
Fine-grained Co-Attentive Representation Learning
for Semantic Code Search

Zhongyang Deng1,2, Ling Xu1,2∗, Chao Liu1,2, Meng Yan1,2, Zhou Xu1,2, Yan Lei1,2
1Key Laboratory of Dependable Service Computing in Cyber Physical Society (Chongqing University),

Ministry of Education, China
2School of Big Data and Software Engineering, Chongqing University, Chongqing, China

Email:{zy.deng, xuling, liu.chao, mengy, zhouxullx, yanlei}@cqu.edu.cn

Abstract—Code search aims to find code snippets from large-
scale code repositories based on the developer’s query intent. A
significant challenge for code search is the semantic gap between
programming language and natural language. Recent works have
indicated that deep learning (DL) techniques can perform well by
automatically learning the relationships between query and code.
Among these DL-based approaches, the state-of-the-art model
is TabCS, a two-stage attention-based model for code search.
However, TabCS still has two limitations: semantic loss and
semantic confusion. TabCS breaks the structural information of
code into token-level words of abstract syntax tree (AST), which
loses the sequential semantics between words in programming
statements, and it uses a co-attention mechanism to build the
semantic correlation of code-query after fusing all features, which
may confuse the correlations between individual code features
and query.

In this paper, we propose a code search model named FcarCS
(Fine-grained Co-Attentive Representation Learning Model for
Semantic Code Search). FcarCS extracts code textual features
(i.e., method name, API sequence, and tokens) and structural
features that introduce a statement-level code structure. Unlike
TabCS, FcarCS splits AST into a series of subtrees corresponding
to code statements and treats each subtree as a whole to preserve
sequential semantics between words in code statements. FcarCS
constructs a new fine-grained co-attention mechanism to learn
interdependent representations for each code feature and query,
respectively, instead of performing one co-attention process for
the fused code features like TabCS. Generally, this mechanism
leverages row/column-wise CNN to enable our model to focus on
the strongly correlated local information between code feature
and query.

We train and evaluate FcarCS on an open Java dataset with
475k and 10k code/query pairs, respectively. Experimental results
show that FcarCS achieves an MRR of 0.613, outperforming three
state-of-the-art models DeepCS, UNIF, and TabCS, by 117.38%,
16.76%, and 12.68%, respectively. We also performed a user
study for each model with 50 real-world queries, and the results
show that FcarCS returned code snippets that are more relevant
than the baseline models.

Index Terms—code search, code structural feature, fine-
grained co-attention mechanism, representation learning

I. INTRODUCTION

To improve the software development productivity, de-
velopers frequently search and reuse existing source code
snippets from a codebase in large-scale software repositories
(e.g., GitHub) by leveraging a code search model [1]–[6].
Generally, a code search model aims to find the code snippets

∗Corresponding author.

whose programming semantics match the developer’s intent
expressed in natural language queries [7].

Early models leveraged the information retrieval (IR)
techniques to complete the code search task [4], [8]–[12].
Sourcerer [8] is a representative model. It regards code snip-
pets as plain text, builds indexes for them using the text search
engine Lucene, and finally performs code search by matching
keywords between query and the indexed code snippets. How-
ever, simple keyword matching can hardly bridge the semantic
gap between query and code snippets. To solve this issue, Lv
et al. [9] proposed the model CodeHow that extends queries
with more programming context in terms of related APIs and
improved the keyword matching with the extended Boolean
model.

In recent years, researchers have demonstrated that the deep
learning (DL) technique is a better choice for code search
compared with the traditional IR-based models [13]–[16]. The
reason is that DL-based models can directly learn the semantic
relationship between code snippets and related natural lan-
guage descriptions by embedding them into a shared vector
space [13]. These models can be trained by pairs of code
snippets and corresponding comments in natural language
[13]. In this way, the code snippets relevant to a query can
be conducted by calculating the cosine similarity between the
query vector and the vectors of code snippets in the codebase
[13].

DeepCS [13] is a representative DL-based model that rep-
resents code snippets by three features (i.e., method name,
API sequence, and tokens) and adopted the long and short-
term memory (LSTM) [17] and multi-layer perceptron (MLP)
[18] to embed query and code snippets. Recently, researchers
proposed some models to tackle the disadvantages of DeepCS.
UNIF [19] is a simpler model that replaces the complex
embedding (i.e., LSTM and MLP) with a shallow neural
network model fastText [20] and improves the performance
with attention mechanism [21]. Meanwhile, Shuai et al. [15]
observed that DeepCS fails to work in many cases because
it ignores the complex semantic correlation between query
and code snippets. To address this challenge, they proposed
an improved model CARLCS-CNN by performing embedding
with convolutional neural network (CNN) [22] and leveraging
a co-attention mechanism [23]–[27] to learn the semantic
correlation. Later, Yang et al. [16] proposed a state-of-the-

1

art model named TabCS. It extends CARLCS-CNN with an
abstract syntax tree (AST) feature to better represent the code
semantics. Experimental results showed that TabCS outper-
forms DeepCS, UNIF, and CARLCS-CNN significantly.

Fig. 1. An example of the code snippet.

Nevertheless, we observed that the TabCS model has two
limitations:

1) Semantic loss in code representation. It breaks the code
semantics (e.g., “sw = new StringWriter(); pw = new Print-
Writer(sw);” in Fig. 1) into a set of token-level words (e.g.,
“StringWriter”, “PrintWriter”, “sw”, “pw”, and “new”) when
generating serialized AST feature, which loses the sequential
semantics between words in programming statements.

2) Semantic confusion in co-attentive representation. TabCS
fuses four code features (i.e., method name, API sequence,
tokens, and AST) before learning the co-attentive repre-
sentation between code and query. However, the fusion of
different code features may generate wrong co-attentive se-
mantics with query. As illustrated in Fig. 1, although the
query words (e.g., “stack”, “trace”, “to”, “string”) are strongly
correlated with method name (i.e., “stackTraceToString”) and
APIs (i.e., “printStackTrace”, “toString”), the concatenation of
all features (e.g., “stackTraceToString”, “public”, “static”, ...,
“toString”) containing many irrelevant code words reduces and
confuses the semantic correlations between individual code
feature and query. Therefore, this semantic confusion will
undoubtedly affect the semantic matching of code and query.

To address these issues, we propose a Fine-grained Co-
Attentive Representation Learning Model for Semantic Code
Search (FcarCS). As shown in Fig. 2, this model introduces
a statement-level structural feature StaTree, named statement
tree sequence, which is a better input for code representation.
This feature extracts subtrees from AST according to code
statements and parses them into many sequences by depth-first
traversal. Each sequence is treated as a whole to preserve se-
quential semantics between words in different code statements
(e.g., transforming “S1” to “SubTree1”). Besides, instead of
performing one co-attention process for the fused features, we
construct a new fine-grained co-attention mechanism to learn
the interdependent representations between query and each
code feature, respectively. Generally, this mechanism leverages
row/column-wise CNN to enable our model to focus on the
strongly correlated local information between code feature
and query. Moreover, we perform the representation fusion by
assigning a larger weight for the representation with a higher
correlation.

To verify the model’s effectiveness, we evaluate FcarCS on
the widely adopted large-scale Java dataset provided by Hu et
al. [28]. The training and testing data contain 475k and 10k
code-query pairs. The experimental results show that FcarCS
achieves an MRR (Mean Reciprocal Rank) of 0.613, signif-
icantly outperforming three state-of-the-art models DeepCS
[13], UNIF [19], and TabCS [16] by 117.38%, 16.76%, and
12.68%, respectively. Meanwhile, we performed a user study
on 50 real-world queries [13]. The result shows that FcarCS
achieves more relevant results with an average FRank (the
rank position of the first result) of 5.12, reducing the average
FRank of DeepCS, UNIF, and TabCS by 36.9%, 23.6%, and
25.1% respectively, and this reduction is significant under the
Wilcoxon signed rank test [29].

In summary, the main contributions of this study are:
• We propose a Fine-grained Co-Attentive Representation

Learning model for Semantic Code Search (FcarCS),
which can capture the sequential semantics between
words for different code statements, distinguish the corre-
lated representation between query and each code feature
respectively, and enhance representation fusion by consid-
ering the contribution of each correlated representation.

• We conduct a code search experiment on a large-scale
dataset, and the FcarCS model outperforms three state-of-
the-art models (DeepCS, UNIF, and TabCS) significantly.

• We perform a user study on 50 real-world queries,
and find that the FcarCS can substantially search code
snippets more relevant than DeepCS, UNIF, and TabCS.

• We publicize our replication package1 with complete
source code, trained model, and datasets for reproducing
our experiment.

The outline for this article is organized as follows. Section II
describes the background of code search. Section III presents
our proposed model FcarCS. Section IV describes the experi-
mental setup. Section V and VI show the experimental results
and discussion, respectively. Section VII introduces related
work. Finally, section VIII summarizes this work and prospects
the future work.

II. BACKGROUND

This section describes the techniques involved in FcarCS:
word embedding for code search and joint embedding.

A. Word Embedding for Code Search

Code Textural Features Embedding. Source code can be
treated as texts. Every code snippet like Fig. 1 can be divided
into three textual components: method name sname (a list of
camel split tokens), API sequence sapi (a sequence of API
words used in the code snippets), tokens stoken (a bag of
words used in the code snippets). First, each component is
encoded by a vocabulary with the top-n frequently occurred
words, respectively. Then, three individual word embedding
layers are applied for these components to transform them
into vectors with the same dimension. Finally, each component

1https://github.com/cqu-isse/FcarCS

2

Fig. 2. The process of extracting the statement tree sequence.

vector is further embedded by a neural network model. In
TabCS, as Eq. (1), it uses an attention mechanism to implement
the embedding process for the textual features, so as to capture
better semantic information [30]–[32].

vtextual = Att1(E(sname)) +Att2(E(sapi))

+Att3(E(stoken))
(1)

where E represents a word embedding layer, Att refers to
attention mechanism. Note that different code search models
may use different embedding networks.

Code Structural Features Embedding. Abstract Syntax
Tree (AST) is a structural tree and its nodes correspond to the
structure or symbol of the source code, which can capture the
code’s lexical information and syntactic structure. In TabCS, it
uses a new structure-based traversal of AST to obtain a token-
level sequence sAST as code structural feature, as Eq. (2),
which is used to represent code snippets through an attention
mechanism.

vstructural = Att4(E(sAST)) (2)

Query Embedding. Similarly, a query in natural language
is treated as a list of words squery. These words are encoded
and transformed into the same dimensional query vector by
an embedding layer. In TabCS, as Eq. (3), the query is further
embedded by an attention mechanism.

vquery = Att5 (E (squery)) (3)

B. Joint Embedding

When completing the code and query embedding, the DL-
based model learns a joint embedding between vcode and

vquery. Finally, all code snippets are ranked according to
their cosine similarities to the corresponding query. The cosine
similarity is computed as follows:

cosine =
vcode · vquery
‖vcode‖ · ‖vquery‖

(4)

Based on the value of cosine similarity, the model recom-
mends a list of codes for users to choose from.

III. OUR MODEL

In this section, we present the overall structure and details
of the proposed model FcarCS. Fig. 3 shows the overall
framework of FcarCS, which implements code search by three
phases: feature representation, fine-grained co-attention, and
feature fusion. The first phase feeds code features (i.e., method
name, API sequence, tokens, and statement tree sequence) and
query features (i.e., tokens) into an attention mechanism to
obtain code/query feature matrices. Then, the second phase
feeds the feature matrices into four fine-grained co-attention
mechanisms respectively to get the fine-grained correlations
between each code feature and query to enhance code/query
feature vectors. In the third phase, the interdependent feature
vectors are respectively fused into final code/query vectors.
Finally, FcarCS calculates the cosine similarity between two
representative vectors.

A. Feature Representation

This phase describes the process of representing features,
including code features representation and query features
representation.

Code features representation. In our model, we treat code
snippet as a four-tuple <method name, API sequence, tokens,
statement tree>. The first three elements reflect the textual
semantics of code, which are also commonly used in other
works [13], [15]. The last element is the structural feature
we extracted from AST according to code statements, which
reflects the statement-level structural knowledge of code. Fig.
2 shows the process of extracting the sequence of statement
trees. First, we build an AST and mark the code statement
as the corresponding statement tree. The root node of the
AST subtree in the figure is marked in red. For example,
“S1” of the code in Fig. 2 represents the statement tree with
“MethodDeclaration” as the root node.

Then, these statement trees are spliced into a sequence
“StaTree: [SubTree1][SubTree2][SubTree3][SubTree4]” and
treated as four words in the sequence for subsequent word
embedding. Note that we also considered other levels of
embedded granularities, such as token-level and sequence-
level, and we will discuss these experiments in Section V.

Consider the four-tuple of code snippet, where
MethodName = (m1,m2, ...,mp) is the method
name expressed as a sequence of p tokens split
according to Camel-Case, Api = (a1, a2, ..., aq) is an
API sequence of continuous API method invocations,
Token = (t1, t2, ..., tn) is a set of tokens in the code snippet,
and StatementTree = (staTree1, staTree2, ..., staTrees)

3

Fig. 3. Overview of FcarCS.

is a sequence of statement trees. For each feature, we convert
each word into a vector by constructing a vocabulary and
an embedding matrix E ∈ Rg∗k, where g is the size of the
vocabulary and k is the dimension of the word embedding.
Thus each feature can be represented as an initial feature
matrix composed of a list of word vectors.

Since the attention mechanism can capture the key semantic
information in the sequence [21] and faster than the recurrent
neural network and the convolutional neural network [16],
we perform the attention mechanism on each feature to
extract the corresponding embedded representation. Take the
method name for example, and suppose mi ∈ Rk is a k-
dimensional initial word vector corresponding to the i-th word
in the method name, the attention weight αmi

of each mi is
calculated as follows:

αmi
= SoftMax (tanh (Wmi + b)) (5)

where W is a trainable parameter matrix, and b is a trainable
bias.

Then, we concatenate the weighted word vectors as the
feature matrix of the method name. The calculation formula
is as follows:

M = αm1
m1

⊕
αm2

m2

⊕
...
⊕

αmp
mp (6)

where M ∈ Rk∗p is the feature matrix of the method name
and

⊕
is the concatenation operator.

Since the other three features are similar to the method
name and are all serialized features, we also perform the same
approach to extract their feature matrices. So that we can
obtain API feature matrix A ∈ Rk∗q , tokens feature matrix
T ∈ Rk∗n, and statement tree feature matrix staTree ∈ Rk∗s.

Query features representation. Query describes a code
function and is usually composed of keywords containing
the developer’s intention. Similar to the tokens sequence, we
construct a vocabulary and embedding matrix to convert the
query’s words into vectors of the same dimension. Then, we
use an attention mechanism to extract the semantic information
of the query.

Suppose query is Q = {q1, q2, ..., qo}, where qi ∈ Rk is
the k-dimensional initial word vector corresponding to the i-th
word in the query. The feature extraction process is as follows:

αqi = SoftMax (tanh (Wqi + b)) (7)

Q = αq1q1
⊕

αq2q2
⊕

...
⊕

αqoqo (8)

Q ∈ Rk∗o is the final query feature matrix.

B. Fine-grained Co-Attention Mechanism

Fig. 4. Workflow of the fine-grained co-attention mechanism
In the feature representation phase, we get the code feature

matrix M , A, T , staTree and query feature matrix Q.
Afterwards, we propose a fine-grained co-attention mech-
anism for comparing and aligning each code feature em-
bedding against the query embedding. The key idea behind
this mechanism is to explore more fine-grained semantic
correlations between each code feature and query, and enrich
their representations, respectively. In this way, the model
clearly identifies different semantics between code features and
query, and avoids semantic confusion caused by feature fusion.
Fig. 4 presents the workflow of the fine-grained co-attention
mechanism, and the detailed steps are divided into three
parts: computing semantic association, extracting semantic
information, and calculating semantic vector.

Computing Semantic Association. In order to enrich the
representations of code feature and query feature, we first
calculate the mutually associated semantic matrix between
each code feature and query. Taking the method name matrix
M and query matrix Q as examples, we calculate the semantic
association matrix B ∈ Rp∗o, where p is the number of
method name tokens, and o is the number of query words.
The calculation formula is as follows:

B = tanh
(
MTUQ

)
(9)

4

where U ∈ Rk∗k is a trainable parameter matrix, the semantic
association matrix B represents the correlation between the
words in the method name and the words in the query. We
use the tanh activation function to constrain the value of each
element in the matrix to be between -1 and 1.

The correlation between words is reflected on each element
bi,j in matrix B, which represents the correlation between the
i-th code word and the j-th query word. Specifically, row i in
the B matrix represents the correlation between each query
word and the i-th code word. Similarly, column j in the B
matrix represents the correlation between each code word and
the j-th query word.

Extracting Semantic Information. CNN can perceive the
matrix’s local information and is good at extracting abstract
features [33]. So we extract the method name feature matrix
BM related with the query feature matrix Q, and the query
feature matrix BQ related with the method name feature
matrix M through CNN f (·) along with the row and column
directions of matrixB, respectively:

bMi = f (W ∗ bi:i+h−1 + b) (10)

BM = ave− pooling
(
FC

[
bM1 , b

M
2 , ..., b

M
p−h+1

])
(11)

bQi = f (W ∗ bi+h−1:i + b) (12)

BQ = ave− pooling
(
FC

[
bQ1 , b

Q
2 , ..., b

Q
o−h+1

])
(13)

where W ∈ Rk∗h is the filter, the filter window size h is set to
2, and bi,j is the element in the semantic association matrix B.
FC denotes a fully connected layer, which aggregates local
information bMi and bQi obtained by convolution. Since the
max-pooling strategy may ignore some important features, we
use the average pooling strategy ave − pooling to extract
more information after aggregating information at the full
connection layer.

Calculating Semantic Vector. After obtaining the semantic
feature matrix BM and BQ, we use a softmax function to
convert them into attention weights aM ∈ Rp and aQ ∈ Ro to
enrich each corresponding feature representation. The process
is as follows:

aMi =
exp

(
BM

i

)∑p
j=1 exp

(
BM

j

) (14)

aQi =
exp

(
BQ

i

)
∑o

j=1 exp
(
BQ

j

) (15)

aM =
[
aM1 , ..., a

M
p

]T
(16)

aQ =
[
aQ1 , ..., a

Q
o

]T
(17)

Finally, the semantic feature vector is obtained by dot product
operation of the feature matrix and attention weight. The
calculation process is as follows:

VM =M · aM (18)

VQM = Q · aQ (19)

VM represents the method name feature vector related with the
query feature matrix, and VQM represents the query feature
vector related with the method name feature matrix.

Similar to the method name, after performing the above
fine-grained co-attentive operations, we can also obtain API
sequence feature vector VA, tokens feature vector VT , state-
ment tree sequence feature vector VstaTree , and corresponding
query vectors {VQA, VQT , VQstaTree}.
C. Feature Fusion

Through the fine-grained co-attention mechanism, we
obtain the semantic code feature vectors Code =
{VM , VA, VT , VstaTree} and the semantic query feature vec-
tors Query = {VQM , VQA, VQT , VQstaTree}. Considering
the different importance of feature vectors, we leverage the
attention mechanism between feature vectors to learn the
correlation weights αvc and αvq , where vc ∈ Code and
vq ∈ Query. And then, we perform weighted fusion to obtain
the final code vector VC ∈ Rk∗c and query vector VQ ∈ Rk∗r,
where c is the sum of the words of all the code features, and
r is four times the number of query words. The calculation
process is shown in Eq. (20- 23):

αvc = SoftMax (tanh (Wvc + b)) (20)

VC =
∑

vc∈Code

vc · αvc (21)

αvq = SoftMax (tanh (Wvq + b)) (22)

VQ =
∑

vq∈Query

vq · αvq (23)

where W is a trainable parameter matrix, b is a trainable bias.

D. Model Optimization
In the experiment, each training instance is a triple
〈c, q+, q−〉, which is constructed as follows: there are relevant
query q+(the correct query of c) and irrelevant query q−(the
incorrect query of c) for each code. Our model expects that
when a code and a query have similar semantics, their repre-
sentation vectors should be close to each other in the vector
space. Specifically, our model would predict a higher similarity
for sim (c, q+) over sim (c, q−). The model is optimized by
the margin ranking loss [34], [35] as follows:

L (θ) =
∑

〈c,q+,q−〉∈G

max
(
0, β − sim

(
c, q+

)
+ sim

(
c, q−

))
(24)

where θ represents all parameters in the model, β is the margin
constraint parameter, which ensures that the distance between
the code vector and the correct query vector is closer to at
least β than that between the code vector and the wrong query
vector. β is set to the default value of 0.05. sim is the cosine
similarity between the code vector and the query vector.

We use the Adam algorithm [36] to minimize the loss func-
tion. In the training process, the loss function realizes gradient
descent through Adam [37], updates the model parameters
iteratively, and learns the final code representation vector and
query representation vector simultaneously.

5

E. Implementation Details

The necessary implementation of FcarCS is as follows: the
batch size is set to 128, the word embedding size is set to 100,
the CNN output dimension in the fine-grained co-attention
mechanism is set to 100, and the number of training epoch
is set to 400. All experiments were implemented by using
the Keras framework and python 3.6. The experiments were
conducted on a server (Ubuntu 18.04) with an NVIDIA Titan
V GPU and 256GB of memory.

IV. EXPERIMENT SETUP

This section describes the used dataset, the baseline models,
the evaluation metrics, and five investigated research questions
(RQs).
A. Dataset

To evaluate the effectiveness of the model, we conduct our
experiments on an existing large-scale Java dataset collected
by Hu. et al. [28]. This dataset contains over 475k code-query
pairs for training and 10k code-query pairs for testing. And
the content of this dataset was extracted from Java repositories
created on GitHub between 2015 and 2016 with at least 10
stars. We also perform a user study to test the performance
of our model on 50 real-world queries collected from Stack
Overflow by Gu et al. [13].
B. Baselines
DeepCS2. A DL-based code search model was proposed by
Gu et al. [13]. It uses LSTM and MLP to embed code snippets
and queries into a shared vector space and calculates the
similarity between the vectors.

UNIF. A simpler code search model was proposed by Cam-
bronero et al. [19]. It uses a fastText-based neural network
and performs an attention mechanism for code representation.
The cosine distance is used as the similarity metric. We have
reproduced the model according to the original paper in our
replication package3.

TabCS4. A state-of-the-art model based on a two-stage atten-
tion mechanism was proposed by Yang et al. [16]. The first
stage leverages the attention mechanism to extract semantics
from code and query, considering their semantic gap. The
second stage leverages a co-attention mechanism to capture
their semantic correlation and learn better code/query repre-
sentation.
C. Evaluation Metrics

We used two widely used metrics to evaluate the effective-
ness of the proposed model: mean reciprocal rank (MRR) and
SuccessRate at k (SR@k).

MRR, the average of the reciprocal ranks of all queries, is
computed as follow:

MRR =
1

|Q|

|Q|∑
q=1

1

FRankq
(25)

2https://github.com/guxd/deep-code-search
3https://github.com/cqu-isse/FcarCS
4https://github.com/cqu-isse/TabCS

where FRankq refers to the rank position of the first result
for the q-th query, |Q| is the number of queries in Q. Since
developers prefer to check the first few code snippets in the
list to find the expected code methods, we only test MRR on
the top-10 ranked list following Gu et al. [13].

SR@k, the proportion of queries that relevant code methods
can be found in the top-k ranked results. Following Gu et al.
[13], we evaluate SR with k at 1, 5, 10, respectively.

SR@k =
1

|Q|

|Q|∑
q=1

δ (FRankq ≤ k)) (26)

δ returns 1 if the q-th query could be found in the top-k
returned results and returns 0 otherwise.

D. Research Questions

To investigate the effectiveness of the proposed approach,
we studied the following five research questions (RQs):

RQ1. How effective is FcarCS compared with the state-of-
the-art models?

To verify the validity of the proposed model, the first question
investigates whether the FcarCS outperforms the state-of-the-
art models, including DeepCS, UNIF, and TabCS, on Hu. et
al.’s datasets [28].

RQ2. How do four code features affect the model perfor-
mance?

In the FcarCS model, a code snippet is represented by four fea-
tures (method name, API sequence, tokens, and statement tree
sequence) that capture textual and structural information of the
source code. To analyze the impact of each feature on FcarCS
effectiveness, we performed feature ablation experiments and
investigated whether using all four features together was the
best choice.

RQ3. How do different co-attention settings affect the
model effectiveness?

To evaluate the effectiveness of the fine-grained co-attention
mechanism between each code feature and query, we con-
structed the following two model variants: FcarCS-No and
FcarCS-Fusion, and compared them with FcarCS.
• FcarCS-No: This variant removes the fine-grained co-

attention mechanism.
• FcarCS-Fusion: This variant performs the fine-grained

co-attention mechanism between query and code fused
all features.

• FcarCS is the proposed model, which performs the fine-
grained co-attention mechanism between each code fea-
ture and query.

RQ4. How do different word embedding granularities of
code structural sequences affect the model performance?

6

To explore a good trade-off between the embedding granulari-
ties and the richness of syntactical information, we carried out
the following three different ways of embedding statement tree
sequences on FcarCS and TabCS during the word embedding
phase.
• Token-level: each token in the statement tree sequence is

treated as a word.
• Statement-level: the part of the statement tree sequence

corresponding to a code statement is treated as a word.
• Sequence-level: the entire structural sequence is treated

as a word.

RQ5. How effective is FcarCS on real-world queries com-
pared with the state-of-the-art models?

To measure the effectiveness of FcarCS in the real world, we
identify whether our model returns code snippet more relevant
than DeepCS, UNIF, and TabCS on 50 real-world queries
collected by Gu. et al. [13].

V. EXPERIMENT RESULTS

This section presents the detailed results of the five RQs
described in Section IV-D.

A. RQ1: How effective is FcarCS compared with the state-of-
the-art models?

We compare our FcarCS model with the state-of-the-art
models DeepCS, UNIF, and TabCS. Table I presents the ex-
perimental results of FcarCS compared against three baseline
models on Hu et al.’s datasets. Result shows that FcarCS
achieves an MRR of 0.613, and SR@1/5/10 with 0.628/ 0.770/
0.830. Our proposed FcarCS outperforms the models DeepCS,
UNIF, and TabCS by 117.38%, 16.76%, and 12.68% in terms
of MRR; by 125.90%/ 77.42%/ 60.85%, 18.71%/ 12.90%/
7.51%, and 14.18%/ 7.09%/ 4.80% in terms of SR@1/5/10,
respectively.

TABLE I
EFFECTIVENESS COMPARISON OF MODELS DEEPCS, UNIF,

TABCS AND FCARCS IN TERMS OF SR@1/5/10 AND MRR.

Model SR@1 SR@5 SR@10 MRR

DeepCS 0.278 0.434 0.516 0.282
UNIF 0.529 0.682 0.772 0.525
TabCS 0.550 0.719 0.792 0.544
FcarCS 0.628 0.770 0.830 0.613

Answer to RQ1: The proposed model FcarCS outper-
forms the state-of-the-art baselines DeepCS, UNIF, and
TabCS significantly for code search.

B. RQ2: How do four code features affect the model perfor-
mance?

To investigate the relative importance of the code’s four
features (method name, tokens, API sequence, and statement
tree sequence), we remove one feature from FcarCS at a time.
In Table II, M, A, T, and ST in FcarCS represent method name,
API sequence, tokens, and statement tree sequence, respec-
tively. For the TabCS-staTree model, it replaces the structural

sequence used in the original paper with the statement tree
sequence extracted from our work. And UNIF-staTree means
that we have added statement tree sequence as a code structural
feature to the model UNIF inputs.

From Table II, we can observe that TabCS-staTree im-
proves TabCS by 6.36%/ 4.17%/ 2.90%, and 5.33% in terms
of SR@1/5/10 and MRR. UNIF-staTree improves UNIF
by 6.24%/ 5.72%/ 2.07%, and 4.57%. FcarCS outperforms
TabCS-staTree and UNIF-staTree by 6.98% and 11.66%
in terms of MRR. For FcarCS, by removing the features
on method name, API sequence, tokens, and statement tree
sequence, the MRR decreases by 3.59%/ 2.77%/ 7.34%/
3.26%, respectively.

TABLE II
EFFECTIVENESS COMPARISON OF FIVE DIFFERENT FEATURE

SETTINGS IN TERMS OF SR@1/5/10 AND MRR.

Model SR@1 SR@5 SR@10 MRR

UNIF 0.529 0.682 0.772 0.525
UNIF-staTree 0.562 0.721 0.788 0.549

TabCS 0.550 0.719 0.792 0.544
TabCS-staTree 0.585 0.749 0.815 0.573

FcarCS (A+T+ST) 0.609 0.753 0.814 0.591
FcarCS (M+T+ST) 0.615 0.755 0.814 0.596
FcarCS (M+A+ST) 0.582 0.732 0.794 0.568
FcarCS (M+A+T) 0.609 0.757 0.823 0.593
FcarCS (M+A+T+ST) 0.628 0.770 0.830 0.613

The result shows that all four code features can improve
the effectiveness of FcarCS. Moreover, we can observe that
statement tree sequences can improve the performance of the
UNIF, TabCS, and FcarCS. The results confirm that using
four code features together for model inputs can achieve the
best performance, while code tokens affect the effectiveness of
FcarCS most. This result is also consistent with cognition that
code tokens contain more words related to query semantics.

Answer to RQ2: The proposed structural feature is
necessary and useful for code search. Meanwhile, all the
four code features can contribute to the effectiveness of
FcarCS.

C. RQ3: How do different co-attention settings affect the
model effectiveness?

Table III shows the effectiveness comparison of the fol-
lowing variants using the same features: TabCS-staTree is
a representative of co-attention mechanism; FcarCS-No con-
catenates all code feature matrices directly to obtain code
matrix after attention mechanism, and then the average-
pooling is performed for code/query matrix to get code/query
vector, respectively; FcarCS-Fusion uses the fine-grained co-
attention mechanism to get code/query vector directly after
fusing all the code feature matrices; FcarCS is our proposed
model.

The core idea of models TabCS-staTree and FcarCS-
Fusion is to fuse all code feature embeds firstly and then
calculate the co-attentive representations with query. However,
as shown in Table III, we can see that FcarCS-Fusion

7

outperforms TabCS-staTree in terms of MRR and SR. This
result indicates that the fine-grained co-attention mechanism
is more effective.

Moreover, FcarCS outperforms TabCS-staTree, FcarCS-
No and FcarCS-Fusion by 6.98%, 5.51% and 1.32% in
terms of MRR. This result implies that capturing semantic
correlations between code features and queries to enrich
representations can improve performance and the fine-grained
co-attention mechanism contributes to the effectiveness of
FcarCS.

TABLE III
EFFECTIVENESS COMPARISON OF THREE DIFFERENT

CO-ATTENTION SETTINGS IN TERMS OF SR@1/5/10 AND MRR.

Model SR@1 SR@5 SR@10 MRR

TabCS-staTree 0.585 0.749 0.815 0.573

FcarCS-No 0.594 0.745 0.811 0.581
FcarCS-Fusion 0.617 0.765 0.823 0.605
FcarCS 0.628 0.770 0.830 0.613

Answer to RQ3: The proposed fine-grained co-attention
mechanism is the best setting for code search, compared
with the other representative co-attention settings.

D. RQ4: How do different word embedding granularities of
code structural sequences affect the model performance?

For a statement tree sequence, there are different ways
of embedding the sequence. In addition to statement-level
embedding granularity, we also consider two other granular-
ities: token-level and sequence-level. The token-level treats
each token of a sequence as a word, and the sequence-level
treats the entire sequence as a word. We compare token-
level granularity, statement-level granularity, and sequence-
level granularity on TabCS and FcarCS, respectively.

From Table IV, we can observe that statement-level granu-
larity is the best choice for the embedding of statement tree
sequence on both TabCS and FcarCS. For these two mod-
els, the statement-level granularity shows better performance,
achieving the MRR of 0.573 and 0.613, which outperforms
token-level and sequence-level. The results demonstrate that
statement-level representation is a good trade-off between the
token-level and sequence-level representation.

TABLE IV
EFFECTIVENESS COMPARISON OF DIFFERENT WAYS OF

EMBEDDING CODE STRUCTURAL SEQUENCES IN TERMS OF
SR@1/5/10 AND MRR.

Model (TabCS) SR@1 SR@5 SR@10 MRR

Token-level 0.584 0.746 0.815 0.568
Statement-level 0.585 0.749 0.815 0.573
Sequence-level 0.577 0.741 0.813 0.566

Model (FcarCS) SR@1 SR@5 SR@10 MRR

Token-level 0.618 0.762 0.820 0.599
Statement-level 0.628 0.770 0.830 0.613
Sequence-level 0.621 0.767 0.828 0.600

TABLE V
BENCHMARK QUERIES AND EVALUATION RESULTS (NF: NOT FOUND

WITHIN THE TOP 10 RETURNED RESULTS D:DEEPCS U:UNIF T:TABCS
F:FCARCS)

No. Question ID Query D U T F
1 309424 convert an inputstream to a string NF 2 1 2
2 157944 create arraylist from array NF 4 5 1
3 1066589 iterate through a hashmap 4 1 NF 8
4 363681 generating random integers in a specific range 4 NF NF 1
5 5585779 converting string to int in java 1 NF 1 3
6 1005073 initialization of an array in one line NF NF 3 5
7 1128723 how can I test if an array contains a certain value NF NF NF 2
8 604424 lookup enum by string value 2 7 NF 9
9 886955 breaking out of nested loops in java NF NF NF NF
10 1200621 how to declare an array NF 3 2 6
11 41107 how to generate a random alpha-numeric string 5 2 5 2
12 409784 what is the simplest way to print a java array 3 4 9 5
13 109383 sort a map by values NF NF NF NF

14 295579
fastest way to determine if an integer’s square root
is an integer NF NF NF NF

15 80476 how can I concatenate two arrays in java NF 7 1 7

16 326369
how do I create a java string from the contents of
a file 5 1 1 1

17 1149703 how can I convert a stack trace to a string 1 1 1 1
18 513832 how do I compare strings in java 7 3 3 1
19 3481828 how to split a string in java NF 1 5 2
20 2885173 how to create a file and write to a file in java 1 1 1 1
21 507602 how can I initialise a static map NF NF NF 2

22 223918
iterating through a collection,
avoiding concurrentmodification
-exception when removing in loop

NF NF NF NF

23 415953 how can I generate an md5 hash NF 1 NF 1
24 1069066 get current stack trace in java 1 2 5 1
25 2784514 sort arraylist of custom objects by property NF NF NF NF
26 153724 how to round a number to n decimal places in java NF NF NF NF
27 473282 how can I pad an integers with zeros on the left NF NF NF NF
28 529085 how to create a generic array in java NF 4 NF 1
29 4716503 reading a plain text file in java 1 1 1 1
30 1104975 a for loop to iterate over enum in java 1 10 5 7
31 3076078 check if at least two out of three booleans are true NF NF NF NF
32 4105331 how do I convert from int to string NF 2 7 2
33 8172420 how to convert a char to a string in java NF NF NF NF
34 1816673 how do I check if a file exists in java NF NF NF NF
35 4216745 java string to date conversion 1 10 5 2
36 1264709 convert inputstream to byte array in java NF 1 1 1
37 1102891 how to check if a string is numeric in java 1 1 1 1
38 869033 how do I copy an object in java NF NF NF NF
39 180158 how do I time a method’s execution in java NF NF 10 1
40 5868369 how to read a large text file line by line using java NF 8 7 1
41 858572 how to make a new list in java NF NF 2 1
42 1625234 how to append text to an existing file in java 7 9 NF NF
43 2201925 converting iso 8601-compliant string to date 3 8 6 2
44 122105 what is the best way to filter a java collection NF 5 NF NF
45 5455794 removing whitespace from strings in java NF NF NF NF

46 225337
how do I split a string with any
whitespace chars as delimiters NF 2 2 1

47 52353
in java, what is the best way to determine
the size of an object NF 4 8 7

48 160970
how do I invoke a java method when
given the method name as a string NF 1 1 1

49 207947
how do I get a platform dependent
new line character NF NF NF NF

50 1026723 how to convert a map to list in java 6 9 1 1

Answer to RQ4: Statement-level granularity is the
best choice for embedding structural sequence in feature
representation to code search effectiveness.

E. RQ5: How effective is FcarCS on real-world queries com-
pared with the state-of-the-art models?

Table V shows the user study of FcarCS and baselines on 50
real-world queries. The column Question ID shows the original
ID of the question in Stack Overflow where the query comes
from. The last four columns show the FRank result of each
model, which refers to the rank position of the first relevant
result. Following Gu et al. [13], the relevancy is manually iden-
tified by two independent developers, and the disagreements
are resolved by open discussions. The agreement of the manual
assessment was measured using pairwise inter-rater reliability
with Cohen’s Kappa statistic [38]. The agreement rate in the
pilot study was “substantial” (0.83). The symbol ‘NF’ means

8

that Not Found relevant result within the top K results (K=10),
and we conservatively treat the FRank as 11 for queries signed
‘NF’. We observe that FcarCS achieves more relevant results
with an average FRank of 5.12, reducing the average FRank
of DeepCS (8.12), UNIF (6.70), and TabCS (6.84) by 36.9%,
23.6%, and 25.1%, respectively. The results show that FcarCS
generally returns code more relevant than DeepCS, UNIF, and
TabCS.

Furthermore, to analyze the statistical difference between
FcarCS and these baselines, we apply the Wilcoxon signed-
rank test [29] on FRank between them at a 5% signifi-
cance level. The p-value is less than 0.01, indicating the
improvements of FcarCS over these baselines are substantial
in statistical significance.

Answer to RQ5: For real-world queries, FcarCS
outperforms the state-of-the-art models substantially in
statistical significance.

VI. DISCUSSION

This section first discusses the advantages of the proposed
model FcarCS in Section VI-A. Then, we discuss the threats
to validity in Section VI-B.

A. Why Does FcarCS Work Well?

Although TabCS considers both textual and structural fea-
tures in code representation [16], it may cause semantic
loss by treating a set of token-level AST’s words as code
structure described in Section I. As for FcarCS, it breaks the
structural semantics into a set of statement-level subtrees of
AST corresponding to code statements and converts them into
a sequence, which allows the model to preserve sequential
semantics between words in code statements while capturing
structural semantics. The result in Table II proves that the
statement-level structure can significantly improve the perfor-
mance of both TabCS and FcarCS.

Moreover, FcarCS learns the semantic correlations between
query and each code feature respectively through a fine-
grained co-attention mechanism, which is higher conducive
to learning interdependent code/query representation than per-
forming one co-attention process for the fused feature of
code in TabCS. Fig. 5 and Fig. 6 show the first result of
TabCS vs. our FcarCS for query “how to read text file line
by line”. From Fig. 5, we can observe that TabCS returned
an irrelevant code, although method name and API contain
the query keywords (e.g., “read” and “line”). Because TabCS
fuses all code features to compute co-attentive representation
with query, in which a lot of irrelevant code words (e.g.,
“InputStreamReader”, “getLineNumber”) will confuse seman-
tic relevance between code and query. In contrast, FcarCS
can retrieve the expected code snippet in Fig. 6, which
involves a lot of query-related keywords, such as “readLines”,
“fileName”, “reader”, “readLine” and etc. An important reason
is that FcarCS obtains the correlations between each code
feature and query respectively through a fine-grained co-
attention mechanism. In this way, FcarCS clearly captures

the interdependent semantics between code and query, and
mitigates semantic confusion.

Fig. 5. TabCS’s first retrieved result for “how to read text file line by line”.

Fig. 6. FcarCS’s first retrieved result for “how to read text file line by line”.

B. Threats To Validity

There are many threats to validity for the proposed model
FcarCS. First, the model works well on the Java dataset, which
does not mean that it will perform well in other programming
language datasets (e.g., c#, python). We plan to extend the
types of our dataset on the same model. Additionally, the rel-
evancy of returned code methods to the 50 real-world queries
was manually identified by two independent developers, which
could suffer from subjectivity bias. In the future, we will
mitigate this threat by inviting more developers. In addition,
many parameters used by our model are set to default values,
such as the length of code features, the dimension of word
embedding, and the size of CNN’s convolution kernel. Thus,
such a setting may not represent the best model performance.

VII. RELATED WORK

This section provides the related works in two aspects: code
search and abstract syntax tree.

A. Code Search

Over the years, many IR-based code search methods have
been proposed [4], [8]–[12]. Krugle [39] and Koders [40] are
early code search engines that return code snippets containing
the keywords specified in the query. Later, many researchers
put forward a lot of work focusing on query extension in
order to understand better natural language queries [41]–[43].
For example, Lu et al. [43] extended a query with synonyms
generated from WordNet [44]. However, source code is more

9

than just plain text, and it contains a wealth of program-
ming knowledge [45]. In order to further improve search
performance, Bajracharya et al. [8] proposed a Lucene-based
(traditional text search engine) tool called Sourcerer, which
searches code based on the similarity between text attributes
and code features. Lv et al. [9] proposed the CodeHow, which
uses the extended Boolean model to extract the relations
between queries and related APIs.

With the development of deep learning (DL), Gu et al.
[13] applied DL techniques to code search model for the
first time and named it DeepCS (Deep Code Search). It uses
two independent LSTM embedded code snippets and their
corresponding queries into vector spaces, so as to search
code by comparing the similarity between these vectors. Their
experiments show that DeepCS can significantly outperform
two representative models, Sourcerer [8] and CodeHow [9].
The following other work proposed many improved DL-based
models. Cambronero et al. [19] proposed a simpler model
UNIF than DeepCS, which is based on the neural network
model fastText [20] looks for the relationship between code
and query through the attention mechanism. Shuai et al. [15]
improved the performance of code search by computing the
co-attentive representation of code-query, and they proposed
CARLCS-CNN, a code search model based on convolutional
neural network (CNN), to establish the semantic relationship
between code and query through the co-attention mechanism.
Recently, Yang et al. [16] combined the advantages of attention
mechanism and co-attentive representation to build an effective
model TabCS with a structural feature AST. As described in
Section III, our proposed FcarCS improved the TabCS by
introducing a statement-level structure and fine-grained co-
attention mechanism to address the semantic loss and semantic
confusion in TabCS described in Section I. Experimental
results showed that FcarCS substantially outperforms these
representative models (i.e., DeepCS, UNIF, TabCS).

B. Abstract Syntax Tree

There are many tasks in software engineering related to
source code, such as code search [13]–[16], [46], code sum-
marization [28], [47], [48], code representation learning [49]–
[52], etc. These tasks face one challenge while learning the
source code, that is, structural feature learning. Abstract syntax
tree (AST) is a kind of tree that represents the syntactic
structure of source code [53]. It has been widely used in
programming language and software engineering tasks [53]–
[57]. Zhang et al. [49] proposed an AST-based neural network
ASTNN to learn vector representation of source code, which
can capture the naturalness of statements and works well in
source code classification and code clone detection tasks. Hu
et al. [28] proposed the Hybrid-DeepCom model to solve
the code summary task, and they used a new structure-based
traversal (SBT) method to convert the ASTs into specially
formatted sequences which can reflect the context structure of
code. This model utilized source code and its SBT structure to
generate code summaries. Followed Hybrid-DeepCom, Yang
et al. [16] proposed a code search model TabCS combining

code textual features and SBT structure feature, and it achieved
improvement in code search tasks. Lin et al. [58] noted that it
was difficult to training over the entire AST and present the
Block-wise Abstract Syntax Tree Splitting method (BASTS),
which fully utilizes the rich tree-form syntax structure in
ASTs, for improving code summarization. Nighi et al. [50]
proposed the InferCode model, a self-supervised learning
technique for source code learning of unlabeled data. The
model’s novelty lies in the training of code representations by
predicting subtrees automatically identified from the contexts
of ASTs.

These works have a similar spirit that extracting the struc-
tural feature by transforming AST into different sequences to
better represent code in their tasks. Following this spirit, in
this paper, we introduce a statement-level structural sequence
and explore the trade-off between different embedding granu-
larities and richness of structural information in Section V-D.
The experimental results show that statement-level structure is
the best choice for our model.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose FcarCS, a fine-grained co-attentive
representation learning model for semantic code search, which
not only extracts code textual features, but also extracts
structural information by introducing a statement-level code
structure. Instead of learning isolated representations, FcarCS
constructs a fine-grained co-attention mechanism to learn
semantic correlations of each code feature and query, which
can directly enhance their respective representations. Based
on these semantic feature representations, FcarCS can learn
interdependent code/query vectors better. An evaluation of the
latest open-source dataset shows that FcarCS outperforms the
state-of-the-art models (i.e., DeepCS, UNIF, and TabCS) by
117.38%, 16.76%, and 12.68% in terms of MRR, respectively.
Moreover, we perform a user study on 50 real-world queries,
and the result shows that FcarCS significantly reduces the
average FRank of DeepCS, UNIF, and TabCS by 36.9%,
23.6%, and 25.1%, respectively. Therefore, the statement-level
structure and fine-grained co-attention mechanism used by the
FcarCS facilitate searching for code snippets that match the
developer’s intent. In the future, we plan to verify the validity
of our model in multiple programming languages and more
datasets.

ACKNOWLEDGMENT

This work was supported in part by the General Pro-
gram of Chongqing Natural Science Foundation(cstc2021jcyj-
msxmX0309), the National Key Research and Development
Project (No.2018YFB2101200), the Chongqing Science and
Technology Plan Projects (No. cstc2018jszx-cyztzxX0037),
Key Project of Technology Innovation and Application De-
velopment of Chongqing (No. cstc2019jscx-mbdxX0020),
the National Natural Science Foundation of China (No.
62102054), and the Open Foundation of Key Laboratory of
Dependable Service Computing in Cyber Physical Society,
Ministry of Education of China (CPSDSC202004).

10

REFERENCES

[1] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,
“Two studies of opportunistic programming: Interleaving web foraging,
learning, and writing code,” in Proceedings of the 27th International
Conference on Human Factors in Computing Systems, CHI 2009,
Boston, MA, USA, April 4-9, 2009, 2009.

[2] K. Kevic and T. Fritz, “Automatic search term identification for change
tasks,” in Companion Proceedings of the 36th International Conference
on Software Engineering, 2014, pp. 468–471.

[3] M. P. Robillard, “What makes apis hard to learn? answers from devel-
opers,” IEEE software, vol. 26, no. 6, pp. 27–34, 2009.

[4] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: finding relevant functions and their usage,” in Proceedings of
the 33rd International Conference on Software Engineering, 2011, pp.
111–120.

[5] S. P. Reiss, “Semantics-based code search,” in 2009 IEEE 31st Interna-
tional Conference on Software Engineering. IEEE, 2009, pp. 243–253.

[6] F. Zhang, H. Niu, I. Keivanloo, and Y. Zou, “Expanding queries for code
search using semantically related api class-names,” IEEE Transactions
on Software Engineering, vol. 44, no. 11, pp. 1070–1082, 2017.

[7] X. Ling, L. Wu, S. Wang, G. Pan, T. Ma, F. Xu, A. X. Liu, C. Wu, and
S. Ji, “Deep graph matching and searching for semantic code retrieval,”
ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 15,
no. 5, pp. 1–21, 2021.

[8] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and
C. Lopes, “Sourcerer: a search engine for open source code supporting
structure-based search,” in Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and
applications, 2006, pp. 681–682.

[9] F. Lv, H. Zhang, J.-g. Lou, S. Wang, D. Zhang, and J. Zhao, “Codehow:
Effective code search based on api understanding and extended boolean
model (e),” in 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2015, pp. 260–270.

[10] E. Hill, L. L. Pollock, and K. Vijay-Shanker, “Improving source code
search with natural language phrasal representations of method signa-
tures,” in IEEE/ACM International Conference on Automated Software
Engineering, 2011.

[11] R. Sindhgatta, “Using an information retrieval system to retrieve source
code samples,” in International Conference on Software Engineering,
2006.

[12] M. Lu, X. Sun, S. Wang, D. Lo, and Y. Duan, “Query expansion
via wordnet for effective code search,” in 2015 IEEE 22nd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), 2015.

[13] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE). IEEE,
2018, pp. 933–944.

[14] W. Li, H. Qin, S. Yan, B. Shen, and Y. Chen, “Learning code-query
interaction for enhancing code searches,” in 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2020, pp. 115–126.

[15] J. Shuai, L. Xu, C. Liu, M. Yan, X. Xia, and Y. Lei, “Improving code
search with co-attentive representation learning,” in Proceedings of the
28th International Conference on Program Comprehension, 2020, pp.
196–207.

[16] L. Xu, H. Yang, C. Liu, J. Shuai, M. Yan, Y. Lei, and Z. Xu, “Two-
stage attention-based model for code search with textual and structural
features,” in 2021 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2021, pp. 342–353.

[17] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks for
language modeling,” in Thirteenth annual conference of the international
speech communication association, 2012.

[18] M. W. Gardner and S. Dorling, “Artificial neural networks (the multi-
layer perceptron)—a review of applications in the atmospheric sciences,”
Atmospheric environment, vol. 32, no. 14-15, pp. 2627–2636, 1998.

[19] J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When deep
learning met code search,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2019, pp. 964–974.

[20] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov,
“Fasttext. zip: Compressing text classification models,” arXiv preprint
arXiv:1612.03651, 2016.

[21] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, pp. 1–29, 2019.

[22] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–551,
1989.

[23] J. Yu, Y. Lu, W. Zhang, Z. Qin, Y. Liu, and Y. Hu, “Learning cross-modal
correlations by exploring inter-word semantics and stacked co-attention,”
Pattern Recognition Letters, vol. 130, pp. 189–198, 2020.

[24] D.-K. Nguyen and T. Okatani, “Improved fusion of visual and language
representations by dense symmetric co-attention for visual question
answering,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 6087–6096.

[25] Y. Tay, A. T. Luu, and S. C. Hui, “Multi-pointer co-attention networks
for recommendation,” in Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining, 2018,
pp. 2309–2318.

[26] L. Li, R. Dong, and L. Chen, “Context-aware co-attention neural
network for service recommendations,” in 2019 IEEE 35th International
Conference on Data Engineering Workshops (ICDEW). IEEE, 2019,
pp. 201–208.

[27] B. Li, Z. Sun, Q. Li, Y. Wu, and A. Hu, “Group-wise deep object co-
segmentation with co-attention recurrent neural network,” in Proceed-
ings of the IEEE/CVF International Conference on Computer Vision,
2019, pp. 8519–8528.

[28] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation
with hybrid lexical and syntactical information,” Empirical Software
Engineering, vol. 25, no. 3, pp. 2179–2217, 2020.

[29] F. Wilcoxon, “Individual comparisons by ranking methods,” in Break-
throughs in statistics. Springer, 1992, pp. 196–202.

[30] M. Liu and H. Yin, “Cross attention network for semantic segmentation,”
in 2019 IEEE International Conference on Image Processing (ICIP).
IEEE, 2019, pp. 2434–2438.

[31] X. Bai, “Text classification based on lstm and attention,” in 2018 Thir-
teenth International Conference on Digital Information Management
(ICDIM). IEEE, 2018, pp. 29–32.

[32] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,
and Y. Bengio, “Show, attend and tell: Neural image caption generation
with visual attention,” in International conference on machine learning.
PMLR, 2015, pp. 2048–2057.

[33] W. Yin, K. Kann, M. Yu, and H. Schütze, “Comparative study of cnn and
rnn for natural language processing,” arXiv preprint arXiv:1702.01923,
2017.

[34] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” Journal
of machine learning research, vol. 12, no. ARTICLE, pp. 2493–2537,
2011.

[35] A. Frome, G. Corrado, J. Shlens, S. Bengio, J. Dean, M. Ranzato, and
T. Mikolov, “Devise: A deep visual-semantic embedding model,” 2013.

[36] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[37] Y. Yao, L. Rosasco, and A. Caponnetto, “On early stopping in gradient
descent learning,” Constructive Approximation, vol. 26, no. 2, pp. 289–
315, 2007.

[38] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[39] S. E. Sim and R. E. Gallardo-Valencia, Finding source code on the web
for remix and reuse. Springer, 2013.

[40] S. K. Bajracharya and C. V. Lopes, “Analyzing and mining a code search
engine usage log,” Empirical Software Engineering, vol. 17, no. 4, pp.
424–466, 2012.

[41] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and
T. Menzies, “Automatic query reformulations for text retrieval in soft-
ware engineering,” in 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 2013, pp. 842–851.

[42] E. Hill, L. Pollock, and K. Vijay-Shanker, “Improving source code
search with natural language phrasal representations of method signa-
tures,” in 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011). IEEE, 2011, pp. 524–527.

[43] M. Lu, X. Sun, S. Wang, D. Lo, and Y. Duan, “Query expansion
via wordnet for effective code search,” in 2015 IEEE 22nd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER). IEEE, 2015, pp. 545–549.

11

[44] C. Leacock and M. Chodorow, “Combining local context and wordnet
similarity for word sense identification,” WordNet: An electronic lexical
database, vol. 49, no. 2, pp. 265–283, 1998.

[45] C. Liu, X. Xia, D. Lo, Z. Liu, A. E. Hassan, and S. Li, “Codematcher:
Searching code based on sequential semantics of important query
words,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 31, no. 1, pp. 1–37, 2021.

[46] S. Fang, Y.-S. Tan, T. Zhang, and Y. Liu, “Self-attention networks for
code search,” Information and Software Technology, vol. 134, p. 106542,
2021.

[47] A. LeClair, S. Jiang, and C. McMillan, “A neural model for gener-
ating natural language summaries of program subroutines,” in 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 795–806.

[48] J. Zhang, X. Wang, H. Zhang, H. Sun, and X. Liu, “Retrieval-based
neural source code summarization,” in 2020 IEEE/ACM 42nd Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2020, pp.
1385–1397.

[49] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 783–794.

[50] N. D. Bui, Y. Yu, and L. Jiang, “Infercode: Self-supervised learning of
code representations by predicting subtrees,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 1186–1197.

[51] Y. Li, “Improving bug detection and fixing via code representation learn-
ing,” in Proceedings of the ACM/IEEE 42nd International Conference

on Software Engineering: Companion Proceedings, 2020, pp. 137–139.
[52] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,

A. Svyatkovskiy, S. Fu et al., “Graphcodebert: Pre-training code repre-
sentations with data flow,” arXiv preprint arXiv:2009.08366, 2020.

[53] I. Neamtiu, J. S. Foster, and M. Hicks, “Understanding source code
evolution using abstract syntax tree matching,” in Proceedings of the
2005 international workshop on Mining software repositories, 2005, pp.
1–5.

[54] Y. Zhang, X. Gao, C. Bian, D. Ma, and B. Cui, “Homologous detection
based on text, token and abstract syntax tree comparison,” in 2010
IEEE International Conference on Information Theory and Information
Security. IEEE, 2010, pp. 70–75.

[55] L. Büch and A. Andrzejak, “Learning-based recursive aggregation of
abstract syntax trees for code clone detection,” in 2019 IEEE 26th Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2019, pp. 95–104.

[56] S. Luan, D. Yang, C. Barnaby, K. Sen, and S. Chandra, “Aroma: Code
recommendation via structural code search,” Proceedings of the ACM
on Programming Languages, vol. 3, no. OOPSLA, pp. 1–28, 2019.

[57] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, M. Monperrus, J. Klein,
and Y. Le Traon, “ifixr: Bug report driven program repair,” in Pro-
ceedings of the 2019 27th ACM joint meeting on european software
engineering conference and symposium on the foundations of software
engineering, 2019, pp. 314–325.

[58] C. Lin, Z. Ouyang, J. Zhuang, J. Chen, H. Li, and R. Wu, “Improving
code summarization with block-wise abstract syntax tree splitting,” arXiv
preprint arXiv:2103.07845, 2021.

12

