
Which Non-functional Requirements do Developers
Focus on?

An Empirical Study on Stack Overflow using Topic Analysis

Jie Zoub, Ling Xua,b,*, Weikang Guob, Meng Yanb, Dan Yangb, Xiaohong Zhanga,b
a. Key Laboratory of Dependable Service Computing in Cyber Physical Society Ministry of Education,

 Chongqing 400044, PR China
b. The School of Software Engineering, Chongqing University,

 Chongqing (401331), PR China.
xuling@cqu.edu.cn

Abstract—Programming question and answer (Q&A) websites,
such as Stack Overflow, gathered knowledge and expertise of
developers from all over the world, this knowledge reflects some
insight into the development activities. To comprehend the actual
thoughts and needs of the developers, we analyzed the non-
functional requirements (NFRs) on Stack Overflow. In this paper,
we acquired the textual content of Stack Overflow discussions,
utilized the topic model, latent Dirichlet allocation (LDA), to
discover the main topics of Stack Overflow discussions, and we
used the wordlists to find the relationship between the discussions
and NFRs. We focus on the hot and unresolved NFRs, the
evolutions and trends of the NFRs in their discussions. We found
that the most frequent topics the developers discuss are about
usability and reliability while they concern few about
maintainability and efficiency. The most unresolved problems
also occurred in usability and reliability. Moreover, from the
visualization of the NFR evolutions over time, we can find the
trend for each NFR.

Index Terms—Non-functional requirements (NFRs), Topic
model, Latent Dirichlet allocation (LDA), Stack Overflow.

I. INTRODUCTION
With the development of the scale and size of software,

people are more concerned about software quality requirements.
Non-functional requirements (NFRs) describe important
constraints upon the development and behavior of software,
they should be considered as early as possible, otherwise they
may cause some latent problems of software artifacts like
unstable and low quality. It may become very complex and
expensive to address them at later stages of software
development, especially for large systems.

Previous works on topic analysis show that extracting the
topics was useful in software maintenance, and it’s helpful for
understanding the software development activities[1][2]. The
topics extracted from the corpus summarized the key concepts
in the corpus, such as source code, text descriptions, and
commit comments. The topic model, Latent Dirichlet
Allocation (LDA)[3], can find the topics of the corpus, it
created a multinomial distributions of words to represent the
topics.

Since the extracted topics are abstract and hard to
understand, we need to devise appropriate labels for these
topics to make it easy to use in discussion and analysis. We
annotate them with the NFRs because the topic trends often
corresponded to NFRs[4]. Through that we discover the focus
and needs of the developers, propose the visualizations of
NFRs what developers discussed during the development
activities. Managers may also be able to grasp the topic-related
activities of the developers more easily.

In this paper, we extract the topics of the corpus using the
topic model LDA, and then annotate the topics with the NFRs
labels by a special wordlist. After that we analyze the focuses,
unresolved problems, evolutions and trends of the NFRs. We
divide the corpus into time-windows when extracting the topics
of the corpus. We partition the whole corpus into 30 day
periods because the period size of 30 days is smaller than the
time between minor releases but large enough for there to
analyze[1]. We divide the corpus into time-windows rather
than regard it as a whole because many topics are quite local.
This also allows us to explore the evolution of the NFRs over
time. When annotating the NFRs, we utilize the standards of
ISO9126, which describes six high-level NFRs: maintainability,
functionality, portability, efficiency, usability, and reliability.

We use the data posts from Stack Overflow, and in our
analysis, we also distinguished between posts with or without
comments. Our study aim to answer the following three
research questions:

RQ1) what’s the hot and not hot NFRs? In other words,
which NFRs are discussed most and least frequently?

RQ2) which NFRs questions remain unanswered at most?
Which NFRs are focused most in unresolved problems?

RQ3) what are the evolutions and trends of the NFRs with
respect to time?

By answering these questions, we want to provide much
immediately useful detail about the software development
activities. Since Stack Overflow is worldwide and very popular
with tens of thousands of developers, the developer discussions
trends are symbiotic with the market trends. We hope to

2015 12th Working Conference on Mining Software Repositories

978-0-7695-5594-2/15 $31.00 © 2015 IEEE

DOI 10.1109/MSR.2015.60

446

indicate the focus and the needs of developers, give a guide to
developers which NFRs they should focus on, such as usability
and reliability, others should pay attention to which fields in
software development activities if they want to offer help to
developers. We expect that the evolution of the NFRs will
provide the changes in developer focus as they change over
time. The trend lines give us an indication of the rise or fall of
developer interest. The analysis also provides managers,
maintainers or commercial vendors an enhanced understanding
of the history of software development. It allows managers and
maintainers to track the key aspects of development activities,
commercial vendors to assess the adoption rate of their
products, and to understand usage trends. Moreover, the
research provides software engineering researchers with
immediate knowledge of some of the possible troublesome
areas. Our technique labeled the topics with NFRs is also
extendable to help with automatic tagging or summarization.

II. DATA AND APPROACH
In this section we describe how to annotate the NFRs. Our

approach consists of three key steps. Firstly, we extract the data
from Stack Overflow, and then preprocess the extracted data.
Secondly, we construct a topic model LDA to extract the topics
of the corpus. Finally, we label the topics with the NFRs by our
wordlists.

A. Data Extraction Process
To address the above research questions, we used the posts

and comments of Q&A site Stack Overflow from July 31, 2008
to September 14, 2014 provided by the MSR challenge[5],
Stack Overflow is a global site which features questions and
answers on a wide range of topics in computer programming.
We used the java SAX parser to extract the data of posts and
comments, totaling about 21.7 million posts and 32.5 million
comments. For our analysis, to the first research question, we
utilize two types of corpus. One is the “title” and “body” of
posts combined with the “text” of comments. The second one
only contains the “title” and “body” of posts. We compare the
results between the two corpuses. For the second research
question, we extract the “title” and “body” of the unanswered
questions from the posts, this totals about 921K. The third
research question we use the “title” and “body” of posts and the
“title” and “body” of the unanswered questions. Figure 1 shows
the detailed data of each month (period), with the month as the
x-axis, and the number of posts or comments as the y-axis, the
highest reaches 0.95 million.

Fig. 1. The dataset.

After data extraction, we preprocess the extracted data as
follows. At first, we remove the periods whose number of posts
less than 100, since too few posts are useless for the analysis.
And then a few of remaining preprocess steps are carried out to
further refine the information, including word segmentation,
stop words removal, and case unification.

B. Topic Modelling
We apply LDA to extract the topics of the corpus.

Described in mathematical language, the topic is the
conditional probability distribution of words in the vocabulary.
LDA requires the number of topics parameter K, the number of
iteration N, the dirichlet parameter α and β as inputs. In our
experiment, we choose the number of topics as 20 for each
period because duplicate words from different topics are
infrequent when K=20, maybe 20 is not necessarily the optimal
choice but it is an appropriate value for NFRs analysis[1][4].
And we use the default settings N=1000, α=2.5, β=0.01. The
output of LDA in our experiment is a matrix M where rows
correspond to the K topics of posts or comments and columns
correspond to the words of topics. In this paper, we use
MALLET[6] to construct the topic model LDA.

C. NFRs Labeling
In order to analyze the NFRs, we need to annotate these

topics with NFRs labels. We use the ISO quality model,
ISO9126 as the taxonomy of NFRs. Although we have no
evidence to state that ISO9126 is a correct and detailed
standard, it constitutes the most widely used software quality
model at present. Therefore, we consider it is sufficient for the
purposes of this research. We associate each NFR with a list of
keywords, called wordlists. We contrast the words of the
topics with the words of our wordlists. If any of the words of
the topics match any of the wordlist’s words, we labelled the
topic with the corresponding NFRs. If there are no matched
words, we labeled the topic with “none”, we think this topic is
not associated with any of the NFRs. Each topic can be labeled
with one or more NFRs. The wordlists 1 we use, which is
specific for software field, is the exp2 from [4].

D. Creating a Validation Corpus
To evaluate the annotated results, we invited four PhD

candidates who researched in software engineering to label the
topics manually as a validation set. The annotators spent about
five work days to label the data from Aug 2013 to Aug 2014,
totaling 12 months. They look at the topics of each period and
the words of each topic, using their expertise and then
suggested the appropriate label to the topics, the four
annotators did not annotate each other’s annotations, and the
labels they used are also one or more of the six NFRs of
ISO9126. They can also label the topics with “none” if they
think there are no NFRs associated with the topics. They also
use the original files related to the topics being annotated as
auxiliary information when labeling the topics. For example, a
topic of Sept. 2014 consisting of the word “code exit view error

1http://softwareprocess.es/y/neil-ernst-abram-hindle-whats-in-a-
name-wordlists.tar.gz

447

null method init custom button click ui fault stable input”, they
tagged the topic with usability and reliability. We suppose the
manual labeled topics are correct.

III. ANALYSIS OF THE RESULTS

A. Accuracy of Evaluation
To the problem of how well our approach work, we use the

recall and precision rates as standard metrics to evaluate the
accuracy of the NFRs labeling. We run our approach on the
testing set, which is the post data from Sept 2013 to Aug 2014.
Next, we compare the results with the manual validation set.

RecallRate = Ndetected / Ntotal. (1)

PrecisionRate = Ndetected / Ndetectedall. (2)

Where Ndetected is the number of correct NFRs labels (the
NFRs label matches the manual annotation), Ntotal is the total
number of the manual NFRs labels in the testing set, Ndetectedall
is the total number of NFRs labels in the experimental results
using our approach (including the correct and incorrect). For
example, if we label the topic with usability, efficiency and
functionality, and the manual validation set labels the topic
with usability, efficiency and reliability, Ndetected is 2 (usability
and efficiency), Ntotal is 3 (usability, efficiency, and reliability),
Ndetectedall is 3 (usability, efficiency, and functionality), so that
the recall rate is 2/3 66.7%, the precision rate is 2/3 66.7%.

Figure 2 shows the recall rate and the precision rate of our
results. To each period, we calculate a recall rate and a
precision rate. From figure 2, we see that the highest recall rate
and precision rate of our results reaches 80%, averaging 75.9%
and 68.7% respectively.

Fig. 2. The recall rate and the precision rate of our NFRs labeling.

B. Results RQ1
Figure 3 shows the rate of different NFRs using the data

posts, with the x-axis is the rate of the corresponding NFRs (the
topics labeled by the corresponding NFRs divide by the total
topics), the y-axis is the corresponding NFRs. From figure 3,
we see that the labels with the most topics are usability and
reliability, and then functionality and portability. We did not
see many results for efficiency or maintainability. That is, the
NFRs the developers discussed most frequently are usability
and reliability, and the least they discussed are efficiency and
maintainability. When they are coding, they mainly focus on

usability, and then reliability and functionality. In contrary,
they almost pay no attention to efficiency or maintainability.

Fig. 3. The rate of different NFRs using posts only.

And we also compare the results with the posts combined
with the comments. Figure 4 shows the results using posts and
comments data. From figure 4, we see that the relative
distribution of the NFRs is almost the same as the results of
using the posts only. Usability and reliability are the highest,
and then functionality and portability. The lowest are
maintainability and efficiency.

Fig. 4. The rate of different NFRs using posts and comments.

C. Results RQ2
For the research question 2, we analyzed the unanswered

questions from Stack Overflow so as to explore the unresolved
problem domains. Through this, we can help more to the
developers. Figure 5 shows the rate of different NFRs about
unanswered questions. From this, we see the most topics
remain unanswered are labeled with usability and reliability,
and then functionality and efficiency. The fewest are portability
and maintainability. The problems remain unresolved mostly
are in the usability and reliability domains. As to portability
and maintainability, they usually can work this out by
themselves, or we can say they rarely meet the problems of
portability and maintainability. That is to say there are possible
troublesome areas in usability and reliability, to help the
developers more, we should concern ourselves more with the
issues of usability and reliability.

Fig. 5. The rate of different NFRs about unanswered question.

448

D. Results RQ3
Since the RQ1 concludes that the results of using posts only

and using posts combination with the comments is almost the
same, in this research question, we use posts data only to cut
down the data size. We label the topics of posts using our
approach, and we find that most of the topics are labeled with
more than one NFR, about 92.5%. The topics labeled with only
one NFR is about 4.9%, and about 2.6% labeled with “none”.

Figure 6 shows the gray-scale image of the time-lines of
NFRs frequencies. Each cell represents a 30-day period. Grid
cell intensity (saturation) is mapped to label frequency relative
to the largest label count of all NFRs. Deeper color indicates
the greater frequencies. From this figure, we can see the
visualization of evolution of each NFR with time, and we also
can see the hot or not hot NFRs in a certain period. Figure 6(a)
shows the results of the posts, and we see that all six NFRs
change over time, but the trends are not the same. We observe

that the efficiency, functionality and the reliability rise slowly
while the maintainability is up and down as time goes on. At
the same time the portability drops off. And the usability is
almost stable at a high frequency. Figure 6(b) shows the results
of the unanswered questions. Four NFRs, functionality,
maintainability, portability, and reliability increase with time,
the efficiency fluctuates and usability remains almost stable.
From figure 6(a) and figure 6(b), we see that functionality and
reliability are increasing not only for posts but also for
unanswered questions. Moreover, both of the usability topics
are almost stable at a high frequency. These suggest that
functionality and reliability will increase the attention of the
developers and the usability will remain hot in the next few
years. There are also some peaks in figure 6, this shows that the
maintenance activity is not necessarily strictly increasing or
decreasing with time.

May-09 Mar-10 Jan-11 Nov-11 Sep-12 Jul-13 May-14

efficiency

functionality

maintainability

portability

reliability

usability
5

10

15

20

(a) Posts

Feb-10 Dec-10 Oct-11 Aug-12 Jun-13 Apr-14

efficiency

functionality

maintainability

portability

reliability

usability

5

10

15

20

(b) Unanswered questions
Fig. 6. The frequencies of different NFRs over time.

IV. CONCLUSION
We use a topic model to analyze the NFRs of Stack

Overflow data. We found that the developers focus most on
usability and reliability, and which they are less concerned
about maintainability and efficiency. We also compared the
results of using posts only with the results of using posts and
comments, and found that the results of the two settings are
almost the same. The most problems remain unresolved are
also related to usability and reliability; they need more help in
the usability and reliability areas. We also analyze the trends of
the different NFRs on the posts and the unanswered questions.
We found that the NFRs are changing over time; functionality
and reliability increase and the usability always remain hot.

ACKNOWLEDGMENT
The work described in this paper was partially supported by

the National Natural Science Foundation of China (Grant no.
91118005, 61173131), Changjiang Scholars and Innovative
Research Team in University (Grant Nos. IRT1196), and the
Fundamental Research Funds for the Central Universities
(Grant Nos. 106112013CDJZR090005).

REFERENCES
[1] A. Hindle, M. W. Godfrey, and R. C. Holt, “What’s hot and

what's not: Windowed developer topic analysis,” in Software
Maintenance, 2009. ICSM 2009. IEEE International Conference
on, 2009, pp. 339–348.

[2] A. Hindle, N. Ernst, M. W. Godfrey, R. C. Holt, and J.
Mylopoulos, “What’s in a name? on the automated topic naming
of software maintenance activities,” submission
http//softwareprocess. es/whats-in-a-name, vol. 125, pp. 150–
155, 2010.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet
allocation,” J. Mach. Learn. Res., vol. 3, pp. 993–1022, 2003.

[4] A. Hindle, N. A. Ernst, M. W. Godfrey, and J. Mylopoulos,
“Automated topic naming to support cross-project analysis of
software maintenance activities,” in Proceedings of the 8th
Working Conference on Mining Software Repositories, 2011, pp.
163–172.

[5] A. T. T. Ying, “Mining Challenge 2015: Comparing and
combining different information sources on the Stack Overflow
data set,” in The 12th Working Conference on Mining Software
Repositories, 2015, p. to appear.

[6] A. K. McCallum, “Mallet: A machine learning for language
toolkit,” 2002.

449

