
An Adaptive Partition-Based Approach for Adaptive
Random Testing on Real Programs

Yisheng Xiaa, Weifeng Suna, Meng Yana,∗, Lei Xub and Dan Yanga
aSchool of Big Data & Software Engineering, Chongqing University, Chongqing, China

bQingdao Haier Smart Technology R & D Co., Ltd, Qingdao, China

Email: {yishengx, weifeng.sun, mengy, dyang}@cqu.edu.cn, xulei1@haier.com

Abstract—Adaptive random testing (ART) is a family of algo-
rithms to enhance random testing (RT) by generating test cases
extensively and evenly. For this purpose, many ART algorithms
have been proposed, the most well-known and the first approach
is the Fixed-Size-Candidate-Set ART (FSCS-ART). In recent
years, researchers have also proposed many ART methods to
continuously improve the performance of FSCS-ART, but the
focus has been more on reducing the time overhead of FSCS-
ART while retaining its failure detection effectiveness as much
as possible due to the boundary effect. To alleviate the boundary
effect and improve the effectiveness of FSCS-ART, this paper
proposes an algorithm AP-FSCS-ART, an Adaptive Partition-
based method on top of FSCS-ART. First, AP-FSCS-ART divides
the entire input domain into external and internal sub-domains.
Then, two different algorithms are adaptively applied to the
two sub-domains to find the next test case from the randomly
generated candidate test cases. During the selecting process, AP-
FSCS-ART takes into account not only the most recently executed
test case of a candidate test case but also its position relative
to the input domain. Experiments using the 12 most common
real programs and comparisons with other algorithms in this
paper show that the AP-FSCS-ART algorithm has significantly
better failure detection capability, with improvements from 8.8%
to 11.4% compared to three state-of-the-art ART algorithms,
including the FSCS-ART, FSCS-ctsr, and NNDC-ART.

Index Terms—Adaptive random testing, Random testing, Soft-
ware testing.

I. INTRODUCTION

Software testing is a necessary process in the software

lifecycle and one of the fundamental way to guarantee the

quality of software products. Random testing (RT) is the

common method of software testing and one of the baselines

for the vast majority of software testing methods. The main

process of RT is to randomly select a test case from the

input domain, then execute it on the (software) system under

test (SUT), and finally compare the expected result with the

actual output result. The advantages of RT are its conceptual

simplicity and ease of implementation, but it has attracted a

great deal of controversy. Even Myers[14] comments on RT

as the poorest test case design methodology, due to the fact

that researchers found it redundant, ineffective and unable to

use information from the SUT for targeted testing.

Adaptive Random Testing (ART)[9] is proposed to improve

the effectiveness of RT by using more information from SUT.

The main difference between ART and RT is that ART uses

the distance (based on information from the SUT) to generate

*Corresponding Author

or select the next test case, while RT selects the next test case

at random. Previous research[8][17] had found that inputs that

cause errors usually tend to cluster together to form continuous

failure regions, likewise inputs that do not cause errors. This

seems to that the more evenly the test cases are spread

throughout the input domain, the better its failure detection

capability. Therefore, the goal of ART is to achieve a uniform

distribution of test cases in the input domain if the previous

inputs did not cause an error. There are many ART-based

methods, but the first and well known implementation of ART

is the Fixed-Size-Candidate-Set ART (FSCS-ART)[5]. First,

it randomly selects a fixed number (denoted k ) of candidate

test cases from the input domain. Then, FSCS-ART selects an

element from the candidates as the next test case, so that it

is the furthest away from the previously executed test case.

However, FSCS-ART has a potential boundary effect[7][10].

The boundary effect is the bias of the FSCS-ART algorithm

to select test cases close to the boundary, which deviates from

the initial purpose of even distribution.
As seen in recent years of ART-related papers[11][12],

current research in this area has focused more on reducing

ART computational overheads, but less on improving ART ef-

fectiveness. To improve the effectiveness of ART, we propose

an adaptive partition-based ART method, namely AP-FSCS-

ART. AP-FSCS-ART divides the entire input domain into two

sub-domains (external and internal sub-domains) and generates

separate test cases to alleviate the boundary effect of FSCS-

ART. Taking this a step further, we designed two algorithms

for different sub-domains, one selecting test cases in the

internal sub-domain and the other towards selecting those

in the external sub-domain. In addition, we have introduced

additional information on the relative position of the test cases

during the test case selection process.
To evaluate the effectiveness of AP-FSCS-ART, we con-

ducted experiments on 12 widely-used real programs, while

we compared the proposed algorithm with FSCS-ART, FSCS-

ctsr[11], and NNDC-ART[12] and performed statistical anal-

ysis of the experimental results. In summary, the main contri-

butions of this paper are as follows.

1) We propose a novel adaptive partition-based ART

method on top of FSCS-ART, namely AP-FSCS-ART.

The key novelty is to adaptively utilize different test

case selecting algorithms in different sub-domains.

Such an adaptive mechanism can effectively alleviate

the boundary effect of prior ART methods.

668

2023 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

2640-7574/23/$31.00 ©2023 IEEE
DOI 10.1109/SANER56733.2023.00068

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 S

of
tw

ar
e 

A
na

ly
si

s, 
Ev

ol
ut

io
n 

an
d 

R
ee

ng
in

ee
rin

g 
(S

A
N

ER
) |

 9
78

-1
-6

65
4-

52
78

-6
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
SA

N
ER

56
73

3.
20

23
.0

00
68

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on November 02,2023 at 07:32:14 UTC from IEEE Xplore.  Restrictions apply. 



2) We conduct experiments using the 12 most common

real numerical programs for AP-FSCS-ART, FSCS-

ART, FSCS-ctsr, and NNDC-ART, and perform statis-

tical analyses of the results. Compared to the other

algorithms, AP-FSCS-ART has better failure detection

capability. In addition, we have made our code and

related experimental results data publicly available.1

II. APPROACH

t

k 

t

d

d

Fig. 1. AP-FSCS-ART framework.

A. Framework

Fig. 1 shows the framework of the AP-FSCS-ART. The

first step is the initialization, α is the partition parameter (see

section Partition for details). The first test case t is generated

randomly from the input domain and executed in the SUT.

Next, if t finds a failure, F-measure is returned, otherwise

continue to generate k (chen[9] et al. consider k = 10 to be

optimal) random test cases from the input domain and add

them all to candidate set (C). F-measure in Fig. 1 indicates

the number of test cases that had been executed by the time

the first failure was found.

Then we compare the magnitude of the two values exter
inter and

1−αd

αd to determine which algorithm to calculate the adaptive

relative ratio. In this component, we calculate the adaptive

relative ratio to obtain information about the relative position

of the test case points in the input domain.

Finally, we combine the nearest neighbor values2 of the test

cases with the adaptive relative ratio to calculate the adaptive

distance and select the best test cases based on the maximum

adaptive distance. The best test case is assigned to t and the

above operation is repeated. The specific steps can be found

in the pseudo-code for AP-FSCS-ART in Algorithm 1. The

relevant terms mentioned above are described in detail in

Sections Partition, Adaptive Relative Ratio Calculation, and

Adaptive Test Case Selecting.

B. Partition
As already mentioned, FSCS-ART suffers from boundary

effects, and we want to alleviate this problem by partitioning

1The source code of the AP-FSCS-ART and the relevant experimental data
are available at: https://github.com/No-oneS/AP-FSCS-ART

2as shown in Algorithm 1, lines 14 and 23, and see [9] for details.

and using some adaptive components. In this article, AP-

FSCS-ART divides the entire input domain into external

and internal sub-domains with a fixed scaleα. Given a d-

dimensional input domain, and theαd denotes the proportion

of internal sub-domains in the overall input domain, and then

1 - αd indicates the proportion of external sub-domains. Thus,
1−αd

αd represents the ratio of the size of the external sub-

domain to the size of the internal sub-domain.

Algorithm 1: AP-FSCS-ART
Input: input domain(D)
Output: count

1 Selected set(E), Candidate set(C)← {};
2 count, exter, inter ← 1;
3 α← 0.7;
4 Randomly generate the first test caset from D;
5 while ! is F ind Fault( t ) do
6 Insert t into E as an executed test case;
7 Randomly generate k (k = 10)test cases from D

and assign them to C;
8 Calculate the dimensionality oft and assign it to d;
9 adp dist(C,E) ← 0;

10 if exter
inter > 1−αd

αd then
11 inter + +;
12 for ci ∈ C do
13 Calculating the relratio ci;
14 Calculating the mindist(ci,E) value by

Euclidean Distance;
15 Calculating the adpdist(ci,E);

16 if adp dist(ci,E) > adpdist(C,E) then
17 adp dist(C,E) ←adp dist(ci,E);

18 t← ci;

19 else
20 exter + +;
21 for ci ∈ C do
22 Calculating the relratio ci;
23 Calculating the mindist(ci,E) value by

Manhattan Distance;
24 Calculating the adpdist(ci,E);

25 if adp dist(ci,E) > adpdist(C,E) then
26 adp dist(C,E) ←adp dist(ci,E);

27 t← ci;

28 count + +;
29 C ← {};
30 return count;

C. Adaptive Relative Ratio Calculation

In this component, we mainly calculate the adaptive relative

ratio (rel ratio) of test case points. The rel ratio represents the

relative position of the test case point from the boundary of

the input domain, i.e. when a candidate test case point ci is

d-dimensional, in each dimension ci has a coordinate value cij
(j ∈ d). Similarly, the input domain is also d-dimensional, and

each of its dimensions is bounded by the maximum cij−max

and minimum cij−min
values. Each dimension has an adaptive

relative ratio (rel ratio cij
), which is shown in equation 2.

The minimum of the rel ratio cij
of all dimensions is the

rel ratio of ci, followed by rel ratioci , which is shown in

equation 1. Theoretically, the closer the test case is to the

boundary of the input domain, the smaller the rel ratio (in

the range of [0, 1]).

rel ratio ci ≤
|ci|
min
j=1

(
rel ratio cij

)
, (ci ∈ C) (1)

669

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on November 02,2023 at 07:32:14 UTC from IEEE Xplore.  Restrictions apply. 



External subdomain

Internal subdomain tExternal subdomain

Internal subdomain

𝑐 𝑐
𝑐

tExternal subdomain

Internal subdomain

𝑐 𝑡
𝑐

tExternal subdomain

Internal subdomain

𝑐 𝑐
𝑡

t

Fig. 2. Example of Exter func and Inter func.

rel ratio cij
= 2 ∗ min

(∣∣cij − cij−min

∣∣ , ∣∣cij−max − cij
∣∣)∣∣cij−max

− cij−min

∣∣
(2)

D. Adaptive Test Case Selecting

In this component, we will use two algorithms, based

on different ideas combining nearest neighbor and adaptive

relative ratio, which are used to select the best target candidate

test cases.

The exter and inter are used to count the number of calls

to the two algorithms (Exter func and Inter func). Inter func
(as shown in Algorithm 1, lines 11-18) is more biased towards

selecting test cases close to the center of the input domain,

while Exter func (as shown in Algorithm 1, lines 20-27) is

biased towards the boundary of the input domain (as shown in

Fig. 2). We want to constrain the number of calls to the two

algorithms by the inequality ( exterinter > 1−αd

αd ) to achieve an

even distribution of test cases. If the result of the inequality is

true, we will choose the Inter func, otherwise, we will choose

the Exter func.

For Inter func, the nearest neighbor value (mindist(ci,E))

of the candidate test case ci to E is calculated using the

Euclidean distance. Next, the adaptive distance (adp dist) is

calculated by combining the adaptive relative ratios with the

following formula:

adp dist ci = mindist(ci,E) ∗ (1 + rel ratio ci) (3)

However, for algorithm Exter func, the nearest neighbor value

is calculated using the Manhattan distance. And its adaptive

distance is calculated as follows:

adp dist ci = mindist(ci,E) ∗ (1− rel ratio ci) (4)

Similar to FSCS-ART, which uses the maximum nearest

neighbor value to select the best test case, AP-FSCS-ART is

conditional on the maximum adaptive distance.

E. Complexity Analysis

As shown in Algorithm 1, the space complexity of storing

the set of executed test cases is O(N), and the space complexity

of storing the set of k candidate test cases is O(K).In addition,

we need O(1) space complexity to store multiple parameters,

so the final space complexity of the algorithm AP-FSCS-ART

is O(N).

Compared to FSCS-ART (O(dKN2) see [11]), the time com-

plexity of AP-FSCS-ART additionally increases the computa-

tion of the relative ratio. The time complexity of calculating

the relative ratio ci is related to |C| , |E| , and |ci| , so for

the candidate sets C of k (= |C|) and dimension d (=|ci|), and

the executed test case sets E of N (=|E|), the time complexity

of AP-FSCS-ART is O(dKN2 + dKN). The time complexity

of AP-FSCS-ART is similar to that of FSCS-ART .

III. EXPERIMENTAL SETUP

In this section, we introduce the research questions, datasets

and evaluation metrics, and the statistical analysis.

A. Research Questions

We used 12 real programs to verify the validity of AP-

FSCS-ART, which have been widely adopted in research work

related to ART[3][4][6][8][9]. We used three state-of-the-art

algorithms as our baselines, including FSCS-ART, FSCS-ctsr,

and FSCS-NNDC-ART. FSCS-ART is the most classical ART

algorithm and the proposed algorithm is based on it, therefore

FSCS-ART should be used as our comparison algorithm.

FSCS-ctsr and FSCS-NNDC-ART have been shown to alle-

viate the boundary effects of FSCS-ART to varying degrees.

We have chosen these two algorithms as our comparison

algorithms. All experiments followed the setup of previous

studies except for the parameters α. The range of the size of

the α, was set to vary from 0.1 to 1 with an increment of 0.1.

We observed that the size of the value of α affects the number

of calls to the two algorithms and thus the distribution of test

cases. After extensive experimental proof, we found that α =

0.7 works best. Therefore, in this thesis, all experiments using

α have a value of 0.7. The empirical study can help answer

the following research questions:

1) How does AP-FSCS-ART perform on 12 real programs

compared to other ART algorithms?

2) How do the different components affect the effectiveness

of the AP-FSCS-ART?

B. Datasets and Evaluation Metrics

We conducted an empirical study using 12 real C++

programs from published ACM programs[1] and Numerical

Recipes[15], which are the most widely used in ART-related

research, the details of which are given in Table I. These

real programs are generated primarily from six mutant seeds,

including arithmetic operator replacement (AOR), constant

replacement (CR), relational operator replacement (ROR),

return statement replacement (RSR), statement deletion (SD),

and scalar variable replacement (SVR). We run the test cases

in the original program and in the variant program and collect

the results. By comparing the results of their executions, we

can determine whether the generated test cases detect failures.

Following previous research, we use FRT to refer to the F-

measure of RT and FART to refer to the F-measure of ART,

and then we use F-ratio as a validity criterion, which refers the

670

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on November 02,2023 at 07:32:14 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
12 REAL PROGRAMS.

Program
Input Domain

Fault Types Failure Rate
Dimension Input Types ( From, To )

Airy 1D Double (-5000,5000) CR 0.000716

Bessj0 1D Double (-300000,300000) AOR, ROR, SVR, CR 0.001373

Erfcc 1D Double (-30000,30000) AOR, ROR, SVR, CR 0.000574

Probks 1D Double (-50000,50000) AOR, ROR, SVR, CR 0.000387

Tanh 1D Double (-500,500) AOR, ROR, SVR, CR 0.001817

Bessj 2D Double (2,300),(-1000,15000) AOR, ROR, CR 0.001298

Gammq 2D Double (0,1700),(0,40) ROR, CR 0.000830

Sncndn 2D Double (-5000,5000),(-5000,5000) SVR, CR 0.001623

Golden 3D Double (-100,60),(-100,60),(-100,60) ROR, SVR, CR 0.000550

Plgndr 3D Double (10,500),(0,11),(0,1) AOR, ROR, CR 0.000368

Cel 4D Double
(0.001,1),(0.001,300),

(0.001,10000),(0.001,1000)
AOR, ROR, CR 0.000332

El2 4D Double
(0, 250), (0, 250),

(0, 250), (0, 250)
AOR, ROR, SVR, CR 0.000690

ratio of FART to FRT . F-ratio is used to measure the F-measure

improvement of ART compared to RT, and the smaller the

value of F-ratio, the greater the improvement in F-measure.

C. Statistical Analysis

We used the P-values[2] and the Effect Sizes[16] for the

statistical analysis. We wanted the P-value from the Wilcoxon

rank sum test to determine whether the two algorithms are

significantly different; when P-value is less than 0.05, it means

that the AP-FSCS-ART has significantly different from the

target algorithm. We used non-parametric Vargha and Delaney

Effect Size to determine the likelihood that the AP-FSCS-ART

has an advantage in failure detection capability. The Effect

Size is greater than 0.5, implying that AP-FSCS-ART is likely

to be better than the baseline method.

We determine the likelihood that the algorithm AP-FSCS-

ART is superior by Effect Size, and we use the non-parametric

Vargha and Delaney Effect Size without considering precon-

ditions such as the presence of a normal distribution in the

experimental results data. If the Effect size is greater than 0.5,

it means that AP-FSCS-ART is very likely to be better than

the target algorithm.

To ensure the reliability of the experimental results, we ran

each experiment 5000 times and took the average value as the

final result.
IV. RESULTS

A. Answer to RQ1

From Table II we can obtain the following observations:

1) From the F-ratio results: AP-FSCS-ART outperforms

both FSCS-ART and FSCS-ctsr, regardless of real

programs. Additionally, AP-FSCS-ART outperforms

NNDC-ART in most cases, except the Golden and

Plgndr programs. We have accumulated the F-ratio

values of the comparison methods for all 12 real

programs and the results show that the AP-FSCS-ART

algorithm can deliver 8.8% - 11.4% performance

improvement.

2) From the P-values results: Compared to FSCS-ART,

AP-FSCS-ART had P-values less than 0.05 in the

majority of cases except for the Bessj and Golden

programs. As compared to FSCS-ctsr, AP-FSCS-ART

has P-values less than 0.05 in almost all cases except for

the Golden program. And Compared to NNDC-ART,

AP-FSCS-ART had P-values less than 0.05 in most

cases except the Sncndn and Golden programs. From

these P-values results, it can be seen that in most cases,

the proposed algorithm is significantly different from

baselines; but the proposed algorithm does not seem to

be very different from these comparison algorithms in

the Golden program.

3) From the Effect Size results: Compared to FSCS-ART

and FSCS-ctsr, AP-FSCS-ART had effect size values

greater than 0.5 for all real programs, indicating that

AP-FSCS-ART failure detection is better than the

FSCS-ART and FSCS-ctsr. However, compared to

NNDC-ART, AP-FSCS-ART had effect size values

greater than 0.5 in most cases and even effect sizes up

to 0.7096 in the Cel program, except for the Golden

and Plgndr programs. It can therefore be concluded

that AP-FSCS-ART is better than the comparison

algorithm in almost all cases, except possibly worse

than NNDC-ART on Golden and Plgndr programs.

In summary, from the experimental results of these 12 real

programs, AP-FSCS-ART performs significantly better than

FSCS-ART, FSCS-ctsr, and NNDC-ART.

B. Answer to RQ2

We conducted ablation experiments to explore the con-

tribution of each component of the AP-FSCS-ART. As the

AP-FSCS-ART contains two adaptive components, adaptive

relative ratio calculation, and adaptive test case selecting. We

sequentially removed the formation variants and obtained the

corresponding F-ratio results. Table III provides the results

of the ablation experiments, from which we can make the

following observations:

1) For the adaptive relative ratio: Compared to AP-FSCS-

ART-a, AP-FSCS-ART had lower F-ratio values on 11

real programs, except for the Bessj program. However,

for the program Bessj, the difference between the two

algorithms is small, suggesting that the adaptive relative

ratio has a significant improvement for AP-FSCS-ART.

2) For the two different algorithms (adaptive test case

selecting): Compared to AP-FSCS-ART-b, AP-FSCS-

ART achieved significantly worse than AP-FSCS-ART-b

for the programs Airy, Bessj0, Erfcc, Probks, and Tanh.

However, significantly better F-ratio results were

obtained on the other seven programs. Interestingly, all

five programs are 1D and the failure pattern (the shape

of failure-causing inputs) is the block (from the work of

Kuo et al.[13] and Huang et al.[12]), making it clear that

AP-FSCS-ART-b easier to select test cases in the center

of the input domain. Then compared to AP-FSCS-ART-

c, AP-FSCS-ART is significantly worse on the five real

programs Bessj, Gammq, Plgndr, Cel, and El2, but the

other seven are significantly better. And for the 5 real

programs Airy, Bessj0, Erfcc, Probks, and Tanh, it is

difficult to find failures, whose F-ratio is denoted by

671

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on November 02,2023 at 07:32:14 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
F-RATIO OF AP-FSCS-ART AND OTHER ALGORITHMS ON 12 REAL PROGRAMS.

Program AP-FSCS-ART FSCS-ART FSCS-ctsr NNDC-ART
F-ratio F-ratio P-value Effect Size F-ratio P-value Effect Size F-ratio P-value Effect Size

Airy 0.5267 0.5785 0.0000 0.5367 0.5779 0.0000 0.5302 0.5531 0.0019 0.5179
Bessj0 0.5603 0.6137 0.0000 0.5380 0.6158 0.0000 0.5364 0.6057 0.0031 0.5170
Erfcc 0.5401 0.5926 0.0000 0.5381 0.6071 0.0000 0.5441 0.5509 0.0268 0.5128

Probks 0.5212 0.5626 0.0000 0.5316 0.5735 0.0000 0.5345 0.5681 0.0025 0.5174
Tanh 0.5134 0.5619 0.0000 0.5365 0.5673 0.0000 0.5346 0.5511 0.0271 0.5128
Bessj 0.5765 0.5851 0.7903 0.5015 0.6117 0.0042 0.5165 0.7779 0.0000 0.5658

Gammq 0.7748 0.8765 0.0000 0.5288 0.9083 0.0000 0.5361 0.9113 0.0000 0.5290
Sncndn 0.9957 1.0405 0.0121 0.5145 1.0270 0.0203 0.5134 1.0074 0.3903 0.5050
Golden 1.0073 1.0184 0.6208 0.5029 1.0297 0.2613 0.5065 0.9897 0.3648 0.4948
Plgndr 0.5202 0.5818 0.0000 0.5277 0.6011 0.0000 0.5364 0.3601 0.0000 0.3889

Cel 0.3981 0.5290 0.0000 0.5777 0.5670 0.0000 0.5858 0.9453 0.0000 0.7096
El2 0.3962 0.4974 0.0000 0.5549 0.5598 0.0000 0.5856 0.4526 0.0000 0.5283

SUM 7.3310(x) 8.0383 (y) Improvement: 8.8% 8.2469 (y) Improvement: 11.1% 8.2736 (y) Improvement: 11.4%
(Bolded red indicates the best result for that row, and the improvement as 1 - x/y)

TABLE III
F-RATIO OF AP-FSCS-ART ON 12 REAL PROGRAMS FOR RQ2.

Program AP-FSCS-ART AP-FSCS-ART-a AP-FSCS-ART-b AP-FSCS-ART-c
F-ratio F-ratio F-ratio F-ratio

Airy 0.5267 0.5662 0.4597 ——

Bessj0 0.5603 0.6215 0.4889 ——

Erfcc 0.5401 0.6047 0.4725 ——

Probks 0.5212 0.5610 0.4474 ——

Tanh 0.5134 0.5631 0.4523 ——

Bessj 0.5765 0.5706 0.7686 0.4142

Gammq 0.7748 0.9007 0.5662 0.5519

Sncndn 0.9957 1.0455 1.0038 1.0196

Golden 1.0073 1.0082 0.8862 1.2290

Plgndr 0.5202 0.6212 0.8469 0.4554

Cel 0.3981 0.5242 0.5670 0.3366

El2 0.3962 0.4986 0.5598 0.3474

SUM 7.3310 (x) 8.0861 (y) Improvement: 9.3% | 8.9902 (y) Improvement: 18.4% | —— (y) Improvement: —— %

AP-FSCS-ART-a: without adaptive relative ratio; AP-FSCS-ART-b: just use Inter func; AP-FSCS-ART-c: just use Exter func

’—’. This is because AP-FSCS-ART-c always selects

test cases close to the boundary of the input domain,

and the failures of these programs are located in the

center of the input domain. After the final accumulation

of the F-ratio, the AP-FSCS-ART improved by 18.4%

compared to the AP-FSCS-ART-b; the degree of

improvement could not be derived because the fact

that the AP-FSCS-ART-c was difficult to find the failure.

In summary, both adaptive relative-ratio calculation and

adaptive test case selecting components are helpful for the

effectiveness of our AP-FSCS-ART.

V. CONCLUSIONS AND FUTURE WORK

We propose AP-FSCS-ART, an adaptive partition-based

ART method on top of FSCS-ART. First, it divides the entire

input domain into external and internal sub-domains. Then,

two different algorithms are adaptively used to select the

randomly generated set of candidate test cases in these two

sub-domains to find the best one. To evaluate the effectiveness

of our method, we perform experiments in the classical 12 real

programs and compare them with the most classical method

FSCS-ART and two recently proposed ART methods FSCS-

ctsr and NNDC-ART. And the experimental results show that

AP-FSCS-ART showed a significant improvement in failure

detection capability, with improvements from 8.8% to 11.4%

compared to the comparison algorithms. In the future, we will

conduct experiments using more real programs, especially in

high dimensions; and validate them using some SUTs.

ACKNOWLEDGMENT

This work was supported in part by the National Key

Research and Development Project (No. 2021YFB1714200),

the National Natural Science Foundation of China (No.

62002034), the Fundamental Research Funds for the Central

Universities (No. 2022CDJDX-005), and the Starry Night

Science Fund of Zhejiang University Shanghai Institute for

Advanced Study (No. SN-ZJU-SIAS-001).

REFERENCES

[1] ACM. Collected algorithms from acm. Association for Computer
Machinery, New York, 1980.

[2] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software
Testing, Verification and Reliability, 24(3):219–250, 2014.

[3] Muhammad Ashfaq, Rubing Huang, and Michael Omari. Fscs-simd:
An efficient implementation of fixed-size-candidate-set adaptive random
testing using simd instructions. In 2020 IEEE 31st International
Symposium on Software Reliability Engineering (ISSRE), pages 277–
288. IEEE, 2020.

[4] Kwok Ping Chan, Tsong Yueh Chen, and Dave Towey. Restricted
random testing. In European Conference on Software Quality, pages
321–330. Springer, 2002.

[5] T. Y. Chen, H. Leung, and I. K. Mak. Adaptive random testing. In
Michael J. Maher, editor, Advances in Computer Science - ASIAN 2004.
Higher-Level Decision Making, pages 320–329, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

[6] Tsong Yueh Chen, Fei-Ching Kuo, and Huai Liu. Distributing test
cases more evenly in adaptive random testing. Journal of Systems and
Software, 81(12):2146–2162, 2008.

[7] TY Chen, TH Tse, Zongyuan Yang, et al. An innovative approach to
tackling the boundary effect in adaptive random testing. In 2007 40th An-
nual Hawaii International Conference on System Sciences (HICSS’07),
pages 262a–262a. IEEE, 2007.

[8] Yueh Tsong Chen, Fei-Ching Kuo, and Huai Liu. Adaptive random
testing based on distribution metrics. Journal of Systems and Software,
pages 1419–1433, 2009.

[9] Yueh Tsong Chen, Hing Leung, and K. I. Mak. Adaptive random testing.
Asian Computing Science Conference, pages 320–329, 2004.

[10] R. Huang, W. Sun, Y. Xu, H. Chen, D. Towey, and X. Xia. A survey
on adaptive random testing. 2020.

[11] Rubing Huang, Haibo Chen, Weifeng Sun, and Dave Towey. Candidate
test set reduction for adaptive random testing: An overheads reduction
technique. Science of Computer Programming, 214:102730, 2022.

[12] Rubing Huang, Weifeng Sun, Haibo Chen, Chenhui Cui, and Ning Yang.
A nearest-neighbor divide-and-conquer approach for adaptive random
testing. Science of Computer Programming, 215:102743, 2022.

[13] Fei-Ching Kuo et al. On adaptive random testing. Swinburne University
of Technology, Faculty of Information & Communication . . . , 2006.

[14] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software
testing. John Wiley & Sons, 2011.

[15] Flannery B.P. Teukolsky S.A. Vetterling W.T Press, W.H. Numerical
Recipes. Cambridge university press, 1986.

[16] András Vargha and Harold D Delaney. A critique and improvement
of the cl common language effect size statistics of mcgraw and wong.
Journal of Educational and Behavioral Statistics, 25(2):101–132, 2000.

[17] J. L. White and I. E. Cohen. A domain strategy for computer program
testing. IEEE Trans. Software Eng., pages 247–257, 1980.

672

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on November 02,2023 at 07:32:14 UTC from IEEE Xplore.  Restrictions apply. 


