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Abstract—Ensuring the quality and conciseness of method
names is pivotal for the readability and maintainability of source
code. However, for developers, it often presents challenges,
particularly during the course of code evolution. Throughout
this process, developers sometimes may neglect to update
the method name, resulting in inconsistency which could
potentially mislead developers and introduce future bugs. In
this paper, we propose the task of “Just-In-Time (JIT) Method
Name Updating” which automatically performs method name
updates to avoid inconsistent names and fix them before
being introduced into code bases. Specifically, we propose an
approach that combines heuristic rules and a neural model. The
heuristic rule-based component mainly focuses on the single-
token changes for our empirical findings that the proportion of
single-token modifications is extensive, and often corresponds
to code-indicative updates. The neural model-based component
is a customized Seq2seq model considering code changes and
the new method body’s token type. To evaluate our approach,
we conduct extensive experiments on the collected dataset with
over 108K method name-body co-change samples from popular
Java projects. The results show that our method outperforms
the three baselines on all metrics. In particular, our approach
achieves a significant improvement in Accuracy and improves
method generation baseline by 23.5%.

Keywords–method name updating; seq2seq model; heuristic
rule

1. INTRODUCTION

Method name plays a crucial role in code readability and
software quality [15]–[17], [21], [47]. Developers rely heavily
on identifiers for program comprehension, as they contain
the semantic information related to programs [25], [42], [46].
Method name is a special type of identifier, which can be
considered as concise documentation, abstractly summarizing
the functionality of a program, e.g. get elements, set variables.
There would be many function calls using corresponding
method names during the implementation of a software
project, which are always co-written by different developers.
A good method name could facilitate communication between
developers, while it is always difficult for developers to write
consistent names in programs due to various reasons such as
insufficient communication among development teams and lack
of understanding of project development histories. That being
the case, a misunderstanding or a misuse might occur in the
presence of inconsistent method name, resulting in serious

∗Meng Yan is the corresponding author

Inconsistent method name example
Before Editing:
public void clickDefaultElements() {
crawlActions.click("a");
crawlActions.click("button");
crawlActions.click("input").withAttribute("type",

"submit");
crawlActions.click("input").withAttribute("type",

"button");
}

After Editing:
public void clickDefaultElements() {
crawlActions.lookFor("a");
crawlActions.lookFor("button");
crawlActions.lookFor("input").withAttribute("type",

"submit");
crawlActions.lookFor("input").withAttribute("type",

"button");
}

After Fixing:
public void lookForDefaultElements() {
crawlActions.lookFor("a");
crawlActions.lookFor("button");
crawlActions.lookFor("input").withAttribute("type",

"submit");
crawlActions.lookFor("input").withAttribute("type",

"button");
}

Figure 1: Example of inconsistent method name in code
evolution.

defects [4], [9], [14], [46]. Moreover, improper method names
would decrease the quality of projects, causing difficulties for
program maintenance and upgrades [11], [25], [28], [32], [44].
During the development of the project, developers may forget
or ignore to update method name when making modifications
to the method body, resulting in an inconsistent method
name that requires fixing. As the example shown in Figure
1, which is extracted from the crawljax1, function “click()” is
changed to “lookFor()”, but the developer does not perform
the method name update and introduce it into the code bases.
Such inconsistent method names may persist for an extended
period, leading to potential confusion and time wastage among
developers before being fixed. These inconsistent names can
mislead developers, increasing the likelihood of introducing
bugs [4], [9], [14] as well as additional time being spent on the
implementation checking and code reviews [10], [11], [25], [28].
As such, it is crucial to address and rectify inconsistent method
names right on time or, better yet, prevent their introduction.
Hence, in this study, we first present the task of “Just-
In-Time (JIT) Method Name Updating”, where we aim to
automatically generate candidate solutions with code changes
to update inconsistent method names. Several studies have been

1https://github.com/crawljax/crawljax
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proposed to identify inconsistent method names or recommend
appropriate names. However, we find that the current researches
are not a good solution to the task of JIT Method Name
Updating, as they do not take into account the information
from the previous version of the method, which could provide
important insights for updating the method name. Moreover,
there is a lack of a specific dataset for this task at present.
Therefore, we construct a dataset with over 108K method name-
body co-change samples, which are extracted from popular
Java projects hosted on GitHub. To investigate this task, we
conduct an empirical analysis of the dataset that we constructed
to study the characteristics of method name updates. Based on
our findings that method name updates involve a significant
number of single body token change samples which includes
a substantial portion of code-indicative updates, we propose
the use of heuristic rules to handle such samples. For other
changing samples, we build a customized seq2seq model with
some customization to learn the pattern of method name
updating and better fit the task at hand. We integrate these two
components to form an approach that combines heuristic rules
and a neural model to handle this task better.
To assess the effectiveness of our approach, numerous experi-
ments are conducted on our dataset. We compare our approach,
MAP (Method nAme uPdating), against three baselines: a
commonly used baseline in the JIT task (Origin [38]), a method
based on context information and prior knowledge (Cognac
[46]), and a general neural machine translation model (NMT).
The evaluation is conducted on our dataset, considering metrics
of Accuracy, Precision, Recall, F1-score, Average Edit Distance
(AED), and Relative Edit Distance (RED) following prior
studies [33], [34], [37], [38]. The evaluation results demonstrate
the superior performance of MAP over all baselines across all
metrics. Moreover, the ablation study reveals that all the design
components contribute to the performance of MAP in method
name updating. Noticeably, the utilization of heuristic rules
and token type stand out as the two most influential factors in
achieving improved results.
In summary, this paper makes the following contributions:
• We first propose the task of JIT Method Name Updating

and construct a dataset with more than 108K method name-
body co-change samples, which represents the first extensive
dataset available for this task.

• We designed the approach, namely MAP (Method nAme
uPdating), which is based on the hybrid of the seq2seq
neural network and heuristic rules, and could effectively
address the unique characteristics of this task.

• We conduct a comprehensive evaluation of the dataset.
The evaluation results indicate that our approach is highly
effective and significantly outperforms the baselines on the
task of JIT Method Name Updating.

• We have made our replication package public2, including the
dataset, the source code, our trained model, and test results.
This enables other researchers to easily replicate our work
and build upon new findings in future studies.

2https://anonymous.4open.science/r/MNU-139/

2. RELATED WORK

2.1 Method Name Recommendation
The task of method name recommendation (MNR) aims to
generate method names automatically with high quality to
guarantee the legibility of source code [12], [19]. Numerous
approaches have been suggested to tackle it. Liu et al. [36]
follow an information retrieval (IR) direction with the key
idea that two methods with similar bodies should have similar
names. Code2vec [8] and Code2seq [7] are two neural network
models that represent a method body as a distributed vector
by aggregating the bag of Abstract Syntax Tree (AST) paths
with the attention mechanism. They suggest reusing the names
of methods that share similar AST structures with the target
method. MNire [39] uses the sub-tokens in the program entities’
names. Qu et al. [41] build a code graph called code relation
graph (CRG) to describe the code structure and utilize the graph
neural network models [6], [30]to encode it, and then combined
it with the code token sequence embedding to generate new
method name through RNN [24]. Wang et al. [46] propose
a context-guided method name recommender that leverages
both local and global contexts to generate method names, with
empirical evidence as the guiding prior knowledge. Liu et
al. [35] otherwise consider the project-specific context and
documentation of the target method. Li et al. [31] develop
DeepName, a context-based approach that extracts the features
from four contexts: the internal context, the caller and callee
contexts, sibling context, and enclosing context.

2.2 Method Name Consistency Checking
The task of method name consistency checking (MCC) is to
automatically check the consistency between method name and
source code to avoid misunderstanding and program defects [3],
[4], [9]–[11], [40], [48]. Hùst and Østvold [26] utilize the Java
language naming convention to extract rules for method names,
which are then used to identify naming bugs. Kim et al. [27]
construct a code dictionary from existing API documents and
used it to detect inconsistent names. Allamanis et al. [5] propose
to learn the domain-specific naming convention from local
contexts to enhance stylistic consistency, including identifier
naming and formatting. Liu et al. [36] separately encode method
names and implementations and consider two sets of method
names to compare the similarity of these two sets. The work of
Son [39] and Wang et al. [46] can also be utilized for the MCC
task by comparing the similarity between the recommended
name and the original name of the method.

2.3 Just-In-Time Task
During the code evolution process, defects and inconsistencies
may be introduced due to the code changes [13], [22]. The just-
in-time (JIT) task is to automatically identify and update these
undesirable issues. Specifically, Hoang et al. [23] introduce a
comprehensive deep learning framework that leverages commit
messages and code changes to solve the JIT defect prediction
task. Liu et al. [37], [38] otherwise, propose the task of
JIT comment detection and updating, and developed a novel
Seq2seq model to address this task. Lin et al. [33] suggest a
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rule-based approach based on extensive empirical analysis to
efficiently address it. These works demonstrate the significance
of JIT tasks and highlight the need to address and resolve such
issues, which also serves as inspiration for our research.

3. EMPIRICAL STUDY

To explore the task of the JIT Method Name Updating, we
conduct empirical studies on the constructed dataset, which is
obtained from the commit history of a number of Java projects.
In this section, we would first introduce the dataset preparation,
and then try to provide answers to the following research
questions:
RQ1: What is the distribution of the edit operation in the task
of method name updating?
RQ2: What is the connection between the modified tokens and
the new method name?

3.1 Data Preparation

The dataset constructed in this study is derived from real data
collected from the GitHub repository. Specifically, we use the
1,496 collected repositories from the work of Liu et al. [38].
These repositories have undergone careful filtering by Liu et al.
[38], thus could alleviate the potential biases of the constructed
dataset. The method body and corresponding method name
that underwent modifications were extracted from non-merge
commits of each repository to construct method name-body
co-change instances. To do this, we used the GumTree [18]
matching algorithm, which was customized by Liu et al. [38],
to calculate the method mapping between the new and old
versions of the code. Next, we compared the Abstract Syntax
Tree (AST) of each old and new version method based on the
mapping to identify and extract the method code that underwent
modifications.
To ensure a more robust dataset, we filtered out unsuitable
instances such as abstract methods, empty method bodies,
methods whose name is changed while bodies are not, and
duplicate data to prevent data leakage. To reduce training time,
we set the maximum length of the method body information,
old method name, and new method name to 500, 20, and
20, respectively, based on the 90% quantiles of the dataset,
ensuring that most methods were included within this length
without causing training device issues. Ultimately, we obtained
108,360 method name-body change instances.
During the process of dividing the dataset, the instances were
sorted in ascending order based on the submission creation time
of each project. The first 80% of the instances were assigned to
the training set, and the remaining 20% were randomly shuffled
and equally assigned to the validation and test sets, ensuring
that all method names in the training set occurred before
those in the validation and test sets, avoiding data leakage that
could exaggerate method performance. Thus, the final training,
validation, and test sets consisted of 86609, 10805, and 10946
method body-method name co-change instances, respectively.
3.2 Edit Distance Statistics

The main feature of the JIT Method Name Updating task
is that it takes into account the modification properties of
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(a) Edit distance comparison between method body token and method
name sub-token.  

 

 

1 5 10 15 20 25 30 35 40 45 50

Edit Distance

0

1000

2000

3000

4000

N
u
m
b
e
r
s

body sub_token

name sub-token

(b) Edit distance comparison between method body sub-token and
method name sub-token.

Figure 2: Statistics of edit distance.

the method body. To gain insight into this task, we count
the edit distance between the pre-modified and post-modified
method name(body) in our dataset. Given two versions of
method names(bodies), edit distance is the minimum edit
tokens (insert, delete, and replace) required to change a method
name(body) into the other, and calculated the same as word-
level Levenshtein distance [29]. First, we need to mark and
align the pre-modified and post-modified methods, which will
be described in detail in Section 4-A2. Then we count the
numbers of the edit which is not “equal” to obtain the edit
distance. Two levels of statistics are designed, namely the token
level and the sub-token level (for compound words), to explore
the change from a microscopic perspective.
Figure 2 shows the statistics of the edit distance for method
name and method body changes. It can be seen that the
distribution of the edit distance is quite similar compared to
the method name or the method body, as well as the token
level and sub-token level. The majority of method bodies and
method names exhibit a small edit distance. As the edit distance
increases, the number of edit distance gradually decreases.
Specifically, the edit distance of the method name decreases
gradually from 0 to 10, and the token (sub-token) edit distance
for the method body is mainly concentrated in the range of 0 to
4. Notably, the most frequent edit distance is 1, approximately
42.3% in method name, 29.4% for token level, and 20.0% for
sub-token level in method body, which suggests that there may
exist a one-to-one correspondence between modifications of
the method body and method name.

Finding-1: The distribution of edit distance for method
names and method bodies is consistent. As the edit
distance increases, the number of both method bodies
and method names gradually decreases. Among all edits,
the single modification is the most frequent.
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Code-Indicative Sample
Before Editing:
protected Timestamp getDocumentDat(){

...
return documentDate;

}

After Editing:
protected Timestamp getDateDoc(){

...
return dateDoc;

}

Non-Code-Indicative Sample
Before Editing:
public URL sanitizeURL(URL url){

...
return url;

}

After Editing:
public Document getFirstPage(){

...
return Http.url(this.url).get();

}

Figure 3: Example of code-indicative update, and non-code-
indicative update.

TABLE I: Proportion of code-indicative sample in the test
dataset

test dataset U CIU Proportion(%)
all 10946 5928 54.17

single token 3214 2620 81.52
single sub-token 2188 1809 82.68
*U represents the samples that need to be
updated; CIU represents the code-indicative
update sample.

3.3 Modified Tokens Statistics

According to the previous work [33], [34], we divided the
update of the method name into two categories: code-indicative
update and non-code-indicative update. A formal definition of
this classification standard is as below: an instance of method
name update is classified as a code-indicative update if all of
its updated contents can be found in the corresponding code
change, and non-code-indicative update otherwise [33]. Figure
3 shows two specific examples.
To further investigate whether the update of method name
could be promoted by code-indicative information, we count
the sample proportion of code-indicative update in all the test
samples, single token update samples (edit distance of token
level is 1), single sub-token update samples (edit distance of
sub-token level is 1). The outcomes are presented in Table I.
Through the table, we could find that the code-indicative update
sample accounts for half of the proportion in all test samples,
and the percentage of code-indicative update samples for a
single token or single sub-token update is even higher. 2620
of the 3214 single token change samples are code-indicative
updates, which is more than 80%.
Specifically, code-indicative updates involve cases where identi-
fier renaming or function call substitution occurs in the source
code, and the renamed object is key content in the method

Heuristic rule

Single body token Change

Multi body token Change

Rec-Names List
…

Classification

Encoder Decoder

Method
Changes

Rollback

Figure 4: Overview of our approach.

name. As the example of code-indicative update in Figure 3,
“documentDate” is modified to “dateDoc”, and the updated
content is consistent with the method name. These code-
indicative updates could be more easily updated by heuristic-
based rules, allowing for accurate updates to be made [33].

Finding-2: Code-indicative updates are prone to appear
in single token change samples, which is also the most
frequent edit in Finding-1. This inspires us to use
heuristic rules to update them.

4. APPROACH

Figure 4 illustrates the overall framework of our approach,
which involves three components: classification, heuristic rule-
based component, and neural model-based component. The
detailed steps of our approach are as follows:

1) Data Construction: Given the method body changes and the
old method name of the code, our method first tokenizes the
method body and method name, and adds the corresponding
editing operations and token types to each token of the
separated method body to facilitate the updating process.

2) Sample Classification: Based on the body content of the
modifications, we classify the samples into single body
token change samples (edit distance equals to 1) and multi
body token change samples (edit distance greater than 1).

3) Updates Generating: The single body token change sam-
ples will be directly addressed by the heuristic rule-based
component, while the multi body token change samples will
be solved by the neural model-based component.

4) Rollback: If the heuristic rules could not generate any update
for single body token change samples, we switch to the
neural model to update the method name.

In this section, we first describe how to get the edit representa-
tion of changes, and then explain how to separate single body
token change samples and multi body token change samples.
The detailed process of the heuristic rule-based component and
the neural model-based component are then illustrated.

4.1 Data Flatting
4.1.1 Separation
First, we obtain two versions of the method (the snippet before
the modification and the snippet after the modification). Then,
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we employ Javalang [2] tool to parse these two methods so
that the method names can be extracted. After that, these
two snippets are split into < nsrc, bsrc, ndst, bdst > where n
represents the method name and b represents the method body.
In cases where parsing errors occurred while adopting Javalang
tool, we would apply rules based on regular expressions to
collect the method names.

4.1.2 Tokenization

After separating the method name and method body, we also
need to tokenize them to meet the requirements of our approach.
The tokenization of the method body includes both token
level and sub-token level, while the method name is directly
tokenized at sub-token level. 1)Token level tokenization for
method body: The method bodies of the two snippets are
tokenized at token level using a lexer [38]. This lexical analysis
is performed with the help of a highly specialized tool that
is designed to identify and extract individual tokens from the
source code. During this process, the lexer not only separates
the code into individual tokens but also removes any inner
comments or extraneous white spaces that may be present
in the code. 2)Sub-Token level tokenization for method
body: Compound words (e.g., buttonGreenPass), constructed
by concatenating multiple vocabulary words according to camel
or snake conventions, appear frequently in the code. We split
them into multiple sub-tokens to reduce the number of out-
of-vocabulary (OOV) words following previous studies [7],
[46]. The sub-tokens are joined with the “< con >” token to
mark that two adjacent tokens were originally concatenated
[38]. 3)Tokenization for method name: Method names are
tokenized just like compound words because method names
are essentially composed of tokens (sub-tokens) in camel or
snake conventions. Now, we get < Tnsrc

, Tbsrc , Tndst
, Tbdst >,

where T = [t1, t2, t3, ..., t|T |] and ti is a sub-token of method
name(method body).

4.1.3 Alignment

After the method bodies of the two code snippets are tokenized,
we align the two generated token sequences to accurately
capture the changes that have occurred. To achieve this, we
use a complex diff tool called SequenceMatcher [1], and a
set of heuristics [38] that can construct an accurate alignment
sequence. By aligning the token sequences in this way, we are
able to effectively represent each code change in a much more
granular and detailed manner. This is particularly important
when dealing with complex software code bases, where even
minor modifications can have far-reaching implications.

4.1.4 Code Change Representation

After alignment, each element in the sequence would be added
with an extra item named an edit to construct an edit sequence.
Every element in the edit sequence is a triple < ti, t

′

i, ai >,
where ti is a token in the old code, t

′

i is a token in the new
code, and ai is the edit action that transforms ti to t

′

i, which
consists of 4 types (i.e., insert, delete, equal, and replace). If ai
is insert (delete), then ti (t

′

i) is represented by the empty token

TABLE II: Method body statement types and their labels

Statement Type label Statement Type label
ExpressionStatement 1 SwitchCase 9

LocalVariableDeclaration 2 ReturnStatement 10
AssertStatement 3 DoStatement 11
WhileStatement 4 ForStatement 12

IfStatement 5 FieldDeclaration 13
TryStatement 6 SynchronizedStatement 14

ThrowStatement 7 UNK 15
SwitchStatement 8 Other 0

∅. Edit sequences preserve the information of both old and new
code versions and highlight the fine-grained changes between
them, which is similar to the approach in [49]. By capturing
these fine-grained modifications between the old and new code
versions, we are better equipped to analyze and understand the
changes that have occurred, and to make informed decisions
about how best to update method names.

4.1.5 Token Type Representation

According to the empirical study of wang et al. [46], token
types contribute differently to the composition of a method
name. That is, the information of different code statements can
be utilized to better guide the generation of method names, of
which Return Statement has the highest contribution, followed
by Expression Statement and Try Statement last. However,
we do not directly use the probabilities from Wang et al.’s
work as prior knowledge because the dataset they used for
empirical analysis is different from the dataset used in this
study, which may result in a bias in token type probabilities.
Instead, we provide types of tokens that allow the model to
learn the priority of different tokens through training, thus
providing more accurate guidance for updating method names
in the task.
We use Javalang tool to parse the AST structure information of
the method so that each token would get a type from the result,
and we label all the types, which are connected to the back
of the edit operation. The final goal of the JIT Method Name
Updating task is to generate the name of the latest method body
code, so we only extract the token type from the post-modified
method body to prevent interference from the information of
the pre-modified code snippet. We adopt the statement types
proposed by Wang et al. [46] and define their corresponding
label as shown in Table II.
After stitching the token types together, we get a quadruplet
< ti, t

′

i, ai, li >, where the li is the type label of a token t
′

i.
So, the input of our method can be expressed as Eedit = [<
t1, t

′

1, a1, l1 >,< t2, t
′

2, a2, l2 >, ..., < tn, t
′

n, an, ln >].

4.2 Sample Classification

Based on empirical analysis, we know that code snippets
with single body token changes contain more code-indicative
modifications, which are easy to be updated by heuristic
rules. To handle such single body token change samples
by rule-based component and employ neural model-based
component for multi body token change samples, we use
the following approach to determine the sample types: After
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the method body of the two versions is processed through
step Tokenization(4-A2) and Alignment(4-A3), the code body
change is segmented into edit sequence. By finding the
quadruplet elements, that is, quadruplet elements that are not
equal in edit sequence. If only one quadruplet is not “equal”
in a sample, i.e., edit distance equals 1, it is classified as a
single body token change sample.

4.3 Heuristic Rule Based Component
The content of this section is based on the findings in Section 3.
In a large number of modifications, there is a high proportion
of single-token modifications, and a high proportion of these
are code-indicative modifications. Therefore, we designed a
heuristic rule for single-token modification code, which is
shown in Figure 5. The steps of this rule include 3 steps: 1)
locating the change token in the method body, 2) constructing
the replacement pairs, and 3) matching the updates.

4.3.1 Locating the Change Token
After the classification step in Section 4-B, the single token
update samples will be identified. The heuristic rule only needs
to process the modified tokens, so it is necessary to locate
the modified token and extract it separately. Meanwhile, we
removed the connecting element “< con >” and no longer
considered the connection relationship, as we know that such
sub-tokens are definitely continuous if only one token is
modified.

4.3.2 Constructing the Replacement Pairs
Next, we will construct token-level replacement pairs for
updating method names. It is accomplished by considering all
possible modifications, which consist of sub-token sequences
from the modified token. Each pair of aligned sub-token
sequences represents a potential update that can be applied.
Specifically, when given two aligned sub-token sequences A
and B, we can construct a replacement pair < A[i : j], B[i :
j] >, where A[i : j] represents sub-tokens i to j in sequence
A, and B[i : j] represents the corresponding sub-tokens in
sequence B as shown in Figure 5 (b). When sub-tokens are
concatenated to form a token, any instances of the ∅ placeholder
are simply ignored.

4.3.3 Matching the Updates
After constructing the replacement pairs, we search for any
token sub-sequences in the pre-modified method name that
match the replacement pairs. If a match is found, we use the
corresponding new tokens to update the method name and
generate the predicted method name. Specifically, we would
traverse the set of replacement pairs and check if each old
token sub-sequence exists in the pre-modified method name. If
so, we update the old tokens with the corresponding new tokens
and use the updated method name as the predicted method
name. When multiple updates occur, we generate a candidate
list and arrange it in descending order based on the number
of sub-tokens they own. If no matching tokens are found after
traversing the replacement pairs, we would otherwise update
the method name using the model-based component.

4.4 Neural Model Based Component

This section provides a neural network-based model, whose
architecture is shown in Figure 6.

4.4.1 Embedding Layer

The edit embedding layer takes the edit sequence Eedit =
[< t1, t

′

1, a1, l1 >,< t2, t
′

2, a2, l2 >, ..., < tn, t
′

n, an, ln >] and
the old name sub-token sequence Esrcname

= [x1, x2, ..., xm]
as input, mapping them into feature vectors so that they are
available for neural model.
The embedding methods for different types of elements vary
slightly. 1) For the new and old method body and old
method name, a shared vocabulary is constructed. This shared
vocabulary maps the tokens in the method body and method
name into a shared vector space to ensure consistent embedding
of the same tokens in both components, thereby simplifying
information capture between the method body and the method
name. Then, the pre-trained model (e.g., FastText [20]) is
used to obtain word embedding for each token, shown in (1),
as they utilize a large amount of code corpus for training,
thereby providing accurate syntactic and semantic information
of code representation. 2) For the editing operation ai and
the types of new method body token li, we initialize their
embedding matrices randomly and continuously update them
during training to allow the model to learn their weights freely
as shown in (2). In this way, the model would learn to represent
the token edits and token types in their respective vector spaces.

eti , et′i
, exi = Embpre(ti), Embpre(t

′

i), Embpre(xi) (1)

eai
, eli = Embrand(ai), Embrand(li) (2)

4.4.2 Contextual Embed Layer

In this layer, we use two separate bidirectional LSTM (Bi-
LSTM) [24] layers to further learn the information of the edit
sequence and the old method name, and transform them into
context vectors. For edit sequence, the input embeddings, i.e.,
the quadruplet < eti , et′i

, eai , eli >, of each edit Ei are first
concatenated horizontally, and fed into the Bi-LSTM. And for
each embedding exi

of old name sequence Esrcname
, is directly

input into another Bi-LSTM. The formulas for calculating the
context vectors h

′

i for the method body and hi for the old
method name information are given by equations (3) and (4)
respectively.

h
′

i = Bi-LSTM(h
′

i−1, h
′

i+1, [eti ; et′i
; eai ; eli ]) (3)

hi = Bi-LSTM(hi−1, hi+1, exi) (4)

4.4.3 Attention Layer

To capture the relationships between the body change and
the old name, we use an attention layer shared by the two
which could link and fuse their information. The layer takes
as input the contextual vectors H

′
= [h

′

1, h
′

2, ..., h
′

n] and H =
[h1, h2, ..., hm] , which represent the body change and old
name respectively. The output is a feature vector g

′

i(gi) for
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Locating the change token

button

button

Green

Green

Pass

Pass

∅

Last

Constructing the replacement pairs

old tokens → new tokens
buttonGreen→buttonGreenLast

buttonGreenPass→buttonGreenLastPass
Green→GreenLast…

Pass→LastPass

Matching the updates
old name:

update name:

get button Green Pass

get button Green LastPass

(a) (b) (c)
Figure 5: Heuristic rule-based component.
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Figure 6: Neural model-based component.

each h
′

i(hi), as well as the original contextual h
′

i(hi) vector of
that edit (name), which is passed to the next layer. Specifically,
each g

′

i(gi) feature vector will be computed through dot product
attention mechanism [45]. The formula for the feature vector
g

′

i is shown in (5) and (6).

α
′

i = softmax(HTWT
α h

′

i) (5)

g
′

i = Hα
′

i (6)

where α
′

i represents the attention weights that measures
how important each xi respect to edit. WT

α is the trainable
parameters.
And the calculating of gi is shown in (7) and (8). Where αi

is also the attention weight but represents the importance of
each edit with respect to xi.

αi = softmax(H
′TWαhi) (7)

gi = H
′
αi (8)

4.4.4 Modeling Layer
This layer consists of two different Bi-LSTM models, which
are used to learn the final representations of each method
body edit sequence and old method name sub-token sequence.
Specifically, given an old method name token xi, its final
representation ui is calculated based on the context vector hi

and the attention feature vector gi, as shown in (9). The final
representation u

′

i of the method body edit information sequence
is computed in the same way, which is shown in (10).

ui = Bi-LSTM(ui−1, ui+1, [gi;hi]) (9)

u
′

i = Bi-LSTM(u
′

i−1, u
′

i+1, [g
′

i;h
′

i]) (10)

4.4.5 Decoding Layer

The decoding layer, which consists of three main parts: a
unidirectional LSTM, an attention-based linear layer, and
a weighted sum layer based on pointer copying, ultimately
generates a new method name.
LSTM Layer. The LSTM layer generates new annotations by
sequentially generating their tokens, taking the feature matrices
U

′
= [u

′

1, u
′

2, ..., u
′

n] and U = [u1, u2, ..., um] output from the
encoder as input. To construct the initial state s0 of the LSTM
layer, the last feature vectors of U and U ′ are concatenated
in series. For each decoding step ji, we consider the policy
of teacher forcing. The ground truth input ŷj is first mapped
to a feature vector eŷj using the same embedding layer as
old method name in Embedding Layer (4-D1). Here, ŷj is the
reference token from the previous time step during training,
i.e., the ground truth token of the new method name. While
during testing, it is the token generated by the previous time
step. Then, the hidden state sj of this step is computed as
(11), where sj−1 is the previous hidden state and oj−1 is the
previous output vector.

sj = LSTM(sj−1, [eŷj
; oj−1]) (11)

Attention-based Linear Layer. Dot-product attention is also
applied in the decoding process. At each decoding step, the
context vectors cj and c

′

j from the old method name and
method body information (both calculated like (5) and (6)),
as well as the current decoding state sj , are concatenated to
calculate the vocabulary distribution pvocabj as below:

oj = tanh(Vc[cj ; c
′

j ; sj ]) (12)

pvocabj = softmax(V
′

c oj) (13)

where V and V
′

are trainable parameters.
Weighted Sum Layer. The pointer network [43] is applied to
alleviate the problem of out-of-vocabulary (OOV) words. We
use two pointer generation networks to copy tokens from the
old method name and the new method body, respectively. The
calculation formulas for the two pointer generation networks
are shown in equations (14) and (15).

pname
j =

∑
k:xk=yj

ajk (14)

pvocabj =
∑

k:bk=yj

a
′

jk (15)
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Pname
j (yj) and P body

j (yj) are the probabilities of copying
tokens from the old method name and the new method body,
respectively. ajk and a

′

jk are the attention weights. Finally, the
conditional probability of generating target token yj at time
step j is calculated as:

p(yj |y<j , x, E) =γjP
vocab
j (yj) + (1− γj)∗

(θjP
name
j (yj) + (1− θj)P

body
j (yj))

(16)

where, γj , θj , and 1 − θj are the probability of selecting yj
from the vocabulary, the old method name, and the new method
body, respectively. They are all trained with the decoder.

5. EVALUATION SETUP

5.1 Experiment Settings

The MAP model is implemented in Python version 3.6.12 and
employs the PyTorch deep learning framework, version 1.2.0,
on a server equipped with NVIDIA GeForce RTX 3090 GPUs.
The unified vocabulary created retains only tokens that appear
more than once, resulting in a size of 980KB. The editing
actions, new method body types, new and old method body
tokens, and old method name tokens are embedded in 300-
dimensional vectors. The Bi-LSTM and LSTM hidden states
are 256 and 512 dimensions, respectively. The random dropout
rate for all LSTM and linear layers is set to 0.2.
During training, cross-entropy minimization is used as the
objective, and the Adam gradient descent algorithm is employed
to optimize the model with a learning rate of 0.001 and a
gradient clipping size of 5. During validation, the perplexity
is computed every 500 batches on a validation set with a
batch size of 32. If the perplexity does not decrease after five
validations, the learning rate is reduced by half and flagged.
If the number of flags reaches five, training is stopped, and
the model with the best validation score is utilized for testing.
During testing, a Beam Search method with a width of 5 was
applied to generate the final method name. In order to reduce
the impact of random errors, the MAP model was trained and
evaluated 10 times, with the average performance being taken
as the evaluation result.

5.2 Baselines

As we perform the first exploration of the “Just-In-Time Method
Name Updating” task, there are no existing methods available
for this task to compare. In order to evaluate the performance,
we select three different benchmarks: Origin, Cognac, and NMT.
Brief introductions of these methods are presented below:
Origin: It refers to a baseline that produces the previous name
as its output. In the just-in-time task, it is commonly used to
verify whether the generated result is closer to the new version
than the old one [38].
Cognac: It is a Seq2seq model based on context information
and prior knowledge proposed by Wang et al. [46], which
focuses on two aspects of information and performs well in
MNR task. It extracts the context of itself and its callers
or callees method to introduce more useful information and
utilizes the empirical observation as the prior knowledge to

pay more attention to key tokens. The above two parts of
information are taken as input to generate method names based
on Seq2seq model consisting of a Bi-LSTM. By comparing
with this method, we can investigate whether updating problem
is significant.
NMT: Neural Machine Translation model, utilizing a generic
neural sequence-to-sequence (seq2seq) structure, is commonly
used as a baseline for the generation task. We build the model
based on the LSTM with an encoder-decoder structure which
is similar to our neural method component. The attention
mechanism is also used to enhance the model’s ability to
capture correlations between the decoders and encoders. By
contrasting our proposed approach with the NMT, we can
investigate whether our method is superior in performance for
the universal generative model.

5.3 Variants of MAP

To analyze the impact of individual components on the
performance of our approach, we have created several vari-
ants, namely MAP-NoFt, MAP-NoUni, MAP-NoAttn, MAP-
NoType, and MAP-NoHeb.
• MAP-NoFt does not use the pre-trained model FastText.
• MAP-NoUni uses two distinct vocabularies, instead of a

unified one, for method body and method name tokens.
• MAP-NoAttn removes the attention layer and keeps other

components the same.
• MAP-NoType does not consider token type information for

the new method bodies.
• MAP-NoHeb eliminates the heuristic rule-based component

and only a neural network model is used.

5.4 Evaluation Metrics

In order to validate the performance of our approach, we employ
6 evaluation metrics, namely Accuracy, Precision, Recall, F1-
score, AED, and RED.
Accuracy is a method-level metric used to measure the ability
to generate correct method names. Specifically, if the generated
method name is identical in order and content to the ground
truth method name, it is considered correct. Otherwise, it is
considered incorrect.
Precision, Recall, and F1-score are token-level metrics used to
evaluate the extent to which the model can generate correct
method name tokens, i.e., the proportion of correct method
name tokens that are generated. For a correct method name
token o, and a generated method name token r, the formulas
for these three evaluation metrics are shown in (17), (18), and
(19), respectively.

precision(r, o) =
|token(r) ∩ token(o)|

|token(r)| (17)

recall(r, o) =
|token(r) ∩ token(o)|

|token(o)| (18)

F1-score(r, o) =
2 ∗ precision ∗ recall
precision+ recall

(19)
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TABLE III: Comparisons of our approach with each baseline

Approach Acc. Pre. Rec. F1 AED RED
Origin 0% 52.7% 51.6% 52.1% 2.068 1
Cognac 24.2% 61.0% 52.0% 56.2% 1.921 1.161
NMT 43.5% 74.6% 72.0% 73.3% 1.172 0.595
MAP 47.7% 76.2% 73.1% 74.6% 1.111 0.556

Average Edit Distance (AED) and Relative Edit Distance (RED)
are updating metrics used to measure the edit operation of the
generated name. AED calculates the average number of edits
developers need to make in order to achieve perfect updates
after using an updater. Similarly, the RED metric measures the
average relative edit distance. Specifically, for a given test set
with N samples, the AED and RED of an approach are defined
as follows:

AED =
1

N

N∑
k=1

edit distance(ŷ(k), yk) (20)

RED =
1

N

N∑
k=1

edit distance(ŷ(k), yk)

edit distance(x(k), yk)
(21)

where ŷ(k) is the generated method name, x(k) is the old
method name, and yk is the reference method name.

6. EVALUATION RESULTS

6.1 RQ3: Effectiveness of Our Approach

To explore the effectiveness of our approach, i.e., MAP, we
compare it with three baseline methods on our dataset in terms
of Accuracy, Precision, Recall, F1-score, AED, and RED. The
results are presented in Table III.
From the table, we can observe that Origin achieves the worst
performance across all the metrics. Given a modified/new
method body, Origin directly returns the old method name
as the expected result. Obviously, the old method name can not
be adaptable to the new method body, resulting in an accuracy
value of 0.00%. Interestingly, despite the poor accuracy, the
recall of Origin is still more than 50%, which suggests a
significant overlap between the new and old method names for
the task of JIT Method Name Updating. This indicates that
the old method name still contains some valuable and reusable
tokens that appear in the new method name. Therefore, it is
reasonable for us to use the old method name as a template
instead of generating method name from scratch.
For Cognac, the improvement of recall is only 0.77% compared
with Origin. This is because Cognac needs to generate tokens
one by one from scratch. As a classical Seq2seq model, Cognac
fails to generate low-frequency words, such as project-specific
identifiers, and is difficult to handle the method name with
a long sequence. Additionally, Cognac, as a static method
name generation technique, struggles to understand and focus
on the modified token between new and old method bodies.
However, such modified tokens may contribute the most to
the new method of name generation. NMT utilizes the learned
update patterns for editing old method names and achieves

TABLE IV: Performance of variants

Approach Acc. ↓ Pre. ↓ Rec. ↓ F1 ↓
MAP-NoFt 44.1% 3.6% 74.8% 1.4% 71.9% 1.2% 73.3% 1.3%
MAP-NoUni 44.5% 3.2% 75.2% 1.0% 71.9% 1.2% 73.5% 1.1%
MAP-NoAttn 43.9% 3.8% 74.8% 1.4% 72.0% 1.1% 73.4% 1.2%
MAP-NoType 43.5% 4.2% 74.6% 1.6% 72.0% 1.1% 73.3% 1.3%
MAP-NoHeb 45.9% 1.8% 75.8% 0.4% 72.5% 0.6% 74.1% 0.5%
MAP 47.7% 76.2% 73.1% 74.6%
↓ denotes performance degradation relative to MAP.

better results than Cognac. However, We can see that MAP
outperforms all the baselines in terms of all evaluation metrics.
The accuracy, precision, recall, F1-score of MAP are 47.7%,
76.2%, 73.1%, and 74.6%, with the improvement of 9.66%,
2.14%, 1.53%, and 1.77%, compared with NMT. Considering
the metrics of AED and RED, MAP significantly outperforms
both Origin and Cognac, reducing the relative edit operations
by nearly 50%. These results indicate MAP can update names
more effectively and accurately than the three baselines.

Overall: MAP outperforms the three baselines on all
metrics, demonstrating the effectiveness of our method
on the JIT Method Name Updating task.

6.2 RQ4: Contributions of Main Components

In this research question, we evaluate and compare MAP with
its variants to provide valuable insights into the impact of
these components on performance. The experimental results
are presented in Table IV.
Upon analyzing the performance metrics, we can see that our
approach exhibits the best results than the other variants. When
removing any component, the performance of MAP degrades to
varying degrees. For instance, removing the attention layer (i.e.,
MAP-NoAttn) leads to a 3.8% and 1.2% decrease in Accuracy
and F1-score, respectively. Notably, among all variants, the
Accuracy difference between MAP and MAP-NoType is the
largest. When we remove the token type of the input, the
effect will drop by 4.2% in Accuracy and 1.3% in F1-score.
This observation highlights the significance of incorporating
token type information in JIT Method Name Updtaing. The
inclusion of type information may enable the neural model-
based component to prioritize specific token types during
training, ultimately facilitating improved performance.
At the same time, it can be observed that the heuristic rule-based
component is also indispensable for the overall method. While
the results only show a slight decrease in Accuracy, Precision,
Recall, and F1-score, it still contributes to the model as a
whole. This could be attributed to the model’s potential errors
or omissions in generating certain tokens when it comes to
single-token updating, resulting in lower performance compared
to the heuristic rule-based approach.

Overall: These results indicate that all the main
components are useful and combining all components
is the best.
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Method Body Changes
Before Editing:
{

...
return innerVarPatterns();

}

After Editing:
{

...
return innerStatements();

}

Origin: “implicit”,“inner”,“var”,“patterns”
Cognac: “statements”
NMT: “implicit”,“inner”
MAP: “implicit”,“inner”,“statements”
Ref: “implicit”,“inner”,“statements”

Figure 7: Example of updating.

7. DISCUSSION

7.1 Do Our Task and Approach Make Sense
Previous research has shown that issues of inconsistency due
to modifications are pervasive, and the best approach is to
address them before introducing the code into the software
code bases [23], [33], [38], [50]. As an example in Figure 7,
the function call in the method body has been changed from
“innerVarPatterns()” to “innerStatements()”. However, due
to oversight or forgetfulness, the developer does not update
the method name, resulting in an inconsistent method name
“implicitInnerVarPatterns” with the new method body. If such
source code is brought into the repository, it is highly probable
to cause a series of chain reactions, such as misusing and
introducing defects. Additionally, it would increase the time and
manpower costs required for code repository maintenance and
fixes. This indicates that the task of JIT Method Name Updating,
which aims to detect and rectify method name inconsistencies,
is highly relevant and significant in minimizing the potential
introduction of such issues.
To investigate the effectiveness of our approach in JIT Method
Name Updating, we manually examined several examples. For
the sample in Figure 7, Cognac generates one relevant token as a
recommendation. However, it lacks the token “implicit”, which
is derived from the previous version. Without this token, the
semantic information provided by programmers may potentially
be lost, complicating the understanding of the source code. As
for NMT, it contains old information but lacks the crucial token
“statements” during generation. This may be due to NMT’s
failure to capture important modified tokens without token type
which is special in the software engineering field, resulting in
a missed generation. Furthermore, NMT, being a pure neural
model, has inherent randomness and a black-box nature. Our
proposed approach, on the other hand, combines heuristic rules
and a neural model that adds token-type information and can
reduce the occurrence of missing and erroneous generation to
a certain extent, resulting in accurate updates.

7.2 Threats to Validity
A potential limitation to the effectiveness of this work is that our
dataset is constructed exclusively from Java projects, which may

not be representative of all programming languages. Different
languages may exhibit slight variations in change patterns.
Therefore, our methods may not be fully applicable to other
languages, and this will be further explored in our future work.
Another threat is the inability to guarantee that all methods
in our data have high-quality method names for 1) the names
of the methods in the before and after edit versions may not
always be consistent; 2) method name updates during the
evolution process may not always be driven solely by changes
in the method body. For example, the personal programming
preferences of developers can also play a role. To address it,
we build a dataset composed of well-maintained open-source
projects. Furthermore, such noise is acceptable for deep learning
techniques, we think the impact of this issue is limited.

7.3 Usage Scenario

MAP is applicable in scenarios where method names need
to be updated. MAP can assist developers in JIT method
name updating. Before developers commit changes locally after
modifying the method body, method name update suggestions
for developers could be automatically generated by using a
plugin that encapsulates the MAP method. Even if the suggested
method names provided by MAP are only partially correct,
they can reduce the amount of editing required by developers
and improve development efficiency.

8. CONCLUSION AND FUTURE WORK

We first propose the task of JIT Method Name Updating for
reducing and avoiding inconsistent method names, while also
first constructing a dataset for this specific task. In this paper,
an empirical study is performed to investigate the relationship
between method body modifications and method names, and
we propose a combined approach based on heuristic rules and
a neural model. It can generate recommended new method
names based on the old method name and the modified method
bodies. By conducting experiments on the built data with
over 108K method name-body co-change samples, the results
demonstrate that our method outperforms three baselines across
all evaluation metrics, indicating the effectiveness of our work
in the task of JIT Method Name Updating.
In the future, we plan to further investigate the editing patterns
of method name updates and conduct research in different
programming languages. Additionally, we intend to explore the
use of more advanced techniques, such as pre-trained models,
to address the limitations of the current methods.
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