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Abstract—Automated fault localization (FL) techniques collect
runtime information as input data and then analyze input data
to identify the relationship between program statements and
failures. They usually take advantages of the statistics of the
input data to develop a suspiciousness evaluation methodology
(e.g., spectrum-based formulas and deep neural network models)
by exploring the underlying correlation rooted in the input data.
Thus, the quality of input data is critical for FL. In the actual
process of development, developers seek to generate adequate
test cases for testing the function or the robustness of a subject
program. However, regarding a fault, most test cases are passed
test cases and a very few ones are failed test cases since a very
small portion of inputs in input domain will lead to a program
failure. It means that FL usually faces a problem of imbalanced
data, and this problem has been proven to pose an adverse effect
on FL effectiveness.

To address this problem, we propose BCL-FL: a data augmen-
tation approach based on between-class learning, which produces
new synthesized failed test samples by mixing two classes of
real test cases (i.e., a passed test case and a failed one) with a
random ratio. Specifically, BCL-FL uses the characteristics of
real failed test cases to design a data synthesis formula suitable
for failed test samples, which can make the synthesized failed
test samples closer to real test cases. Since the synthesized data
is different from real data, we ingeniously assign a continuous
value between 0 and 1 to label the synthesized sample according
to the mixing ratio of original labels. We take the synthesized
failed test samples and the original test cases as the balanced
input data for FL techniques to address the imbalanced data
problem. To evaluate the effectiveness of BCL-FL, we conduct
large-scale experiments on 287 faulty versions of eight large-sized
programs (from ManyBugs and Defects4J) using six state-of-the-
art FL approaches. The experimental results show that BCL-FL
significantly improves the effectiveness of existing FL techniques,
e.g., BCL-FL improves the CNN-FL approach in Top-1, Top-5,
and Top-10 by 150%, 136.36%, and 193.1%, respectively.

Index Terms—fault localization, imbalanced data, between-
class learning, data augmentation

I. INTRODUCTION

Software debugging is an important but resource-intensive

task in software engineering. At the same time, the ubiquity

of bug fixes in software development and maintenance has

led to high debugging costs. Automated Fault Localization

(FL) techniques can reduce the time and energy of software

developers in this process [1]. Therefore, FL techniques have

gained popularity in the past few years [2]–[4].

∗Corresponding author.

Fig. 1 shows a typical workflow of FL. As shown in

Fig. 1, FL collects the coverage information and test results

by running each test case in the test suite, and then denotes

coverage information and test results as coverage matrix and

labels, respectively. The coverage matrix and labels are raw

data for FL. In the raw data, each row of the coverage matrix

represents a test case, and each column corresponds to the

coverage information of a statement in all test cases of a test

suite. Each cell indicates whether a statement is executed by

a test case or not. If the statement is executed, the value

of this cell is 1; otherwise, its value is 0. For instance, yi
represents the label corresponding to the i-th test case, and

xij represents the execution information of the i-th test case at

j-th statement. Specifically, yi=1, indicating that i-th test case

is a failed test case, and yi=0, indicating that i-th test case is a

passed test case. xij=1 means that the i-th test case executes

the j-th statement, and xij=0 means that the i-th test case does

not execute the j-th statement. After acquiring the raw data,

many FL techniques use them as the input for analyzing and

evaluating the suspiciousness of each statement of being faulty,

e.g., the two of the most popular FL techniques: spectrum-

based fault localization (SBFL) [4], [5] and deep learning-

based fault localization (DLFL) [6]–[8]).

Fig. 1. The overall workflow of FL.

SBFL uses raw data as input, assigns a suspiciousness score

to each statement through a well-designed formula [9], and

then ranks all statements in terms of suspiciousness scores.

Unlike the SBFL, DLFL uses a neural network model to

learn the relationship between statements and program failures.

After the training, the model also outputs a suspiciousness

score to each statement, and also rank them in descending

order with a ranking list of suspicious statements.

However, for SBFL and DLFL techniques, their effec-

tiveness is affected by the quality of the data sets. Studies
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Fig. 2. The overview architecture of BC Learning.

[10]–[12] have shown that most of the existing data sets

have various potential threats, such as data imbalance, data

incompleteness, etc. As one of the most common problems,

data imbalance may cause the FL approaches to be ineffective

or even invalid. The problem of data imbalance means that a

test suite in the real world usually includes a large number of

passed test cases (i.e., a majority class) and a small number

of failed test cases (i.e., a minority class). Zhang et al. [11]

find that when the number of failed test cases is approximately

equal to the number of pass test cases, fault localization can

always achieve the best effectiveness.

Researches usually use two methods to solve the problem

of imbalanced classes in the raw data, namely, reducing the

number of passed test cases and increasing the number of

failed test cases. Generally speaking, we adopt the method of

increasing the number of failed test cases rather than reducing

the number of passed test cases, because the latter method

will lose some essential information that may be beneficial

to FL. However, increasing the number of failed test cases in

the real world is a difficult task even impossible because just a

very small portion of inputs will cause a program failure [13]–

[16]. Inspired by the widely used data augmentation in deep

learning [11], [17]–[19], we may produce new synthesized

failed samples, rather than generate new real failed test cases,

to address the data imbalance problem.

When we consider the use of data augmentation to solve the

imbalance of categories in the raw data, we find that it fits the

characteristics of the two different categories in between-class

learning (BC Learning). We take each test case in the raw data

as a sample and its corresponding test result as a label. In other

words, each vector of the coverage matrix is a sample, each

sample is composed of features (i.e., statements), and the test

result corresponding to each vector is the label of the sample.

It should be noted that if we use the idea of data augmentation

to address the imbalanced data problem, the synthesized failed

test samples added to the raw data are not the real failed test

cases, but the synthesized test samples with the feature of the

failed test cases, i.e., synthesized samples with a failed label.

BC Learning is one of the widely-used deep learning

approaches (as shown in Fig. 2). Its powerful learning ability

and data augmentation ability are applied to various fields

[20]–[24]. For example, in speech recognition, Yuji et al. [20]

use BC Learning to learn the discriminative feature space

by recognizing the sounds between classes. Specifically, they

create the most suitable mix formula for speech recognition

and use BC Learning to train the deep learning model. Their

experimental results clearly show that BC Learning improves

the performance of various speech recognition networks, data

sets, and data augmentation approaches, and even surpasses

human performance in speech classification tasks. Later in

[21], they proved that BC Learning also performed well on

images. These two studies show that the power of BC Learning

is not limited to a certain data modality. And more importantly,

BC Learning can mix two classes of data and output the

mixing ratio of two different classes of data. We might as

well regard BC Learning as an effective data augmentation

approach.

Therefore, we propose BCL-FL: an effective data augmen-

tation approach based on BC Learning. Our approach uses

existing test cases to synthesize comprehensive test samples,

thereby improving the data imbalance in fault localization. We

conduct large-scale experiments on eight large-sized programs

from the real world, and compare BCL-FL with six state-

of-the-art FL techniques. Experimental results show that BC

Learning improves the performance of six FL techniques. We

have demonstrated that BCL-FL is expected to play a role in

various FL techniques. For instance, under the top-1, top-5,

and top-10 metrics, it can increase the baseline of CNN-FL

by 150%, 136.36%, and 193.10%.

The main contributions of this paper can be summarized as:

• To the best of our knowledge, this is the first study to

apply BC Learning-based architecture for data augmen-

tation in fault localization.

• We propose a data augmentation approach that can ef-

fectively solve the imbalance problem. Our approach

is designed to the widely used raw data in many FL

techniques and can serve as a universal data augmentation

for a wide spectrum of FL techniques.

• We conduct large-scale experiments on six state-of-the-

art FL techniques, showing that BCL-FL significantly

improves fault localization effectiveness.

The remainder of this paper is organized as follows. Sec-

tion II introduces background information. Section III presents

our approach BCL-FL. Section IV and Section V show the

experimental results and discussion. Section VI discusses

related work and Section VII draws the conclusion.

II. BACKGROUND

In Section I, we focus on the imbalance of the test suite

and its adverse effects on the fault localization approaches. We
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have found that in the existing studies, there have been a large

number of approaches that have tried to solve the problem

of class imbalance in raw data and have achieved effective

results. For example, researchers use general approaches of

flip, rotation, scale, crop, and translation [25]–[28], or use

deep learning for data augmentation, such as variational au-

toencoders, and convolutional neural networks [11], [18], [19],

[29], [30].

We focus on data augmentation in deep learning. Inspired by

[20], [21], we find that the preliminary work of BC Learning

can be regarded as an approach for data augmentation. Fig. 2

shows the process of BC Learning. For instance, suppose a

data set containing multiple sounds, randomly extracted two

sounds from the data set, mix the data in a unique BC Learning

approach. BC Learning has the easiest way to mix such as

Eq. 1, it is the original formula for BC Learning. The mixed

speech is used as the input of the BC model. The BC model

learns the characteristics of each sound through input samples

and outputs the mixing ratio of each sound.

What caught our attention is that when BC Learning per-

forms well on speech recognition, it simulates the mixed

speech stage in the real scenario (as shown in Fig. 2). We can

abstract the mixed mode of BC Learning into the following

steps: first, randomly select two samples from the training set

of the BC Learning model, sample A, and sample B, and then

construct the mixing formula (A, B) according to the charac-

teristics of the sound (such as amplitude, frequency, etc.). If

you don’t want to design formula, you can also use the origin

mixed formula in BC Learning (such as Eq.1). Substituting

A and B into the formula to obtain a synthesis category, the

synthesis category has the characteristics of a mixed category

in the real world. Research [20] [21] separately used BC

Learning to mix sounds and images. In [21], Tokozume et

al. believe that BC Learning is equally effective in image

cognization. They first design an image mixing formula for

mixing two types of images, then use BC Learning to learn

the mixing ratio of the output image, and finally verify the

effectiveness of BC Learning on the image.

Observing the above two studies, we find that BC Learning

can retain mixed data with real-world characteristics, which

servers a potential solution to data augmentation. Thus, we

observe that the data synthesis approach used in BC Learning

is also a data augmentation approach. We try to use the BC

formula to synthesize failing test samples with failed test

features to enhance the weaker part of the FL raw data set

and improve the imbalance of the test suite.

In summary, data synthesis approach used in BC Learning

is also a data augmentation approach. We try to use the BC

formula to enhance the unbalanced fault localization feature of

the weaker part of the data set. On the other hand, the output

of the BC Learning model is the mixing ratio of each class,

which has nothing to do with our purpose. We only use mixed

data in the first half of the BC Learning process. Therefore,

BC Learning cannot be directly used for fault localization.

We use the core idea of BC Learning to construct a data

synthesis formula that matches the data requirements of the

fault localization approach. Section III depicts our approach

in detail.

Algorithm 1: BC data synthesis algorithm

Input:

collected M*N matrix:X

the label corresponding to each vector m in the matrix:

Y

Output:

K*N synthesis matrix: X’

1 for i=0;i ≤ N ;i++ do

2 calculate the number of y=1:Count=
N∑
i=1

yi;

3 end

4 S=M;

5 while Count �= (the number of y=0 vectors) do

6 j=random.randint (0,S);

7 if yj=1 then

8 if ( h=random.randint (0,M)) && (h �= j ) then

9 f=random.randint (0,N);

10 X[M+1]=synthesis (X[j],X[h]));

11 Y[M+1]=BC Formula (Y[j],Y[h]));

12 M++;

13 Count++;

14 end

15 end

16 end

17 Function synthesis(X[j],X[h]):

18 F ←− X[j]; S ←− X[h];
19 n=random.rand(0,N);

20 for i=1;i ≤ N ;i++ do

21 if i ≤ n then

22 H[i]=F[i];

23 else

24 H[i]=S[i]

25 end

26 end

27 return H;

28 End Function

29 Function BC Formula(Y[j],Y[h]):

30 F ←− Y[j]; S ←− Y[h];
31 α=random.rand(0,1);

32 β=random.rand(0,1);

33 H= αsumF
αsumF+βsumS

34 return H;

35 End Function

III. APPROACH

A. Overview

Given a faulty program P with N statements, it is executed

by the test suite T with M test cases, which contains at least

one failed test case. We collect the execution information of

all test cases and obtain the M × N coverage matrix. As

shown in Fig. 3, We use X to represent the coverage matrix
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Fig. 3. The pipeline of BCL-FL.

of M ×N . Each row of coverage matrix X is represented by

vector X[i], which corresponds to the execution information

of the i-th test case, i ∈ {1, 2, ...,M}. Each column of the

coverage matrix X represents a statement of the program. For

example, X[i][j] represents the j-th statement of the i-th vector,

i ∈ {1, 2, ...,M}, j ∈ {1, 2, ..., N}. For instance, X[i][j] = 1,

indicating that vector X[i] executes statement j. X[i][j] = 0,

indicating that vector X[i] does not execute statement j. We

record the results of the vector (i.e., pass and fail) as the label

corresponding to the vector. The label Y[i] of the vector X[i]

corresponds to the label of the i-th test case, i ∈ [0, 1]. Y[i] =

0, indicating that the execution of vector X[i] passed. Y[i] = 1

indicates that the execution of vector X[i] failed. This M ×N

matrix X and the label corresponding to each test case is the

input of our approach.

Fig. 3 shows the pipeline of our approach, which is divided

into three stages. The first stage is data collection, collecting

information about test cases executed in the program, includ-

ing coverage matrix and execution results. In the following

description, we also refer to test cases as coverage vectors. The

second stage is the main stage of our approach. At this stage,

we randomly select two coverage vectors from the collected

coverage vectors. In particular, at least one of the two selected

cover vectors should be a cover vector with the label of 1. Sub-

sequently, we will use the data synthesis formula to synthesize

a new fault coverage vector from the two extracted coverage

vectors. The synthesis approach will be described in detail

in Section III-B. When the class is balanced, the integration

process ends. These synthesized fault coverage vectors contain

the characteristics of real fault coverage vectors. Finally, we

obtain a special coverage matrix by combining the synthesized

coverage vectors with the initially collected matrix. The third

stage is the calculation of the suspiciousness value. In this

stage, we take the new coverage matrix obtained in the second

stage as input, use the suspiciousness score calculation formula

to calculate the suspiciousness score of each statement and

obtain a list of suspicious statements. Next, we will describe

the above steps in detail.

B. BC synthesis formula

We formally show the steps of BCL-FL in Fig. 3. Algorithm

1 describes the BC Learning process of data synthesis in detail.

We analyzed the research of Tokozume et al. [20], [21]. We

believe that the best aspect of BC Learning is the designed data

synthesis formula, not the model used for training. Excellent

data synthesis formula can make the synthesized data have real

data characteristics, which is more conducive to the training of

the model. We concentrate on how to design a data synthesis

formula, which we call the BC Formula, which comes from

the origin data synthesis formula in BC Learning (such as

formula 1).The BC Formula is mainly used for the synthesis

of label data.
mix = rt1 + (1− r)t2 (1)

In Eq. 1, t1 and t2 are two different types of labels, and

r is a random ratio automatically generated by the program

r ∈ (0,1). These two labels can be mixed simply by Eq. 1.

However, according to research [20], using only Eq. 1 does

not guarantee the best synthesized data. Tokozume et al. chose

0 as the absolute center and substituted sound energy with

distance. Created a well-thought-out sound synthesis formula

in [21]. From the perspective of fault localization, we have

improved the Eq. 1 and obtained a data synthesis formula that

is more suitable for our approach, we call it BC Formula, As

shown in Eq. 2:

BCFormula : Y[s] =
αsumX[i]

αsumX[i] + βsumX[j]
(2)

The variables α and β in Eq. 2 are generated by the program

and are random floating-point values, α,β,∈[0, 1]. X[i] refers

to the execution information of the i-th test case randomly

selected. Y[s] is the label corresponding to the synthesis vector.

The specific vector synthesis steps will be described in detail

in the following summary. sumX[i] is the sum of the partial

coverage statements of the original vector intercepted for

synthesis
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In order to evaluate the effectiveness of the BC Formula,

we designed another set of experiments through the following

formula,we call it BCS Formula:

BCSFormula : Y[s] = rsumX[i] + (1− r)sumX[j] (3)

The experimental results will be explained in detail in

Section IV.

C. Synthesizing new test samples using BC Formula

This section explains how to use the BC Formula to

synthesize two vectors in detail, as shown in Fig. 4. Note

that what we synthesize here is not real-world test cases, but

synthesized test samples with features of real-world test cases.

In the data synthesis stage, a total of two parts of data need

to be synthesized: the synthesis of two randomly selected

vectors X[s] and X[k], and the synthesis of labels Y[s] and

Y[k] corresponding to X[s] and X[k] respectively. The vector

synthesis steps are as follows: a) Calculate the count of the

number of effectively executed statements in the vector X[s]

and vector X[k]. The weight of each statement that causes the

program to failure is represented by ratio, ratio= 1
count

. Among

them, because vector X[k] is a failure vector, statements

executed in vector X[k] but not executed in vector X[s] are

more likely to cause program failure than other statements. We

count the number of statements above and mark it as count’,

and the corresponding statement ratio= 1
count′

. Then we update

the ratio of other statements in the vector to 1
count−count′

.

Statements not executed in the vector ratio=0. b) We get a

random number n, n ∈ (1, N) where N is the total number of

statements in each vector. Our composite vector is composed

of the (1, n) part of X[s] and the (n, N) part of X[k], and then

we calculate the label value corresponding to the composite

vector according to the BC Formula. c) The parameter values

we need to apply the BC Formula are randomly generated

floating point numbers α and β, (α, β)∈ (0,1). The sum

parameters sumvectorX[s] and sumvectorX[k] by:

sumvectorX[m] =

b∑

i=a

(ratio) (4)

In Eq. 4, a is the starting point of the intercepting position

of the vectorX[m], and b is the ending point of the intercepting

position of the vectorX[m]. Substituting the prepared param-

eters into the BC Formula, the synthesis label value of the

vectorX[d] is obtained. d) Put the synthesized vector and label

into the original test suites to complete the synthesis of a test

case.

Take Fig. 4 as an example to demonstrate the steps of

synthesizing vectors. The vector X[s] (1,1,1,1,0,1,0,1,0,1), the

vector X[k] (1,1,1,1,1,1,1,1,1,1) corresponds to the label Y[s]

=[0], Y[k]=[1]. We assign weights to each statement in the two

vectors. ratio[s]=
1
7=0.14. ratio[k]’=

1
3=0.33,ratio[k]=

1
7=0.14.

b) Suppose we get a random value n=6, we synthe-

size a new vectorX[d] (1,1,1,1,0,1,1,1,1,1). c) Suppose

we randomly generate floating-point numbers α=0.4, β

b=0.3. We get Y[d] (the label of the vectorX[d]), Y[d]

=
0.4×(0.14+0.14+0.14+0.14+0.14)

0.4×(0.14+0.14+0.14+0.14+0.14)+0.3×(0.33+0.14+0.33+0.14) =
0.498. d) We put the composite vectorX[d] (1,1,1,1,0,1,1,1,

1,1)Y[d][0.498] into the raw test suites.

Finally, we summarize the steps of BCL-FL as follows:

(1) Use the coverage data and execution results of the test

cases in Fig. 4 as samples to synthesize a new sample.

BCL-FL randomly selects two test cases with inconsistent

labels (also called two vectors) from the sample set.

(2) Input the selected two test cases and their corresponding

labels into the BC Formula to obtain a synthesized test

sample and a synthesized label. Add the synthesized test

sample to the end of the original matrix. Repeat (1) and

(2) until the label categories of the test suite are balanced.

(3) The new matrix that has dealt with the problem of data

imbalance is used as the input of the fault localization

approach. The fault localization approaches here include

fault localization approaches based on spectrum and fault

localization approaches based on machine learning. Sort

the statements from high to low and output the rank.

IV. EMPIRICAL EVALUATION

TABLE I
THE CHARACTERISTICS OF SUBJECT PROGRAMS

Program Description Versions LoC (k) Test

gzip Data compression 5 491 12

libtiff Image processing 12 77 78

python General-purpose language 8 407 355

Chart Java chart library 26 96 2205

Lang Apache commons-lang 65 22 2245

Math Apache commons-math 106 85 3602

Time Standard date and time library 27 28 4130

Mokito Mocking framework for Java 23 67 1075

total - 287 1273 13702

To evaluate the effectiveness of our approach, we imple-

mented BCL-FL into a pipeline that can rank statements

based on their suspiciousness. We use six state-of-the-art

FL techniques as the baselines to be compared with BCL-

FL. Since BCL-FL presents a BC formula according to FL

scenario, it is different from the pure original BC Learning

formula (i.e., BCS Formula in Eq. 3). Some may argue that if

we directly use the BCS formula, BCL-FL is whether still

better than the one using BCS formula. Thus, we further

propose and implement BCLS-FL using BCS formula and

compare BCL-FL with BCLS-FL. To explain BCL-FL more

clearly, we divide the experiments into the following three

parts.

A. Datasets

We evaluate BCL-FL on real-world programs. The gzip,

libtiff, and python are from ManyBugs1. The Chart, Lang,

1ManyBugs, http://repairbenchmarks.cs.umass.edu/manybugs/
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Fig. 4. The process of data synthesis.

Math, Time, and Mokito are from Defects4J2. The summary

of experimental programs are shown in Table I.

B. Evaluation Metrics

For the evaluation process, we use the following widely

used metrics:

• Top-K: This metric is also called Acc@k, Hit@k, etc.

It represents the number of faulty versions of at least

one fault statement in the first k (k=1, 5, 10,...) program

modules. In previous studies, many studies took K=1, 5,

and 10 [31]–[33]. Based on previous works, we assign

values 1, 5, 10 to K for evaluation.

• Mean Average Rank (MAR): For a faulty version, it is

the average position of all fault statements in the ranking

list.

• Mean First Rank (MFR): This metric first calculates

the rank of the first faulty statement of each version and

then calculates the average of the ranks in the project.

• Relative Improvement (RImp): This metric can see the

improvement of one fault localization approach relative

to another fault localization approach. It is defined as

follows:

RImp =
MARimproved

MAROrigin

(5)

In our study, MARimproved represents the MAR value

of approach after using BC Formula or BCS Formula.

C. Research Questions and Results

We evaluate the effectiveness of our approach through the

following three research questions. We use six FL techniques

that currently perform best in real faults [7], [34]. Including

three SBFL approaches (i.e., Dstar, Ochiai, and Barinel) and

2https://github.com/rjust/defects4j

three DLFL approaches (i.e., MLP-FL, CNN-FL, and RNN-

FL). To evaluate the effectiveness of our proposed BC For-

mula, we compared it with BCS Formula (Eq. 3). The BCS

Formula comes from the original formula by BC Learning.

We call the data augmentation approach using BC Formula

as BCL-FL, and the data augmentation approach using BCS

Formula as BCLS-FL. We list the six FL techniques that we

used as follows:

• The SBFL approaches we use Dstar [35],Ochiai [3] and

Barinel [36]. For more details, please refer to [9].

• The DLFL approaches we use MLP-FL [8], CNN-FL

[6], and RNN-FL [7]. MLP-FL, CNN-FL, and RNN-FL

have no public source code, so we reimplement the model

based on their papers.

RQ1. How effective is BCL-FL compared with the state-of-

the-art SBFL?

As shown in Table II, we list three SBFL approaches

(i.e., Dstar, Ochiai, and Barinel) under two scenarios: Origin

(baseline) and BCL-FL. We use Top-K, MAR, and MFR

metrics to compare the performance of BCL-FL and baseline.

Many studies use K=1, 5, 10 when using the Top-K metric

[31]–[33]. As a result, this paper use the Top-1, Top-5, and

Top-10 evaluation metrics. For the convenience of reading,

we bold the better experimental results in the tables. From

Table II, we can find that BCL-FL performance is better than

the baseline. Taking the libtiff data set as an example, when

using the Top-1, Top-5, and Top-10 metrics of BCL-FL, BCL-

FL has increased by 100%, 50%, and 33.33% respectively

compared with the baseline of Dstar. Experimental results

of Top-K show that BCL-FL can effectively improve the

positioning accuracy of the baseline.

Fig. 6 shows the MAR metric of the six FL approaches

in three scenarios (i.e., Origin, BCLS-FL, and BCL-FL), and

Fig. 5 shows the MFR metric of the six FL approaches in
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TABLE II
THE RESULTS OF TOP-1,TOP-5,TOP10 BY COMPARISON OF SBFL APPROACH AND BCL-FL.

program Scenario
Top-1 Top-5 Top-10 MAR MFR

Dstar Ochiai Barinel Dstar Ochiai Barinel Dstar Ochiai Barinel Dstar Ochiai Barinel Dstar Ochiai Barinel

Chart
origin 3 3 2 9 9 9 12 14 13 827.80 696.96 655.24 322.88 209.24 141.04

BCL-FL 3 2 2 9 9 9 12 14 14 815.12 659.57 654.77 245.68 138.28 116.36

Lang
origin 5 5 5 24 24 24 38 38 38 81.45 60.25 61.31 29.14 30.77 33.17

BCL-FL 7 6 4 25 25 25 39 40 38 62.92 58.90 60.68 25.62 22.51 29.32

Time
origin 2 2 2 10 10 10 11 11 11 675.00 874.30 875.33 398.63 598.96 600.78

BCL-FL 2 2 3 10 10 8 11 12 9 683.61 788.43 843.61 252.67 453.20 600.54

Mokito
origin 5 6 4 13 13 11 15 15 15 439.06 398.61 401.95 254.39 201.87 211.89

BCL-FL 3 5 4 15 15 14 16 17 17 336.18 397.44 398.05 259.83 233.66 207.33

Math
origin 17 14 17 38 34 39 47 42 48 315.70 209.44 68.24 59.84 72.63 212.71

BCL-FL 16 16 18 39 38 41 45 44 47 257.24 202.96 63.86 57.4 67.53 204.37

gzip
origin 0 0 0 1 1 1 2 1 1 85.20 133.60 133.60 66.60 103.80 103.80

BCL-FL 0 1 0 1 1 1 2 1 1 45.50 98.50 101.25 21.90 71.00 97.00

libtiff
origin 1 1 1 2 2 2 3 3 3 175.44 199.12 206.72 136.67 140.36 147.96

BCL-FL 2 1 1 3 3 3 4 4 3 123.76 145.64 195.28 57.28 69.00 142.00

python
origin 0 0 0 0 0 0 0 0 0 1243.63 1456.01 1457.25 668.75 860.25 860.25

BCL-FL 0 0 0 0 0 0 0 0 0 1306.53 1448.38 1455.61 722.75 860.25 860.25

total
origin 33 31 31 97 93 96 128 124 129 480.41 503.54 476.43 244.61 277.24 288.95

BCL-FL 33 33 32 102 101 101 129 132 129 453.85 474.97 471.63 205.39 239.43 282.15

TABLE III
THE RESULTS OF TOP-1,TOP-5,TOP10 BY COMPARISON OF DLFL APPROACH AND BCL-FL.

program Scenario
Top-1 Top-5 Top-10 MAR MFR

MLP CNN RNN MLP CNN RNN MLP CNN RNN MLP CNN RNN MLP CNN RNN

Chart
origin 2 1 1 7 2 4 7 2 6 1015.64 1380.12 826.36 558.48 1001.24 351.84

BCL-FL 2 2 2 7 8 10 8 10 12 813.38 789.00 827.54 176.00 457.12 242.2

Lang
origin 1 0 4 13 7 17 26 10 27 96.12 305.73 92.54 42.60 259.47 41.39

BCL-FL 6 1 8 25 16 25 39 24 42 53.84 121.02 71.17 17.68 66.46 17.32

Time
origin 0 0 2 0 1 7 1 2 8 1265.89 2493.85 994.19 1031.49 2188.67 697.70

BCL-FL 0 1 3 0 4 9 1 7 11 1087.00 974.78 876.56 931.52 600.75 328.74

Mokito
origin 0 1 2 4 4 5 4 4 5 607.56 717.64 514.53 378.08 499.44 369.81

BCL-FL 0 1 4 5 7 10 11 11 13 446.11 446.11 593.64 211.43 387.14 274.33

Math
origin 6 4 13 23 7 29 27 8 35 337.21 554.62 399.08 319.52 410.82 155.87

BCL-FL 4 10 12 28 15 35 31 32 42 188.02 256.74 356.41 134.43 178.32 102.35

gzip
origin 0 0 0 0 0 1 1 0 2 798.00 1029.00 673.00 116.60 145.60 100.00

BCL-FL 0 0 1 0 0 1 1 0 2 514.00 668.00 553.00 102.00 112.00 86.30

libtiff
origin 0 0 1 1 1 2 2 3 3 1264.20 1281.00 1143.80 93.20 120.80 83.80

BCL-FL 0 0 1 1 2 2 1 1 3 752.25 896.80 987.00 117.40 79.30 78.60

python
origin 0 0 0 0 0 0 0 0 0 828.00 867.25 668.75 828.00 867.25 668.75

BCL-FL 0 0 0 0 0 0 0 0 0 1147.41 811.30 657.31 1060.25 753.00 668.75

total
origin 9 6 23 48 22 65 68 29 86 776.58 1078.65 664.03 421.00 686.66 308.64

BCL-FL 12 15 31 66 52 92 92 85 125 625.20 620.43 615.32 343.84 329.26 224.82

three scenarios (i.e., Origin, BCLS-FL, and BCL-FL). In Fig.

6 and Fig. 5, the ordinate represents the FL approach, and the

abscissa represents the MAR/MFR index under this approach.

Compare the MAR metric of the three SBFL approaches

in the BCL-FL and Origin scenarios. From Fig. 6, we can

find that in either approach, BCL-FL improves the baseline.

Although BCL-FL has an improvement in some data sets, it

is slight to improve. Perhaps it is because Dstar, Ochiai, and

Barinel are already at the forefront of many bug versions of

Defects4J. Considering the MFR metric, the result of BCL-FL

is also better than the baseline of the six FL approaches. It

shows that we can find all the faulty versions the fastest with

the least resources when we use BCL-FL.

Summary for RQ1: In RQ1, we discuss the effectiveness of

the BCL-FL technique compared with the original SBFL ap-

proaches. Experimental results show that the FL approaches

perform better in the BCL-FL scenario. It shows that BCL-

FL is effective to improve the imbalance of a test suite.

RQ2. How effective is BCL-FL compared with the state-of-

the-art DLFL?

To answer RQ2, we use five metrics (Top-1, Top-5, Top10,

MAR, and MFR) to compare BCL-FL with three state-of-the-

art DLFL techniques (i.e., MLP-FL, CNN-FL, and RNN-FL).
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Fig. 5. MFR values of Origin,BCLS-FL and BCL-FL approaches.

Fig. 6. MAR values of Origin,BCLS-FL and BCL-FL approaches.

As shown in Table III, MLP, CNN, and RNN in Table III

represent MLP-FL, CNN-FL, and RNN-FL, respectively. From

the table, we can find that the performance of CNN-FL is the

most outstanding. CNN-FL under Top-1, Top-5 and Top-10

metrics were 15, 52, 85, with an increase of 150%, 136.36%

and 193.1%. The other two DLFL approaches have also im-

proved in the BCL-FL scenario. Compared with the baseline,

RNN-FL increased by 34.78%, 41.54%, and 45.35%. MLP-

FL increased by 33.33%, 37.5% and 35.29%. In comparison

to SBFL approaches, we find that BCL-FL can achieve better

performance in DLFL. We think this is because BCL-FL

solves the problem of data imbalance from the perspective of

deep learning, so BCL-FL may be more suitable for DLFL.

We analyzed the improvement of MAR and MFR. From

Fig. 6, we can find that in either approach, BCL-FL performs

better than the baseline. Take the CNN-FL approach as an

example. At the origin, the MAR value of this approach is

1078.65, which means that on average, 1078.65 lines of code

need to be checked to find all faulty versions. After using the

BCL-FL approach for data augmentation, it is find that all

the faulty versions only need to check 620.43 lines of code

on average. An increase of 42.48% compared to the origin.

From Fig. 5 we can find that the improvement of BCL-FL

is relatively small in only one approach. The reason why

BCL-FL performs well in DLFL may be because BCL-FL

can synthesize robust negative samples, enabling the machine

learning model to learn more reliable correlations, which is

conducive to fault localization.

Summary for RQ2: In RQ2, we discuss the effectiveness of

BCL-FL compared with the original state-of-the-art DLFL

techniques. Based on the experimental results of metrics on

Top-K, MAR, MFR, we can think that BCL-FL is an effective

DLFL data augmentation approach. BCL-FL can provide

reliable failed test samples for DLFL. In addition, we find

that BCL-FL is more effective for DLFL compared to SBFL.

RQ3. How effective is BCL-FL compared with the pure

original BC Learning approach (i.e., BCLS-FL)?

Fig. 7. The comparison of BCLS and BCL-FL over original approach
under RImp metric.

TABLE IV
THE RESULTS OF TOP-1, TOP-5, TOP-10, MAR, AND MFR BY

COMPARISON OF BCLS-FL AND BCL-FL.

Metric Scenario Dstar Ochiai Barinel MLP-FL CNN-FL RNN-FL

Top-1

Origin 33 31 31 9 6 23

BCLS-FL 32 32 31 9 17 29

BCL-FL 33 33 32 12 15 31

Top-5

OriginL 97 93 96 48 22 65

BCLS-FL 95 94 98 54 33 62

BCL-FL 102 101 101 66 52 92

Top-10

Origin 128 124 129 68 29 86

BCLS-FL 129 128 129 74 55 84

BCL-FL 129 132 129 92 85 125

MAR

Origin 480.41 503.54 476.43 776.58 1078.65 664.03

BCLS-FL 475.80 494.70 485.34 767.52 865.16 655.23

BCL-FL 453.85 474.97 471.63 625.20 620.43 615.32

MFR

Origin 244.61 277.24 288.95 421.00 686.66 308.64

BCLS-FL 232.16 239.58 297.42 387.42 572.82 298.31

BCL-FL 205.39 239.43 282.15 343.84 329.26 224.82

To prove the validity of the BC formula, we proposed the

BCLS-FL approach to compare BCL-FL. BCLS-FL uses the
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origin formula (Eq. 3) in BC Learning to synthesize data. RQ3

is proposed to verify that BC Formula is more suitable for data

augmentation of fault localization than the pure original BC

Learning approach (i.e., BCS Formula).

First, we experiment with the original approach in the

BCLS-FL scenario, then we compare BCL-FL with BCLS-

FL and the baseline. BCLS-FL still uses six FL approaches

(i.e., Datar, Ochiai, Barinel, MLP-FL, CNN-FL, RNN-FL) to

experiment on eight programs in the real world. Table IV

shows the experimental results of BCLS-FL, BCL-FL, and

baseline under Top-1, Top-5, Top-10, MAR, and MFR metrics.

In particular, we counted the overall metrics of all faulty

versions (including ManyBugs and Defects4J, a total of 287

faulty versions). Looking at Table IV, we find that BCLS-FL is

slightly better than the baseline overall. The BCLS-FL seems

to have a good performance is because the BCS formula has

certain data synthesis capabilities. For example, from the MFR

and Top-K metrics, the six approaches in the BCLS-FL scene

are better than the baseline. In the CNN-FL approach under

the Top-1 metric, BCLS-FL is 200% better than the baseline.

However, the performance of BCLS-FL under the MAR metric

is not satisfactory. It may be because the origin BC Learning

approach requires long-term training of the model [21], and

our parameters may need to be improved.

Although BCLS-FL has improved over the baseline under

the Top-K index, it is still inferior to BCL-FL. As seen from

Table IV, all the results of BCL-FL under Top-1, Top-5, and

Top-10 are better than BCLS-FL. It means that under the same

number of code lines, BCL-FL can locate more bugs than

BCLS-FL. Although BCLS-FL has improved over the baseline

under the Top-K index, it is still inferior to BCL-FL.

We also analyzed the distribution of BCLS-FL and BCL-

FL under the MAR and MFR metrics. Table IV shows that

BCL-FL is better than BCLS-FL in all approaches. Especially

under the CNN-FL approach, BCL-FL needs to check 620.43

lines on average to find all the faulty versions, and BCLS-FL

needs to check 865.16 lines on average. BCL-FL increases by

38.32% compared with BCLS-FL.

To evaluate the effectiveness of BCLS-FL and BCL-FL

more fairly, we also calculated the RImp value of BCLS-FL

and BCL-FL (as shown in Fig. 7). The abscissa of Fig. 7

represents the RImp value, and the ordinate represents the

approach. In Fig. 7, we compare the comparison results of

Dstar, Ochiai, Barinel, CNN-FL, RNN-FL, and MLP-FL in the

BCLS-FL and BCL-FL scenes. Observing this graph, we can

conclude that BCL-FL has the best performance. Taking the

CNN-FL approach as an example, the RImp value of BCLS-

FL is 80.21%, and the RImp value of BCL-FL is 57.50%.

Compared with BCLS-FL, BCL-FL increases CNN-FL by

22.71%. In addition, BCL-FL increased 18.33% on MLP-FL.

Therefore, a good data synthesis formula is more conducive

to locating bugs than the origin BC mixing approach.

Summary for RQ3: In RQ3, we compare BCL-FL with

BCLS-FL technique using different data mixing formulas. The

design of the BC Formula comes from the characteristics of

the coverage matrix in fault localization. Considering that in

the coverage matrix, statements executed only in failed test

cases are more suspicious, we use the BC Formula to assign

them higher weights whereas this is not possible with the

BCS Formula. Based on all the experimental results, BCL-

FL performs better than BCLS-FL. This shows the validity

of the BC Formula we designed.

V. DISCUSSION

A. Threats to Validity

The randomness of BC Learning in BCL-FL. Although

our proposed BCL-FL approach has achieved much improve-

ment, there still exist some threats. BC Learning itself has

some randomness. To ensure the fairness of the selected data

synthesis vector, we obtain two vectors by random selection.

When designing the BC Formula, to make the synthesized test

case closer to the test case generated in the real world, we also

randomly generated the values of α and β. However, this is

an inevitable threat to BC Learning itself, the combination of

multiple random factors may lead to random and unrepeatable

experimental results. To deal with this situation, we follow

the convention strategy by conducting 10 experiments on each

faulty version. The final recorded experimental results are the

average of 10 experiments.

Implementation of baselines and our approach. Our

implementation of the baseline may not be entirely correct. For

the Dstar, Ochiai, and Barinel approaches, we reimplemented

them according to the formulas in their papers and manually

verified the correctness of the experimental results. But for

the deep learning-based fault localization approach, we cannot

guarantee that the results are in full compliance with the

results in their paper. Due to the use of deep learning-based

fault localization approaches, the results may involve a degree

of randomness. On the other hand, we cannot guarantee

that our code is completely correct because building a deep

learning model requires many parameters, but we cannot get

the parameter values used by the authors of the paper.

The validity of the generalizability. The data sets used in

our experiments come from the publicly available (ManyBugs

and Defects4J). Although the subject programs selected in

our experiments are all from the real world and our approach

performs well on these programs, it may not apply to other

programs. This is because no data set can contain all types

of errors. In addition, our approach is to solve the problem

of data imbalance. Thus, for balanced data sets, our approach

may not work and may even be counterproductive. In addition,

we only synthesizes data from the same program, and does not

synthesize data from different programs.

B. Reasons for BCL-FL is effective

The reasons why BC Formula (Eq. 2) is superior to the BCS

Formula (Eq. 3) are as follows: a) Each covered statement in

every failed test case has different contributions to a program
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failure, BC Formula assigns different weights for each covered

statement. b) We consider the influence of the label value.

Each synthesized test sample does not necessarily pass or fail.

If we make the label 0 or 1, the performance of the approach

will deteriorate. We use continuous values instead of discrete

values to better reflect the characteristics of the synthesized

test samples, so we also calculated the value of the label. For

example, when the label of a synthesized test sample is 0.78,

it has a 78% chance of causing the program to fail.

We have studied the choice of the raw data of synthesized

test cases. Here, we found that for the synthesized test samples

with the best experimental result, at least one of its raw

test cases sources should be a vector with a label of 1. The

combination of the two passing vectors has almost no effect

on performance. The features that are more meaningful to the

experimental results are those statements that are more likely

to cause the program to fail. We focus on how to highlight

these fault-relevant characteristics.

VI. RELATED WORK

A. Spectrum-based Fault Localization

Spectrum-based fault localization (SBFL) [2], which some

people call coverage-based fault localization (CBFL), has been

intensively studied due to its effectiveness and lightweight.

Typical SBFL techniques (e.g., Tarantula [13], Ochiai [3],

DStar [35], Jaccard [5]) first dynamically execute test cases

and collect coverage information and execution results. Then

perform statistical analysis on the coverage data, calculate the

suspicious scores of the code elements, and finally sort the

code elements in descending order of the suspicious scores.

The higher the ranking, the more likely the element is a bug.

Although SBFL has been already successful, it is also not

sufficient. Many researchers have enhanced the effectiveness

of the SBFL approaches by changing the way the program

spectrum is constructed [37], [38] and improving the quality

of the test suites [39], [40].

B. Deep-Learning-based Fault Localization

Deep-Learning-Based Fault Localization is an approach

based on a deep neural network model. From the perspective

of deep learning, this approach uses the advantages of deep

neural network to solve unresolved problems in software fault

localization. Wang et al. proposed a fault localization approach

BPNN-FL [41] based on BP neural network, using BP neural

network model as a pipeline for learning input and output

relationships, inputting the execution information of test cases,

and outputting the sorting of suspicious statements. Then,

Wong et al. improved the effectiveness of the BPNN-FL

approach through program slicing technology [40]. Similar

to Wong’s idea, using raw data directly as training data,

Zhang et al. proposed CNN-FL [7] and MLP-FL [7], and

Lou et al. proposed Grace [42].Because the performance of

the machine learning model is affected by the quality of the

training data, some research work is different from BPNN-FL.

They preprocess the training data before entering the model,

such as resampling the unbalanced data set [40], and weighting

the test case information [43] to synthesized test cases [39] to

generate failed test case [44].

C. Between-Class Learning

BC Learning is widely used in various fields [20]–[22].

In standard BC Learning in sounds recognition, two different

sounds are first selected randomly, and then the two sounds

are mixed using an origin formula from BC Learning. Then

the mixed sound is input to the BC Learning model, and the

training model outputs the mixing ratio of the two sounds. BC

Learning’s strength is in its ability to recognize the features of

mixed data, thus it’s been widely applied in various industries.

In [45], BC learner is quite powerful. As an abstract model

for learning computable functions, the BC learner accepts

increasing quantities of unknown function data and provides

a sequence of hypotheses to the program for the function at

hand [45]. Inspired by high performance of BC Learning in

the field of voice recognition, Tokozume et al. successfully

applied BC Learning in the field of image recognition [21].

VII. CONCLUSION

In this paper, we propose BCL-FL, which is a data aug-

mentation approach that uses the BC Learning to solve the

imbalance problem of the test suite and improve the ef-

fectiveness of FL techniques. Our main ideas include: (1)

treating the coverage matrix and the result of test cases as

samples and labels; (2) using data augmentation approaches

to solve the problem of class imbalance and enhance the

features of minority class; (3) using BC Learning to design

the formula suitable for the synthesis of failed test samples on

fault localization; (4) changing the label from discrete values

to continuous values.

Specifically, we use the BC Formula to synthesize new

failing test samples that meet the characteristics of the real

scenarios. To make the label of the synthesized test sample

better reflect the possibility of the test sample causing the

program to failure, we increase the scope of the label. We

have implemented our approach and integrated it into the FL

pipeline. In addition, we evaluated BCL-FL on ManyBugs and

Defects4J, and experimental results show that our approach is

statistically superior to six FL baselines.

In future work, we intend to use more thematic procedures

and replace the BC Formula with more powerful data aug-

mentation approaches.
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