆 = 0 then
12: 𝑇 = 𝑇

13: end if
14: 4○ forecasts the workload 𝑦
15: 5○ estimates the CPU utilization value 𝑐 = 𝑓 (𝑦, 𝐼0)
16: while 𝑎𝑏𝑠 (𝑐 −𝑇) > 𝜏 do
17: 6○ recommends the instance counts 𝐼𝑐 = 𝑓𝑠 (𝑐)
18: 5○ estimates the CPU utilization value 𝑐 = 𝑓 (𝑦, 𝐼𝑐)
19: end while
20: Instance Controller 7○ recommends the instances 𝐼𝑐 .
21: end while

count is obtained when the service is operating at the tar-
get level (𝑇 ± 𝜏), while the SLOs are satisfied. Slight load
balancing variations, forecasting or estimation errors and

20

SoCC ’22, November 7–11, 2022, San Francisco,CA Ziliang Wang, et al

non-homogeneous CPU characteristics can also be accom-
modated by this buffer value for the target utilization. Sharp
changes or large estimation errors will trigger SLO violations.
This causes a reduction of the target, 𝑇 , (Line 5-7 and 10-12
in Algorithm 1) until a new stable value is reached.

SLO Monitor: The SLO monitor determines whether a
core microservice violates its SLO by monitoring the mi-
croservice response time (RT), GC (garbage collection) time,
I/O RT, and other metrics. When the SLO monitor detects
an abnormal value of a metric for the core microservice, it
notifies the target level controller to lower the target level
for that service, in addition to changing the controller state.

Instance Controller: The Instance Controller, as part of
the overall autoscaling task completes service de-activation
(shutting instance(s) down) task in real-time, and the service
deployment task by warm-starting the required number of
instances (within 15 seconds), or cold starting them (within
5 minutes). The Instance Controller adjusts the service re-
sources of each microservice by increasing or decreasing the
number of standard pods.

The Vertical Pod Autoscaler (VPA) Controller: Deep-
Scaling uses standard containers (Kubernetes 4C8G - 4 CPU
cores with 8 GB RAM) to realize the horizontal pod autoscal-
ing (HPA) of services. To support specific resource require-
ment for different kinds of services, we also include the VPA
controller for the global setting of pod configuration of each
service before deployment. That means, each instance of
the service shares the same pod configuration during hori-
zontal scaling. For most services, the VPA controller is not
activated. For some memory-sensitive services, the admin-
istrator invokes the VPA controller to modify the default
pod configuration to 4C16G for example. In summary, VPA
is usually configured for tuning before deployment, while
DeepScaling considers cluster level resource management
with autoscaling pod replicas after deployment.

We now elaborate on the core componets of DeepScaling
next: the Workload Forecaster in § 4, the CPU Utilization
Estimator in § 5, and the Scaling Decider in § 6. The experi-
mental design and overall performance of DeepScaling are
presented in § 7.

4 WORKLOAD FORECASTING
In this part, we describe the microservice workload char-
acterization metrics and elaborate on how to forecast the
future workload metrics with a STGNN model. The specific
structure of STGNN is shown in Figure 2, and we describe
the network in detail below.

4.1 Workload Characterization
For each microservice, as shown in Figure 3, we study its
invocation relationships in the system of microservices. We

Login

Ads

writePost

PV

PV

PV

userInfo

postStorage

Authority

Message
Middleware

userStroage

Files

RPC-in RPC-out

File I/O

DB-Access

Meg-pub

RPC-out

RPC-out RPC-in RPC-out

RPC-in

RPC-in

RPC-out

Meg-pub

Database
P

PV

Meg-sub

Figure 3: Different workload metrics in a sample microser-
vice system. Each yellow box represents amicroservice, with
totally 7 microservices for the service.

collected 7 commonly used CPU consumption metrics to
characterize each workload. These workload metrics are gen-
erated from the active execution of the complete microser-
vice system. In general, the lifecycle of a task starts with a
user request and ends with an operation on the data. During
this period, each microservice is responsible for different
tasks and consumes CPU. The seven workload metrics are:

• RPC-in counts the number of incoming RPC requests for
this microservice and reflects the CPU consumption for
completing a specific logical function. RPC-in is usually
the main CPU consuming component.

• RPC-out counts the number of RPC requests from each
microservice to other microservices in the task chain and
is usually in proportional to the RPC-in metric. CPU con-
sumption also grows in proportion to the RPC-out request
count.

• Msg-pub counts the number of message publications to
the middleware message broker.

• Msg-sub counts the number of message subscriptions
from the middleware message broker. CPU consumption
grows linearly with increasing Msg-pub and Msg-sub [4].

• DB-Access counts the number of database accesses (query,
insert, delete, etc.). An RPC request usually yields database
accesses, which is not counted in the RPC-in and RPC-out
metrics.

• Page-View(PV) counts the number of dynamic/static web-
page views resulting from HTTP requests in a time inter-
val.

• File I/O counts the number of file read and write opera-
tions. Frequent I/O operations also consume a lot of CPU
resources [10].

The monitor captures these seven workload metrics for
each service every minute, yielding seven corresponded time-
series.

21

DeepScaling: Microservices AutoScaling for Stable CPU Utilization SoCC ’22, November 7–11, 2022, San Francisco,CA

4.2 Forecasting with STGNN
As one of the core components, STGNN accomplishes an
accurate forecast of future workloads as a prerequisite for
DeepScaling. As mentioned above, there is a clear relation-
ship among various workloads. For example, the higher the
number of Page-Views generated by a user, the higher is
the number of accesses to the data by the underlying ser-
vice. To improve the accuracy of forecasting the workloads,
we model the relationship among the seven workload met-
rics through a multi-view fusion layer in the graph neural
network (GNN).
Given a workload metric time-series x𝑖,1:𝑡−1 (for instance

RPC-in), the basic problem here is to forecast the workload
metric at time-stamp 𝑡 with

x𝑖,𝑡 = 𝐹 (x𝑖,1:𝑡−1;w), (1)

where 𝐹 (·;w) is a forecast function such as a deep neural
network with parameter w. As there are 7 workload met-
rics to characterize the microservice, the intuitive way is to
forecast each metric separately. However, we find there is
an intrinsic relationship between different metrics such as
RPC-in and RPC-out. If we forecast them separately, it may
produce inaccurate and inconsistent output. Hence, it is bet-
ter to simultaneously forecast multiple time-series together
by taking their relationships into consideration:

{x0, . . . , x𝐼−1}𝑡 = 𝐹 ({x0, . . . , x𝐼−1}1:𝑡−1;w). (2)

In this work, we build such a forecaster with spatial-temporal
graph neural networks (STGNN), with several components.
Multi-view Fusion Layer
When we forecast the value of a particular workload such
as RPC-in in the next time step, we take the impact of other
workload metrics in the same time window into account.
We use a fusion layer based on an attention mechanism for
importance modeling of different workload metric features.
For multiple workload metrics {x0, . . . , x𝐼−1}, we consider
each metric as a single view, and fuse the vector of each view
together through

x𝑚 = x0 ⊕ x1 ⊕ . . . x𝐼−1, (3)

where operator ⊕ means vector concatenation, and x𝑚 is the
concatenation of all input views. Let

x′𝑚 = x𝑚 ⊙ 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓𝑎 (x𝑚 ;w𝑎)), (4)

where ⊙ means element-wise product, 𝑓𝑎 (;w𝑎) is a sub-
neural-network with parameterw𝑎 which produces a weight
for each view, and 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 is the softmax function which
transfers the weight to the range [0,1]. Equation 4 defines the
weighted multi-view fusion layer dedicated for our STGNN
in DeepScaling.
Graph Convolution Kernel
Next, we further consider the impact of workload metrics

between different services. We build a graph structure to
model the relationship of workload metrics across services.
We organize multiple workload metrics as a graph structure
G𝑡 = (V, E,A), where node V represents different work-
load metrics and edge E indicates the relationship between
them. For example, as shown in Figure 3, we consider RPC-
out of the Login service as one object and RPC-in of service
UsreInfo as another object. They act as two separate nodes
in the graph and are connected. A is the weighted adjacency
matrix of G𝑡 . Based on the spectral graph theory, we intro-
duce the scaled Laplacian matrix Ã as in [3] to represent the
relationship graph among different features due to its good
mathematical properties, such as it being positively defined,
etc.

Ã = I − D− 1
2AD− 1

2 , (5)

where D is the diagonal matrix with D𝑖𝑖 =
∑
𝑖 𝑗 A𝑖 𝑗 , and I is

the identity matrix.
Give a spatial slice vector 𝑥𝑡 ∈ R𝑛 (e.g., a slice of x′𝑚 at

time step 𝑡 with 𝑛 workload metrics), a graph convolution is
defined as

Θ⊛G 𝑥𝑡 =

𝐾∑
𝑘=1

\𝑘𝑇𝑘 (Ã)𝑥𝑡 , (6)

where ⊛G is the graph convolution operator, \ ∈ R𝐾 is
the vector of coefficients, Θ = {\𝑘 }, 𝑇𝑘 ∈ R𝑛 is the 𝑘-th
order Chebyshev polynomial at the scaled Laplacian. For the
detailed explanation, please refer to [44].
Spatial Convolution and Temporal Convolution
The spatial convolution is defined over the graph kernel as

𝑥𝑠 = 𝑓𝑠 (𝑥𝑡 ;Θ) = Θ⊛G 𝑥𝑡 , (7)

which captures the interactions among time-series at time-
stamp 𝑡 [44].
The temporal convolution is defined in the temporal di-

mension, where different time-series share the same convo-
lution kernel weight.

x′𝑖 = 𝑓𝑡 (x𝑖 ;w𝑡) = x𝑖 ⊛w𝑡 (8)

where x𝑖 is the 𝑖-th time-series, w𝑡 ∈ R𝑘𝑡 is 1-dimensional
convolutional kernel with size 𝑘𝑡 × 1 shared across all the 𝑛
time-series (𝑘𝑡 = 7 empirically picked in our experiments).
We stack/connect multiple spatial convolutions and tem-

poral convolutions together to capture both the spatial in-
teractions and temporal correlations. We also use the nor-
malization layer after each convolution-block to avoid over-
fitting. The whole STGNN model (𝐹 in Equation 2) is thus
a nested function of 𝑓𝑎, 𝑓𝑠 , 𝑓𝑡 as defined in Equation 4, Equa-
tion 7, Equation 8, respectively, which can be trained in an
end-to-end way.

22

SoCC ’22, November 7–11, 2022, San Francisco,CA Ziliang Wang, et al

(a) RPC-in (b) RPC-out (c) DB-Acess (d) PV

Figure 4: Real workloads forecast using the proposed autoscaling method used in the experimental evaluation

Table 1: Results with different workload forecasting models

Method

Result Metric
MAE Gain RMSE Gain

N-beats 1.61 35.66% 188.89 36.80%
Transformer 1.39 25.26% 166.95 28.51%
DeepScaling 1.04 - 119.37 -

4.3 Performance of Workload Forecasting
To comprehensively evaluate the workload forecast model,
we trained different models including N-beats [31] and Trans-
former [43]. N-beats is a state-of-the-art forecast model,
which is a deep neural network architecture based on back-
ward and forward residual links and a very deep stack of
fully-connected layers. Transformer is another popular fore-
casting model. We describe our dataset in detail in § 7.1.
Each workload metric takes values in the range 0 to 107.
Table 1 shows the normalized mean absolute error (MAE)
and root mean squared error (RMSE) [8] of different forecast-
ing models of the workload metrics. Compared to N-beats
and Transformer, DeepScaling reduced the MAE by 35.66%
and 25.26%. The RMSE also dropped by 36.80% and 28.51%
compared to N-beats and Transformer, respectively. These
experimental results show that DeepScaling’s workload fore-
cast has excellent performance relative to the state-of-the-art
forecasting methods.

To demonstrate the forecasting performance of DeepScal-
ing in different situations, we show several test cases in Fig-
ure 4. For example, in Figure 4(a), DeepScaling is more ef-
fective at forecasting RPC-in bursts over time periods 20-40
and 70-90. As shown in Figure 4(d), both Transformer and
N-beats forecast values that far exceed the true values at time
points 90-130. This indicates that the predictive performance
of these other methods is poorer than that of DeepScaling
when there are significant changes to the workload, espe-
cially with bursts.

5 CPU UTILIZATION ESTIMATOR
With the workload metrics forecast, we design a DNN model
to estimate the CPU utilization. This estimator receives the
workload metrics and predicts the CPU utilization of each
service with a given number of instances provisioned. Fig-
ure 2 shows the network structure of the estimator. We first
introduce the feature embedding step and then describe the
CPU estimation model.

5.1 Feature Embedding
The input for CPU utilization estimation is the workload met-
ric vector 𝑥𝑡 ∈ R𝑛 (𝑛 = 7) at time 𝑡 . During the test (inference)
phase, 𝑥𝑡 is the output of the workload forecast from the pre-
vious stage. During the training phase, we could use both
historical data and forecast data to train the model. Different
microservices have different behaviors for each workload.
Therefore, when we develop a single general model to esti-
mate CPU utilization for all microservices, it is necessary to
introduce certain microservice specific auxiliary features to
enhance the general applicability of the shared model. The
auxiliary features are:
• Instance-count: the number of instances (or pods) for
each microservice, ranging from 1 to #𝑚𝑎𝑥-𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ;

• Service-ID: the unique identifier of each microservice,
ranging from 1 to #𝑚𝑎𝑥-𝑠𝑒𝑟𝑣𝑖𝑐𝑒;

• Time-stamp: the time-stamp during the day, in minutes,
when the workload metrics are collected/forecast, ranging
from 1 to 1440 (24hours).

Workload metrics and auxiliary features are combined to-
gether as input for accurate CPU estimation. As workload
metrics are multi-dimensional vectors of time-series, and
auxiliary features are scalars, we use a feature embedding
method to realize the combination. The feature embedding
consists of 4 steps.

First, we use one-hot encoding to represent these auxiliary
features. Specifically, it encodes the features to generate a
vector with a specified dimension𝑑 (𝑑 may be #𝑚𝑎𝑥-𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ,

23

DeepScaling: Microservices AutoScaling for Stable CPU Utilization SoCC ’22, November 7–11, 2022, San Francisco,CA

#𝑚𝑎𝑥-𝑠𝑒𝑟𝑣𝑖𝑐𝑒 or 1440), while the vector has all elements
being 0 except the 𝑖-th element being 1.

Second, we define an embedding function as:

𝑢 ′ = 𝑓 (𝑢;W𝑢) = 𝑅𝑒𝐿𝑈 (W𝑢 · 𝑢 + b), (9)

where W𝑢 ∈ R𝑛×𝑑 is the embedding matrix, b is the bias
vector, and 𝑅𝑒𝐿𝑈 (·) is the activation function. In this way,
𝑢 ∈ R𝑑 is thus projected to 𝑢 ′ ∈ R𝑛 . Given the three auxil-
iary features 𝑢1, 𝑢2, 𝑢3, with this method, we could produce
embedded auxiliary features 𝑢 ′

1, 𝑢
′
2, 𝑢

′
3. At this point, we have

encoded the three specific features of each service as unique
variables.

Third, we model the relationship between auxiliary fea-
tures (service-ID, instance counts, time-stamp) and the work-
load metrics in the embedded space. Given the embedded
auxiliary feature 𝑢 ′

𝑖 (i=1,2,3) and the workload feature 𝑥𝑡 , we
define the joint embedding layer as

𝑧𝑖 = 𝑓 (𝑢 ′
𝑖 , 𝑥𝑡 ;W𝑖) = 𝑅𝑒𝐿𝑈 (W𝑖 · (𝑢 ′

𝑖 ⊙ 𝑥𝑡)), 𝑖 = 1, 2, 3, (10)

whereW𝑖 is the joint embeddingmatrix, and ⊙ is the element-
wise product operator.

Fourth, we concatenate the three joint embedding results
(𝑧𝑖 corresponding to each𝑢𝑖) together as final representation:

𝑍 = 𝑧1 ⊕ 𝑧2 ⊕ 𝑧3 . (11)

5.2 Estimation Model
A deep probabilistic neural network is used to estimate the
expectation and variance of the CPU utilization distribution
based on the feature embedding 𝑍 , which consists of three
steps.

First, 𝑍 is passed through several shared, fully-connected
layers to obtain intermediate results𝑍 ′, to learn the nonlinear
relationships between features:

𝑍 ′ = 𝑓𝑧 (𝑍 ;W𝑧). (12)

Second, two separate output branches (or heads) are con-
nected over 𝑍 ′ to produce mean and variance

` = 𝑓` (𝑍 ′;W`), (13)
𝜎 = 𝑓𝜎 (𝑍 ′;W𝜎). (14)

Third, we estimate CPU utilization with

𝑦𝑡 = 𝑀𝑒𝑎𝑛{𝑓𝑀 (`, 𝜎)}. (15)

where 𝑓𝑀 is the MultivariateNormalDiag layer in Tensorflow,
𝑀𝑒𝑎𝑛{·} computes the mean value of the distribution.
All the layers described in Equation 9-15 are connected

together into one Deep Neural Network as shown in the
middle-box of Figure 2, where all the model parametersW
can be trained in an end-to-end way.

Table 2: Results of different CPU estimation methods and
relative gain with DeepScaling.

Method MAE Gain RMSE Gain 𝑀𝑎𝑥𝑒𝑟𝑟𝑜𝑟
LR 1.44 54.8% 2.26 64.15% 21.06
SVM 1.99 67.3% 2.97 72.72% 20.96
DTR 1.25 48.0% 2.11 61.61% 21.97

𝐷𝑒𝑒𝑝𝑆𝑐𝑎𝑙𝑖𝑛𝑔 0.65 - 0.81 - 2.69

5.3 Performance of Estimator
We compare our estimator with the regression methods used
in learning-based autoscaling methods (Linear Regression
(LR) [22], Support Vector Machine (SVM) [30], and Deci-
sion Tree Regressor (DTR) [1]). We describe our dataset in
detail in § 7.1, which includes workload metrics and CPU
utilization information for 58 services in one month, col-
lected at 10-minute intervals. Table 2 shows the results on
this off-line dataset of the 58 services in terms of MAE, RMSE,
and 𝑀𝐴𝑋𝑒𝑟𝑟𝑜𝑟 , where 𝑀𝐴𝑋𝑒𝑟𝑟𝑜𝑟 is the maximum error be-
tween the estimated value and the true value. Our proposed
model achieves the best performance across all three evalu-
ation metrics. Specifically, DeepScaling achieves 0.65 MAE,
0.81 RMSE, and 2.69 𝑀𝑎𝑥𝑒𝑟𝑟𝑜𝑟 . For the most critical metric
𝑀𝑎𝑥𝑒𝑟𝑟𝑜𝑟 , DeepScaling is far lower than all the other com-
pared methods. These results demonstrate the effectiveness
of DeepScaling’s CPU estimator.
In order to further compare different estimation models,

we plot the experimental results of all the estimators on the
test set for services A1-A5 in Figure 5. We observe that tradi-
tional machine learning methods are not accurate in the com-
plex situations we see, when the workload changes sharply.
At time point 52 in Figure 5, the CPU utilization has a sudden
increase due to the execution of periodic tasks. LR, SVM and
DTR models perform poorly since they are unable to handle
complex nonlinear data. DeepScaling efficiently learns the
performance variations caused by non-traffic factors and
gives a much more accurate CPU utilization estimation.

6 AUTOSCALING DECISION MAKING
6.1 Decision with Reinforcement learning
The function of the decision maker for autoscaling is to find
the recommended number of instances for a microservice. It
utilizes an RL model as shown in the 3rd box of Figure 2.
Problem Formulation. Given the average CPU utilization
estimate for a microservice that is deployed across a large
number of pods, we formulate the decision making problem
of auto-scaling as one of Reinforcement Learning (RL). We
consider the variation of CPU utilization during the running
of a microservice as the environment and take the CPU uti-
lization estimation model as the environment observer. The

24

SoCC ’22, November 7–11, 2022, San Francisco,CA Ziliang Wang, et al

(a) DeepScaling (b) DTR (c) LR (d) SVM

Figure 5: Actual CPU vs. Estimated CPU utilization using DeepScaling’s method compared to other alternatives

Table 3: DQN Training Parameters

Parameter Value
Time Steps 500
Minibatch 64
Size of Experience Replay 105
Learning Rate(MainNet) 5 × 10−5
Learning Rate(TargetNet) 5 × 10−5
Discount Factor 0.9
Exploration Factor Y (0.9),𝛾 (0.9)

RL model will continually autoscale the instance count of
pods based on the environment observer. The goal of the RL
model is to keep the average CPU utilization stable despite
variations in the workload. We consider the scaling decision
for the microservices as a policy optimization problem with
a policy function 𝑝 that maps from the state space 𝑆 to the
action space 𝐴, 𝑝 : 𝑆 → 𝐴.
Specifically, we build a shared RL model for all microser-

vices. The input of the RL model is a tuple, consisting of
the CPU utilization and the service-ID 𝑆 = (𝐶𝑃𝑈 , 𝐼𝐷), and
outputs the latest instance count 𝑛 after performing the rec-
ommended action 𝐴. Then, we use the CPU utilization esti-
mationmodel to estimate the newCPU utilization and update
the state 𝑆𝑡+1. This process loops until the CPU utilization
reaches the pre-set target level. The RL model outputs the
instance count 𝑛 as the final result.
State Space. In our model, the environment state includes
both the CPU utilization of the service and the service-ID.
The service-ID, as described section in § 5.1, is an integer,
ranging from 0 to𝑘 . The CPU utilization from themonitoring
system is also a number ranging from 0 to 100. For simplicity,
we round up the CPU utilization to an integer. Combining
the service-ID and CPU utilization together, the size of the
state space for the whole RL model is thus 𝑘 ∗ 100.
Action Space. Our action space includes three different ac-
tions: increased, decreased, and unchanged.

• 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑 : This action is to increase the instance count,
which is realized in two ways: increasing the instance
count proportionally (e.g., 5%) or increasing the instance
count by a certain number (e.g., 10).

• 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑑 : This action reduces the instance count. Again,
it can be implemented in two ways: reducing the instance
count proportionally (e.g., 5%) or reducing the instance
count by a certain amount (e.g., 10).

• 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑 : This action keeps the instance count of the
service unchanged.

Learning the Optimal Policy. The policy optimization
problem (𝑝 : 𝑆 → 𝐴) is solvedwith aDeepQ-Network (DQN).
The pseudo-code of the training algorithm is shown in Al-
gorithm 2. We introduce an experience replay buffer [32],
to solve the dependency issue among contextual samples.
In practice, we add the service-ID to the experience replay
buffer (𝐼𝐷, 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) so that it can better distinguish sam-
ples between different services, where 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 are state,
action and reward at time-step 𝑡 , respectively.
Suppose the value function is 𝑄 (𝑠 = 𝑐𝑝𝑢, 𝑎;Φ) with pa-

rameter Φ, DQN defines the loss function [29] as:

𝐿(Φ) = E[(𝑟 + 𝛾 max
𝑎′

𝑄 (𝑠 ′, 𝑎′;Φ𝑖−1) −𝑄 (𝑠, 𝑎;Φ𝑖))2], (16)

where state 𝑠 = 𝑐𝑝𝑢 is the CPU utilization, 𝑎 is the action
taken by the DQN model, and 𝑟 is the reward which we
described below.
Similar to [32], DQN consists of two networks (MainNet

and TargetNet) with the same structure but different parame-
ters as shown in Figure 2.𝑄 (𝑠, 𝑎;Φ𝑖) represents the MainNet
with the latest parameters, which is used to evaluate the
value function of actions 𝑎.𝑄 (𝑐 ′, 𝑎′;Φ𝑖−1) represents the Tar-
getNet, which provides the target value to avoid overfitting.
The parameters of TargetNet are the time-delayed version
from MainNet. That means we copy the parameters of Main-
Net to TargetNet at every fixed step.
DeepScaling aims to reach a stable value for the CPU

utilization as quickly as possible with the RL model. We

25

DeepScaling: Microservices AutoScaling for Stable CPU Utilization SoCC ’22, November 7–11, 2022, San Francisco,CA

Algorithm 2 DQN Training Algorithm
1: Initialize replay buffer 𝐷 to capacity 𝑁

2: Initialize main action-value function 𝑄 with random
weights Φ

3: Initialize target action-value function �̂� with weights
Φ− = 0

4: for episode = 1→M do do
5: for t=1→T do do
6: With probability Y select a random action 𝑎𝑡
7: otherwise select 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄 (𝑠, 𝑎;Φ)
8: Execute action 𝑎𝑡 in emulator and observe reward

𝑟𝑡 and image 𝑠𝑡+1
9: Store transition (𝐼𝐷, 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in D
10: Sample random mini-batch transition from 𝐷

11: Set 𝑦 𝑗 =
{

𝑟𝑡 𝑠𝑡𝑜𝑝 𝑎𝑡 𝑠𝑡𝑒𝑝 𝑡 + 1
𝑟𝑡 + 𝛾𝑚𝑎𝑥𝑎′ �̂� (𝑠𝑡+1, 𝑎

′
;Φ−) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

12: Perform a gradient descent step on (𝑦 𝑗 −
𝑄 (𝑠𝑡 , 𝑎 𝑗 ;Φ))2with respect to the network param-
eters Φ

13: Every 𝑛 setps reset �̂� = 𝑄

14: end for
15: end for

define the reward function as follows:

𝑟 =

{
−𝛿 − |𝑠𝑡+1 + 𝛿 | |𝑠𝑡+1 − 𝛿 | > |𝑠𝑡 − 𝛿 |.
𝛿 − |𝑠𝑡+1 − 𝛿 | 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(17)

where 𝛿 is a positive value representing the target CPU uti-
lization level of the service. When 𝑠𝑡+1 is far away from the
target level, DQN gets a negative reward. Otherwise, when
𝑠𝑡+1 is close to the target level, DQN gets a positive reward.

6.2 Implementation Details
We implemented the DQN based scaling decision algorithm
in TensorFlow. The DQN network combines MainNet and
TargetNet as shown in Figure 2. MainNet contains two hid-
den fully connected layers with [256,128] hidden units, all
using the ReLU activation function. TargetNet has an identi-
cal network structure to MainNet. Hyper-parameters of the
DQN model are listed in Table 3.

DeepScaling usually performs model updating/refreshing
every two weeks in our production environment. Once there
is a new microservice introduced between these model re-
fresh events, we need to train the CPU estimation model and
decision maker model (2nd and 3rd step of DeepScaling) for
that microservice since these two steps require the service-
ID information. On the other hand, the workload forecasting
model can be reused. Training models for these two steps
requires a small amount of data for that microservices which
can be obtained at a relatively small cost since the training
procedure actually involves fine-tuning based on existing

models. During the model update period, expired services
are removed, new services are integrated, and the whole
model parameters of DeepScaling are refreshed.
For such a complex 3-step DeepScaling system, we use

the following ways to debug errors [13], and verify the cor-
rectness. The first two steps (workload forecasting and CPU
utilization estimation) can be extensively evaluated with
collected data, with their accuracy guaranteed through eval-
uation. Then, we use a simulation environment with real
traffic to evaluate the correctness of the scaling-decision
maker as well as the overall DeepScaling system.

7 EVALUATION AND DEPLOYMENT
7.1 Experimental Setup
Datasets. For the workload metrics presented above, we
categorized 3000 different microservices of the Ant Group
according to their workload behaviors. Among them, 38.2%
of the microservices are dominated by RPC requests, 26.96%
of the microservices are dominated by DB access workload,
17.41% of the microservices are dominated by File I/O, 14.60%
of the microservices are dominated by a workload of MSG
requests, and 2.80% of the microservice are dominated by
Page-Viewing. To validate the wide applicability of DeepScal-
ing, we selected 58 different kinds of real microservices from
Ant Group. The main task of these production microservices
is to provide a high availablility online payment platform,
and the services are usually accessed more than 500 million
times everyday. We collected their workload data and CPU
utilization data for one month.

All the 58 microservices are used to evaluate our workload
forecasting and CPU utilization estimation. For evaluating
the whole pipeline of DeepScaling, we selected five microser-
vices which forms a minimal, and full-functional chain. Ta-
ble 4 illustrates the workload characteristics of these five
microservices. A3 is the front end of this service chain with
an average of 290,000 visits per minute. The number of in-
stances of these microservices is set by the administrator to
1800 when not using any resource autoscaling methods. It
is interesting to see that these five microservices have dif-
ferent workload characteristics. A1 is a database dominated
microservice. A2 is a messaging middleware. A3 is a web
page microservice with large number of Page Views (§ 4.1).
A4 is a RPC-in dominated microservice. A5 is a core file
microservice with significant File I/O and msg-sub.
Implementations Environment.We implemented Deep-
Scaling based on TensorFlow 1.13.1, and adopted the Deep
Network implementation providedwith TensorFlow-probability
0.6.0. All experiments run on a Linux server (Ubuntu 16.04)
with Intel(R) Xeon(R) Silver 4214 2.20GHz CPU, 16GB mem-
ory and a nVidia V100 GPU.

26

SoCC ’22, November 7–11, 2022, San Francisco,CA Ziliang Wang, et al

Table 4: Workload metrics of the Sample Service (Times/minute)

NO. RPC-in RPC-out Msg-pub Msg-sub DB-Access File I/O PV
A1 6.7 × 105 3.4 × 107 2.7 × 105 3.5 × 105 7.7 × 108 3.7 × 106 1.9 × 103
A2 2.5 × 105 0 1.3 × 107 3.4 × 107 2.0 × 108 7.1 × 105 0
A3 4.8 × 104 6.4 × 106 1.4 × 104 1.9 × 104 6.8 × 105 2.1 × 105 2.9 × 105
A4 1.4 × 106 0 0 1.0 × 105 8.0 × 106 3.2 × 105 0
A5 4.1 × 105 9.3 × 105 0 2.8 × 106 1.1 × 106 1.2 × 106 0

Measurement.We introduce the relative CPU stability rate
(RCS) and the relative resource utilization (RRU) metrics to
measure the performance of DeepScaling. RCS is defined as

𝑅𝐶𝑆 = 𝑦𝑡/1440. (18)

where 𝑦𝑡 is the number of minutes in a day when the ser-
vice is in a stable range when the CPU utilization fluctuates
around the target level, within the range of the buffer value,
𝜏 = 5% (as in Line-18 of Algorithm 1). RRU is defined as

𝑅𝑅𝑈 = 𝑐/𝑐𝑟 , (19)

where 𝑐 is the instance count for the particular method being
evaluated, and 𝑐𝑟 is the instance count set by the rule-based
autoscaling method.
State-of-the-art Autoscaling Approaches.We compared
DeepScaling against three state-of-the-art (SOTA) autoscal-
ing approaches: Autopilot, FIRM and the rule-based approach,
in simulation experiments. Note the rule-based approach is
also used in our production comparison, where the rules are
developed from our experts based on historical experiences.
A simple categorization of SOTA autoscaling approaches are
listed as below.
(1) Workload-based autoscaling approach (Autopilot): Google’s

autoscaling approach, named Autopilot [37], builds the
optimal resource configuration by seeking the histor-
ical time window that matches best with the current
window.

(2) SLO-based autoscaling approach (FIRM): FIRM [36] is a
RL-based autoscaling approach, which learns to adjust
resources based on feedback. It finds services with abnor-
mal response times (RT) through an anomaly detection
algorithms and adjusts multiple resources for the service
through RL iterations.

(3) Rule-based autoscaling approach: It dynamically scales
the instance number of a microservice based on moni-
tored performance metrics and using the expert’s rules.

7.2 Overall Performance of DeepScaling
Before production deployment, we made a comprehensive
performance evaluation of DeepScaling against the rule-
based approach, Autopilot, and FIRM, for theminimal service-
chain A1-A5 in a simulation environment.

Service Stability. We compare DeepScaling with several
existing approaches. First is a rule-based approach involving
manual scaling. The second is Autopilot [37], proposed by
Google, using a history window of 24-time slices. The third is
FIRM, using the SVM algorithm to determine whether there
are abnormal response time values. FIRM’s optimization goal
is to minimize the probability of occurrence of such abnormal
values. The CPU utilization target levels for service A1 was
initially set at 50% and 47% for A2, based on their historical
record of maximum values. The target level is increased
𝛿 = 5% daily by the target level controller until we reach very
close to the SLO. We show the results of these two services
in Figure 6, while providing the overall summary results
for all the five services in Figure 7 (due to space limitations,
we don’t go through all the other services). Each approach
takes a certain amount of time to achieve a stable target
CPU utilization. We consider a service as having achieved a
stable operating range when the CPU utilization fluctuates
around the target level, 𝜏 = 5% . In our experiments, the SLO
monitor detects a large number of request timeouts when
service A1’s CPU utilization exceeds 71%, and a large number
of GC (garbage collection) timeouts occur, and when service
A2’s CPU utilization exceeds 60%.

For service A1, as can be seen in Figure 6(a), the rule-based
autoscaling method is unable to accurately estimate the re-
sources required for the service. This results in a dramatic
fluctuations of the CPU utilization each cycle. For FIRM, the
CPU utilization exceeds 70% on the second day, although
the target level was set at 55% at this time. The SLO moni-
tor detected abnormal response time values. Eventually, the
Target Level Controller sets the target level of FIRM to 50%,
to allow it to run at that value from that point on without
too many SLO violations. Autopilot, with a target level 80%,
achieved a maximum service CPU utilization of 62% with
large fluctuations even after seven days. Meanwhile, Deep-
Scaling reaches close to the SLO desired, setting the final
target CPU utilization level at 65%. A similar situation is also
observed with service A2, as shown in Figure 6(b). The target
level for FIRM was finally set to 42%. In contrast, DeepScal-
ing reaches close to the desired SLO on the third day, with
the final target level set at 55%. The target level for Autopilot
was set to 77%, but the maximum value of CPU utilization

27

DeepScaling: Microservices AutoScaling for Stable CPU Utilization SoCC ’22, November 7–11, 2022, San Francisco,CA

(a) CPU (Service A1) (b) CPU (Service A2) (c) Instance count (Service A1) (d) Instance count (Service A2)

Figure 6: Effect of different autoscaling approaches for services A1 and A2.

only reached 55%. It is clear that DeepScaling makes services
run closer to the desired SLO bound, for both service A1 and
service A2, compared to the other alternatives.
Figure 7(a) shows the percentage of time in a day that

each autoscaling approach maintains the CPU utilization in
the desired target range. An approach that maintains the
CPU utilization stable over a longer time period is superior
to others as it allows services to operate at resource uti-
lization closer to the limit with a smaller fluctuation range,
helping maximize the aggregate multiplexed throughput.
DeepScaling achieves and maintains a service’s CPU utiliza-
tion around the target level almost across the entire day
(close to 98% for services A3, A4, and A5, and at 95% for A1
and A2). Taking the average over the entire service-chain
A1-A5, DeepScaling improves the relative CPU stability rate
(RCS) by 61.1%, 40.8%, and 24.6% compared to the rule-based
approach, Autopilot and FIRM, respectively.
Right-sizing Resources for Each Service. Figure 6(c,d)
shows the recommended instances provided by each method
for services A1 and A2 on one day. Further, Figure 7(b) shows
the number of instances used for each service by each ap-
proach relative to the rule-based autoscaling approach. Af-
ter seven days of running all the autoscaling methods, we
compare DeepScaling with the alternatives in terms of the
amount of resources being allocated to serve the submitted
workload. The rule-based approach uses domain knowledge
expertise to allocate resources. We set the rule-based au-
toscaling approach to use 100% of instances. It is obvious
from the figure that the learning-based approaches allow for
a more flexible configuration of service resources. So these
approaches have much higher resource-efficiency than the
rule-based approach. From the perspective of resource saving
(using the RRU metric), DeepScaling saves 49.4%, 20.2% and
14.0% more container resources compared to the rule-based
approach, Autopilot and FIRM, respectively.
Effect of using Workload Forecasting. To verify the va-
lidity of using workload forecasting, this experiment was set
up as follows. The target levels of service A1 and A2 are 37%

and 36%, respectively. We compare DeepScaling with and
without forecasting workload metrics. For the case without
forecasting, we fetch the real-time workload metric from the
Service Monitor.

Figure 8 shows the benefit of workload forecasting. With-
out the forecast, we compute the recommended instances
for the current workload in real-time and pass them to the
instance controller. The instance controller takes about 5
minutes to start a microservice instance using the cold start
method. As can be seen from Figure 8, the CPU utilization
varies significantly in the absence of a forecaster. When
workload forecaster is available, we can proactively start the
right number of containers early and minimize the number
of cold starts. When autoscaling with real-time workloads,
the instance controller is usually unable to allocate the right
service resources in time once the workload changes too
quickly.

7.3 Production Deployment
After validating the effectivenes on the service-chain A1-A5,
we deploy DeepScaling in our production environment at
Ant Group. Currently, DeepScaling has already been adopted
in a service subset consisting of 135microservices, related to
payment systems, for daily automatic resource provisioning
management. In the more than one year of production use,
DeepScaling has saved more than 30,000 CPU cores per day
on average, compared to the previous rule-based solutions
(measured in CPU core hours saved, we see on average 30K *
24 CPU core hours are saved each day). We expect to extend
DeepScaling to support the provisioning of all of the online
microservices (3000+) in Ant Group’s production payment
services in near future.

8 CONCLUSIONS
Existing autoscaling approaches for cloud platforms have dif-
ficulties in balancing the goal of minimizing resource alloca-
tion while avoiding large delays and SLO violations, thus re-
sulting in significant over-provisioning and resourcewastage.

28

SoCC ’22, November 7–11, 2022, San Francisco,CA Ziliang Wang, et al

(a) Relative CPU stability rate (b) Relative resource utilization

Figure 7: RCS and RRU for different autoscaling approaches.

(a) A1 (b) A2

Figure 8: DeepScaling with and without the Workload Fore-
casting step.

To overcome this challenge, we developed DeepScaling, a
deep learning-based autoscaling approach that emphasizes
the goal of stabilizing CPU utilization at a desired target level.
DeepScaling consists of three innovative components: work-
load forecasting, CPU utilization estimation and an autoscal-
ing decision-maker. We characterize the typical workload for
production-level microservices using a comprehensive multi-
dimensional set of metrics. The workload forecasting models
the relationship between microservices and the metrics with
Spatio-temporal graph neural networks, so that we can pre-
cisely forecast future workloads to avoid excessive latency
from services having to suffer from the ‘cold start’ latency.
Our comprehensive workload characterization also helps
us achieve accurate CPU utilization estimation, so that the
autoscaling decision achieves a stable CPU utilization at the
target level. We conducted extensive experiments on a large-
scale production cloud environment. DeepScaling achieves
a stable CPU utilization for much longer periods (by 24.6%),
and saves 14.0% more resources compared to the state-of-
the-art autoscaling approach. DeepScaling is deployed in the
production environment of Ant Group, and saves consid-
erable resources per day in practice. All these confirm the
practical applicability and scalability of DeepScaling.

ACKNOWLEDGEMENT
Xiaohong Zhang and Meng Yan were supported in part
by the National Key Research and Development Project
(No. 2021YFB1714200), the Natural Science Foundation of
Chongqing (No. cstc2021jcyj-msxmX0538), the Postdoc Foun-
dation of Chongqing (No. 2020LY13) and the research fund
from Ant Group.

REFERENCES
[1] Muhammad Abdullah, Waheed Iqbal, Josep Lluis Berral, et al. 2020.

Burst-aware predictive autoscaling for containerized microservices.
IEEE Transactions on Services Computing (2020).

[2] Muhammad Abdullah, Waheed Iqbal, and Faisal Bukhari. 2018. Con-
tainers vs virtual machines for auto-scaling multi-tier applications

under dynamically increasing workloads. In International Conference
on Intelligent Technologies and Applications. 153–167.

[3] Rie Kubota Ando and Tong Zhang. 2007. Learning on graph with
Laplacian regularization. In Advances in neural information processing
systems (NIPS).

[4] Aleksandar Antonić, Martina Marjanović, Krešimir Pripužić, et al.
2016. A mobile crowd sensing ecosystem enabled by CUPUS: Cloud-
based publish/subscribe middleware for the Internet of Things. Future
Generation Computer Systems 56 (2016), 607–622.

[5] AWS. 2022. AWS auto scaling documentation. Retrieved June, 2022
from https://docs.aws.amazon.com/autoscaling/index.html

[6] Azure. 2022. Azure autoscale. Retrieved June, 2022 from https:
//azure.microsoft.com/en-us/features/autoscale/

[7] Xiangping Bu, Jia Rao, and Cheng-Zhong Xu. 2009. A reinforcement
learning approach to online web systems auto-configuration. In IEEE
International Conference on Distributed Computing Systems (ICDCS).

[8] Tianfeng Chai and Roland Draxler. 2014. Root mean square error
(RMSE) or mean absolute error (MAE)?–Arguments against avoiding
RMSE in the literature. Geoscientific model development 7, 3 (2014),
1247–1250.

[9] Tao Chen, Rami Bahsoon, and Xin Yao. 2019. A survey and taxon-
omy of self-aware and self-adaptive cloud autoscaling systems. ACM
Computing Survey (2019).

[10] Ludmila Cherkasova and Rob Gardner. 2005. Measuring CPUOverhead
for I/O Processing in the Xen Virtual Machine Monitor.. In USENIX
Annual Technical Conference (USENIX ATC).

[11] Jiang Dejun, Guillaume Pierre, and Chi-Hung Chi. 2011. Resource
provisioning of web applications in heterogeneous clouds. In USENIX
conference on Web application development.

[12] Guilherme Galante, Luis Carlos Erpen De Bona, Antonio RobertoMury,
et al. 2016. An analysis of public clouds elasticity in the execution
of scientific applications: a survey. Journal of Grid Computing 14, 2
(2016), 193–216.

[13] Yu Gan, Mingyu Liang, Sundar Dev, et al. 2021. Sage: Practical and
Scalable ML-Driven Performance Debugging in Microservices. In ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 135–151.

[14] Panos Gevros and Jon Crowcroft. 2004. Distributed resource man-
agement with heterogeneous linear controls. Computer Networks 45
(2004), 835–858.

[15] HamounGhanbari, Bradley Simmons,Marin Litoiu, et al. 2012. Optimal
autoscaling in a IaaS cloud. In International conference on Autonomic
computing. 173–178.

[16] Daniel Gmach, Jerry Rolia, L Cherkasova, et al. 2007. Workload analysis
and demand prediction of enterprise data center applications. In IEEE

29

https://docs.aws.amazon.com/autoscaling/index.html
https://azure.microsoft.com/en-us/features/autoscale/
https://azure.microsoft.com/en-us/features/autoscale/

DeepScaling: Microservices AutoScaling for Stable CPU Utilization SoCC ’22, November 7–11, 2022, San Francisco,CA

International Symposium on Workload Characterization (IISWC).
[17] Google. 2022. Google cloud load balancing and scaling. Re-

trieved June, 2022 from https://cloud.google.com/compute/docs/load-
balancing-and-autoscaling

[18] KimHazelwood, Sarah Bird, David Brooks, et al. 2018. Appliedmachine
learning at facebook: A datacenter infrastructure perspective. In IEEE
International Symposium on High Performance Computer Architecture
(HPCA). 620–629.

[19] Abdul R Hummaida, Norman W Paton, and Rizos Sakellariou. 2016.
Adaptation in cloud resource configuration: a survey. Journal of Cloud
Computing 5, 1 (2016), 1–16.

[20] Waheed Iqbal, Matthew Dailey, and David Carrera. 2009. SLA-driven
adaptive resource management for web applications on a heteroge-
neous compute cloud. In IEEE International Conference on Cloud Com-
puting. 243–253.

[21] Waheed Iqbal, Mathew N Dailey, and David Carrera. 2015. Unsuper-
vised learning of dynamic resource provisioning policies for cloud-
hosted multitier web applications. IEEE Systems Journal 10, 4 (2015),
1435–1446.

[22] Waheed Iqbal, Matthew N Dailey, David Carrera, et al. 2011. Adaptive
resource provisioning for read intensive multi-tier applications in the
cloud. Future Generation Computer Systems 27 (2011), 871–879.

[23] Vasiliki Kalavri, John Liagouris, Moritz Hoffmann, et al. 2018. Three
steps is all you need: fast, accurate, automatic scaling decisions for
distributed streaming dataflows. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI). 783–798.

[24] Michael T Krieger, Oscar Torreno, Oswaldo Trelles, et al. 2017. Building
an open source cloud environment with auto-scaling resources for
executing bioinformatics and biomedical workflows. Future Generation
Computer Systems 67 (2017), 329–340.

[25] Bingfeng Liu, Rajkumar Buyya, and Adel Nadjaran Toosi. 2018. A
fuzzy-based auto-scaler for web applications in cloud computing envi-
ronments. In International Conference on Service-Oriented Computing.

[26] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. 2014.
A review of auto-scaling techniques for elastic applications in cloud
environments. Journal of grid computing 12, 4 (2014), 559–592.

[27] Chengzhi Lu, Kejiang Ye, GuoyaoXu, et al. 2017. Imbalance in the cloud:
An analysis on alibaba cluster trace. In IEEE International Conference
on Big Data. 2884–2892.

[28] Viyom Mittal, Shixiong Qi, Ratnadeep Bhattacharya, et al. 2021. Mu:
an efficient, fair and responsive serverless framework for resource-
constrained edge clouds. In ACM Symposium on Cloud Computing
(SoCC). 168–181.

[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. 2012. Play-
ing atari with deep reinforcement learning. In Advances in neural
information processing systems (NIPS).

[30] Rafael Moreno-Vozmediano, Rubén S Montero, Eduardo Huedo, et al.
2019. Efficient resource provisioning for elastic Cloud services based
on machine learning techniques. Journal of Cloud Computing 8, 1
(2019), 1–18.

[31] Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, et al. 2020. N-
BEATS: Neural basis expansion analysis for interpretable time series
forecasting. In International Conference on Learning Representations
(ICLR).

[32] Ian Osband, Charles Blundell, Alexander Pritzel, et al. 2016. Deep
exploration via bootstrapped DQN. In Advances in neural information
processing systems (NIPS).

[33] Sourav Panda, K. K. Ramakrishnan, and Laxmi N Bhuyan. 2021.
pMACH: Power and Migration Aware Container scHeduling. In IEEE
International Conference on Network Protocols (ICNP). 1–12.

[34] Jinwoo Park, Byungkwon Choi, Chunghan Lee, et al. 2021. GRAF:
a graph neural network based proactive resource allocation frame-
work for SLO-oriented microservices. In International Conference on
emerging Networking EXperiments and Technologies. 154–167.

[35] Issaret Prachitmutita, Wachirawit Aittinonmongkol, Nasoret Pojjana-
suksakul, et al. 2018. Auto-scaling microservices on IaaS under SLA
with cost-effective framework. In International Conference on Advanced
Computational Intelligence. 583–588.

[36] Haoran Qiu, Subho S Banerjee, Saurabh Jha, et al. 2020. FIRM: An
Intelligent Fine-grained Resource Management Framework for SLO-
Oriented Microservices. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI). 805–825.

[37] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, et al. 2020. Au-
topilot: workload autoscaling at Google. In European Conference on
Computer Systems (EuroSys). 1–16.

[38] Upendra Sharma, Prashant Shenoy, Sambit Sahu, et al. 2011. A cost-
aware elasticity provisioning system for the cloud. In International
Conference on Distributed Computing Systems (ICDCS). 559–570.

[39] Akshitha Sriraman and Abhishek Dhanotia. 2020. Accelerometer:
Understanding acceleration opportunities for data center overheads
at hyperscale. In International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 733–750.

[40] Akshitha Sriraman and Thomas F Wenisch. 2018. `suite: a benchmark
suite for microservices. In IEEE International Symposium on Workload
Characterization (IISWC). 1–12.

[41] Sonja Stüdli, M Corless, Richard H Middleton, et al. 2015. On the
modified AIMD algorithm for distributed resource management with
saturation of each user’s share. In IEEE Conference on Decision and
Control (CDC). 1631–1636.

[42] Xiaoyang Sun, Chunming Hu, Renyu Yang, et al. 2018. Rose: Cluster
resource scheduling via speculative over-subscription. In IEEE Interna-
tional Conference on Distributed Computing Systems (ICDCS). 949–960.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. 2017. Attention
is all you need. In Advances in neural information processing systems
(NeurIPS). 5998–6008.

[44] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2017. Spatio-temporal
graph convolutional networks: A deep learning framework for traffic
forecasting. In International Joint conference on Artificial Intelligence
(IJCAI).

[45] Guangba Yu, Pengfei Chen, and Zibin Zheng. 2019. Microscaler: Auto-
matic scaling for microservices with an online learning approach. In
IEEE International Conference on Web Services (ICWS). 68–75.

[46] Liang Zhou, Laxmi N Bhuyan, and K. K. Ramakrishnan. 2019.
Goldilocks: Adaptive resource provisioning in containerized data cen-
ters. In IEEE International Conference on Distributed Computing Systems
(ICDCS).

[47] Liang Zhou, Laxmi N Bhuyan, and K. K. Ramakrishnan. 2020. Gemini:
Learning to Manage CPU Power for Latency-Critical Search Engines.
In IEEE/ACM International Symposium on Microarchitecture (MICRO).

30

https://cloud.google.com/compute/docs/load-balancing-and-autoscaling
https://cloud.google.com/compute/docs/load-balancing-and-autoscaling

	Abstract
	1 Introduction
	2 Background and Related Work
	3 DeepScaling Overview
	3.1 Modules of DeepScaling

	4 Workload Forecasting
	4.1 Workload Characterization
	4.2 Forecasting with STGNN
	4.3 Performance of Workload Forecasting

	5 CPU Utilization Estimator
	5.1 Feature Embedding
	5.2 Estimation Model
	5.3 Performance of Estimator

	6 AutoScaling Decision Making
	6.1 Decision with Reinforcement learning
	6.2 Implementation Details

	7 Evaluation and Deployment
	7.1 Experimental Setup
	7.2 Overall Performance of DeepScaling
	7.3 Production Deployment

	8 CONCLUSIONS
	References

