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Abstract—Datasets of real-world bugs shipped with human-
written patches are intensively used in the evaluation of ex-
isting automated program repair (APR) techniques, wherein
the human-written patches always serve as the ground truth,
for manual or automated assessment approaches, to evaluate
the correctness of test-suite adequate patches. An inaccurate
human-written patch tangled with other code changes will pose
threats to the reliability of the assessment results. Therefore, the
construction of such datasets always requires much manual effort
on isolating real bug fixes from bug fixing commits. However, the
manual work is time-consuming and prone to mistakes, and little
has been known on whether the ground truth in such datasets
is really accurate.

In this paper, we propose DEPTEST, an automated DatasEt
Purification technique from the perspective of triggering Tests.
Leveraging coverage analysis and delta debugging, DEPTEST can
automatically identify and filter out the code changes irrelevant
to the bug exposed by triggering tests. To measure the strength
of DEPTEST, we run it on the most extensively used dataset
(i.e., Defects4J) that claims to already exclude all irrelevant
code changes for each bug fix via manual purification. Our
experiment indicates that even in a dataset where the bug fix
is claimed to be well isolated, 41.01% of human-written patches
can be further reduced by 4.3 lines on average, with the largest
reduction reaching up to 53 lines. This indicates its great potential
in assisting in the construction of datasets of accurate bug
fixes. Furthermore, based on the purified patches, we re-dissect
Defects4J and systematically revisit the APR of multi-chunk bugs
to provide insights for future research targeting such bugs.

Index Terms—bug dataset, automated program repair, dataset
purification

I. INTRODUCTION

Automated program repair (APR, hereafter) aims to auto-

matically fix software bugs based on the specification (e.g., a

formal specification [1]–[3] or a test suite [4]–[14]) indicating

the expected behavior with no intervention of human devel-

opers [15]–[17]. The test-suite based APR techniques account

for the most popular category [18], and have shown promise in

fixing real-world bugs of diverse datasets [19]–[22]. For each

buggy program in such datasets, a test suite containing at least

one bug triggering test and a human-written patch are available

for evaluating APR techniques. During the evaluation, the

human-written patch is often considered as the ground truth

by manual [23], [24] or automated [25]–[30] patch correctness

assessment after the test-suite adequate patches are generated

by APR techniques. Inaccurate ground truth may introduce

* Yan Lei is the corresponding author.

noise and bias into the assessment activities, and thus may

further negatively impact the reliability of assessment results

[31], [32]. Therefore, for each bug of datasets used in APR,

the associated human-written patch is expected to exclude the

irrelevant code changes to the bug that is exposed by the

triggering tests.

Unfortunately, the collection of accurate human-written

patches is a challenging task. Mills et al. [33] reported that

63% of code changes are tangled in the bug fixing commits

and irrelevant to the real bug fix. Similarly, Herbold et al. [31]

showed that fewer than 40% of code changes contribute to the

bug fix. Therefore, manual purification on isolating bug fixes

from bug fixing commits is mandatory [31], [33]. However,

such manual validation requires detailed project knowledge as

well as the understanding of the intention of all code changes

in the bug fixing commit. The lack of such knowledge of

the dataset constructors as project outsiders may result in

inaccurate isolation of human-written patches [32].

TABLE I: The construction of the three most popular datasets

of Java real-world bugs used in APR.

Collect bug
fixing commits

Verify bug
fixing commits

Obtain the
minimal bug fix

Defects4J [19] automatic automatic manual

Bugs.jar [21] automatic
automatic
manual

not done

Bears [20] automatic
automatic
manual

not done

It is worth noting that only one dataset among the three most

popular datasets [18] of Java read-world bugs used in APR

has conducted manual purification (i.e., obtaining the minimal

bug fix) during construction. As shown in TABLE I, we notice

that, during the construction process, the three datasets have all

collected bug fixing commits automatically. They then verified

if the bug fixing commit is indeed a commit for bug fixing

by an automatic approach (i.e., Defects4J [19]) or combining

both the automatic and manual approaches (i.e., Bugs.jar [21]

and Bears [20]). However, after the verification is finished, the

manual purification on the verified bug fixing commit, which

may be tangled with unrelated code changes (e.g., features or

refactorings) [19], [31], is not done by Bugs.jar and Bears.

Our observation is consistent with that of Herbold et al. [31].

Motivated by the lack of manual purification and the ab-

sence of automated approaches assisting in dataset purification,
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we propose an automated DatasEt Purification technique from
the perspective of bug triggering Tests (DEPTEST in short).

The goal of DEPTEST is to automatically obtain the purified

human-written patch through the dynamic analysis on the

buggy program and its test suite. While the real ground

truth (i.e., the minimal human-written patch for a bug) is

unknown and often difficult for developers to identify [31],

[32], DEPTEST provides an automatic solution to approach

the accurate ground truth by adequately taking advantage

of the available artifacts (i.e., the test-suite containing bug

triggering tests and the buggy program itself). DEPTEST first

leverages the coverage information on both buggy and fixed

version to identify the code changes not covered by bug

triggering tests. Then, DEPTEST employs delta debugging to

further infer the minimal human-written patch. The output of

DEPTEST (i.e., the purified patch) is a subset of the human-

written patch. To measure the strength of DEPTEST, we run

DEPTEST on Defects4J, which is the most commonly used

dataset in Java APR techniques and claims that all human-

written patches it collected are free of unrelated code changes

[19], [34], to explore if these patches can be further purified.

Based on the purified patches, we re-dissect Defects4J in

a fully automatic manner comparing against the dissection

of Sobreira et al. [35] that combined manual and automatic

approaches. Furthermore, we perform a systematic exploration

on the APR techniques targeting multi-chunk bugs and provide

insights for future research related to multi-chunk bug fixing.

The main contributions of our work include:

• We are the first to propose an automated dataset purifica-

tion technique to identify and filter out the tangled code

changes in human-written patches of datasets used in the

context of APR. DEPTEST has shown its great potential

in assisting in the construction of such datasets, by

reducing 41.01% of human-written patches in Defects4J

by 4.3 lines on average, even when Defects4J has already

performed manual purification.

• We reveal the potential inaccuracy of the ground truth

patches in Defects4J via purification. Based on the pu-

rified data, we re-dissect Defects4J to provide a more

accurate anatomy of the dataset automatically.

• We identify the “pseudo multi-chunk human-written

patches” in Defects4J, and perform a systematic revisit on

the multi-chunk bug fixing of existing APR techniques,

which provides insights for multi-chunk bug fixing. We

also make all relevant artifacts of our study publicly

available [36].

The remainder of the paper is structured as follows. Sec

II illustrates two motivating examples. Sec III presents our

DEPTEST approach, and Sec IV elaborates our study design.

In Sec V we perform the data analysis, and in Sec VI we

discuss. Finally, we present related work in Sec VII and

conclude in Sec VIII.

II. MOTIVATING EXAMPLE

Defects4J is a dataset of real-world bugs targeting Java

[19], where the human-written patch is claimed to be free of
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Fig. 1: The number of APR techniques evaluated on Defects4J.

APR techniques performing best in each year in terms of

number of correctly fixed bugs has been listed, in which

APR techniques evaluated under perfect fault localization (e.g.,

CoCoNut [13]) are not considered. (X/Y) denotes the number

of correctly/plausibly fixed bugs.

unrelated code changes via manual minimization process [34],

and it is the most extensively used dataset in the evaluation

of APR techniques. To investigate its popularity in APR, we

perform a literature review on the APR techniques that have

been evaluated on Defects4J. As shown in Fig. 1, we collect

47 APR techniques in total via manual validation from the 531

publications citing the literature of Defects4J [19], and mark

the most effective APR technique each year in terms of number

of correctly fixed bugs in Defects4J. During the process, we

further observe some cases that expose the inaccuracy of

some Defects4J human-written patches. For example, Fig. 2(a)

presents the human-written patch of Math 65, consisting of

two chunks. It is worth noting that the first chunk is actually

a code refactoring, as indicated by its source code [37]. That is,

human developers used getChiSquare() method to replace the
deleted code in the first chunk. The real bug of Math 65 lies in

the second chunk, where the “/” in line 258 of the buggy file

should be replaced by “*”. For this buggy chunk, CapGen [38]

generated a test-suite adequate patch that is exactly identical

to the second chunk of human-written patch, as presented in

Fig 2(b). However, when researchers [39] evaluated the patch

correctness of this patch, they labelled it as an incorrect patch,

as this patch did not “fix” the first chunk (see Fig. 2(c)).

Preliminary observation 1: Non-buggy code changes (i.e.,

features or refactorings) in existing datasets of bugs that

are used in automated program repair may pose threats

to the reliability of manual patch correctness assessment.

Furthermore, they pose threats to the correct anatomy of

existing datasets for program repair. For example, Sobreira et

al. [35] classified Math 65 as a two-chunk bug corresponding

to 7 repair actions. However, when Math 65 is purified by

eliminating the irrelevant code changes, it becomes a single-

chunk bug corresponding to only 1 repair action.

Another case is the Time 2 of Defects4J. As shown in

Fig. 3, the human-written patch of Time 2 consists of three

chunks. To verify if this patch is accurate, we perform manual

validation and a preliminary automatic coverage analysis. In

the manual validation, we tend to agree with the Defects4J

constructors that this human-written patch does not include
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−−− AbstractLeastSquaresOptimizer . java
+++ AbstractLeastSquaresOptimizer . java
@@ −239,10 +239,5 @@

public double getRMS() {
− double criterion = 0;
− for ( int i = 0; i < rows; ++i) {
− final double residual = residuals [ i ];
− criterion += residual * residual * residualsWeights [ i ];
− }
− return Math.sqrt ( criterion / rows);
+ return Math.sqrt (getChiSquare() / rows);

}

/**
@@ −255,7 +250,7 @@

double chiSquare = 0;
for ( int i = 0; i < rows; ++i) {

final double residual = residuals [ i ];
− chiSquare += residual * residual / residualsWeights [ i ];
+ chiSquare += residual * residual * residualsWeights [ i ];

}
return chiSquare ;

}

(a) The human-written patch provided by Defects4J for Math 65.

−−− AbstractLeastSquaresOptimizer . java
+++ AbstractLeastSquaresOptimizer . java
@@ −255,7 +255,7 @@

double chiSquare = 0;
for ( int i = 0; i < rows; ++i) {

final double residual = residuals [ i ];
− chiSquare += residual * residual / residualsWeights [ i ];
+ chiSquare += (( residualsWeights [ i ]) * residual ) * residual

↪→ ;
}
return chiSquare ;

}

(b) The test-suite adequate patch generated by CapGen for Math 65.

Human patch fixes two locations .
CapGen patch is equivalent to the second hunk of Human patch, but the

↪→ first hunk is missing .
Hence CapGen patch is partial , and incorrect .

(c) The manual patch correctness assessment [40] by a research group
[39] for CapGen patch of Math 65.

Fig. 2: A motivating example of the fact that irrelevant code changes tangled in the human-written patch lead to a wrong

conclusion of manual patch correctness assessment.

unrelated code changes, as all three chunks are interdependent.

However, when we run coverage analysis on both the buggy

and fixed version of Time 2, we find that the third chunk is

not covered by any bug triggering test. This indicates that the

third chunk may be a tangled code change irrelevant to the

bug exposed by failing tests. To verify this, we further check

its commit message according to the commit id of Time 2

provided by Defects4J. We find that this bug fixing commit

actually contains two bug fixes that correspond to two different

bugs, while only one bug fix is exposed by the bug triggering

test. In the context of automated program repair, the goal of

test-suite based APR techniques is to fix the bug exposed by

failing tests, and the bug cannot be exposed by any failing test

is out of the scope of test-suite based repair. However, when

using the human-written patches containing the unexposed

bug fixes to assess the correctness of patches generated by

test-suite based APR techniques, even if the APR produced

identical bug fix to the exposed bug fix, it will be assessed as

an incomplete fix according to existing criterion [41].

Preliminary observation 2: The bug fixes not triggered by

any failing test but tangled in human-written patches are out

of the scope of test-suite based APR. Such bug fixes are

supposed to be excluded before performing patch correctness

assessment.

Based on the two preliminary observations from two cases,

we find that some human-written patches in Defects4J may

not be accurate, and the limitation of manual validation

on bug fix isolation does exist. That is, manual validation

sometimes cannot find the unrelated code changes while

automated analysis can do. Motivated by these issues in the

context of automated program repair, we propose DEPTEST,

an automated dataset purification technique, to help identify

−−− org/joda/ time/ field /UnsupportedDurationField . java
+++ org/joda/ time/ field /UnsupportedDurationField . java
@@ −226,4 +226,7 @@

public int compareTo(DurationField durationField ) {
+ if ( durationField . isSupported () ) {
+ return 1;
+ }

return 0;
}

−−− org/joda/ time/ Partial . java
+++ org/joda/ time/ Partial . java
@@ −216,4 +216,4 @@

if ( i > 0) {
int compare = lastUnitField .compareTo(loopUnitField) ;

− if (compare < 0 || (compare != 0 && loopUnitField.isSupported
↪→ () == false ) ) {

+ if (compare < 0) {
@@ −448,4 +448,7 @@

} else if (compare == 0) {
+ if ( fieldType .getRangeDurationType() == null ) {
+ break;
+ }

Commit message:
Fix NPE in Partial.with()
Also ensure unsupported duration fields are compared properly

Fig. 3: The human-written patch of Time 2.

and filter out the irrelevant code changes to the bug that is

exposed by triggering tests.

III. APPROACH

Given a buggy program Pb of a dataset that can be used for

evaluating test-suite based APR techniques, its fixed version

Pf and human-written patch δh as well as a test suite Ts

containing at least one bug triggering test Tt are also provided

by the dataset. We formally present definitions related to

dataset purification as follows:
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Defenition 1 (code change). A code change δ is a non-empty
set: {〈op, line〉 |op ∈ {del, ins}, ∀op = ins, line ∈ Pb} that
can be applied to Pb.

Defenition 2 (apply). The function apply: {Pb, δ} → Pv

applies a code change δ into the buggy program to obtain a
program variant Pv .
A code change δ is a non-empty set containing pairs of

operations and lines. The operation on each line can be a

deletion or addition, indicating whether it deletes an existing

line or adds a new line. The function apply is to apply any

code change δ into the buggy program Pb to obtain a program

variant.

Defenition 3 (test). The function test: (Pt, Ts) → {√, χ},
where Pt is Pb or Pv .

The function test takes a program Pt and the test suite Ts as

input, and then run all test cases on the Pt. test finally outputs
the result (i.e., pass or fail) of test execution.

Defenition 4 (human-written patch). The human-written
patch is a code change δh that satisfies the following con-
straints: {

apply(Pb, δh) = Pf

test(Pf , Ts) =
√ (1)

Defenition 5 (purified patch). A purified patch is a code
change δp that satisfies the following constraints:⎧⎨

⎩
test(apply(Pb, δp), Ts) =

√
δp ⊆ δh
∀δi � δp, test(apply(Pb, δi), Ts) = χ

(2)

In Definition 4, a code change is the human-written patch

if it satisfies the constraints in Equation 1. That is, the buggy

program after applying the code change is identical to the

fixed program and can pass all test cases in the test suite.

Furthermore, we define a purified patch δp as a code change

that satisfies the Equation 2. This equation ensures that the

purified patch is the minimal human-written patch. Based on

these definitions, we can further give an axiom as follows:

Axiom 1 (An inaccurate human-writtem patch).

δh is inaccurate ⇐⇒ δh �= δp

To identify if a human-written patch δh is accurate, we need
to first obtain the purified patch δp, based on which we can say
that the human-written patch is inaccurate and can be further

purified when it is not identical to the purified patch δp that

corresponds to the minimal δh.
Based on the above definitions and axiom, our work of

identifying whether the ground truth is really accurate in

datasets that can be used in APR has been formulated as the

work of obtaining δp for each Pf . As illustrated in Sec I and

Sec II, manual analysis requires detailed project knowledge

and is prone to mistakes. Therefore, we propose an automated

approach (i.e., DEPTEST) to obtain the purified patches from

human-written patches.

Algorithm 1 The algorithm of DEPTEST.

Input: Buggy program Pb

Input: Test suite Ts and bug triggering tests Tt

Input: Human-written patch δh
Output: A purified patch δp
1: function MAIN

2: Pf ← apply(Pb, δh)
3: δcov ← coverageAnalysis(Pb, Pf , Tt, δh)
4: δp ← deltaDebugging(Pb, Ts, deltacov)
5: return δp
6: end function

7: function COVERAGEANALYSIS(Pb, Pf , Tt, δh)
8: δcov ← ∅
9: covb ← ∅
10: covf ← ∅
11: for T ′t in Tt do
12: covb ← covb ∪ getCovByExec(Pb, T

′
t )

13: covf ← covf ∪ getCovByExec(Pf , T
′
t )

14: end for
15: for 〈op, line〉 ∈ δh do
16: if op = del and line ∈ covb then
17: δcov ← δcov ∪ {〈op, line〉}
18: else if op = ins and line ∈ covf then
19: δcov ← δcov ∪ {〈op, line〉}
20: end if
21: end for
22: return δcov
23: end function

24: function DELTADEBUGGING(Pb, Ts, δcov)
25: n ← 2
26: repeat
27: complementPass ← false
28: subsets ← split(δcov)
29: for subset ∈ subsets do
30: complement = minus(δcov, subset)
31: if test(apply(Pb, complement), Ts) =

√
then

32: δcov ← complement
33: n ← Math.max(n− 1, 2)
34: complementPass ← true
35: break
36: end if
37: end for
38: if complementPass = false then
39: if n = |δcov| then
40: break
41: end if
42: n ← Math.min(n ∗ 2, |δcov|)
43: end if
44: until |δcov| < 2
45: return δcov
46: end function

As shown in Algorithm 1, motivated by the examples we

observe and discuss in Sec II, DEPTEST employs coverage

analysis and delta debugging to purify human-written patches
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(lines 1 – 6). DEPTEST first obtains the fixed version by

applying the human-written patch δh to the given buggy

program (line 2). Then, it performs coverage analysis using

bug triggering tests Tt (line 3). In coverage analysis (lines

7 – 23), DEPTEST collects the covered lines of each bug

triggering test by executing them on both the buggy and fixed

version (lines 11 – 14). Then, all the pairs of 〈del/ins, line〉
in δh not included in the set of lines covered by Tt on bug-

gy/fixed program will be excluded (lines 15 – 21). Based on

the output of coverageAnalysis(), DEPTEST further leverages

delta debugging to obtain the minimal subset of deltacov .
Delta debugging [42], [43] is an automated technique to isolate

and minimize the failure-inducing input or code changes. It

is also employed in GenProg [4], [44] and ARJA-e [45] to

minimize the code edits of candidate patches. In this work,

DEPTEST uses delta debugging to further minimize the δcov
for obtaining a minimal subset of δh (lines 24 – 46). The

function deltaDebugging() we implemented is consistent with
the algorithm demonstrated in the literature [42].

Note that the DEPTEST algorithm is performed at the

granularity of code line, which can facilitate the coverage

analysis and delta debugging. For example, the irrelevant

elements not triggered by failing tests can be directly identified

and according to the covered lines information from coverage

analysis.

TABLE II: The mechanism of DEPTEST for obtaining the

purified patch δp.

Code changes
Buggy Non-buggy

Exposed by bug
triggering tests

Yes δp #1
No #2 #3

As presented in TABLE II, we classify the code changes of

human-written patches into four types in terms of whether they

are buggy or exposed by bug triggering tests. By performing

coverage analysis, DEPTEST identifies and excludes the type

#2 and #3 code changes. With delta debugging, DEPTEST

can further exclude the type #1 code changes and obtain the

purified patch (i.e., δp).
The major risk of using DEPTEST is whether any part of the

real bug fix in the human-written patch δh will be filtered out

(i.e., false positives) during the purification, as the specification

used by DEPTEST is the test suite rather than a formal and

complete specification of the buggy project. We discuss in

detail the risk and soundness of DEPTEST in Sec VI based

on our verification on the purification data.

IV. STUDY DESIGN

A. Research Questions

Our paper aims to answer the following three research

questions:

RQ1: How effective is DEPTEST in purifying the dataset

of real-world bugs that can be used in test-suite based APR?

While bug datasets widely used in the evaluation of Java

test-suite based APR techniques perform manual purification

(e.g., Defects4J [19]) even do not perform any purification

(e.g., Bears [20] and Bugs.jar [21]) for minimizing the bug

fixes, we propose an automated purification technique for

assisting in the purification process. The goal of RQ1 is to

investigate if our automated purification technique DEPTEST

is effective in identifying and filtering out the irrelevant code

changes in human-written patches of the dataset, even when

the dataset (i.e., Defects4J [19]) has already been manually

purified.

RQ2: How are general properties of patches distributed in

the dataset after purification by DEPTEST?

Based on the purified data on Defects4J, we re-dissect the

Defects4J. Similar to the work of Sobreira et al. [35], we con-

sider a series of quantitative and qualitative properties. Among

these properties, we mainly focus on the repair patterns, which

are an important source for bug fixing and are automatically

extracted in our paper. While previous study [35] is based

on the original dataset, RQ2 aims to explore how general

properties including repair actions and patterns are distributed

in the dataset after purification by DEPTEST.

RQ3: What is the real challenge of fixing multi-chunk bugs?

As shown in Sec II, some multi-chunk bug fixes in De-

fects4J (e.g., Math 65 presented in Fig. 2) are actually single-

chunk bug fixes. We call such multi-chunks bug fixes as

“pseudo multi-chunk fixes”. Previous studies [35] on such

human-written fixes may be inaccurate to a certain extent. For

example, the analysis result of Sobreira et al. [35] on Math 65

contains 2 chunks and 7 repair actions, while the real bug fix of

Math 65 (i.e., the second chunk as shown in Fig 2(a)) consists

of only 1 chunk and 1 repair action. Therefore, RQ3 targets

investigating how many such “pseudo multi-chunk fixes” exist
in Defects4J, and what is the real challenge of automated

repair on multi-chunk bugs.

B. Subject Dataset

To answer our research questions, we define the following

inclusion criteria to select the subject dataset:

• Criterion 1: The bugs of the dataset must be collected
from real-world projects. We focus on studying the

dataset constructed from real world bug fixing commits,

which is strongly recommended to perform bug fix isola-

tion (i.e., purification) [31], [33]. Therefore, this criterion

excludes QuixBugs [46] and IntroclassJava [47].

• Criterion 2: The dataset with high popularity in evalu-

ation of test-suite based APR techniques will be priori-

tized. As our work aims to study if the ground truth patch

in the dataset is really accurate for test-suite based APR

techniques, we prioritize the dataset that is extensively

used by such APR techniques for our experiment.

Based on the two criteria, we finally select Defects4J [19]

as our subject dataset. Defects4J is the most popular dataset

used in the evaluation of test-suite based APR techniques,

which covers 47 APR techniques as we investigate in Sec II.

Furthermore, comparing against Bugs.jar [19] and Bears [20],

Defects4J performs manual purification during construction,

as shown in TABLE I. As a result, we perform DEPTEST on

Defect4J bug fixes to explore whether automated purification
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approach can detect the irrelevant code changes which are

omitted by manual purification. Concretely, we use the De-

fects4J v1.4.0 [19], which contains 395 bugs collected from 6

large open-source projects.

C. Experimental Setup

For the implementation of DEPTEST, we leverage the

Jacoco [48], which is also used in GZoltar v1.7.2 [49] for fault

localization, to perform the coverage analysis. For the model of

delta debugging, we follow the delta debugging algorithm that

is publicly available [50]. The implementation of DEPTEST is

consistent with the Algorithm 1. In addition, our purification

experiment is conducted on a 64-bit Ubuntu server with two

Intel Xeon CPUs and 8GB RAM. For each purification on a

given human-written patch, we set the time budget as 2 hours.

The purification process terminates when the purified patch is

obtained or the time budget expires.

V. RESULT ANALYSIS

A. RQ1: Effectiveness of DEPTEST

Fig. 4: The distribution of patch size by number of lines

for original patches and purified patches (i.e., |deltah| and
|deltap|).
To evaluate the effectiveness of DEPTEST, we measure

differences between the purified human-written patch δp pro-

duced by DEPTEST and the original human-written one δh in

Defects4J. We first analyze the differences in terms of patch

size by number of lines. 41.01% (i.e., 162/395) of human-

written patches are identified by DEPTEST as inaccurate
ground truth according to Axiom 1, where the δp �= δh. For
the 162 cases, we further analyze their purification sizes in

terms of reduced code change lines. As shown in Fig. 4 that

visualizes the distributions for all purified cases, the patch

size by number of lines of original patches has been reduced

obviously. As displayed in TABLE III, the human-written

patches in Defects4J are reduced by 4.3 lines on average.

The maximal purification occurs in Lang 25, reaching up to

a reduction of 53 lines in total. We then calculate the average

percentage of reduced lines by the following formula:

purification ratio =

∑|purifiedSet|
i=1

(|δhi|−|δpi|)
|δhi|

|purifiedSet| × 100%,

purifiedSet = {〈δpi, δhi〉 |δpi � δhi, i ∈ [1, 395]}
(3)

As shown in Equation 3, the purification ratio measures

the average percentage of the number of reduced lines for

purifySet that contains 162 purified cases. Concretely, 35.02%
(i.e., the purification ratio) of code change lines are reduced on

average, which indicates a consideration improvement brought

by DEPTEST. Furthermore, we find that the average time cost

of purifying a bug by DEPTEST is 605.82 seconds, which

indicates a relatively low overhead.

TABLE III: The purification size in terms of reduced lines and

the result of statistical tests for evaluating the magnitude of

purification.

Min Max Mean P-value A12

1 53 4.3 1.1353e-28 0.6579

To qualitatively and quantitatively evaluate the improvement

of DEPTEST over the original Defects4J dataset, we further

perform statistical tests and compute effect size. Consider

the paired data of original and purified patches and their

heavy-tailed distributions shown in Fig. 4, we employ the

non-parametric Wilcoxon signed-rank test to evaluate if the

purification size is statistical significant. The null hypothesis

is that two paired groups share the same distribution, and

we reject the null hypothesis with α = 0.05. Furthermore,
we apply a non-parametric effect size measure called non-

parametric Vargha and Delaney’s A12 statistic [51], [52] to

measure the magnitude of improvement, where A12 over 0.56,

0.64 and 0.71 represents a small, medium and large effect

size respectively. As shown in TABLE III, DEPTEST achieves

statistically significant improvement over the original human-

written patches in Defects4J, as indicated by the p-value, and
reaches a “medium” effect size according to the A12 statistic.

The above result analysis indicates that DEPTEST is effective

on purifying patches in Defects4J, even when Defects4J has

already experienced manual purification.
For human-written patches that cannot be purified by

DEPTEST, the main reason is that these human-written

patches are minimal before collected by DefectsJ constructors,

or become minimal after the manual purification of construc-

tors. One representative fact is that there are 143 human-

written patches consisting of less than or equal to 3 code

change lines, of which only 13 can be purified.
To further illustrate the effectiveness of DEPTEST, We take

a closer look at the purified patches and obtain some interest-

ing findings. Take Chart 5 as an example, both the constructors

[19] and researchers as end users [53], [54] of Chart 5 in

Defects4J do not realize that the second chunk is a refactoring,

even they performed manual purification or carefully ana-

lyzed this bug fix. In fact, when this.allowDuplicateXValues
is true, the function will directly return null without exe-

cuting the second chunk. When this.allowDuplicateXValues
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is false, the function will execute the second chunk, but

!this.allowDuplicateXValues in the second chunk becomes true
and will never impact the value of the if expression. Therefore,

the second chunk of the human-written patch is a refactoring

to remove the redundant code. While the constructors or

end users fail to identify such irrelevant change, DEPTEST

successfully identifies and filters out it within 4 minutes.

It fails to identify the second chunk, which is covered by

failing tests, during coverage analysis. But it soon identifies

the second chunk as a type #1 code change (see TABLE II)

and obtains the purified patch via delta debugging.

Another instance is the purification of Time 2. The purified

patch produced by DEPTEST only keeps the first chunk of

the human-written patch, which originally consists of three

chunks (see Fig. 3). DEPTEST first excludes the third chunk

during coverage analysis, then it uses delta debugging to filter

out the second chunk. The whole activity of DEPTEST on

this bug is finished within 3 minutes. On the other hand, we

authors tried to manually purify it, we excluded the third chunk

in a very short time when we noticed the bug fixing commit

message of Time 2. However, we devoted hours of attempts to

understanding and debugging the Time 2 project, and finally

found it is a refactoring (i.e., we find that the expression

(compare != 0 && loopUnitField.isSupported() == false) can
never be true after carefully checking its buggy classes).

Surprisingly, we do not find any false positive (i.e., the

DEPTEST wrongly purifies the part of real bug fix) produced

by DEPTEST. We discuss this issue in detail in Sec VI. We

also study the contributions of coverage analysis and delta

debugging in DEPTEST to the purification in terms of reduced

code change lines. Among the 162 purified human-written

patches, coverage analysis purified 58 lines in total for 23

human-written patches, costing 7.3 seconds on average. For

delta debugging, it purified 635 lines in total for 155 human-

written patches, of which the average time cost is 561.6

seconds. Coverage analysis is less effective but more efficient,

while delta debugging performs more effectively but less

efficiently. Both complement each other well in DEPTEST.

Answer to RQ1: Even in a dataset that has performed

manual purification, our DEPTEST tool has purified 41.01%

of Defects4J human-written patches, where 35% of code

changes (i.e., 4.3 lines) of each patch are reduced on average.

Such improvement corresponds to a statistical significance

and a “medium” effect size. Furthermore, our preliminary

comparison between the DEPTEST and manual purification

indicates its great potential to effectively assist constructors

or end users in identifying the minimal patch with very low

runtime overhead.

B. RQ2: Re-dissection of Defects4J

As shown in Sec II, Defects4J is intensively used in the

evaluation of test-suite based APR techniques. Due to the

lack of formal specification of the buggy project, the human-

written patch is always considered as the ground truth to assess

if a test-suite adequate patch generated by APR techniques

is correct. The inclusion of irrelevant code changes to the

TABLE IV: Seven descriptive statistics for properties of

human-written patches before and after purification. X/Y de-

notes the value of the original/purified patch.

Min 25% 50% 75% 90% 95% Max

# inserted
Lines

0/0 1/1 3/3 8/6 14/12 20/16 49/39

# deleted
Lines

0/0 0/0 1/1 2/2 5/3 8/6 33/21

Patch
size

1/1 2/2 5/4 10/8 19/15 24/21 55/44

# Chunks 1/1 1/1 2/2 3/3 5/5 8/7 20/20

# Files 1/1 1/1 1/1 1/1 1/1 2/2 7/7

# Classes 1/1 1/1 1/1 1/1 1/1 2/2 7/7

# repair
actions

0/0 1/1 2/1 3/3 5/5 8/6 22/24

# repair
patterns

0/0 7/6 11/11 21/19 33/30 40/36 70/70

human-written patch will pose threats to the patch correctness

assessment. For example, some researchers in APR commu-

nity have already realized the inaccuracy of human-written

patches as the ground truth. For example, authors of ACS

[10] pointed out that the third chunk of the human-written

patch of Math 93 [55] is not related to the bug, so they

manually purified such human-written patch (i.e., exclude the

third chunk) before performing patch correctness assessment.

However, there might exist more such type of cases that are

still not discovered. Therefore, we propose DEPTEST and

perform a re-dissection on Defects4J to provide more accurate

ground truth for evaluation of APR techniques.

In the re-dissection, we first analyze the quantitative and

qualitative properties we collected for Defects4J. We leverage

7 descriptive statistics to summarize the distributions of the 8

key properties of Defects4J human-written patches, including

both the original patch and the purified patch. As shown in

TABLE IV, in terms of the patch size at the granularity of

code line (i.e., the number of inserted, deleted, and patch

size), the difference between original patches and purified ones

is not obvious for the first half of patches. With the patch

size growing, the difference is increasing, which indicates that

the DEPTEST approach mainly purified the human-written

patches consisting of more code lines. For example, the largest

patch size of original human-written patches is 55 (i.e., Math

92). DEPTEST has purified this patch into a 19-line patch.

Interestingly, for the second largest human-written patch Lang

25 consisting of 54 code change lines, DEPTEST purified it

into a single-line patch. We further check its bug report site,

where we find that the remained single-line bug fix is also

found in the bug report, and other tangled code changes are not

relevant to the triggering tests. With such purified information,

end uses can gain more accurate information for evaluating

test-suite based APR techniques.

In terms of the number of chunks and their spreading (i.e.,

number of modified files and classes), the difference between

original patches and purified ones is minor. 90% of patches
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TABLE V: Top-5 most frequently used repair patterns of

patches for the purified Defects4J.

INS DEL

Source
node

Target
node

Freq.
(%)

Source
node

Target
node

Freq.
(%)

SName MethodInv 9.9 SName MethodInv 2.5

Operator InfixExpr 6.1 Operator InfixExpr 1.2

SName InfixExpr 4.6 SName QName 0.9

SName QName 2.4 SName InfixExpr 0.7

InfixExpr IfStmt 2.3 MethodInv InfixExpr 0.6

UPD MOV

Source
node

Target
node

Freq.
(%)

Source
node

Target
node

Freq.
(%)

SName MethodInv 0.9 Operator InfixExpr 0.5

VDF VDStmt 0.5 ExprStmt IfStmt 0.5

InfixExpr IfStmt 0.4 SName MethodInv 0.4

Operator InfixExpr 0.2 SName InfixExpr 0.3

MethodInv ReturnStmt 0.2 IfStmt IfStmt 0.2

SName: SimpleName; MethodInv: MethodInvocation
IfStmt: IfStatement; InfixExpr: InfixExpression
QName: QualifiedName; VDF: VariableDeclarationFragment
VDStmt: VariableDeclarationStatement
ExprStmt: ExpressionStatement; ReturnStmt: ReturnStatement

correspond to 6 chunks and 1 modified file and class. Also,

both purified and original version share the maximal value of

the three properties. We notice that the patch of Math 6 has 7

modified files and classes. In this case, even though DEPTEST

has reduced the human-written patch of Math 6 largely, from

30 code change lines and 17 chunks to 12 lines and 9 chunks,

the number of modified classes are still remained unchanged.

For the repair actions and patterns, the reduction of repair

patterns brought by DEPTEST is larger than that of repair

actions. We further observe from TABLE IV that while all

the value of properties for purified patches are reduced, the

maximal value of its repair actions slightly increases from 22

to 24. Note that repair actions are extracted from the GumTree

output, such slight increase is reasonable as in some cases the

repair action corresponding to a chunk will be split into several

smaller repair actions.

To obtain a comprehensive view of how the abstract repair

patterns are distributed in Defects4J patches, we collect in total

3146 different repair patterns and 48,493 occurrences of these

patterns by GumTree from all 395 human-written patches of

Defects4J after purification. Table V covers the four types of

code changes provided by GumTree, including the insertion

(INS), deletion (DEL), update action (UPD) and move action

(MOV) of AST nodes. For each type, the top-5 most frequently

applied repair patterns in human-written patches of the purified

Defects4J are listed. As shown in the table, the INS and DEL

action of AST nodes occur much more frequently than UPD

and MOV. In addition, the SimpleName, MethodInvocation

and InfixExpression commonly exist in each type of patterns,

which indicates that the human-written bug fixes include many

repair actions on the three types.

TABLE VI: The purification data of multi-chunk human-

written patches in Defects4J.

Patch type # Patches

Total 395

Multi-chunk 245

Multi-chunk purified by at least a line 142

Multi-chunk purified by at least a chunk 68

Multi-chunk purified into a single-chunk 28

Answer to RQ2: We re-dissect the Defects4J dataset based

on our purification that excludes irrelevant code changes, to

obtain a more accurate comprehension of the dataset. The

complexity in terms of patch size and repair patterns is re-

duced obviously after purification. Furthermore, our analysis

on repair patterns indicates the two defective AST nodes

(i.e., MethodInvocation and InfixExpression) and the need to

carefully collect the defect context containing SimpleName

which is also very frequently applied in bug fixes. All our

data of re-dissection are publicly available to facilitate a

further exploration of end users [36].

C. RQ3: Revisit of Multi-chunk bug fixing

Automated program repair of multi-chunk bugs is a chal-

lenging task, with most of APR techniques limited to single-

edit patch generation and only a few APR techniques explic-

itly claiming to support fixing such bugs. The tangled code

changes in the multi-chunk human-written patches further

increase the difficulty for the APR community to identify the

real challenge of automated repair of such bugs. As shown

in TABLE VI, our DEPTEST tool successfully purified 142

out of 245 (i.e., 57.96%) multi-chunk human-written patches

with at least one-line reduction. Among the 142 purified cases,

the multiple chunks of 68 cases are reduced by at least one

chunk. Interestingly, in this process, we observed 28 multi-

chunk human-written patches that are reduced into a single-

chunk patch through purification. For instance, the human-

written patch of Time 2 presented in Fig. 3 and analyzed in

Sec V-A is purified by DEPTEST into a single-chunk patch.

We call such type of patches “pseudo multi-chunk patches”,

which correspond to 28 patches in total as indicated by

TABLE VI. Such patches that contain irrelevant code changes

(e.g., refactorings or bug fixes not relevant to the bug) are

misclassified as multi-chunk patches, and thus are supposed

to be excluded before we revisit multi-chunk bug repair.

Based on our purification data of multi-chunk bugs, we

systematically revisit multi-chunk bug repair to explore the

real challenges of this area. First, we explore how many multi-

chunk bugs existing APR techniques can correctly fix. We

select APR techniques for revisit with the following inclusion

criteria:

• The APR technique is evaluated on Defects4J dataset, as

our purification experiment is based on Defects4J. In this

step, we collect 47 APR techniques [36].

• The correct patches generated by APR techniques must

be publicly available and correspond to at least one real

multi-chunk bug (i.e., not one of the 28 identified “pseudo
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TABLE VII: Multi-chunk bugs correctly fixed by APR tech-

niques.

APR Bug ID

HDRepair [58] M-22

Nopol [7] L-55

PraPR [59] L-10

ssFix [60] CL-115

JAID [61] C-26, CL-40

ARJA [53] L-20, 35, M-22, 98

kPAR [62] C-4, CL-2, M-15, 89, T-7

LSRepair [63] C-4, L-46, 48, M-89, Mo-13

GENPAT [64] CL-115, L-47, 60, M-4, 22

AVATAR [65] C-14, 19, CL-2, L-10, M-4, 46, T-7

SimFix [11] CL-115, L-41, 50, 60, M-35, 71, 98, T-7

ACS [10] C-14, 19, L-35, M-3, 4, 25, 35, 61, 89, 90, 93, 99

TBar [12]
C-4, 14, 19, CL-2, 21, L-10, 47, M-4, 22, 35, 77, 89,
98, T-7

M means Math, and L represents Lang. C and CL denote Chart and
Closure respectively, and Mo is Mockito.

TABLE VIII: Bug types summarized from existing correctly

fixed multi-chunk bugs.

Bug Type Bug ID

Single-edit
C-4, 26, L-48, 55, CL-2, 40,
M-3, 25, 89, T-7

Independent
C-14, 19, L-20, 35, 47, 60,
M-4, 22, 35, 98, 99

Interdependent
CL-21, 115, L-10, 41, 46, 50,
M-15, 61, 77, 90, Mo-13

multi-chunk bugs”) in Defects4J. A publicly available

patch is indispensible for our systematic revisit. As a

result, a set of APR techniques (e.g., Hercules [56],

ARJA-e [45], and ARJA-p [57]) are not included.

Based on the above criteria, we finally identified 13 APR

techniques and 32 multi-chunk bugs that can be correctly fixed

by at least one APR technique. We further classified these

multi-chunk bugs into the following three categories based on

the human-written patch after purification:

1) Single-edit: the human-written patch of this bug consists
of only a single edit. For example, the patch of Chart 4

corresponds to an addition of an if statement, while its

second chunk consists of only an “}”.
2) Independent: the chunks of the human-written patch are

independent of each other. Such bugs often have sufficient

triggering tests to expose each buggy chunk. For example,

the patch of Chart 14 consists of 4 addition chunks and

each chunk is exposed by a failing test case.

3) Interdependent: the chunks of the human-written patch

are interdependent with each other. Only modifying one

chunk of the bug may generally lead to a failure. For

instance, the human-written patch of Mockito 13 requires

the modification on both modifying the if expression and

inserting an else block at the other place.

[Some multi-chunk bugs are as easy as single-chunk ones.]
As shown in TABLE VIII, 10 out of 32 correctly fixed bugs

lie in the category of single-edit multi-chunk bugs. According

to the previous definition of multi-chunk bugs [35], these

bugs (e.g., the human patch of Math 3 that is separated by

a comment) are classified as multi-chunk bugs. Essentially,

they can be interpreted as single-chunk bugs.

[Promising performance on independent multi-chunk bugs.]
We observe that existing multi-chunk APR techniques, which

fully leverage the triggering test information, generally work

well on the independent multi-chunk bugs. Such APR tech-

niques include ACS, SimFix, and ARJA. For ACS [10], one

of its templates is based on the oracle provided by triggering

tests, which can facilitate the condition synthesis. For SimFix

[11], the test case purification it used can help it purify a

single failing test case into multiple failing cases, which can

then be used for fixing the bug chunk by chunk (e.g., Math

98). Similarly, ARJA [53] leverages a test filtering strategy

and multi-objective algorithm to fix multi-chunk bugs.

[Limitation in scaling up to complex interdependency.]
Existing APR techniques are trying to understand the repair

logic of interdependency in multi-chunk bugs, as indicated

by TABLE VII and VIII where 10 interdependent bugs can

be correctly fixed. However, the correct patches generated by

APR techniques on this bug are most often a single-edit patch.

In addition, most interdependent bugs listed in TABLE VIII

consist of no more than 3 chunks. This is due to the common

assumption of many APR techniques that only fixing one

faulty location can fix the bug, which further prohibits these

techniques to scale up to the complex interdependency.

Answer to RQ3: We systematically revisit existing APR

techniques capable of fixing multi-chunk bugs based on our

purification results that exclude “pseudo multi-chunk fixes”.

We further classify multi-chunk bugs into three categories

and analyze both the strength and weakness of existing APR

techniques in multi-chunk bug repair. We suggest that efforts

on re-constructing the assumption of APR techniques are

necessary for embracing automated fixing of more complex

interdependent bugs.

VI. DISCUSSION AND IMPLICATIONS

DEPTEST for dataset constructors. As presented in Sec

V-A, DEPTEST shows its promising performance with a statis-

tical significance even in a dataset that has performed manual

purification. Furthermore, in our implementation, DEPTEST

is enabled to provide detailed information of why the code

change lines are purified by DEPTEST (e.g., the lines are

not covered by any failing test) rather than merely providing

the purified patch. In this way, DEPTEST can assist dataset

constructors in identifying irrelevant code changes to the real

bug fix by providing the information that constructors may

omit or fail to find. DEPTEST is expected to alleviate the

burden of manual purification for constructors of datasets

which can be used in APR, and improve the accuracy of

human-written patches used as ground truth in APR.

DEPTEST for end users. DEPTEST provides more ac-

curate human-written patches for 162 out 395 patches in

Defects4J. The purification data including the purified patch is

publicly available as a YAML file for each patch [36], which
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can be a reference for end users who need to use human-

written patches as the ground truth. For example, when end

users assess the correctness of a patch generated by APR on

Math 93, this patch only corresponds to the first two chunks

of the original human-written patch in Defects4J. If the end

users check our purified patch on Math 93 which purifies the

third chunk, they then just need to focus on comparing the first

two chunks with the APR patch during assessment. Otherwise,

they have to manually verify if the third chunk is relevant to

the real bug fix as Xiong et al. [10] did as discussed in Sec

V-B, to obtain reliable assessment results.

DEPTEST for APR that goes beyond the test-suite. We

notice that some APR techniques (e.g., Hercules [56]) can

correctly fix the multi-chunk patches (e.g., Closure 4), of

which some chunks cannot even be exposed by any failing test.

From the perspective of test-suite based APR, such chunks

cannot be localized and cannot be further fixed [62], and

will also be filtered out by DEPTEST. For such techniques

that go beyond the scope of traditional test-suite based APR,

DEPTEST provides some explanations, from the perspective

of test-suite, to the comparison results of such techniques

against traditional test-suite based APR techniques (e.g., only

Hercules correctly fixed the Closure 4 [56]).

Limitations of DEPTEST. As pointed out in III, there is a
risk for DEPTEST that it might filter out the part of the real

bug fix in the human-written patch δh during purification, due

to the unavailability of the formal and complete specification

of the project. To measure this risk, we manually verified

the purified patches of DEPTEST. However, such verification

requires not only detailed project knowledge but also much

time cost, similar to manual purification [32]. Therefore, we

randomly selected 81 (i.e., a half as a statistical size) out of

the 162 purified cases without any bias for verification. To

obtain reliable results, three authors in our group indepen-

dently conducted the verification and discussed on inconsistent

verification results until an agreement is reached. We find

that among the 81 verified cases DEPTEST produced no

such patches where part of real bug fixes are eliminated.

An explanation is that DEPTEST focuses on filtering out

the not covered (i.e., unrelated) statements during coverage

analysis and the loosely coupled (i.e., loosely related [32])

code changes tangled in real bug fixes during delta debugging.

As a result, the complete logic and components of the real bug

fix are maintained during the purification.

Interestingly, we find that DEPTEST failed to obtain mini-

mal patches in some cases. For example, it only reduced 1 line

for Math 65, while the ideal reduction is 7 lines. The reason

is that the delta debugging we implemented in DEPTEST

does not consider the program syntax and might fail to obtain

the minimal set in complex cases [66]. We leave the further

improvement of delta debugging algorithm as our future work.

Threats to validity. Our implementation of DEPTEST may
potentially contain bugs. To mitigate this threat, we double-

check our code implementation and make all relevant artifacts

publicly available. In addition, our study only considers De-

fects4J dataset, which may fail to represent other datasets. We

mitigate this threat by carefully reviewing existing datasets and

select a dataset (i.e., Defects4J) that is harder to be purified

to measure the effectiveness of DEPTEST. Our future work

will explore if DEPTEST can achieve a larger improvement

on other datasets that do not perform manual purification.

VII. RELATED WORK

Tangling code changes in bug fixing commits are common

and may pose noise and bias to relevant venues of research

[32], [33]. To decompose the tangling code changes, Barnett

et al. [67] proposed an automated approach based on static

analysis to assist developers in code review. Recently, Her-

bold et al. [31] conducted a large-scale manual validation

to identify the tangled code changes in bug fixing commits

through crowd working. Unlike their work, our DEPTEST is

a fully automated technique that employs dynamic analysis

(i.e., coverage analysis and delta debugging [42]) and targets

assisting benchmark constructors in dataset purification and

providing end users a more accurate human-written patch as

the ground truth.

Automated program repair (APR) is a very active research

area in software engineering, with a number of APR tech-

niques proposed [1]–[3], [68]. Accordingly, well-constructed

datasets that can be used to evaluate and compare APR

techniques are needed and expected to be purified (i.e., without

tangled code changes) [31]. However, manual purification is

important but time-consuming and error-prone [32]. Further-

more, only Defects4J is manually purified in all datasets that

can be used in Java APR [31], and there is no automated ap-

proach to alleviate the heavy burden of manual purification, to

the best of our knowledge. Therefore, we propose DEPTEST

to automate this process, which we expect to be further used in

the practical pipelines of dataset construction to provide more

accurate ground truth for APR techniques.

VIII. CONCLUSION

Motivated by the great importance of accurate human-

written patches to APR research, we propose an automated

dataset purification technique DEPTEST to help automate the

dataset purification in the context of test-suite based APR.

The DEPTEST is then on Defects4J and achieves statistically

significant improvement in terms of the number of purified

code lines. Based on the purified data, we further re-dissect

the Defects4J to obtain a more accurate understanding of this

dataset. We observe the “pseudo multi-chunk bug fixes” during

the process, and then systematically revisit multi-chunk bug

repair and provide insights for future research.
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