®

Check for
updates

TagDeepRec: Tag Recommendation
for Software Information Sites Using
Attention-Based Bi-LSTM

Can Li'®, Ling Xu!®™) Meng Yan?, JianJun He', and Zuli Zhang?

! School of Big Data and Software, Chongqing University, Chongqing, China
{lican96,xuling,hejianjun}@cqu.edu.cn
2 Zhejiang University, Hangzhou, China
mengy@zju.edu.cn
3 Chongqing Materials Research Institute Limited Company, Chongqing, China
zulil19730@163.com

Abstract. Software information sites are widely used to help develop-
ers to share and communicate their knowledge. Tags in these sites play
an important role in facilitating information classification and organiza-
tion. However, the insufficient understanding of software objects and the
lack of relevant knowledge among developers may lead to incorrect tags.
Thus, the automatic tag recommendation technique has been proposed.
However, tag explosion and tag synonym are two major factors that
affect the quality of tag recommendation. Prior studies have found that
deep learning techniques are effective for mining software information
sites. Inspired by recent deep learning researches, we propose TagDeep-
Rec, a new tag recommendation approach for software information sites
using attention-based Bi-LSTM. The attention-based Bi-LSTM model
has the advantage of deep potential semantics mining, which can accu-
rately infer tags for new software objects by learning the relationships
between historical software objects and their corresponding tags. Given
a new software object, TagDeepRec is able to compute the confidence
probability of each tag and then recommend top-k tags by ranking the
probabilities. We use the dataset from six software information sites with
different scales to evaluate our proposed TagDeepRec. The experimental
results show that TagDeepRec has achieved better performance com-
pared with the state-of-the-art approaches TagMulRec and FastTagRec
in terms of Recall@k, Precision@Qk and F'1 — score@Qk.

Keywords: Software information site + Tag recommendation -
Long short term memory + Attention mechanism -
Weighted binary cross entropy loss function

1 Introduction

Software information sites (e.g., StackOverflow, AskUbuntu, AskDifferent and
Freecode) provide a platform for software developers around the world to share

© Springer Nature Switzerland AG 2019
C. Douligeris et al. (Eds.): KSEM 2019, LNAI 11776, pp. 11-24, 2019.
https://doi.org/10.1007/978-3-030-29563-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29563-9_2&domain=pdf
http://orcid.org/0000-0002-7070-6274
https://doi.org/10.1007/978-3-030-29563-9_2

12 C. Li et al.

and communicate their knowledge [2-5]. These sites enable developers to pose
questions, answer questions and search answers they encountered. When posing
a new question in the sites, developers need to choose one or more tags from
tag repository or create new ones. Tags in these sites play an important role,
not only as keywords to summarize the posted content, but also to classify and
organize the software objects to improve the performance of various operations
[5]. High-quality tags are expected to be concise and accurate, which can capture
important features of the software objects. Unfortunately, it is not easy for the
developers to choose the appropriate tags to describe the software objects. There
are two major factors that affect developers’ choices of high-quality tags: tag
synonym [7] and tag explosion [6,7]. Tag synonym refers to similar questions may
be provided different tags because of insufficient understanding of the problem
or lack of relevant expertise. For example, in StackOverflow, we notice that
the tag “c#” is usually expressed as “csharp” and “c-sharp”, “.net” expressed
as “dotnet” and “.net-framework”. Some developers may confuse “python2.7”
with “python3.5”. Tag explosion describes the phenomenon that the number of
tags dramatically increases along with continuous additions of software objects.
For example, up to now, there are more than 46 thousand tags in StackOverflow.
With such huge tags, noise is inevitably introduced and software objects become
more poorly classified. This phenomenon has a negative impact on the speed
and accuracy of developers’ queries.

To address the above issues, several studies on tag recommendation tech-
niques have been proposed in recent years. These approaches can be roughly
divided into word similarity-based and semantic similarity-based techniques.
word similarity techniques such as TagCombine [2] focus on calculating the
similarity based on the textual description. However, the performance of these
approaches is limited by the semantic gap because a lot of questions with the
same tags have rare common words. Semantic similarity-based techniques (e.g.,
TagRec [1], EnTagRec++ [25] and TagMulRec [4]) consider text semantic infor-
mation and always perform significantly better than the approaches that using
word similarity calculation. Recently, Liu et al. [5] proposed FastTagRec using
neural network classification techniques, which have been proven to improve the
accuracy than the comparable state-of-the-art tool TagMulRec. In this work, we
compare the effectiveness of our approach with TagMulRec and FastTagRec on
six software information sites.

Deep learning has been utilized in other software engineering tasks, such as
bug localization [8], code clone detection [9], etc. Inspired by recent Natural
Language Processing (NLP) research, in this paper, we proposed a new tag rec-
ommendation method called TagDeepRec, a ranking multi-label classification
method based on attention-based Bi-LSTM (bidirectional modeling sequence
information with long short-term memory). Bi-LSTM has been proven effective
in the area of NLP [10-12]. As a deep learning algorithm, Bi-LSTM can cap-
ture the deep potential semantic feature by learning the relationships between
historical software objects and their corresponding tags. The attention mecha-
nism [13] enables Bi-LSTM model to focus on the key parts of texts associated

TagDeepRec 13

with tags by attaching more attention weights to the important parts. For a
software object, TagDeepRec outputs the confidence probability of each candi-
date tag by learning from the historical software objects and their corresponding
tags, and then k tags with the highest probabilities in the tag candidate set will
be recommended to developers as the top-k tags. We evaluate TagDeepRec on
six software information sites including StackOverflow@small, Freecode, AskD-
ifferent, AskUbuntu, Unix and StackOverflow@large. StackOverflow@small and
StackOverflow@large are divided based on their sizes. Experiments show that
TagDeepRec achieves better performance compared with two state-of-the-art
approaches: TagMulRec [4] and FastTagRec [5].
Our contributions are as follows:

— We propose an automatic tag recommendation approach for software infor-
mation sites using attention-based Bi-LSTM model. Experimental results
demonstrate that our approach scalable enough to handle both small and
very large software information sites.

— We evaluate TagDeepRec on the dataset from six software information sites
with different scales. The experiments show that TagDeepRec can achieve
high accuracy and outperforms the state-of-the-art approaches TagMulRec
and FastTagRec.

The organization of the paper is as follows: In Sect. 2, we give the problem
formulation. Section 3 presents our proposed approach. In Sect. 4, we report the
results of the experimental evaluation. In Sect. 5, we give the threats to validity
of our results. In Sect. 6, we describe the related work. And the conclusion and
future work are described in Sect. 7.

2 Problem Formulation

C# How to select any character if line starts with * *:”|— Title

I've read a Textfile using the readline method.

0 var txtfile = File.readlines([Filepath])
.where(s => s.startswith(" U:"));

Is there a trick to choose any letter? Something like this Pseudocode Code Snips
s.startswith(" *:");

That's because my drive name changes continuously. Please note that it must be the exact order of
letters. Thanks!

c# readlines system.io.file ATags. BOdy

Fig. 1. A software object in StackOverflow

14 C. Li et al.

Figure 1 gives a specific example of a software object in StackOverflow. It’s
observed that this software object consists of a title, a body and three tags. In
particular, we can also find code snippets located in the body. Generally, we
always treat the combination of a title and a body as a question in a software
object.

A software site is a set S = {01, -+ ,0,} which is composed of a series of
software objects 0;(1 < i < n). And a software object is also composed of various
attributes such as an identifier o0;.id, a title o;.title, a body o;.body, several tags
0;.tags, etc. We combine the information from title o;.title and body o;.body as a
new question 0;.q. In our method, we assume that each software object contains
a question o0;.¢ and several corresponding tags o;.tags. At the same time, we
filter out tags which appear infrequently and define all the remaining tags in a
software information site as a candidate tags set T' = {t1,--- ,ts}, where s is the
number of remaining tags and ¢;{1 < i < n} indicates whether the current tag
is selected. The value of ¢; is either 0 or 1, where 1 indicates that the current tag
is selected and 0 is the opposite phenomenon. Assuming that tags recommended
for each software object o; is a subset of T, given a new software object, the aim
of TagDeepRec is to assign several tags from tags candidate set T by learning
from existing software objects and their corresponding tags, which can provide
great help for developers to choose appropriate tags.

3 Proposed Method

3.1 Approach Overview

Figure 2 presents the overall framework of our TagDeepRec which contains three
phases: data preparation, training, and deployment. In the data preparation
phase, both the training set and the testing set are derived from the same soft-
ware information sites. And for a software object, the useful fields including
title and body are extracted and further form a question description. After pre-
processing, texts of all the question descriptions are collected and formed into a
corpus. A word2vec model [15] is used to capture semantic regularities on the cor-
pus. We vectorize all words in the corpus and then build a dictionary with words
and their corresponding vectors. In the training phase, each question description
represented by text is converted into a vector matrix by word embedding based
on the dictionary. Then, the corresponding vectors of question descriptions are
fed into the attention-based Bi-LSTM model to detect their features. As the core
module of TagDeepRec, the attention-based Bi-LSTM network is a multi-label
ranking algorithm, which aims to get the confidence probability of each candi-
date tag. In the deployment phase, the trained model is loaded to predict tags
for the software object.

3.2 Data Preparation

Data Extraction: We first collect historical questions and their tags which are
posted on software information sites. For each software object, we only parse out

TagDeepRec 15

e

— g
— FraeE 3
Software . Question 3
Objects Parse 2
z

LE]

QEXtraCtion

Word Bi-LSTM Fully-
Software S~ Attention connected
Information Dictionary: |} ‘“~comemsemememememm s
|
[vor [vector] | Save
— 1
i
= i
] i |
= S ') = — |
N ti -3 equence | Predict Sort
evw Question 5 Forming Lyl redict |27 (1. Tagk :
without Tags @, vt |
— = | : |

Deployment

Fig. 2. Overall workflow of TagDeepRec

title, body and tags on the software object and combine the title and the body
as a question description. We also remove code snippets in the body, which can
easily be located in specific HTML element components (<code> - - - <\code>)
[5].

Data Preprocessing: Following previous researches [2-5], we filter out the rare
tags whose frequencies of occurrence are less than a predefined threshold . And
we further remove the software objects if the frequency of all its tags less than
0. These tags rarely appear since few people use them, therefore, they are less
useful to be used as representative tags and recommending them provides little
help in addressing the tag synonym problem.

For the text information in these software objects, we perform typical pre-
processing steps including tokenization, stemming, stop words removal and case
conversion by using NLTK (the Natural Language Toolkit) [14]. Stop words
removal also deletes some isolated numbers and punctuations.

Matrix Presentation: After preprocessing, all the words in the textual descrip-
tions are made up of the experimental corpus. The word embedding technique
(word2vec [15]) with skip-gram model are applied on the corpus to obtain the
word vector of each word. Then, we can get a matrix presentation of each ques-
tion description.

3.3 Attention-Based Bi-LSTM for Tag Recommendation

Given a software object o;, the matrix presentation of the question 0;.q =
[x1,-++ ,2,] is fed into attention-based Bi-LSTM model to extract features,
where x; is the vector representation of the i — th word in o0;.q. The hidden
state h; € R? denoting the representation of the time step i can be obtained

16 C. Li et al.

after belng processed by the Bi-LSTM layer. Generally, in Bi-LSTM, the hidden
state h of the forward LSTM is related to its prev10us memory cell ¢;_;, hidden
state hi,l and input vector x;, while the hidden state hi of the backward LSTM

is related to its next memory cell ¢;;1, hidden state h;;1 and input vector z;,
which can be respectively formulated as follows:

hi = fESTM(G23 ha s ;) (1)
(h_i f(LSTM) (cl+17 mv $l) (2)

The final hidden state h; of time step ¢ [m7 hi] is the concatenation of hidden
states of both the forward LSTM and the backward LSTM. And we regard H
as a matrix consisting of output vectors [hy,--- , hy], where n is the number of
hidden states. H is defined in Eq. (3).

H=1[hy, - hy) (3)

Generally, the tags of a software object are only related to a small por-
tion information of a question. For example, a question like Binary Data in
MySQL, How do I store binary data in MySQL? Its corresponding tags are
{mysql, binary-data}. Although there are many words in this question, the words
associated with tags are only mysql, binary and data. In order to capture the
key part of software objects, we apply the attention mechanism to pay more
attention to the information closely related to tags.

Attention mechanism first attaches weight a;{1 < ¢ < n} to the hidden state
h; in our method, which is calculated as follow:

M = tanh (H) (4)
a; = Softmaz(w? M) (5)

where w is a trained parameter vector and w” is a transpose.
Based on the hidden state h; and its corresponding weight «;, the context-
dependent text representation vector () of each question is defined as follow:

Q=Y aih (6)
=1

In the last layer, in order to get a value to represent confidence probability of
each tag, we use Sigmoid function. Unlike Softmaz, Sigmoid is able to make
sure that confidence probability of each tag is independent. Given the input of
the fully-connected layer Q = [g1, - ,qn] and weight vector W = [wq, -+ ,wy],
the independent probabilities list TRY redict of candidate tags can be calculated

as:
1

p'redzct
TR, 1 4 e~ (2, wigi+b)

(7)

where i is the ¢ — th element of Q, b is the bias vector and n refers to the number
of candidate tags.

TagDeepRec 17

Considering that the distribution of recommended and not-recommended
tags is heavily biased: most of the candidate tags are not be recommended to
a software object. Inspired by [16], we set weighted binary cross entropy loss
function to balance the loss between positive category and negative category,
which is defined as follow:

L(TRpredict Tchtual) — _ﬁTchtual 10g TRpredict

—(1— B)(1 - TRe“l) log (1 — TRY™!) ®

where TR is the actual confidence probabilities list, TRY redict is the pre-
dicted confidence probabilities list, and 3 is the weight attached to the positive
samples.

4 Experiments and Results

In this section, we describe the experiments and results to evaluate the perfor-
mance of the TagDeepRec.

Table 1. Statistics of six software information sites

Site size | Site name URL #Software objects | #Tags
Small StackOverflow@small | www.stackoverflow.com 47836 437
AskDifferent www.apple.stackexchange.com 77503 469
Freecode www.github.com 43638 427
Medium | Askubuntu www.askubuntu.com 246138 1146
Unix www.unix.stackexchange.com 103243 770
Large StackOverflow@large | www.stackoverflow.com 10421906 427

4.1 Experimental Settings

We evaluate the effectiveness of TagDeepRec on six software information sites
with different scales. We divide our datasets into three categories: one large-
scale site StackOverflow@large, two medium-scale sites AskUbuntu and Unix,
three small-scale sites Stackoverflow@small, Freecode and AskDifferent. For com-
parison, we use the same five datasets as FastTagRec [5] including StackOver-
flow@large, Askubuntu, Unix, Freecode and AskDifferent. StackOverflow@small
is the same dataset used in TagCombine [2], EntagRec [3] and TagMulRec [4]. In
detail, for Freecode, AskDifferent, AskUbuntu and Unix, we collects the software
objects posted on them before Dec 31st, 2016. StackOverflow@small considers
the software objects posted from July 1st, 2008 to December 10th, 2008 and
StackOverflow@large selects the software objects posted before July 1st, 2014.
We choose the relatively old software objects to make sure our data is stable and
reliable. The information of our experimental datasets is shown in Table 1.

www.stackoverflow.com
www.apple.stackexchange.com
www.github.com
www.askubuntu.com
www.unix.stackexchange.com
www.stackoverflow.com

18 C. Li et al.

In our experiments, we remove the rare tags, which has been described in
Sect. 3.2. For the two medium-scale and three small-scale sites, we remove the
software object if all of its tags appear less than 50 times and for a large-scale
site if all its tags appear less than 10000 times. Table 1 presents the number of
Software Objects and Tags after removing the rare tags.

4.2 Evaluation Metrics

We employ three widely used evaluation metrics [3-5]: top-k recommendation
recall (Recall@k), top-k recommendation precision (Precision@k) and top-k rec-
ommendation Fl-score (F'1 — score@k). Given a validation set V' composed of
n software objects 0;{1 < i < n}, we can eventually get the top-k recommended
tags TRY™“Y“! and the actual tags TR of each software object o;.

Recall@k: Recall@Fk indicates the percentage of tags actually used by the soft-
ware object coming from the recommended lists T'RY redict For a software object
0; in the validation set V', Recall@k; of it is computed by Eq. (9), and RecallQk,
the mean prediction recall of the validation set V' is defined by Eq. (10).

‘TRfredict n TR;;LCt’LLLll ‘
k
Recall@k; = I3

CTRE > k]
©)

TRpred'iat TRz_u:tual actua
‘ . ‘TRlz_zrclual‘l ‘7 ‘TRZ t l‘ < ‘k'|'
"l Recall@k;
Recalla — 2=y fecallOk; (10)

n|

Precision@k: Precision@k denotes the percentage of the truth tags of a soft-
ware object in the recommended lists TRY redict For a software object o; in the
validation set V', Precision@Qk; of it is computed by Eq. (11), and Precision@Qk,
the mean prediction precision of the validation set V is defined by Eq. (12).

|TRfredict U TR;Lctua,l |

- I R
recision@k; = Q1 poredict| | ppactual
T Rgetval] < [k,
k3
Z‘@le PrecisionQk;
||

Precision@Qk = (12)
F1l-score@k: This metric is the combination of Precision@k and RecallQk.
For a software object o; in the validation set V', F'1 — score@k; of it is computed
by Eq. (13), and F1 — score@k, the mean prediction fl-score of the validation
set V is defined by Eq. (14).
PrecisionQk; — RecallQFk;
F1l-— Qk; =2 13
seore * PrecisionQk; + RecallQk; (13)
Z‘lill F1 — score@Qk;
n|

F1 — scoreQk =

(14)

TagDeepRec 19

4.3 Experiments Results

Table 2. TagDeepRec vs. FastTagRec & TagMulRec using metrics Recall@k,
Precision@k, and F1-score@k

Sites Recall@5 Precision@5 Fl-score@5

TagDeep| TagMul |FastTag | TagDeep| TagMul |FastTag |TagDeep| TagMul |FastTag

Rec Rec Rec Rec Rec Rec Rec Rec Rec
StackOverflow@small@|0.817 |0.680 0.805 0.344 0.284 0.346 0.463 0.454 0.482
AskDifferent 0.780 |0.708 0.689 0.405 0.372 0.357 0.511 0.488 0.471
Freecode 0.640 0.659 0.588 0.392 0.383 0.343 0.449 0.485 [0.434
Askubuntu 0.728 0.603 0.684 0.361 0.271 0.346 0.458 |0.374 0.437
Unix 0.706 0.604 0.621 0.348 0.294 0.309 0.447 |0.395 0.397
StackOverFlow@large |0.885 0.809 0.870 0.357 |0.310 0.349 0.487 |0.449 0.476
Average 0.760 |0.677 0.709 0.368 0.319 0.342 0.469 |0.441 0.450
Sites Recall@10 Precision@10 Fl-score@10

TagDeep| TagMul |FastTag | TagDeep| TagMul |FastTag | TagDeep| TagMul |FastTag

Rec Rec Rec Rec Rec Rec Rec Rec Rec
StackOverflow@small [0.900 |0.777 0.887 0.194 [0.165 0.187 0.309 |0.293 0.303
AskDifferent 0.889 0.827 0.815 0.236 0.222 0.216 0.361 0.350 0.342
Freecode 0.775 0.758 0.692 0.244 0.245 |0.219 0.347 0.364 0.332
Askubuntu 0.850 [0.721 0.770 0.215 0.166 0.198 0.331 0.270 0.303
Unix 0.835 0.682 0.722 0.211 0.169 0.182 0.327 |0.271 0.282
StackOverFlow@large |0.949 0.892 0.919 0.195 0.176 0.187 0.314 |0.294 0.301
Average 0.867 |0.776 0.801 0.216 0.191 0.198 0.332 0.307 0.311

Table 3. Recall@k, Precision@k, and F1-score@k of different TagDeepRec model

Recall@5 | Precision@5 | F1-score@5 | Recall@10 | Precision@10 | F1-score@10
Bi-LSTM 0.803 0.336 0.453 0.882 0.187 0.304
Bi-LSTM+Attention 0.812 0.341 0.461 0.892 0.191 0.306
Bi-LSTM+New Loss Function|0.811 0.341 0.460 0.890 0.191 0.305
TagDeepRec 0.817 0.344 0.463 0.900 0.194 0.309

RQ1. Compared with the state-of-the-art approaches, how effective is
our TagDeepRec? In order to answer RQ1, we compare TagDeepRec with
another two state-of-the-art approaches: TagMulRec [4] and FastTagRec [5]
on six software information sites (see Tablel). TagMulRec is an information
retrieval tool based on semantics similarity and FastTagRec is a classification
technique based on neural network. We evaluate their performances through
RecallQk, PrecisionQk and F1 — score@k with different k values: 5 and 10. A
ten-fold cross validation [24] is performed for evaluation. We randomly split it
into ten subsamples. Nine of them are used as training data and one subsample
is used for testing. We repeat the process ten times and compute the mean to
get more credible results.

The results of these methods are presented in Table 2 and the best values of
each site are highlighted in bold. The results show that TagDeepRec achieves

20 C. Li et al.

a better performance than another two methods except on the Freecode site.
Compared to FastTagRec, the average improvement of all sites in Recall@5,
Precision@5, F1 — score@b, Recall@10, Preciston@10 and F'1 — score@10 is
5.1%, 2.6%, 1.9%, 6.6%, 1.8% and 2.1%, and compared to TagMulRec, the average
improvement of all sites in Recall@5, Precision@5b, F1 — score@5, Recall@10,
Precision@10 and F1 — score@10 is 8.3%, 9.0%, 8.4%, 9.1%, 2.5% and 2.5%,
respectively. Experimental results also show that the larger the scale of software
information site, the better the effectiveness of our approach TagDeepRec.

In addition, in order to verify whether TagDeepRec has a statistically signifi-
cant difference compared with other approaches, we adopt Wilcoxon signed-rank
test [17] at 95% significance level on 36 paired value corresponding to the evalu-
ation metrics. Across the six datasets, the corresponding p — value is very small
(p < 0.01), which confirms that our approach is statistically effective for tag
recommendation.

RQ2. Do the attention mechanism and new loss function improve the
performance of TagDeepRec? To evaluate the effectiveness of the atten-
tion mechanism and new loss function, we designed four different experiments,
including the original Bi-LSTM model, attention-based Bi-LSTM model, “Bi-
LSTM+new loss function” model and TagDeepRec combined with the attention-
based Bi-LSTM model and new loss function. All four experiments are conducted
on the StackOverflow@small which is the most commonly used dataset in the
field of tag recommendation. And the experimental results are represented in
Table 3.

As shown in Table 3, the attention-based Bi-LSTM model outperforms the
original Bi-LSTM. The improvement in terms of Recall@5, Precision@5, F1 —
score@5b, Recall@10, Precision@10 and F'1 — score@10 is 0.9%, 0.5%, 0.8%,
1.0%, 0.4% and 0.2% respectively. The result confirms the effectiveness of the
attention-based Bi-LSTM model used in our approach. Table3 also indicates
that the enhanced Bi-LSTM model with the new cost function leads to better
results as compared to the original Bi-LSTM model. The improvement in terms
of Recall@b, Precision@5, F1 — score@Q5, Recall@10, Precision@10 and F'1 —
score@10 is 0.8%, 0.5%, 0.7%, 0.8%, 0.4% and 0.1% respectively. The results
confirm the usefulness of the new loss function. Additionally, TagDeepRec, which
combines the two techniques achieves better performance than another three
models.

RQ3.How does the number of hidden states in LSTM affect the perfor-
mance of TagDeepRec? For RQ3, we choose three small-scale sites including
StackOverflow@small, AskDifferent and Freecode to better capture the change
of experimental results. We gradually change the values of LSTM hidden states
from 50 to 1000 and observe the trend of experimental results. For these three
small-scale datasets, Fig. 3(a)—(f) respectively depict the changes of Recall@5,
Precision@Q5, F1—scoreQb, Recall@10, Precision@10 and F'1—score@10 along
with the number of hidden states.

The results show that the number of LSTM hidden states affects all the
evaluation metrics. For each evaluate metric, there is an optimum range of hidden

TagDeepRec 21

states. With the number of LSTM hidden states increases, the values of these
evaluation metrics rise steadily first, and then gradually decline. Therefore, for
small-scale datasets, more hidden states do not always correspond to better
performance.

oss{

7 —
+—
o >~
- y >
— 034 p >~
P >—e #
& 4

%0 00 &0 80 1000 20 %0 &0 a0 1000 20 %0 0 0 1000
the number of hidden units the number of hidden units the number of hidden units

(a) Recall@5 (b) Precision@5 (c) Fl-score@j

050 B ——y

e 0] o o o 03 -
088 = o a 035
086 /r = . .,

S o
—~, 084 ¥

Recall@5

Precision@5

Fl-score@5

&

= o082
=

g o0

Precision@10
Fl-score@10

078

. .
076{ 4 * 019 m

030
074{ ¥

£ 0 0 80 1000 %0 0 0 a0 1000 20 %0 &0 &0 1000
the number of hidden units the number of hidden units the number of hidden units

(d) Recall@10 (e) Precision@10 (f) Fl-score@10

Fig. 3. The effect of the number of hidden states in LSTM: StackOverflow@small
(blue), AskDifferent (green), Freecode (orange) (Color figure online)

5 Threats to Validity

Internal Validity. Threats to internal validity are the reliability of our experi-
mental data. Because the tags of the software object are chosen freely by devel-
opers, errors are inevitable. We assume that the tags of software objects are
correct by following prior studies. In order to mitigate this issue, we have taken
some measures including selecting common software information sites, select-
ing the older data in a software information site and filtering out objects with
low-frequency and incorrect tags.

External Validity. Threats to external validity are the generalizability of our
approach. We have evaluated TagDeepRec on six software information sites and
approximately 11 million software objects. In the future, we will further evaluate
TagDeepRec from more software information sites to generalize our findings.

Construct validity. Threats to construct validity are the suitability of our evalu-
ation metrics. We use RecallQk, PrecisionQk, and F'1 — score@Qk to evaluate the
proposed TagDeepRec. The metrics used in our study have been widely used in
previous studies [3—5]. Thus, we believe we have little threats to construct validity.

22 C. Li et al.

6 Related Work

Many approaches have been proposed for automatic tag recommendation
recently. TagRec, proposed by Al-Kofahi et al. [1], automatically recommends
tags for work items in IBM Jazz. TagRec was based on the fuzzy set theory and
took consideration of the dynamic evolution of a system. Xia et al. [2] proposed
TagCombine, which is composed of three components including multi-label rank-
ing component, similarity component and tag-term component. TagCombine
converts the multi-label classifier model into many binary classifier models. For
a large-scale site, TagCombine has to train a large number of binary classifier
models. Therefore, TagCombine only work for relatively small datasets. Wang
et al. [3] proposed EnTagRec with two components: Bayesian inference compo-
nent and Frequentist inference component. EnTagRec relies on all information
in software information sites to recommend tags for a software object, so it’s not
scalable as well. Furthermore, Wang et al. [25] proposed an advanced version
EnTagRec++ by leveraging the information of users to improve the quality of
tags. A more recent approach called TagMulRec was proposed by Zhou et al. [4].
TagMulRec recommends tags by constructing indices for the description docu-
ments of software objects and ranking all tags in the candidate set. However,
TagMulRec may ignore some important information as it only considers a small
part of software information sites which is the most relevant to the given soft-
ware object. Beomseok et al. [21] proposed a tag recommendation method based
on topic modeling approaches, which recommends tags by calculating tag scores
based on the document similarity and the historical tag occurrence. Lately, A
novel approach called FastTagRec based on neural networks was proposed by
Liu et al. [5], which is the prior state-of-the-art work. FastTagRec is not only
accurate and scalable, but also faster than existing methods. It recommend tags
by learning the relationship between existing postings and their tags.

In the field of software engineering, tags studies have become a hot research
problem. Treude et al. [19] implemented an empirical study of a large project on
how tagging had been adopted and adapted in the last two years, and showed
that tagging mechanism made a contribution to bridging the gap between tech-
nical and social aspects of managing work items. Thung et al. [20] concluded
that collaborative tagging was useful for detecting similar software applications
as a promising information source by performing a user study related to sev-
eral participants. Wang et al. [21] described the relationships among tags on
Freecode and defined them as tag synonyms. Beyer et al. [22] designed TSST, a
tag synonym suggestion tool to address the problems of tag synonyms on Stack-
Overflow. And Beyer et al. [23] continued their previous studies and presented
an approach to alleviate the issue of tag synonyms by grouping tag synonyms
to meaningful topics.

7 Conclusion and Future Work

In this paper, we proposed TagDeepRec, a new tag recommendation approach
for software information sites using attention-based Bi-LSTM. We evaluated the

TagDeepRec 23

performance of TagDeepRec on six software information sites with approximately
11 million software objects. The experimental results show that TagDeepRec is
scalable enough to handle both small and large software information sites and has
achieved better performance compared with the state-of-the-art approaches (i.e.,
TagMulRec and FastTagRec). In summary, TagDeepRec can achieve promising
performance for the following three reasons: (1) Bi-LSTM model can accurately
express the potential semantics of the software objects from both the forward and
backward directions. (2) Attention mechanism can capture the key information of
the posted questions by attaching different weights to each time step of Bi-LSTM
hidden layers. (3) Weighted binary cross entropy loss function can solve the
unbalance distribution problems of tags between positive samples and negative
samples.

Our current work is based on the question descriptions only. In the future,
we plan to consider more features such as code snippets and screenshots to
improve effectiveness of tag recommendation. We also intend to explore the tag
relationships between the new software object and the historical terms.

References

1. Al-Kofahi, JM., Tamrawi, A., Nguyen, T.T., et al.: Fuzzy set approach for auto-
matic tagging in evolving software. In: 2010 IEEE International Conference on
Software Maintenance, pp. 1-10. IEEE (2010)

2. Xia, X., Lo, D., Wang, X., et al.: Tag recommendation in software information
sites. In: 2013 10th Working Conference on Mining Software Repositories (MSR),
pp. 287-296. IEEE (2013)

3. Wang, S., Lo, D., Vasilescu, B., et al.: EnTagRec: an enhanced tag recommendation
system for software information sites. In: 2014 IEEE International Conference on
Software Maintenance and Evolution, pp. 291-300. IEEE (2014)

4. Zhou, P., Liu, J., Yang, Z., et al.: Scalable tag recommendation for software infor-
mation sites. In: 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp. 272-282. IEEE (2017)

5. Liu, J., Zhou, P., Yang, Z., et al.: FastTagRec: fast tag recommendation for software
information sites. Autom. Softw. Eng. 25(4), 675-701 (2018)

6. Joorabchi, A., English, M., Mahdi, A.E.: Automatic mapping of user tags to
Wikipedia concepts: the case of a Q&A website-StackOverflow. J. Inf. Sci. 41(5),
570-583 (2015)

7. Barua, A., Thomas, S.W., Hassan, A.E.: What are developers talking about? An
analysis of topics and trends in stack overflow. Empir. Softw. Eng. 19(3), 619-654
(2014)

8. Deshmukh, J., Podder, S., Sengupta, S., et al.: Towards accurate duplicate bug
retrieval using deep learning techniques. In: 2017 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pp. 115-124. IEEE (2017)

9. Li, L., Feng, H., Zhuang, W., et al.: Cclearner: a deep learning-based clone detection
approach. In: 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 249-260 IEEE (2017)

10. Cho, K., Van Merriénboer, B., Bahdanau, D., et al.: On the properties of neural
machine translation: encoder-decoder approaches. arXiv preprint arXiv:1409.1259
(2014)

http://arxiv.org/abs/1409.1259

24

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

C. Li et al.

Zhou, P., Shi, W., Tian, J., et al.: Attention-based bidirectional long short-
term memory networks for relation classification. In: Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), vol. 2, pp. 207-212 (2016)

Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging.
arXiv preprint arXiv:1508.01991 (2015)

Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Advances
in Neural Information Processing Systems, pp. 5998—-6008 (2017)

Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python: Analyzing
Text With the Natural Language Toolkit. O’Reilly Media Inc., Sebastopol (2009)
Mikolov, T., Chen, K., Corrado, G., et al.: Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781 (2013)

Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 1395-1403 (2015)

Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80-83
(1945)

Hong, B., Kim, Y., Lee, S.H.: An efficient tag recommendation method using topic
modeling approaches. In: Proceedings of the International Conference on Research
in Adaptive and Convergent Systems, pp. 56-61. ACM (2017)

Treude, C., Storey, M.A.: How tagging helps bridge the gap between social and
technical aspects in software development. In: Proceedings of the 31st International
Conference on Software Engineering, pp. 12-22. IEEE Computer Society (2009)
Thung, F., Lo, D., Jiang, L.: Detecting similar applications with collaborative
tagging. In: 2012 28th IEEE International Conference on Software Maintenance
(ICSM), pp. 600-603. IEEE (2012)

Wang, S., Lo, D., Jiang, L.: Inferring semantically related software terms and their
taxonomy by leveraging collaborative tagging. In: 2012 28th IEEE International
Conference on Software Maintenance (ICSM), pp. 604—-607. IEEE (2012)

Beyer, S., Pinzger, M.: Synonym suggestion for tags on stack overflow. In: Proceed-
ings of the 2015 IEEE 23rd International Conference on Program Comprehension,
pp. 94-103. IEEE Press (2015)

Beyer, S., Pinzger, M.: Grouping android tag synonyms on stack overflow. In:
Proceedings of the 13th International Conference on Mining Software Repositories,
pp. 430-440. ACM (2016)

Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and
model selection. IJCAI 14(2), 1137-1145 (1995)

Wang, S., Lo, D., Vasilescu, B., et al.: EnTagRec++: an enhanced tag recommen-
dation system for software information sites. Empir. Softw. Eng. 23(2), 800-832
(2018)

http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1301.3781

