
Two-Stage Attention-Based Model for Code Search
with Textual and Structural Features

Ling Xu1,2, Huanhuan Yang1,2, Chao Liu3, Jianhang Shuai1,2, Meng Yan1,2,∗, Yan Lei1,2, Zhou Xu1,2
1Key Laboratory of Dependable Service Computing in Cyber Physical Society (Chongqing University),

Ministry of Education, China
2School of Big Data and Software Engineering, Chongqing University, Chongqing, China
3College of Computer Science and Technology, Zhejiang University, Hangzhou, China

Email:{xuling, yanghh, shuaijianhang, mengy, yanlei, zhouxu11x}@cqu.edu.cn, liuchaoo@zju.edu.cn

Abstract—Searching and reusing existing code from a large
scale codebase can largely improve developers’ programming ef-
ficiency. To support code reuse, early code search models leverage
information retrieval (IR) techniques to index a large-scale code
corpus and return relevant code according to developers’ search
query. However, IR-based models fail to capture the semantics
in code and query. To tackle this issue, developers applied deep
learning (DL) techniques to code search models. However, these
models either are too complex to determine an effective method
efficiently or learning for semantic correlation between code and
query inadequately.

To bridge the semantic gap between code and query effectively
and efficiently, we propose a code search model TabCS (Two-
stage Attention-Based model for Code Search) in this study.
TabCS extracts code and query information from the code textual
features (i.e., method name, API sequence, and tokens), the
code structural feature (i.e., abstract syntax tree), and the query
feature (i.e., tokens). TabCS performs a two-stage attention net-
work structure. The first stage leverages attention mechanisms to
extract semantics from code and query considering their semantic
gap. The second stage leverages a co-attention mechanism to
capture their semantic correlation and learn better code/query
representation. We evaluate the performance of TabCS on two
existing large-scale datasets with 485k and 542k code snippets,
respectively. Experimental results show that TabCS achieves an
MRR of 0.57 on Hu et al.’s dataset, outperforming three state-
of-the-art models CARLCS-CNN, DeepCS, and UNIF by 18%,
70%, 12%, respectively. Meanwhile, TabCS gains an MRR of
0.54 on Husain et al.’s, outperforming CARLCS-CNN, DeepCS,
and UNIF by 32%, 76%, 29%, respectively.

Index Terms—code search, attention mechanism, representa-
tion learning, code structural feature

I. INTRODUCTION

Open source communities, such as GitHub and Source-

Forge, present millions of source code in public. Searching

and reusing existing code from existing large-scale codebase

can substantially help developers improve their software devel-

opment efficiency. To support the code search task, early code

search models leverage information retrieval (IR) technique to

return a list of code snippets that match the intention of a

search query [1]–[9]. CodeHow [10] is a state-of-the-art IR-

based model that indexes a large-scale codebase by Lucene,

a text search engine [11], and searches a set of code from

codebase according to a search query. To improve the search

∗Corresponding author.

effectiveness, CodeHow extends the query with related APIs

and re-ranks the searched code by an extended Boolean model

[12].

However, IR-based models are difficult to match the query

intention to the semantics of code [13]. To better bridge

the semantic gap between query (natural language) and code

(programming language), Gu et al. [13] proposed a deep

learning (DL) based model DeepCS. It embeds query and

code into representative vectors by using the LSTM (long

and short-term memory) model [14]. The code search can

be performed by measuring the cosine similarity between the

vectors of query and code. Shuai et al. [15] proposed a model

CARLCS-CNN that leverages convolutional neural network

(CNN) and co-attention mechanism to learn the correlation

between code and query. However, these two models still

suffer from two limitations: (1) The networks are complex.

DeepCS and CARLCS-CNN are both based on deep and

complex neural networks, and training them costs enormous

computation resources. (2) The structural features, such as

abstract syntax trees (ASTs) of code, are often ignored. These

models capture the code textural features, including code

tokens, method name and API sequence, but not capturing

the rich structural semantics of source code.

Recently, Cambronero et al. [16] proposed a simple model

UNIF that leverages an attention layer for code/query em-

bedding. Experimental results show that UNIF outperforms

DeepCS which has more complex network designs. However,

similar to DeepCS, UNIF did not consider the correlation of

query and code and the structural features of code. Motivated

by these observations, we explore the idea of combining

the advantages of the UNIF and CARLCS-CNN to build an

effective and efficient code search model with textural and

structural features.

Fig. 1. Example of code search with a natural language query.

342

2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

978-1-7281-9630-5/21/$31.00 ©2021 IEEE
DOI 10.1109/SANER50967.2021.00039

In this paper, we propose a code search model TabCS (Two-

stage Attention-Based model for Code Search). The model

aims to learn the semantic relationship between query and

code. To capture the semantic correlation in query/code, we

build a two-stage attention network structure. The first stage

leverages attention mechanism to assign higher weights on

words that represents the code functionality and the intention

of the developer. As illustrated in Fig. 1, the model would

assign less weights on words that frequently appeared in code

and query (e.g., “new”, and “return”). Besides, to further

align the semantics of words in code and query, the second

stage leverages the co-attention mechanism to assign greater

weights on the words that have semantic correlations in query

and code. For example, the query words (“concatenate” and

“arrays”) are strongly correlated with the words (“concatenate”

and “arraycopy”) in code.

To verify the model validity, we evaluated TabCS on two

existing large-scale datasets, Hu et al.’s dataset [17] with 485k

Java methods and Husain et al.’s dataset [18] with 542k Java

methods. We compared TabCS with three state-of-the-art DL-

based models CARLCS-CNN [15], DeepCS [13], and UNIF

[16]. Experimental results show that TabCS achieves an MRR

(Mean Reciprocal Rank, a widely used performance metric for

code search) of 0.571 on Hu et al.’s dataset, outperforming

CARLCS-CNN, DeepCS, and UNIF by 17.73%, 70.45%, and

10.66% respectively. Meanwhile, TabCS gains an MRR of

0.497 on Husain et al.’s dataset [18], outperforming CARLCS-

CNN, DeepCS, and UNIF by 31.78%, 75.57%, and 28.64%

respectively.

The main contributions of this study are:

• Proposing an attention-based code search model TabCS,

which performs a two-stage attention network structure

on both textural and structural features of code.

• Evaluating the effectiveness of TabCS on two existing

large-scale datasets, where TabCS shows substantial ad-

vantages over the state-of-the-art models CARLCS-CNN,

DeepCS, and UNIF.

• We open source our replication package1, including the

dataset and the source code for follow-up study.

The remainder of this paper is organized as follows. Section

II introduces the background of code search. Section III

presents our proposed model TabCS. Section IV describes

the experiment setup. Section V and Section VI show the

experimental results and discussion respectively. Section VII

presents the related works, and Section VIII concludes the

work and presents future works.

II. BACKGROUND

This section briefly describes the background of code search

task. Subsection II-A and II-B present code and query embed-

ding, respectively. Subsection II-C describes the deep learning

technique in code search.

1https://github.com/cqu-isse/TabCS

A. Code Embedding

For the state-of-art deep learning models, like DeepCS and

CARLCS-CNN, three features are extracted from a method:

method name (a list of camel split tokens), API sequence (a

list of API words in method body), and tokens (a bag of words

in method body).

Firstly, the words in these features are encoded by the

ranking of occurrence frequency in the context. Then they

are transformed into vectors of the same dimension. Next, a

feature containing several words is represented by a matrix

(i.e., consisting of a list of word vectors). Finally, each matrix

is processed by a neural network model for embedding. In

DeepCS, as Eq.(1), method name and API sequence are em-

bedded by an LSTM model to catch the sequential relationship

among words. The tokens are embedded by a common mul-

tilayer perceptron (MLP) [19]. In CRALCS-CNN, AS Eq.(2),

method name and tokens are embedded by a CNN model, and

the API sequence is embedded by a LSTM network.

vc = LSTM1(Vname) + LSTM2(VAPI) +MLP (Vtokens) (1)

vc = CNN1(Vname) + CNN2(Vtokens) + LSTM(VAPI) (2)

B. Query Embedding

Similarly, the query in natural language is treated as a bag of

tokens. The tokens are encoded and transformed into vectors

of the same dimension. Then a query is represented by a

matrix. Finally, the matrix is embedded by a neural network.

DeepCS performs a LSTM model for embedding as Eq. (3),

and CARLCS-CNN performs a CNN model as Eq. (4).

vq = LSTM3(Vquery) (3)

vq = CNN3(Vquery) (4)

C. Deep Learning for Code Search

For a query and a candidate code, DL-based models firstly

learn a code representative vector vc and a query representa-

tive vector vq . Then, models compute their cosine similarity.

Finally, all the candidate code snippets are ranked from the

best to the worst according to their cosine similarity to the

query. The cosine similarity is computed as Eq. (5).

cos =
vc · vq

||vc|| · ||vq|| (5)

In this way, models recommends a code list in which the

kth code is the kth possibly corresponding code for the query.

III. PROPOSED APPROACH

This section presents the overall framework and details of

our proposed model TabCS.

343

A. Overall Framework
Fig. 2 shows the overall framework of TabCS that imple-

ments code search by two stages. The first stage feeds the code

features (i.e., method name, API sequence, tokens, and AST)

and the query feature (i.e., tokens) into attention mechanisms

to obtain code/query feature matrices. Then, the second stage

feeds the feature matrices into a co-attention mechanism to

obtain code/query representative vectors. Finally, the model

recommends a code list according to the cosine similarity of

the two representative vectors.
The following subsections present the model details. Specif-

ically, Section III-B and III-C respectively describe the two

stages of the proposed two-stage attention network structure.

Section III-D describes the cooperation of the two stages.

Section III-E describes model optimization, Section III-F

describes model prediction for code search, and Section III-G

describes model implementation details.

B. The First Stage
1) Attention-Based Code Embedding: We extract four fea-

tures from code, including three textural features and a

structural feature. We implement the code feature embedding

according to the following three steps:

Step-1: Code Textural Feature Embedding. We represent a

code snippet by three code textural features: 1) method name,
a list of camel split words; 2) API sequence, a list of API

words in method body; 3) tokens, a set of words in method

body. For a textural feature (e.g., tokens), we transform each

word into a vector by building a vocabulary and an embedding

matrix E ∈ R
o×k, where o is the size of the vocabulary, k is

the dimension of word embedding. The embedding matrix is

initialized randomly and learned in the training process. Then

the feature can be represented as a matrix (i.e., consisting of a

list of word vectors), namely initial feature matrix. To capture

the semantics of a code, we perform attention mechanism

on three initial feature matrices respectively. The attention

mechanism assigns weights on each word, where the words

much frequently used in programming language are assigned

with less weights. As illustrated in Fig. 2, code words “is”,

“if”, “return”, “false”, and “true” frequently exist in many

code snippets. Therefore, in the training process, the attention

mechanism learns that these words have nothing to do with the

method’s semantics. Compared with these words, the words

not frequently used are assigned with greater weights since

they are more likely to reflect method’s functionality. Finally,

we obtain three weighted feature matrices that respectively

represent the feature’s semantics.
Let mi ∈ R

k be a k-dimensional word initial vector

corresponding to the i-th word in a method name. Given a

sequence of length n {m1, ...,mn}, the attention weight αmi

for each mi is computed as follows:

αmi =
exp(ami

·mT
i)∑n

i=1 exp(ami
·mT

i)
(6)

Where the attention vector ami
∈ R

k is a k-dimensional

vector and optimized during model training. We calculate the

attention weight for each initial vector by using the softmax

function over the product of the initial vectors and attention

vectors.

Then we compute each product of initial vectors and corre-

sponding attention weights, and then concatenate the weighted

vectors. The final concatenation M ∈ R
k×n is the feature

matrix of the method name, which is formulated as Eq. (7),

Where ⊕ is the concatenation operator.

M = αm1
m1 ⊕ αm2

m2 ⊕ ...⊕ αmn
mn (7)

Given an API sequence of length n {p1, ..., pn}, the embed-

ding process is shown as Eq. (8-9). The final concatenation

P ∈ R
k×n is the feature matrix of the API sequence.

αpi
=

exp(api
· pT

i)∑n
i=1 exp(api

· pT
i)

(8)

P = αp1
p1 ⊕ αp2

p2 ⊕ ...⊕ αpn
pn (9)

Given n tokens {t1, ..., tn}, the embedding process is shown

as Eq. (10-11). The final concatenation T ∈ R
k×n is the

feature matrix of the tokens.

αti =
exp(ati · tTi)∑n
i=1 exp(ati · tTi)

(10)

T = αt1 t1 ⊕ αt2 t2 ⊕ ...⊕ αtn tn (11)

Step-2: Code Structural Feature Embedding. We extract

AST from the method body as the structural feature. It parses

a code snippet into a syntax tree. The nodes in the tree describe

the type of corresponding code, such as loop structure, condi-

tional judgment structure, method call and variable declaration.

By traversing an AST in breadth-first strategy, we get all the

AST nodes. Like the textural features, part of the nodes reflects

the method’s function, and the rest can not. For instance, in

Fig. 2, the node “IfStatement” is frequently used in many

code snippets and hardly reflects the method’s functionality.

But the node “MethodDeclaration” is related to the method’s

functionality. Therefore, to catch the method’s functionality,

we perform an attention mechanism on the AST nodes.

Like textural features, we convert nodes into initial vector

embeddings by building vocabularies.Then, we perform an

attention mechanism and concatenate the weighted vectors

into a feature matrix. The matrix extracts the important nodes.

Given a node sequence {ast1, ..., astn}, the embedding process

is shown as Eq. (12-13). The final concatenation AST ∈ R
k×n

is the feature matrix of the AST.

αasti =
exp(aasti · astTi)∑n
i=1 exp(aasti · astTi)

(12)

AST = αast1ast1 ⊕ αast2ast2 ⊕ ...⊕ αastnastn (13)

Step-3: Code Features Fusion. After embedding four code

features to four matrices, we eventually concatenate them into

a matrix C as the final code feature matrix:

C ∈ R
k×p = M ⊕ P ⊕ T ⊕AST (14)

344

Fig. 2. Overall Framework of TabCS

Were p is the total number of the embedded words in four

features. Actually, C is formed by concatenating all the

weighted vectors in textural and structural features. Compared

with compressing weighted vectors into one vector, the simple

concatenation operation can effectively avoid losing original

information in the fusion process.

2) Attention-Based Query Embedding: The query always

contains informative keywords of developers’ intention. We

extract tokens from the query. Like code tokens, some words

hardly reflect the query’s semantics since they are frequently

used. After embedding words, to extract query’s semantics,

we perform an attention mechanism to assign less attention

weights on words that frequently appeared in query and

assign greater weights on words that represents the intention

of the developers. Finally, the weighted word vectors are

concatenated into the query feature matrix. Given n tokens

{q1, ..., qn}, the embedding process is shown as Eq. (15-16).

The concatenation Q ∈ R
k×n is the final query feature matrix.

αqi =
exp(aqi · qTi)∑n
i=1 exp(aqi · qT

i)
(15)

Q = αq1q1 ⊕ αq2q2 ⊕ ...⊕ αnqn (16)

C. The Second Stage

In the first stage, we obtain the code feature matrix C ∈
R

k×p and the query feature matrix Q ∈ R
k×q (here we replace

n in Eq. (16) with q). In the second stage, we feed the two

matrices into a co-attention mechanism. Firstly, we compute

the correlation matrix F ∈ R
p×q as follows:

F = tanh(CTUQ) (17)

Where the parameter matrix U ∈ R
k×k is to be learned in

training process. The correlation matrix F represents semantic

correlation between code words and query words. We use the

tanh activation function to limit the values of each element of

the matrix between -1 and 1.

345

Then, we perform max-pooling operations along rows and

columns over F as Eq. (18-20).

wC
i = maxpooling(Fi,1, ..., Fi,q) (18)

wQ
j = maxpooling(F1,j , ..., Fp,j) (19)

wC =
[
wC
1 , ...,wC

p

]
, wQ =

[
wQ
1 , ...,wQ

q

]
(20)

Where wC ∈ R
p and wQ ∈ R

q represent the correlation be-

tween code and query. Afterward, wC and wQ are transformed

into vC and vQ by using the softmax function as Eq. (21-22).

We take vC ∈ R
p and vQ ∈ R

q as the weight vectors for code

feature matrix C and query feature matrix Q.

vCi =
exp(wC

i)∑p
k=1 exp(w

C
k)

, vQi =
exp(wQ

i)∑q
k=1 exp(w

Q
k)

(21)

vC =
[
vC1 , ..., vCp

]
, vQ =

[
vQ1 , ..., vQq

]
(22)

Additionally, to obtain the final code representative vector

gC and the final query representative vector gQ, we perform

dot product on the feature matrices C, Q, and weight vectors

vC , vQ as Eq. (23).

gC = CvC , gQ = QvQ (23)

D. Cooperation of two stages

Our model bridges the semantics gap between code and

query by two stages. In the first stage, to extract code and

query’s semantics, we use the attention mechanism to assign

less weights on words that frequently appeared in code and

query. At the same time, assigns higher weights on words

that represents code’s functionality and the intention of the

developer. In the second stage, to learn the semantic correlation

of code and query, we use co-attention mechanism to assign

higher weights on the code words and query words that contain

semantic correlations.

The first stage weights an embedding vector ci as follow:

Ci = αici (24)

Here αi is the weight assigned to the ith word in the code

feature. In the model training, the first stage finds that some

words frequently exist in many code snippets which means that

these words hardly reflect the method’s functionality. Then, to

extract semantics from code, the first stage assigns them with

less attention weights and assigns greater weights on other

words that may reflect the method’s functionality, which is

the same with query.

Although the code words that are given greater weights by

the first stage contains semantics, they may have nothing to do

with the query, as do the query words. To address this issue,

the second stage performs a co-attention mechanism to learn

the semantic correlation of code and query.

The second stage compute their semantics correlation as Eq.

(17), a single element Fi,j of F in Eq. (17) is computed as

follow,

Fi,j = tanh(CT
i UQj) (25)

Ci ∈ R
k and Qj ∈ R

k respectively represent the ith word

vector in code and jth word vector in query output by the first

stage. Element Fi,j represents the their semantic correlation.

After the max-pooling operation, wC
i in Eq. (20) represents

the correlation of the query word most related to the ith code

words. If no words in query is related to the ith code word, wC
i

is much less, it means ith code word is unrelated to the query.

Conversely, if wC
i is much greater, it means ith code word

is highly related to the query, which is the same with query.

By using wC and wQ to weight words as Eq. (18-23), the

second stage is able to find the words of code and query that

contain semantic correlation. By the cooperation of two weight

assignments in two stages, our model learns better code/query

representative vectors.

E. Model Optimization

We build five vocabularies respectively for method name,

API sequence, AST sequences, code tokens, and query tokens.

A vocabulary contains all the words that appear in the feature.

In this way, each word in a feature can be uniquely identified

by a word vector, and a feature containing a bag of words

can be represented by a matrix (i.e., a concatenation of word

vectors).

We hope that when a code snippet and a query have

similar semantics, their representative vectors should be close

to each other. When the semantics of the code and query are

different, their representative vectors are far from each other.

So in practice, we construct each training instance as a triple

<c, q+, q−>: for each code c there is a positive query q+ (a

ground-truth query of c) and a negative query q− (an incorrect

query of c). The incorrect query q− is selected randomly from

the collection of correct query q+. The loss function are set

as follow:

L(θ) =
∑

(c,q+,q−)∈G
max(0, β − sim(c, q+) + sim(c, q−))

(26)

Where sim is the cosine similarity code and query’s represen-

tative vectors; θ represents all the parameters in the network. β
is a small margin constraint and is set to 0.05 according to the

default setting. The value of L(θ) ranges from 0 to β. This loss

makes sure that, given a code c, the representative vector of a

correct query q+ is closer to the code’s representative vector

c than that of an incorrect query q− by at least a margin β.

We use the Adam algorithm [20] to minimize the loss

function. In the training process, in the first stage, the attention

mechanism learns the weights of feature words to produce fea-

ture matrices. In the second stage, the co-attention mechanism

learns the co-attention matrix. This matrix, through column-

wise max-pooling and row-wise max-pooling, gets two atten-

tion vectors for query and code respectively to weight attention

matrices. In the training process, the loss function realizes

gradient descent [21] through Adam, the model parameters θ
are updated iteratively, and the final representative vectors for

query and code are learned simultaneously.

346

F. Model Prediction for Code Search

The proposed model performs code search in the following

steps: given a query, TabCS first matches all code snippets with

the query. For a repository with n code snippets, it generates n
query-code pairs. Next, TabCS computes their representative

vectors and their cosine similarities for all the query-code

pairs. Then, they are ranked according to their cosine similarity

values. Finally, TabCS recommends the query-code pairs with

top-k values in the list for a search query.

G. Implementation Details

The detailed implementation of the TabCS is as follows:

batch size (i.e., the number of instances per batch) is set as

256. The word embedding size is set to 100 following Shuai

et al. [22]. All the experiments are implemented using the

Keras framework with Python 3.5, and the experiments were

conducted on a server (Ubuntu 18.04) with one NVIDIA Titan

V GPU and 256 GB memory.

IV. EXPERIMENT SETUP

This section presents the investigated research questions

(RQs), experimental setup, the compared baseline models, and

evaluation measures.

A. Research Questions

To verify the validity of the proposed model, this study

investigates the following four research questions.

RQ1. Can TabCS outperforms the state-of-the-art models?

The first RQ investigates whether the proposed model

TabCS outperforms three state-of-the-art DL-based code

search models CARLCS-CNN [15], DeepCS [13] and UNIF

[16].

RQ2. Does TabCS run faster than the state-of-the-art mod-

els?

RQ2 compares the training and testing time between our

TabCS and the baseline models, and tests if the proposed

model can save computation resources than the baseline

models substantially. Faster models indicate more valuable

application in practices.

RQ3. How do textual and structural features affect the

model performance?

In TabCS, a code method is respectively represented by four

features (i.e., method name, API sequence, tokens and AST),

which can capture the structural and semantic information of

source code. To analyze their impacts on model effectiveness,

we run TabCS by removing one feature at a time, and

investigate whether using the four features together is the best

choice.

RQ4. How does the two-stage attention network structure

improve the model performance?

The two-stage attention network structure of TabCS aims

to capture the correlation between code and query in two

steps. To analyze its impacts on model effectiveness, we run

CARLCS-CNN and UNIF with the textural and structural

features of code to investigate whether two-stage attention

network structure outperforms the network of CARLCS-CNN

and UNIF or not.

B. Datasets

To evaluate the model effectiveness, we tested our model

on two existing datasets. One is the Hu’s [17] dataset2 that

contains 485,812 code-query pairs. Hu’s dataset was collected

from GitHub’s Java repositories created from 2015 to 2016. To

filter out low-quality projects, Hu et al. [17] only considered

the projects with more than ten stars. Then, they extracted

Java methods and their corresponding Javadoc from these Java

projects. The first sentence of the Javadoc is considered as the

query. The other is the Husain’s [18] dataset3. The corpus

contains 542,991 Java code with queries written in natural

language collected from GitHub repositories.

C. Baselines

DeepCS. One of the state-of-the-art models is the DeepCS

proposed by Gu et al. [13]. DeepCS performs RNN and MLP

networks on method name. API sequences, and tokens of code

to obtain code representative vector, and performs RNN to

obtain query representative vector. We re-ran the DeepCS by

using the source code shared on the GitHub4.

CARLCS-CNN. A deep learning-based code search model

is CARLCS-CNN proposed by Shuai et al. [22]. It leverages

CNN and LSTM associated with a co-attention mechanism to

learn interdependent representations for code and query after

the individual embedding5.

UNIF. A state-of-the-art supervised code search model pro-

posed by Cambronero et al. [16]. Specifically, UNIF uses a

learned attention-based weighing scheme to combine per-token

embeddings and produces the embedded code sentence vector.

The description sentence embedding is produced by averaging

the bag of query embeddings.

CARLCS-TS. The proposed model incorporates structural

code feature (i.e., abstract syntax tree) to CARLCS-CNN.

CARLCS-TS takes four code features (i.e., method name, API

sequence, tokens and AST sequence) as input. Meanwhile, the

added feature AST sequence is embedded by in individual

CNN network and merged into the code feature matrix like

other feature.

2https://github.com/xing-hu/EMSE-DeepCom
3https://github.com/github/CodeSearchNet
4https://github.com/guxd/deep-code-searh
5https://github.com/cqu-isse/CARLCS-CNN

347

UNIF-TS. An extension of the base UNIF of our own creation.

UNIF-TS incorporates structural code feature, i.e., abstract

syntax tree to UNIF in order to investigate whether structural

features can improve code search effectiveness.

D. Evaluation Metrics

To evaluate the model performance, 10k code-query pairs

from a dataset were randomly selected as testing while the

rest were used as model training. For each query, a model

returns the top-10 candidate code and search performance is

measured by two widely used metrics SuccessRate and MRR

(mean reciprocal rank) following Shuai et al [15]. To suppress

the effect of randomness, we evaluate the model ten times with

different randomly selected training/testing data at each time.

SuccessRate@k (SR@k), the proportion of queries that the

relevant code method could be found in the top-k ranked

lists. In specific, SuccessRate@k is calculated as SR@k =
|Q|−1

∑|Q|
i=1 σ (Qi ≤ k), where Q is the 10k queries in our

automatic evaluation, as referred to in Section IV-B; σ is an

indicator function that returns 1 if the i-th query (Qi) could be

found in the top-k ranked list, otherwise it returns 0. Following

Gu et al. [23], we evaluate SR with k at 1, 5, 10 respectively.

MRR, the average of the reciprocal ranks of all queries. The

computation process of MRR is |Q|−1
∑|Q|

i=1 Rank−1
Qi

, Where

Q is the 10k queries in the automatic evaluation; RankQi
is

the rank of the ground-truth code related to the i-th query

(Qi) in the ranked list. Different from SR, MRR uses the

reciprocal rank as the weight of measurement. Meanwhile, as

developers prefer to find the expected code method with short

code inspection, we only test MRR on the top-10 ranked list

following Gu et al. [23]. In other words, when the rank of Qi

is out of 10, then 1/RankQi equals to 0.

V. RESULTS

This section investigates the four research questions (RQs)

described in Section IV-A respectively.

A. RQ1: Can TabCS Outperform the State-of-the-Art Models?

We compare code search effectiveness between the state-of-

the-art models DeepCS, CARLCS-CNN, CARLCS-TS, UNIF

and our TabCS model described in Section III. Results show

that TabCS outperforms three DL-based models (i.e., DeepCS,

CARLCS-CNN, and CARLCS-TS) and UNIF.

For Hu et al.’s dataset, as shown in Table I, TabCS achieves

an MRR of 0.571, and SR@1/5/10 with 0.585/0.746/0.813.

TabCS outperforms the baseline models DeepCS, CARLCS-

CNN, CALRCS-TS, and UNIF by 70.45%, 17.73%, 11.74%,

and 10.66% in terms of MRR; by 76.74%/48.31%/37.10%,

18.66%/14.59%/12.14%, 12.50%/10.03%/8.40%, and 10.80%/

10.03%/7.82% in terms of SR@1/5/10 respectively.

For Husain et al.’s dataset, as shown in Table II,

TabCS achieves an MRR of 0.539, and SR@1/5/10 with

0.547/0.683/0.748. TabCS outperforms the baseline mod-

els DeepCS, CARLCS-CNN, CALRCS-TS, and UNIF by

75.57%, 31.78%, 26.53%, and 28.64% in terms of MRR;

by 86.05%/55.23%/41.40%, 32.45%/22.62%/18.17%, 24.60%/

17.76%/14.02%, and 30.24%/22.84%/19.87% in terms of

SR@1/5/10 respectively.

TABLE I
EFFECTIVENESS COMPARISON OF MODELS DEEPCS, CARLCS-CNN,

CARLCS-TS, UNIF AND TABCS IN TERMS OF SR@1/5/10 AND MRR
ON HU ET AL.’S DATASET.

Model SR@1 SR@5 SR@10 MRR

DeepCS 0.331 0.503 0.593 0.335
CARLCS-CNN 0.493 0.651 0.725 0.485
CARLCS-TS 0.520 0.678 0.750 0.511
UNIF 0.528 0.678 0.754 0.516
TabCS 0.585 0.746 0.813 0.571

TABLE II
EFFECTIVENESS COMPARISON OF MODELS DEEPCS, CARLCS-CNN,

CARLCS-TS, UNIF AND TABCS IN TERMS OF SR@1/5/10 AND MRR
ON HUSAIN ET AL.’S DATASET.

Model SR@1 SR@5 SR@10 MRR

DeepCS 0.294 0.440 0.529 0.307
CARLCS-CNN 0.413 0.557 0.633 0.409
CARLCS-TS 0.439 0.580 0.656 0.426
UNIF 0.42 0.556 0.624 0.419
TabCS 0.547 0.683 0.748 0.539

Furthermore, to analyze the statistical difference between

TabCS and these baselines, we apply the Wilcoxon signed-rank

test [24] on MRR between them at a 5% significance level.

The p-value is less than 0.01, indicating the improvements

of TabCS over these baselines are substantial in statistical

significance.

Result 1: The proposed model TabCS outperforms
the state-of-the-art baselines DeepCS, CARLCS-CNN,
CARLCS-TS, and UNIF substantially on effectiveness.

B. RQ2. Does TabCS Run Faster Than the State-of-the-Art
Models?

We compare our proposed model with baselines on two

datasets. All the experiments are implemented on a server

with one Nvidia Titan V GPU with 256 GB memory. Table

III compares the training and testing time on Hu’s dataset.

The efficiency comparison is conducted under the same ex-

perimental setup. Results show that DeepCS, CARLCS-CNN,

CARLCS-TS, UNIF, and TabCS take 36.6, 12.2, 16.6, 2.8,

and 5.1 hours for optimization, respectively, and spend about

1.1, 0.4, 0.7, 0.2, and 0.4 seconds for each code search query,

respectively. Comparing with DeepCS, CARLCS-CNN, and

CARLCS-TS, TabCS is 7 times, 2 times and 3 times faster

in model training, respectively. Comparing with DeepCS and

CARLCS-TS, TabCS is 3 times and 2 times faster in model

testing, respectively. CARLCS-CNN spends the same time

with TabCS in model testing. UNIF is slightly faster than

TabCS in model optimization and code search. This is because

UNIF only use one textual feature (i.e., tokens) to represent

the code while TabCS extracts three textual feature and one

structural feature.

Table IV shows the training and testing time on Husain

et al.’s dataset. Results show that DeepCS, CARLCS-CNN,

348

TABLE III
TIME COST FOR MODEL TRAINING AND TESTING OF DEEPCS,

CARLCS-CNN, CARLCS-TS, UNIF AND TABCS ON HU ET AL.’S

DATASET.

Model Training Testing

DeepCS 36.6 hours 1.1s/query
CARLCS-CNN 12.2 hours 0.4s/query
CARLCS-TS 16.6 hours 0.7s/query
UNIF 2.8 hours 0.2s/query
TabCS 5.1 hours 0.4s/query

TABLE IV
TIME COST FOR MODEL TRAINING AND TESTING OF DEEPCS,

CARLCS-CNN, CARLCS-TS, UNIF AND TABCS ON HUSAIN ET AL.’S

DATASET.

Model Training Testing

DeepCS 34.1 hours 0.9s/query
CARLCS-CNN 10.7 hours 0.4s/query
CARLCS-TS 13.2 hours 0.6s/query
UNIF 1.7 hours 0.2s/query
TabCS 3.9 hours 0.4s/query

CARLCS-TS, UNIF, and TabCS take about 34.1, 10.7, 13.2,

1.7, and 3.9 hours for optimization, respectively, and take

about 0.9, 0.4, 0.6, 0.2, and 0.4 seconds for responding each

code search query, respectively. Comparing with DeepCS,

CARLCS-CNN, and CARLCS-TS, TabCS is 8 times, 2 times

and 3times faster in model training, respectively. Comparing

with DeepCS and CARLCS-TS, TabCS is 2 times and 1.5

times faster in model testing, respectively. As Hu’s dataset,

CARLCS-CNN spends the same time with TabCS in model

testing, and UNIF is a little bit faster than TabCS in model

optimization and model testing.

These results imply that in terms of efficiency, the atten-

tion mechanism based search models, especially for our pro-

posed TabCS, is a better choice for practical usage. DeepCS,

CARLCS-CNN and CARLCS-TS are slower because they are

CNN-based or LSTM-based models with complex network

structure and time-consuming optimization process [25]–[28].

Result 2: The proposed model TabCS outperforms the
state-of-the-art baselines DeepCS, CARLCS-CNN, and
CARLCS-TS substantially on efficiency.

C. RQ3. How Do Textual and Structural Features Affect the
Model Performance?

To investigate the relative importance of four features

(method name, tokens, API sequence, and AST), We remove

one feature from our proposed model in turn, and run the

model on two datasets. In Table V and Table VI, M, API,

T, and AST in TabCS represents the considered code feature

method name, API sequence, tokens, and AST sequence,

respectively.

From Table V, we can observe that for Hu et

al.’s dataset, CARLCS-TS improves CARLCS-CNN by

5.48%/4.15%/3.45%, and 5.36% in terms of SR@1/5/10 and

MRR. UNIF-TS improves UNIF by 2.46%/3.39%/2.52%,

and 3.29% in terms of SR@1/5/10, and MRR. For TabCS,

by removing the features on the method name, API se-

quence, tokens and AST, the MRR decreases by 10.16%,

9.63%, 15.06% and 8.06% respectively; the SR@1/5/10

decreases by 11.28%/7.37%/5.04%, 10.60%/7.24%/5.17%,

14.87%/ 10.86%/8.12%, and 8.55%/6.17%/4.18% respec-

tively.
Table VI shows the comparison results for Husain et

al.’s dataset, CARLCS-TS improves CARLCS-CNN by

6.30%/4.13%/3.63%, and 4.16% in terms of SR@1/5/10,

and MRR. UNIF-TS improves UNIF by 8.79%/8.09%/8.01%,

and 8.59% in terms of SR@1/5/10, and MRR. For TabCS,

by removing the features on the method name, API se-

quence, tokens and AST, the MRR decreases by 16.51%,

6.49%, 13.91% and 6.49% respectively; the SR@1/5/10

decreases by 17.55%/12.74%/9.49%, 6.03%/3.95%/3.88%,

14.44%/9.81%/7.62% and 7.13%/4.25%/3.21% respectively.

TABLE V
EFFECTIVENESS COMPARISON OF MODELS WITH TEXTUAL AND

STRUCTURAL FEATURES SETTINGS IN TERMS OF SR@1/5/10 AND MRR
ON HU ET AL.’S DATASET.

Model SR@1 SR@5 SR@10 MRR

CARLCS-CNN 0.493 0.651 0.725 0.485
CARLCS-TS 0.520 0.678 0.750 0.511

UNIF 0.528 0.678 0.754 0.516
UNIF-TS 0.541 0.701 0.773 0.533

TabCS (AST+API+T) 0.519 0.691 0.772 0.513
TabCS (AST+M+T) 0.523 0.692 0.771 0.516
TabCS (AST+M+API) 0.489 0.665 0.747 0.485
TabCS (API+M+T) 0.535 0.700 0.779 0.525
TabCS (AST+M+API+T) 0.585 0.746 0.813 0.571

TABLE VI
EFFECTIVENESS COMPARISON OF MODELS WITH TEXTUAL AND

STRUCTURAL FEATURES SETTINGS IN TERMS OF SR@1/5/10 AND MRR
ON HUSAIN ET AL.’S DATASET.

Model SR@1 SR@5 SR@10 MRR

CARLCS-CNN 0.413 0.557 0.633 0.409
CARLCS-TS 0.439 0.580 0.656 0.426

UNIF 0.421 0.556 0.624 0.419
UNIF-TS 0.458 0.601 0.674 0.455

TabCS (AST+API+T) 0.451 0.596 0.677 0.450
TabCS (AST+M+T) 0.514 0.656 0.719 0.504
TabCS (AST+M+API) 0.468 0.616 0.691 0.464
TabCS (API+M+T) 0.508 0.654 0.724 0.504
TabCS (AST+M+API+T) 0.547 0.683 0.748 0.539

These results show that the four code features(i.e., method

name, API sequence, tokens, and AST), works and improves

the effectiveness of TabCS. Meanwhile, the code structural

feature contributes to the CARLCS-CNN, UNIF and TabCS,

and its contribution does not conflict with textural features.

Result 3: The proposed textural and structural features
outperforms textural features substantially. The structural
feature is necessary and useful for code search.

D. RQ4. How Does the Two-Stage Attention Network Struc-
ture Improve the Model Performance?

Table VII shows the comparison of CARLCS-TS, UNIF-

TS and TabCS on Hu et al.’s dataset. TabCS outperforms

349

the baseline models CARLCS-TS and UNIF-TS by 11.74%

and 7.13% in terms of MRR; by 12.50%/10.03%/8.40%, and

8.13%/6.42%/5.17% in terms of SR@1/5/10 respectively.

Meanwhile, Table VIII shows the comparison of CARLCS-

TS, UNIF-TS and TabCS on Husain et al.’s dataset. TabCS

outperforms CARLCS-TS and UNIF-TS by 26.53% and

18.46% in terms of MRR; by 24.60%/17.76%/14.02%, and

19.43%/13.64%/10.98% in terms of SR@1/5/10 respectively.

These results imply that when considering both code tex-

tural and structural features, the two-stage attention network

structure outperforms CARLCS-TS and UNIF-TS’networks.

TABLE VII
EFFECTIVENESS COMPARISON OF MODELS CARLCS-TS, UNIF-TS AND

TABCS FOR ATTENTION MECHANISM IN TERMS OF SR@1/5/10 AND

MRR ON HU ET AL.’S DATASET

Model SR@1 SR@5 SR@10 MRR

CARLCS-TS 0.520 0.678 0.750 0.511
UNIF-TS 0.541 0.701 0.773 0.533
TabCS 0.585 0.746 0.813 0.571

TABLE VIII
EFFECTIVENESS COMPARISON OF MODELS CARLCS-TS, UNIF-TS AND

TABCS FOR ATTENTION MECHANISM IN TERMS OF SR@1/5/10 AND

MRR ON HUSAIN ET AL.’S DATASET

Model SR@1 SR@5 SR@10 MRR

CARLCS-TS 0.439 0.580 0.656 0.426
UNIF-TS 0.458 0.601 0.674 0.455
TabCS 0.547 0.683 0.748 0.539

Result 4: The proposed two-stage attention network
structure substantially improves model’s performance.

VI. DISCUSSION

This section first discusses the advantages of the proposed

TabCS model in Section VI-A-VI-B. Then, in Section VI-C,

we discuss the threats to model validity.

A. Why Does TabCS Work?

Above experimental results imply that the proposed model

shows substantial advantages over the state-of-the-art models

due to two reasons – the code structural feature and the two-

stage attention network structure.

Code Structural Feature. TabCS takes the AST sequence as

the structural feature. Like the example in Fig.3(a), the AST

of the method body includes some methods call statements

that reflect the method’s function. TabCS finds the potential

correlation between the method call structures and query.

Therefore, TabCS predicts that this method may correspond

to the given query.

Two-stage attention network structure. Fig. 3(a) shows the

first retrieved results of TabCS, CARLCS-CNN, and UNIF

for the query “transform date to string”. We can notice that

CARLCS-CNN and UNIF return irrelevant code snippets.

TabCS returns the correct code snippet. For the code A in

Fig.3(a), TabCS assigns less attention weights on query words

(i.e., “to”) and code words (i.e., “if”, “null”, “return”, “try”,

(a) TabCS’s first retrieved result.

(b) CARLCS-CNN’s first retrieved result.

(c) UNIF’s first retrieved result.

Fig. 3. The retrieved first results for the query ”transform date to string”.

“catch” and “Exception”) in the first stage. The second stage

assigns greater weights on query words (i.e., “transform”,

“date”, and “string”) and code words (i.e., “String”, “date”,

“to”, “DateFormat”, and “getDateTimeInstance”). In this way,

TabCS learns the code/query representative vectors and com-

pute their cosine similarity. Compared to code B in Fig. 3(b)

and Code C in Fig. 3(c), Code A get the highest similarity. This

result implies that the two-stage attention network structure is

advantageous over CARLCS-CNN and UNIF.

B. Why Is TabCS Fast?

TabCS’s network structure has significantly lower com-

plexity compared to the state-of-the-art model DeepCS and

CARLCS-CNN. For example, CNN needs to do convolution

operations, and LSTM model has many parameters to be

trained. These factors greatly increase time consumption. But

in TabCS, the first stage just need to perform a attention

mechanism. It’s simple and has less parameters. In the second

stage, co-attention mechanism only needs to train an attention

parameter matrix U and its network is simple. On the whole,

the construction consists of two types of attention mechanisms

are much simpler and the number of parameters is much less.

Thus, the training and practice time-costing of TabCS is much

shorter than that of those baselines.

350

C. Threats To Model Validity

The query statements in the datasets are written in English.

Therefore, the model may not work as well for other lan-

guages. In addition, we only perform experiments on method-

level Java code repository. We plan to extend the datasets in

the near future. Our implementation of a multi-feature combi-

nation possesses some threats. We combine four structural and

semantic features by concatenation directly. This combination

method may ignore the connection and difference between the

four features. Additionally, some parameters like the length of

code features and word vector dimensions are set in default.

Thus, such model setting may not be generalizable for other

datasets.

VII. RELATED WORK

This section provides the related works in three aspects:

code search, AST, and attention mechanism.

A. Code Search

Since the development of software engineering, code search

has been a hot topic. At the beginning, code search can be

realized by search engines [29]–[31]. Mica [32] and Assieme

[33] use search engines to get the results and then, extract code

snippet from these results. Except for search engine, some

code search tools based on IR technique has been proposed

[2], [10], [34]. They take the same words of code and query

as their relevance. For example, CodeHow [10] performed the

code search by recognizing a user query as relevant APIs and

using an Extended Boolean model. Chan et al. [2] proposed

a model which returns the API sequences according to the

textual similarity of query and API. However, above IR-based

code search engines/tools only care about the text features, not

the semantic features. [35]. With the development of natural

language processing and deep learning, many tools have been

proposed [16], [22], [23]. They use natural language process-

ing technique to preprocess the code and query statements,

and use DL technique to learn their semantic correlation. One

of the representative models is DeepCS [23]. It embeds code

and query into vector spaces by two LSTM models. CARLCS-

CNN [22] uses CNN and LSTM to embed code and query, and

performs a co-attention mechanism to learn their correlation.

UNIF [16] perform an attention mechanism on code and query

to find their relation.

B. Abstract Syntax Tree

Abstract syntax tree [36] represents the syntactic structure

of programming language in the form of tree. Each node in

the tree represents a structure in the source code. AST are

widely used in software engineering [37]–[41]. Wang et al.

[42] proposed a bug localization tool which use AST of code to

find bug information. Zhang et al. [43] parse code snippets into

ASTs and calculate their similarities based on ASTs to find the

relation between two code snippets. Li et al. [44] proposed a

source code plagiarism detection tool to calculate the similarity

between programs based on AST. Wang et al. [45] presents

an approach for recovering the UML class diagram from the

Java source code using AST.

C. Attention Mechanism

Attention mechanism is widely used in natural language

processing and image semantic extraction [46]–[48]. Results

show that attention mechanism has a excellent performance

on learning semantics [49]–[51]. Ueda et al. [52] proposed

a request estimation method using LSTM with four Self-

Attention mechanisms to represent the sentences from multiple

perspectives and get excellent results. Chowdhury et al. [53]

proved that attention-based models can improves the Equal

Error Rate (EER) of speaker verification system. However,

these models are only suitable for a single input. It doesn’t

work when they need to capture the interactive semantics of

two or more data.

Therefore, researchers proposed co-attention mechanism

which can learn the interactive semantic information from

two input datas [54]–[59]. Zhang et al. [60] present a novel

co-attention based network to capture the correlation between

aspect and contexts and the results shows good performance.

Nguyen et al. [61] proposed an approach for visual question

answering using dense symmetric co-attention mechanism and

achieves a new state-of-the-art on VQA and VQA 2.0. Ma et

al. [62] proposed an improved multi-step multi-classification

model based on co-attention mechanism to mitigate the phe-

nomenon of error prediction, label repetition and error ac-

cumulation. We apply the traditional attention mechanism to

extract semantic of code and query, and apply co-attention

mechanism to address the semantic gap between code and

query. And our experiment results indicate the combination of

two kinds of attention mechanism is valuable and promising

for the code search.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose a two-stage attention-based model

named TabCS, which extracts textural and structural features

from code, and performs a two-stage attention network struc-

ture on code features and query to learn representative vectors

for them. We evaluate the proposed model TabCS on Hu’s

dataset and Husain et al.’s dataset. The results show that

the proposed TabCS outperforms the state-of-the-art models

DeepCS, UNIF, and CARLCS-CNN in terms of MRR by

70.45%, 10.66%, 17.73% on Hu’s dataset; 75.57%, 28.64%,

31.78% on Husain et al.’s dataset. The experimental results

indicate that the AST of code as the structural feature and

the two-stage attention network structure are valuable and

promising for the code search. In the future, we plan to

investigate more features of source code to enhance the code

representation, such as the control flow graph of code.

ACKNOWLEDGMENT

This work was supported in part by the National Key

Research and Development Project (No.2018YFB2101200),

the Fundamental Research Funds for the Central Universities

(No.2019CDYGYB014 and No.2020CDCGRJ037), the Na-

tional Nature Science Foundation of China (No.62002034) and

the National Defense Basic Scientific Research Program (No.

WDZC20205500308).

351

REFERENCES

[1] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer, “Example-
centric programming: integrating web search into the development
environment,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2010, pp. 513–522.

[2] W.-K. Chan, H. Cheng, and D. Lo, “Searching connected api
subgraph via text phrases,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
ser. FSE ’12. New York, NY, USA: ACM, 2012, pp. 10:1–10:11.
[Online]. Available: http://doi.acm.org/10.1145/2393596.2393606

[3] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and T. Men-
zies, “Automatic query reformulations for text retrieval in software
engineering,” in Proceedings of the 2013 International Conference on
Software Engineering. IEEE Press, 2013, pp. 842–851.

[4] E. Hill, M. R.Vega, J. A.Fails, and G. Mallet, “Nl-based query refine-
ment and contextualized code search results: A user study,” in 2014
Software Evolution Week - IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE), Feb 2014, pp.
34–43.

[5] R. Holmes, R. Cottrell, R. J. Walker, and J. Denzinger, “The end-to-
end use of source code examples: An exploratory study,” in 2009 IEEE
International Conference on Software Maintenance. IEEE, 2009, pp.
555–558.

[6] M. Lu, X. Sun, S. Wang, D. Lo, and Y. Duan, “Query expansion
via wordnet for effective code search,” 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengineering, SANER
2015 - Proceedings, pp. 545–549, 04 2015.

[7] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: Finding relevant functions and their usage,” 01 2011, pp.
111–120.

[8] C. Sadowski, K. T. Stolee, and S. Elbaum, “How developers search
for code: A case study,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2015.
New York, NY, USA: ACM, 2015, pp. 191–201. [Online]. Available:
http://doi.acm.org/10.1145/2786805.2786855

[9] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P. Baldi,
“Sourcerer: mining and searching internet-scale software repositories,”
Data Mining and Knowledge Discovery, vol. 18, no. 2, pp. 300–336,
2009.

[10] F. Lv, H. Zhang, J. Lou, S. Wang, D. Zhang, and J. Zhao, “Codehow:
Effective code search based on api understanding and extended boolean
model (e),” pp. 260–270, 2015.

[11] M. McCandless, E. Hatcher, O. Gospodnetić, and O. Gospodnetić,
Lucene in action. Manning Greenwich, 2010, vol. 2.

[12] G. Salton, E. A. Fox, and H. Wu, “Extended boolean information
retrieval,” Communications of the ACM, vol. 26, no. 11, pp. 1022–1036,
1983.

[13] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE). IEEE,
2018, pp. 933–944.

[14] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks for
language modeling,” in Thirteenth annual conference of the international
speech communication association, 2012.

[15] J. Shuai, L. Xu, C. Liu, M. Yan, X. Xia, and Y. Lei, “Improving code
search with co-attentive representation learning,” in 28th International
Conference on Program Comprehension (ICPC), 2020.

[16] J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When deep
learning met code search,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2019, pp. 964–974.

[17] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation
with hybrid lexical and syntactical information,” Empirical Software
Engineering, pp. 1–39, 2019.

[18] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code search,”
arXiv preprint arXiv:1909.09436, 2019.

[19] M. W. Gardner, “Artificial neural networks (the multilayer percep-
tron)—a review of applications in the atmospheric sciences,” Atmo-
spheric Environment, vol. 32, 1998.

[20] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
Computer Science, 2014.

[21] Y. Yao, L. Rosasco, and A. Caponnetto, “On early stopping in gradient
descent learning,” Constructive Approximation, vol. 26, no. 2, pp. 289–
315, 2007.

[22] J. Shuai, L. Xu, C. Liu, M. Yan, X. Xia, and Y. Lei, “Improving code
search with co-attentive representation learning.”

[23] G. Xiaodong, Z. Hongyu, and K. Sunghun, “Deep code search,” in 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE), May 2018, pp. 933–944.

[24] F. Wilcoxon, “Individual comparisons by ranking methods,” in Break-
throughs in statistics. Springer, 1992, pp. 196–202.

[25] W. Yin, H. Schütze, B. Xiang, and B. Zhou, “Abcnn: Attention-based
convolutional neural network for modeling sentence pairs,” Transactions
of the Association for Computational Linguistics, vol. 4, pp. 259–272,
2016.

[26] W. Yin, K. Kann, M. Yu, and H. Schütze, “Comparative study of cnn and
rnn for natural language processing,” arXiv preprint arXiv:1702.01923,
2017.

[27] X. Yao, B. Van Durme, and P. Clark, “Automatic coupling of
answer extraction and information retrieval,” in Proceedings of
the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Sofia, Bulgaria: Association
for Computational Linguistics, Aug. 2013, pp. 159–165. [Online].
Available: https://www.aclweb.org/anthology/P13-2029

[28] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” computer science, vol. 1409, 09
2014.

[29] M. Arora, “How google search engine works,” Electronics for You, 2013.
[30] K. Krugler, Krugle Code Search Architecture, 2013.
[31] B. R. Muddu, A. M. Asadullah, J. Vinod, and K. K. Pooloth, “Structural

search of source code,” 2012.
[32] J. Stylos and B. A. Myers, “Mica: A web-search tool for finding api

components and examples,” in 2006 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC 2006), 4-8 September
2006, Brighton, UK, 2006.

[33] R. Hoffmann, J. Fogarty, and D. S. Weld, “Assieme: finding and lever-
aging implicit references in a web search interface for programmers,”
in Proceedings of the 20th annual ACM symposium on User interface
software and technology. ACM, 2007, pp. 13–22.

[34] D. Manjula, S. Kulandaiyan, S. Sudarshan, A. Francis, and T. V. Geetha,
“Semantics based information retrieval using conceptual indexing of
documents,” in Intelligent Data Engineering Automated Learning,
International Conference, Ideal, Hong Kong, China, March, Revised
Papers, 2003.

[35] A. Babashzadeh, J. Huang, and M. Daoud, “Exploiting semantics for
improving clinical information retrieval,” p. 801, 2013.

[36] A. S. Graph, “Abstract syntax tree,” 2015.
[37] Yan Zhang, Xinyu Gao, Ce Bian, Ding Ma, and Baojiang Cui, “Homolo-

gous detection based on text, token and abstract syntax tree comparison,”
in 2010 IEEE International Conference on Information Theory and
Information Security, 2010, pp. 70–75.

[38] L. Büch and A. Andrzejak, “Learning-based recursive aggregation of
abstract syntax trees for code clone detection,” in 2019 IEEE 26th Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER), 2019, pp. 95–104.

[39] S. Luan, D. Yang, C. Barnaby, K. Sen, and S. Chandra, “Aroma: code
recommendation via structural code search,” Proceedings of the ACM
on Programming Languages, 2019.

[40] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, and Y. L. Traon, “ifixr:
Bug report driven program repair,” 2019.

[41] I. G. Neamtiu, J. S. Foster, and M. Hicks, “Understanding source code
evolution using abstract syntax tree matching,” ACM SIGSOFT Software
Engineering Notes, 2005.

[42] B. Wang, L. Xu, M. Yan, C. Liu, and L. Liu, “Multi-dimension
convolutional neural network for bug localization,” IEEE Transactions
on Services Computing, pp. 1–1, 2020.

[43] J. Zhang, X. Wang, H. Zhang, H. Sun, and X. Liu, “Retrieval-based
neural source code summarization,” International ConferenceonSoftwa-
reEngineering, pp. 1–1, 2020.

[44] X. Li and X. J. Zhong, “The source code plagiarism detection using ast,”
in 2010 International Symposium on Intelligence Information Processing
and Trusted Computing, 2010, pp. 406–408.

[45] X. Wang and X. Yuan, “Towards an ast-based approach to reverse
engineering,” in 2006 Canadian Conference on Electrical and Computer
Engineering, 2006, pp. 422–425.

[46] A. P. Parikh, O. Tckstrm, D. Das, and J. Uszkoreit, “A decomposable
attention model for natural language inference,” 2016.

352

[47] Y. Liu, C. Sun, L. Lin, and X. Wang, “Learning natural language
inference using bidirectional lstm model and inner-attention,” 2016.

[48] A. Gajbhiye, S. Jaf, N. A. Moubayed, S. Bradley, and A. S. Mcgough,
“Cam: A combined attention model for natural language inference,” in
IEEE International Conference on Big Data, 2018.

[49] M. Liu and H. Yin, “Cross attention network for semantic segmentation,”
in 2019 IEEE International Conference on Image Processing (ICIP),
2019, pp. 2434–2438.

[50] X. Bai, “Text classification based on lstm and attention,” in 2018 Thir-
teenth International Conference on Digital Information Management
(ICDIM), 2018, pp. 29–32.

[51] S. Yadav and A. Rai, “Frequency and temporal convolutional attention
for text-independent speaker recognition,” in ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2020, pp. 6794–6798.

[52] T. Ueda, M. Okada, N. Mori, and K. Hashimoto, “A method to estimate
request sentences using lstm with self-attention mechanism,” in 2019
8th International Congress on Advanced Applied Informatics (IIAI-AAI),
2019, pp. 7–10.

[53] F. A. Rezaur rahman Chowdhury, Q. Wang, I. L. Moreno, and L. Wan,
“Attention-based models for text-dependent speaker verification,” in
2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2018, pp. 5359–5363.

[54] Y. Jing, L. Yuhang, Z. Weifeng, Q. Zengchang, L. Yanbing, and
H. Yue, “Learning cross-modal correlations by exploring inter-word
semantics and stacked co-attention,” Pattern Recognition Letters, pp.
S0 167 865 518 304 380–, 2018.

[55] D. K. Nguyen and T. Okatani, “Improved fusion of visual and language

representations by dense symmetric co-attention for visual question
answering,” in 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

[56] Y. Tay, A. T. Luu, and S. C. Hui, “Multi-pointer co-attention networks
for recommendation,” in the 24th ACM SIGKDD International Confer-
ence, 2018.

[57] L. Li, R. Dong, and L. Chen, “Context-aware co-attention neural
network for service recommendations,” in 2019 IEEE 35th International
Conference on Data Engineering Workshops (ICDEW), 2019.

[58] L. Li, R. Dong, and L. Chen, “Context-aware co-attention neural
network for service recommendations,” in 2019 IEEE 35th International
Conference on Data Engineering Workshops (ICDEW), 2019, pp. 201–
208.

[59] B. Li, Z. Sun, Q. Li, Y. Wu, and H. Anqi, “Group-wise deep object
co-segmentation with co-attention recurrent neural network,” in 2019
IEEE/CVF International Conference on Computer Vision (ICCV), 2019,
pp. 8518–8527.

[60] P. Zhang, H. Zhu, T. Xiong, and Y. Yang, “Co-attention network and low-
rank bilinear pooling for aspect based sentiment analysis,” in ICASSP
2019 - 2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2019, pp. 6725–6729.

[61] D. Nguyen and T. Okatani, “Improved fusion of visual and language
representations by dense symmetric co-attention for visual question
answering,” in 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018, pp. 6087–6096.

[62] H. Ma, Y. Li, X. Ji, J. Han, and Z. Li, “Mscoa: Multi-step co-attention
model for multi-label classification,” IEEE Access, vol. 7, pp. 109 635–
109 645, 2019.

353

