
A Probability Distribution
and Location-aware ResNet

Approach for QoS Prediction

Wenyan Zhang, Ling Xu∗, Meng Yan, Ziliang Wang
and Chunlei Fu

School of Big Data & Software Engineering, ChongQing University, Chongqing,
400044, China
E-mail: xuling@cqu.edu.cn
∗Corresponding Author

Received 12 November 2020; Accepted 27 May 2021;
Publication 25 June 2021

Abstract

In recent years, the number of online services has grown rapidly, invoking the
required services through the cloud platform has become the primary trend.
How to help users choose and recommend high-quality services among huge
amounts of unused services has become a hot issue in research. Among the
existing QoS prediction methods, the collaborative filtering (CF) method can
only learn low-dimensional linear characteristics, and its effect is limited by
sparse data. Although existing deep learning methods could capture high-
dimensional nonlinear features better, most of them only use the single
feature of identity, and the problem of network deepening gradient disap-
pearance is serious, so the effect of QoS prediction is unsatisfactory. To
address these problems, we propose an advanced probability distribution and
location-aware ResNet approach for QoS Prediction (PLRes). This approach
considers the historical invocations probability distribution and location char-
acteristics of users and services, and first uses the ResNet in QoS prediction to

Journal of Web Engineering, Vol. 20 4, 1189–1228.
doi: 10.13052/jwe1540-9589.20415
© 2021 River Publishers

1190 W. Zhang et al.

reuses the features, which alleviates the problems of gradient disappearance
and model degradation. A series of experiments are conducted on a real-
world web service dataset WS-DREAM. At the density of 5%–30%, the
experimental results on both QoS attribute response time and throughput
indicate that PLRes performs better than the existing five state-of-the-art QoS
prediction approaches.

Keywords: QoS prediction, deep learning, ResNet, probability distribution.

1 Introduction

With the rise of various cloud application platforms, the number of various
services increases rapidly. At the same time, users are more likely to invoke
the services of these cloud platforms to implement relevant functions instead
of downloading various applications. However, there are many candidate
services in the cloud environment, which makes it difficult for users to choose
a suitable service. So researchers are trying to find some ways to help users
find better services among many with the same functionality.

Quality of service (QoS) is the non-functional evaluation standard of
service, including service availability, response time, throughput, etc. Its
value is often affected by the network environment of the user and the service.
In different network environments, QoS values generated by different users
may vary greatly even if the invoked service is the same one. Therefore, it
is meaningful to predict QoS values of candidate services before the user
invokes a service, which can help the target user distinguish the most suitable
service among different functionally equivalent services according to the
predicted QoS results [2, 9, 8, 33, 7, 31]. At present, QoS value has become
a pivotal criterion for service selection and service recommendation, and
QoS prediction has also been applied in plenty of service recommendation
systems.

In recent years, collaborative filtering(CF) methods are widely used for
QoS prediction [39, 38, 28, 24, 3, 19, 22], which relies on the characteristics
of similar users or items for target prediction. In QoS prediction, the collab-
orative filtering methods match similar users or services for target users or
services first, and then uses the historical invocations of these similar users
or services to calculate the missing QoS. Because of its strong pertinence to
the target user and item, CF is often used in personalized recommendation
systems. However, CF can only learn low-dimensional linear features, and
its performance is usually poor in the case of sparse data. To address these

A Probability Distribution and Location-aware ResNet Approach 1191

problems, several QoS prediction approaches based on deep learning have
been proposed, and these approaches have been proved to be very effective in
QoS prediction [33, 32, 36, 30]. Yin et al. [33] combined Matrix Factorization
(MF) and CNN to learn the deep latent features of neighbor users and
services. Zhang et al. [36] used multilayer-perceptron (MLP) capture the
nonlinear and high-dimensional characteristics. Although the existing deep
learning methods have improved in QoS prediction, they will not perform
better when the network is deep due to the inherent gradient disappearance of
deep learning. Inspired by the deep residual learning(ResNet) [10], which is
widely used in the field of image recognition, we realize that the reuse feature
can effectively alleviate the gradient disappearance problem in deep learning.
ResNet consists of multiple residual blocks, each of which contains multiple
shortcuts. These shortcuts connect two convolution layers to realize feature
reuse, prevent the weakening of original features of data during training, and
achieve the purpose of alleviating gradient descent.

Among the existing deep learning approaches, most of them [33, 32]
only use ID as the characters, and a few methods [36] introduce the location
information. However, users and services in the same region often have
similar network status, which provides a crucial bases for finding similar
neighborhoods. Therefore, the introduction of geographic position is often
helpful for achieving higher accuracy in QoS prediction. In addition, none
of these methods consider using probability distribution as the characteristic.
Probability distribution refers to the probability of QoS predictive value in
each interval, which is calculated by the historical invocations of the target.
For example, if a user’s invocation history indicates that the response time is
almost always less than 0.5s, the probability of missing value less than 0.5s
is much higher than the probability of missing value greater than 0.5s. There-
fore, the introduction of probability distribution could reflect the historical
invocation of users and services. For QoS prediction, historical invocation is
the most important reference basis, so it is necessary to introduce probability
distribution as a feature in QoS prediction.

Therefore, in this paper, we propose a probability distribution and
location-aware ResNet approach(PLRes) to better QoS prediction. First,
PLRes obtains the information of target users and services, including iden-
tifier information, geographical location and historical invocation, and calcu-
lates the probability distribution of target users and services according to the
historical invocation. Then PLRes embedded ID and location characteristics
into high-dimensional space, and concatenated the embedded feature vectors
and probability distribution vectors. Next, the ResNet is used to learn the

1192 W. Zhang et al.

nonlinear feature of the combined characteristics. Finally, PLRes is exploited
to predict the missing QoS value.

The contributions of this paper are as follows:

• We calculate the probability distribution of target users and services and
take them as the characteristics of QoS prediction. This characteristic
reflects the network conditions of target users and services, and reduces
the error of Qos prediction.

• We propose a novel probability distribution and location-aware QoS
prediction approach PLRes, which is based on ResNet. In our approach,
we use the identifier, location information and probability distribution
as the characteristics, and first introduce the ResNet for QoS prediction,
which uses the idea of feature reuse to enhance the features in the
process of model training. This enables our model to learn nonlinear
high-dimensional characteristics well and get better results when the
network depth increases.

• We validated the PLRes on a real-world dataset, WS-DREAM1, and
compared the predictive performance with various existing classical
QoS prediction methods and the state-of-the-art deep learning approach
LDCF [36]. Experimental results show that our method outperforms the
state-of-the-art approach for QoS prediction significantly.

The remainder of the paper is organized as follows. In Section 2, we
provide some background of our research. In Section 3, we describe our QoS
prediction model in detail. In Section 4, we introduce the experiment setup,
followed by experimental results and discussion in Section 5. In Section 6,
we provide an overview of related works. In the last section, we conclude our
work and provide an outlook on directions for future work.

2 Preliminaries

In this section, we will make a brief introduction to the knowledge related to
the research.

2.1 QoS Matrix

QoS is the quality of service, including static attributes and dynamic
attributes. Static attributes are those whose values do not change, such as

1http://wsdream.github.io/

A Probability Distribution and Location-aware ResNet Approach 1193

Figure 1 QoS matrix(taking response time as an example).

the cost; dynamic attributes are those whose values always change, including
response time, throughput, etc. Static properties are fixed values provided by
the service provider and can be used directly for service filtering conditions.
However, dynamic attributes change at any time, and different users may get
very different QoS values even if the service they invoke is the same one. The
construction of the QoS matrix and the prediction of QoS both aim at these
dynamic attributes. User and service are taken as the dimensions to describe
the QoS value respectively, and the obtained matrix is the QoS matrix. Take
response time as the example, the form of the QoS matrix is shown in the
Figure 1, -1 represents the invalid response time, which means the user did
not invoke the service or the response time timeout for invoking the service.
For user u1 in Figure 1, user u1 has not effectively invoked service s3, while
the response time of invoking service s1, s2 and s4 is 5.982, 0.228 and 0.221,
respectively.

Density is usually used to represent the valid value ratio of the QoS
matrix. In Figure 1, the matrix should contain 16 QoS values, among which
12 are valid, so the density of the matrix is 75%. However, in the real world,
the number of services invoked by each user is strictly limited, which results
in very few accurate QoS values that can be obtained, which means that the
QoS matrix is very sparse. In order to simulate the real situation, the matrix
density is usually controlled below 30% in related studies.

2.2 QoS Distribution

QoS distribution is the distribution of QoS in different value ranges. The
distribution of QoS values of different users and services are often different.
Taking response time as an example, we randomly select users and services
from the real-world dataset and calculate their historical QoS distribution.

1194 W. Zhang et al.

0 20
0

1000

2000

3000

4000

5000

n
u
m

b
e
r

o
f

s
e
rv

ic
e
s

user258

0 20

user322

0 20

user275

0 20

user142

0 20

respond time

user3

(a) Distribution of invocations in ten time intervals for 5 random users

0 20
0

50

100

150

200

250

300

350

n
u
m

b
e
r

o
f

u
s
e
rs

service1625

0 20

service3820

0 20

service4934

0 20

service2656

0 20

respond time

service503

(b) Distribution of invocations in ten time intervals for 5 random services

Figure 2 Distribution of invocations random samples.

A record with a response time of more than 20s is assumed to be an
invalid record with a response timeout, and takes less than 20s as the valid
QoS values. Suppose we set the number of intervals K to 10, then each
interval spans 2 seconds. Figure 2(a) shows the distribution of historical
invocation for five different users, and Figure 2(b) is the distribution for
the services. The abscissa axis represents the time interval and the ordinate
axis represents the number of invocations. More specifically, the Y-axis of
Figure 2(a) is the number of services invoked by the target user, and the Y-
axis of Figure 2(b) is the number of users that invoked the target service. Take
the user258 in Figure 2(a) as an example, there are 5366 services whose

A Probability Distribution and Location-aware ResNet Approach 1195

response time is less than 2s, 92 services whose response time is greater
than 2s and less than 4s, and so on until 20s. As can be seen from the
Figure 2(a), the service response time distribution of several users is mainly
concentrated within 2s, but the distribution of user142 is quite different. In
fact, we also randomly checked the QoS distribution of some other users,
most of which were similar to user258 and user322, while the distribution
of a small number of users was quite different from that of other users. The
historical distribution of services also shows a similar pattern: the response
times of most services are similar to those of service1625, service3820,
and service2656 in Figure 2(b), while a few services are abnormal, such as
service4934 and service503.

Therefore, QoS distribution is helpful in reflecting sample characteristics.
Considering the total number of historical invocations by different users or
services are always different, the distribution proportion of QoS is usually
taken as the probability distribution of QoS, so the calculation method is as
follows:

Pu(k) =
Num(Qu, k − 1, k)

Num(Qu, 0,K)
(1)

Ps(k) =
Num(Qs, k − 1, k)

Num(Qs, 0,K)
(2)

where Pu(k), Ps(k) denotes the probability of the QoS appearing in kth
interval according to the historical invocations of user u and service s;
Num(Qu, k − 1, k), Num(Qs, k − 1, k) denotes the number of the QoS
appearing in kth interval according to the historical invocations of user u
and service s; Num(Qu, 0,K), Num(Qs, 0,K) denotes the total number of
the user u’s invocations and the service s’s respectively. Take the first user
in Figure 2(a), user258 as an example, the QoS used by this distribution is
response time, with K set to 10. Since the dataset used records the maximum
response time as 20s, it is set to an interval every 2 seconds. The number
of invocation records by user258 in each interval is [5366, 92, 22, 5, 8, 15,
33, 4, 2, 2], and the total number is 5549. So the user258 in 10 interval
probability is [96.7%, 1.66%, 0.4%, 0.09%, 0.14%, 0.27%, 0.59%, 0.07%,
0.04%, 0.04%].

2.3 Residual Network

The increase of network depth is often helpful to improve network per-
formance. The reason is that the rise of network parameters makes the

1196 W. Zhang et al.

Figure 3 Residual learning: a building block.

network acquire a stronger nonlinear expression ability to fit more com-
plex characteristic inputs. However, conventional network stacking is often
accompanied by gradient vanishing/explosion problems, which seriously
hinders the convergence of the model. In 2015, He et al. [10] proposed
the residual network(ResNet), which effectively alleviated the problem of
gradient disappearance in deep learning networks and was widely used in
image recognition technology.

The residual network consists of several residual blocks. The residual
block equivalently maps the output of the previous layer and passes it to the
next layer by shortcut connection, which is also the design idea of the residual
network. As shown in Figure 3, a residual block consists of a main road and
a shortcut. The main path is the original stack network, and the input x is
mapped through F(x); In the shortcut, do the equivalent mapping to x.

Assuming the final mapping is H(x), the mapping in the main path
F(x):=H(x)-x, and the original mapping is recast as F(x)+x. What the net-
work learns is not theH(x) of the complete output, but the difference between
the output and the inputH(x)-x, that is, the residual. By using shortcuts in the
original stack network, the problem of gradient descent approximating to 0
caused by the multiplication of weight coefficients less than one is avoided.
The reuse of original features is realized, and gradient disappearance in the
network training is alleviated.

3 Proposed Approach

In this section, we give a detailed description of the proposed approach.

3.1 The Framework of the Proposed Model

The overall architecture of PLRes is shown in Figure 4, which includes the
input layer, the embedding layer, the middle layer, and the output layer.

A Probability Distribution and Location-aware ResNet Approach 1197

QoS

User ID

Service ID

11

Output
Layer

C1

1

2

1

2

1

2

1

2

RE
LU

1

2

1

2

1

2

1

2

RE
LU

1

2

1

2

1

2

Cn

1

2

1

2

1

2

1

2

RE
LU

1

2

1

2

1

2

1

2

RE
LU

1

2

1

2

1

2

Resual Block

shortcut shortcut

Resual Block

L1 L2 L2n-1 L2n

Historical
QoS

Dataset

Location
Dataset

Em
be

dd
in

g

User Location

Service
Location

User
Probability
Distribution

Service
Probability
Distribution

U
ID

S
ID

U
Loc

S
Loc

U
Pro

S
Pro

U
ID

S
ID

U
Loc

S
Loc

U
Pro

S
Pro

Input Layer

concatenate

Embedding
Layer Middle Layer

m1 mn

mn mnm1 m1

Figure 4 The framework of the proposed model.

The process of PLRes can be expressed as: the model receives a pair
of user and service characteristics(including ID, location and probability
distribution) as input, then embedded the identity and location features in
the high-dimensional space respectively. Next, the embedded vectors and
the probability distribution are concatenated into a one-dimensional vector.
PLRes learns the one-dimensional feature and finally, gives the prediction
result according to the learned characteristic rule. The following subsections
describe the model details. Section 3.2 and 3.3 describe the input and embed-
ding of features respectively. Section 3.4 describes the learning process of
the model. Section 3.5 describes the final prediction and output details, and
Section 3.6 describes the setting of the model optimizer and loss function.

3.2 Input Layer

The input layer is primarily responsible for receiving features. The features
we selected include the user ID, the user’s location, the user’s probability
distribution, the service ID, the service’s location and the service’s probability
distribution. Both the user ID and the service ID are represented by an
assigned integer. So only one neuron is needed for the input of both. The
location information of the user and the service is represented by country
and AS(Autonomous System), so the location information of the user and
the service each needs two neurons. The probability distribution needs to be
calculated based on historical invocations. The calculation is carried out in
Section 2.2. At the input layer, the corresponding probability distribution of
the target user and target service is obtained through the user ID and service
ID as the probability feature. The number of neurons required in the input
layer is related to the number of the QoS value interval K.

1198 W. Zhang et al.

3.3 Embedding Layer

The embedding layer mainly does two jobs: embedding ID and location
features into the high-dimensional space, and feature fusion for all features.
At first, it maps the discrete features into high-dimensional vectors. There
is no doubt that in our dataset, ID, country and AS are all discrete features,
which need to be encoded to be the data that deep network computing can be
used.

In the embedding layer, we use one-hot to encode these four features(the
ID and location of the user and the service) and then embed them into high-
dimensional space. One-hot is one of the most common methods to encode
discrete features, which makes the calculation of the distance between feature
vectors more reasonable. In one-hot encoding, each value of the characteristic
corresponds to a bit in a one-dimensional vector, only the position whose
value corresponding to the current characteristic is 1, and the rest are set to
0. We use u, s, ul and sl to represent the one-hot coded user identify, service
identify, user location and service location respectively. In the embedding
process, the random weights are generated first, and the weights are adjusted
continuously according to the relationship between features in the model
learning process, and the features are mapped into high-dimensional dense
vectors. The embedding process could be shown as follows:

Iu = fe(W
T
u u + bu) (3)

Is = fe(W
T
s s + bs) (4)

Lu = fe(W
T
ul
ul + bul

) (5)

Ls = fe(W
T
sl
sl + bsl) (6)

where Iu, Is represents the identify embedding vector of user and service,
and Lu, Ls is the location embedding vector of user and service respectively.
fe represents the activation function of embedding layer; Wu, Wul

, Ws and
Wsl represents the embedding weight matrix; bu, bul

, bs and bsl represents
the bias term.

Then the model uses the concatenation mode to fuse the features into
a one-dimensional vector and passed to the middle layer. In addition to
the ID and location characteristics embedded in the high-dimensional space
described above, the probability distribution characteristics of users and
services are also included. We use Pu and Ps to represent the probability

A Probability Distribution and Location-aware ResNet Approach 1199

distributions of users and services. The concatenated could be expressed as:

x0 = Φ(Iu, Is, Lu, Ls, Pu, Ps) =

Iu
Is
Lu

Ls

Pu

Ps

 (7)

3.4 Middle Layer

The middle layer is used to capture the nonlinear relationship of features,
and we used ResNet here. ResNet is mainly used for image recognition
and uses a large number of convolutional layers. In image recognition, the
characteristics are composed of neatly arranged pixel values, while the feature
we use is a one-dimensional vector, which is not suitable for convolutional
layer processing, so we only use the full connection layer.

Our middle layer is composed of multiple residual blocks, as shown in
Figure 4, each of which consists of a main road and a shortcut. In the main
road, there are two full connection layers and two ’relu’ activation functions;
The shortcut contains a full connection layer. Before the vector in the main
path passes through the second activation function, the original vector is
added to the main path vector by the shortcut, which is the process of feature
reuse.

In a residual block, the number of neurons in the two fully connected
layers is equal. Since the number of neurons in two vectors must be the same
to add, when the original feature takes a shortcut, a full connection layer is
used to map it so that it can be successfully added to the vector of the main
path. For the ith residual block, the full connection layers in the main road
are the (2i − 1)th layer and (2i)th layer of the middle layer. We used mi

to represent the number of neurons in the full connection layer and Ci to
represent the sum of vectors in the ith residual block.

Mi = W T
i fi(W

T
i xi−1 + bi) + bi, i = 1, 2, . . . , n (8)

Si = W T
i xi−1 + bi, i = 1, 2, . . . , n (9)

Ci = Mi + Si, i = 1, 2, . . . , n (10)

xi = fi(Ci), i = 1, 2, 3, . . . , n (11)

1200 W. Zhang et al.

where Mi and Si respectively represents the vector of the main path and
shortcut before adding the vectors in the ith residual block; Ci represents the
sum of two vectors of the ith residual block; xi represents the output of the
ith residual block, and x0 represents the output of the embedding layer; fi
represents the activation function of the ith residual block, and Wi and bi
represents the corresponding weight matrix and bias term.

3.5 Output Layer

The output layer of our model has only one neuron to output the final result.
The output layer is fully connected to the output of the last residual block
in the middle layer. In this layer, we use the linear activation function. The
equation is:

Q̂u,s = W T
o xn + bo (12)

where Q̂u,s denotes the predictive QoS value of the service invoked by
the user; xn represents the output of the last residual block in the middle
layer; Wo and bo denote the weight matrix and bias term of the output
layer.

3.6 Model Learning

3.6.1 Loss function selection
Since the prediction of QoS in this paper is a regression problem, we choose
the loss function from MAE and MSE according to the commonly used
regression loss function. Their formulas are expressed as Equations (13)
and (14). The difference between the two is the sensitivity to outliers, and
MSE will assign a higher weight to outliers. In QoS prediction, outliers
are often caused by network instability, and sensitivity to outliers tends
to lead to overfitting, which affects the accuracy of prediction. Therefore,
we choose MAE as the loss function, which is relatively insensitive to
abnormal data. We will also discuss the effect of the two in subsequent
experiments.

3.6.2 Optimizer selection
Common optimizers include SGD, RMSprop, Adam [14], etc. We used the
Adam optimizer in our proposed model. As an adaptive method, Adam opti-
mizer works well for sparse data. Compared with SGD, Adam is faster. And
compared with RMSprop, Adam performs better with the bias-correction and
momentum when the gradient is sparse.

A Probability Distribution and Location-aware ResNet Approach 1201

4 Experimental Setup

This section presents four investigated research questions(RQs), the experi-
mental dataset, the compared baseline models, and the widely used evaluation
measures.

4.1 Research Questions

RQ1. How do different parameter settings affect the model effectiveness?
The proposed PLRes contains three important parameters: the depths, loss
function, learning rate and the value of K. The first RQ aims to investigating
the impact of different parameter settings and providing a better choice for
each parameter.

RQ2. How effective is our proposed PLRes?
The focus of RQ2 is the effect of our model for QoS prediction. If PLRes
shows advantages over traditional QoS prediction models and the state-of-
the-art QoS predict model LDCF, it is proved that the learning by PLRes is
beneficial for QoS prediction.

RQ3. How does the probability distribution affect the accuracy of
prediction?
This RQ aims to evaluate if the introduction of probability distribution
contributes to a better performance. To analyze the impact of the probability
distribution, we run the PLRes without this characteristic and compare the
predicted results to the previous results to determine whether the performance
has declined.

RQ4. How does the location affect the accuracy of prediction?
This research focuses on the impact of location characteristics for QoS pre-
diction. We set up a model with geographical position information removed,
which only use ID and probability distribution as features for training. The
test results of this model are compared with those of PLRes model to
judge whether location information contributes to the improvement of QoS
prediction model performance.

RQ5. How does the reuse of characteristics affect the accuracy of
prediction?
The way to reuse characteristics in the proposed PLRes model is to introduce
shortcuts to the traditional Deep Neural Networks(DNN). RQ5 investigates

1202 W. Zhang et al.

(a) Information of users

(b) Information of Services

Figure 5 Information of users and services.

whether the introduction of shortcuts contributes to improve the model per-
formance. If the PLRes(uses shortcuts) is better than the results of traditional
DNN(without shortcuts), it proves that characteristic reuse improves the
model.

4.2 Experimental Dataset

4.2.1 Dataset
We used the WS-DREAM dataset, which is the QoS dataset of real-world
Web services collected by Zheng et al. [37]. The dataset contains 1,873,838
real and valid service invocation records from 339 users on 5825 services,
and the available QoS include attributes of response time and throughput.
In this study, we used both of the two QoS attributes(response time and
throughput) to separately validate our approach. The dataset also includes
other information about users and services. The user information and service
information are shown in Figure 5. The user information includes [ID, IP
Address, Country, IP NO., AS, Latitude, Longitude] and the service informa-
tion includes [ID, WSDL Address, Service Provider, IP Address, Country,
IP NO., AS, Latitude, Longitude]. We use [Country, AS] as the location
characteristics of the user and service.

4.2.2 Preprocessing
Since the QoS matrix in the real world is extremely sparse, the size of the
training set we set is much smaller than that of the testing set. In this paper,

A Probability Distribution and Location-aware ResNet Approach 1203

Figure 6 Transformed the matrix to invoked records.

we set the matrix densities at 5% to 30% with the step of 5% to verify the
effect of the model under different data sparsity. We randomly selected the
invocations satisfying the number of target density records as the training set,
and the remaining invocations as the test set. For example, there should be
1,974,675 values in the QoS matrix for 339 users and 5825 services. If the
current density is 5%, 98,734 QoS values should be known. Then, 98,734
records are randomly selected from the valid records as the training set, and
the remaining records as the test set.

In the data preprocessing, we merge the required information from the
original data(including the original QoS matrix, user information and service
information) and converted them into the form of the invocation record. As
shown in Figure 6, the final invocation record converted from QoS matrix
is represented as [user ID, service ID, QoS value, user Location, service
Location], and locations include country and AS. All IDs and locations in the
dataset are assigned unique numbers. We directly use the ID number as the
ID encoding, and use the encoding method of Zhang et al. [36] to encode the
location information: the categorical encoding of Sklearn is used to convert
the country information into integers, and the number of the autonomous
system is used as the encoding of AS information.

In addition, we need to calculate and store the probability distribution
of each user and service. We take the historical QoS distribution of target
user and service as the QoS probability distribution in the prediction. In the
experiment, the training set is used as historical invocations. According to
the QoS interval K, the probability distribution is calculated by the historical
invocations as the probability distribution characteristics of the corresponding
user and service. The selection of K will be determined by experiment in

1204 W. Zhang et al.

Section 5.1.4. The calculation of QoS distribution has been explained in
equations 1 and 2 in Section 2.2.

4.3 Comparison Methods

We select the following QoS prediction methods to compare their perfor-
mance with our method:

• UIPCC(User-Based and Item-Based CF) [37]: This approach is a
classic collaborative filtering, which computes similar users and sim-
ilar services by PCC, and combines them to recommend services
to target users. It is the combination of UPCC(User-Based CF) and
IPCC(Item-Based FC).

• PMF(Probabilistic Matrix Factorization) [21]: This is a very popular
method of recommending fields. MF is to factor the QoS matrix into
an implicit user matrix and an implicit service matrix, and PMF is to
introduce the probability factor into MF.

• LACF [23]: This is a location-aware collaborative filtering method. The
difference of the method and traditional collaborative filtering is that
it uses the users close to the target user on the geographic location
as similar users, and the services close to the target service on the
geographic location as similar services.

• NCF [11]: This method combines CF and MLP, inputs implicit vectors
of users and services into MLP, and uses MLP to learn the interaction
between potential features of users and services.

• LDCF [36]: This is a location-aware approach that combines collabo-
rative filtering with deep learning. It is a state-of-the-art QoS prediction
method, and we take it as our baseline model.

Among these approaches, UIPCC and PMF are content-based and model-
based collaborative filtering methods, respectively, LACF and LDCF are
location-aware methods, and NCF and LDCF are neural network-related
models.

4.4 Evaluation Metrics

The prediction of QoS can be classified as a regression problem, so we use
the Mean Absolute Error(MAE) and Root Mean Squared Error(RMSE) to
measure the performance of the prediction. MAE and RMSE are defined as:

MAE =
1

N
Σu,s|Qu,s − Q̂u,s| (13)

A Probability Distribution and Location-aware ResNet Approach 1205

MSE =
1

N
Σu,s(Qu,s − Q̂u,s)

2 (14)

RMSE =
√
MSE =

√
1

N
Σu,s(Qu,s − Q̂u,s)2 (15)

where Qu,s is the actual QoS value of service s observed by user u, Q̂u,s is
the predictive QoS value of service s observed by user u, and N denotes the
total number of QoS.

5 Experimental Results

In this section, a series of experiments are designed to answer the four
questions raised in Section 4, and the experimental results will be presented
and analyzed. Suppose there is no additional explanation in subsections, the
parameters of the model we proposed as follows: the number of residual
blocks is two, the corresponding number of neurons in the full connection
layer is 128 and 64, the number of neurons in the input layer is 256, and the
number of neurons in the output layer is 1; The loss function is MAE; The
learning rate is set to 0.001; K is 20.

5.1 RQ1: Impact of Parameter Settings

5.1.1 Impact of depths
Generally speaking, the increase of the depth of the neural network is con-
ducive to data fitting, while the increase of the number of hidden layers may
also lead to gradient descent or gradient disappearance. In our model, the
depth of the model is represented by the number of fully connected layers
in the main path. Since the hidden layer is composed of residual blocks, and
each residual block has two fully connected layers, in this set of experiments,
we use the number of residuals to represent different depths. When the
number of residual block is i, we set the number of neurons in each block
as [26 ∗ 2i−1, 26 ∗ 2i−2, . . . , 26]. Response time and throughput were taken as
QoS attributes respectively to test the performance of the model at different
densities. The specific results are recorded in Table 1, and Figure 7 shows the
performance of several models more visually.

As can be seen from Figure 7, MAE and RMSE of these models at
different depths decreased significantly with the density increased. The rea-
son is the increase of density means the increase of training data. The
more data used for learning, the more conducive to the improvement of

1206 W. Zhang et al.

Table 1 Experimental results of the models with different Residual blocks number

(a) Response Time

Evaluation
Metrics Methods

density
5% 10% 15% 20% 25% 30%

MAE

1 Block 0.360 0.333 0.306 0.295 0.286 0.279
2 Block 0.356 0.317 0.297 0.285 0.279 0.273
3 Block 0.350 0.316 0.298 0.289 0.274 0.271
4 Block 0.355 0.314 0.299 0.282 0.275 0.266

RMSE

1 Block 1.259 1.212 1.159 1.136 1.129 1.111
2 Block 1.244 1.187 1.140 1.123 1.108 1.094
3 Block 1.243 1.182 1.136 1.114 1.097 1.088
4 Block 1.235 1.171 1.127 1.105 1.082 1.073

(b) Throughput

Evaluation
Metrics Methods

density
5% 10% 15% 20% 25% 30%

MAE

1 Block 13.535 12.112 11.514 10.977 10.859 10.496
2 Block 13.099 11.358 10.528 10.053 9.648 9.305
3 Block 12.998 11.280 10.334 9.845 9.422 9.253
4 Block 12.887 11.231 10.217 9.714 9.262 9.017

RMSE

1 Block 47.140 44.206 42.716 41.380 41.000 40.093
2 Block 44.908 40.525 37.741 36.663 35.654 34.916
3 Block 44.094 40.122 37.200 35.988 34.878 34.172
4 Block 43.894 39.722 36.617 35.501 34.299 33.893

model performance. Figure 7(a) and Figure 7(b) are the experimental results
obtained from experiments with response time as QoS attribute. Under the six
densities, the performance is the worst when the number of residual blocks
is 1 (the number of hidden layers is 2). While MAE performance of the
remaining models was similar, the RMSE performance gap was significant.
As the number of network layers increases, the RMSE performance of the
model also improves. Figure 7(a) and Figure 7(b) are the experimental results
obtained from experiments with throughput as QoS attribute. The MAE and
RMSE of the model are lower with more hidden layers, and the network layer
number is positively correlated with the model performance. However, in the
baseline approach LDCF, there is almost no performance improvement for
more than 4 hidden layers [36], which fully demonstrates that the application
of our ResNet greatly reduces the problem of gradient disappearance. This
allows PLRes to use deeper networks for better results than existing deep
learning methods.

A Probability Distribution and Location-aware ResNet Approach 1207

0.05 0.10 0.15 0.20 0.25 0.30
density

0.28

0.30

0.32

0.34

0.36
M

A
E

Response Time
1 block

2 block

3 block

4 block

(a) RT@MAE

0.05 0.10 0.15 0.20 0.25 0.30
density

1.10

1.15

1.20

1.25

R
M

S
E

Response Time
1 block

2 block

3 block

4 block

(b) RT@RMSE

0.05 0.10 0.15 0.20 0.25 0.30
density

9

10

11

12

13

M
A

E

Throughput
1 block

2 block

3 block

4 block

(c) TP@MAE

0.05 0.10 0.15 0.20 0.25 0.30
density

35.0

37.5

40.0

42.5

45.0

47.5
R

M
S
E

Throughput
1 block

2 block

3 block

4 block

(d) TP@RMSE

Figure 7 Performance comparison of the models with different numbers of residual blocks.

5.1.2 Impact of loss function
In this set of experiments, we explored the impact of loss functions on the
experimental results. According to our performance evaluation method, we
used MAE and MSE as loss functions respectively, and use “Loss-Mae”
and “Loss-Mse” to represent the corresponding models. In Figure 8, we give
results with densities of 5%–30%.

In Figure 8(a) and 8(b), response time is the QoS attribute; in Figure 8(c)
and 8(d), throughput is the QoS attribute. The trend in the four graphs are
consistent: the model improved with the density increased, and the test results
of Loss-Mae are much better than those of Loss-Mse. We choose MAE
as the loss function in our model. On the one hand, Loss-Mae performs
better in both MAE and RMSE on the sparse data; on the other hand, RMSE
is greatly affected by outliers, and we pay more attention to the general
situation.

1208 W. Zhang et al.

0.05 0.10 0.15 0.20 0.25 0.30
Density

0.28

0.30

0.32

0.34

0.36

M
A

E
Response Time

Loss-Mae Loss-Mse

(a) RT@MAE

0.05 0.10 0.15 0.20 0.25 0.30
Density

1.10

1.15

1.20

1.25

1.30

M
R

S
E

Response Time
Loss-Mae Loss-Mse

(b) RT@RMSE

0.05 0.10 0.15 0.20 0.25 0.30
Density

10

12

14

16

M
A
E

Throughput
Loss-Mae Loss-Mse

(c) TP@MAE

0.05 0.10 0.15 0.20 0.25 0.30
Density

35.0

37.5

40.0

42.5

45.0

47.5
M
R
S
E

Throughput
Loss-Mae Loss-Mse

(d) TP@RMSE

Figure 8 Performance comparison of the models with different loss functions(MAE and
MSE).

5.1.3 Impact of learning rate
In the process of model learning, the learning rate affects the speed of model
convergence to an optimum. Generally speaking, the higher the learning rate
is, the faster the convergence rate will be. While the high learning rate often
leads to the failure to reach the optimal solution beyond the extreme value,
and a low learning rate often leads to local optimum results. We set up the
maximum number of iterations for 50. Figure 9 shows the change of MAE
and RMSE when the learning rate were 0.0001, 0.0005, 0.001, 0.005 and 0.01
at the density of 5%. The “lr” in the legend stands for “learning rate”.

In Figure 9(a) and Figure 9(b), response time is the QoS attribute; in
Figure 9(c) and 9(d), throughput is the QoS attribute. In the experiment, the
models were tested with the testing set when each epoch finished. Therefore,

A Probability Distribution and Location-aware ResNet Approach 1209

10 20 30 40 50
epoch

0.35

0.40

0.45

0.50

0.55

M
A

E
Response Time

lr=0.0001

lr=0.0005

lr=0.001

lr=0.005

lr=0.01

(a) RT@MAE

10 20 30 40 50
epoch

1.3

1.4

1.5

1.6

1.7

R
M

S
E

Response Time
lr=0.0001

lr=0.0005

lr=0.001

lr=0.005

lr=0.01

(b) RT@RMSE

10 20 30 40 50
epoch

15

20

25

30

35

M
A
E

Throughput
lr=0.0001

lr=0.0005

lr=0.001

lr=0.005

lr=0.01

(c) TP@MAE (d) TP@RMSE

Figure 9 Performance comparison of the models with different learning rates.

the lowest point of each curve is the optimal result of the corresponding
learning rate model, and Table 2 gives the best results of the models under
the different learning rates. When the curve in the Figure 9 starts to rise,
it indicates that the model starts to overfit. In the four subgraphs, only the
curve with a learning rate of 0.0001 is relatively smooth, but its best result
is not as good as other models, which is considered the model falls into the
local optimal during training. According to the Figure 9(a) and 9(c), it can
be observed that when the epoch reaches 10, the other curves with a learning
rate greater than 0.0001 have reached the lowest point and then started to rise
gradually. In the Figure 9(b) and 9(d), when the epoch reaches 10, the curves
gradually tend to be stable. Among these curves, the curve with a learning

1210 W. Zhang et al.

Table 2 Experimental results of different learning rate at density of 5%

lr
Response Time Throughput

MAE RMSE MAE RMSE
0.0001 0.372 1.270 13.949 48.402
0.0005 0.366 1.247 13.202 45.068
0.001 0.356 1.244 13.099 44.908
0.005 0.354 1.260 13.431 45.013
0.01 0.382 1.275 13.579 45.109

10 20 30 40
K

0.32

0.34

0.36

0.38

0.40

0.42

M
A

E

MAE

RMSE

1.20

1.22

1.24

1.26

1.28

1.30

R
M

S
E

Response Time

(a) Response Time

10 20 30 40
K

13.0

13.2

13.4

13.6

13.8

14.0

M
A
E

MAE

RMSE

44.0

44.5

45.0

45.5

46.0

R
M
S
E

Throughput

(b) Throughput

Figure 10 Performance comparison of the models with different K values.

rate of 0.001 worked best and the curve with the learning rate of 0.0005 is
the next. Therefore, when the learning rate is 0.005 and 0.01, we consider the
models are difficult to converge due to the high learning rate.

5.1.4 Impact of K
Before the calculation of probability distribution, the number of intervals K
must be determined first. According to the value of K, the range of each QoS
interval can be obtained to conduct statistics on the quantity and calculate
the probability. This set of experiments is devoted to exploring the influence
of K on the model effect. At the density of 5%, K is set to 5-40 with the
step of 5 to conduct model training and testing. The test results are shown in
Figure 10.

Figure 10(a) is the test result of the response time dataset, and Fig-
ure 10(b) is the test result of the throughput dataset. With the increase of
K, the overall trend of model performance in Figure 10(a) is first increased
and then decreased, while in Figure 10(b) is generally decreased. The reason
may be related to the numerical range of the dataset. The data range for

A Probability Distribution and Location-aware ResNet Approach 1211

response time is 0-20, for throughput is 0-1000. For most users and services,
the range of QoS values is concentrated, which leads to a few intervals
with high probability and most intervals with very low probability. With the
increase of K, the range of QoS value decreases. The QoS values in the set
with high probability are scattered, which is conducive to improving the QoS
prediction accuracy. However, the low probability interval will be dispersed
into multiple intervals with a probability close to 0, which is not conducive
to the improvement of the accuracy of QoS prediction. Due to the small
value range of response time, the error reduced little, and the disadvantage
of increasing K is more pronounced. As for the throughput dataset, its
data range is larger and error reduction is more obvious, highlighting the
advantage of increasing K. Therefore, according to the experimental results,
we choose the compromise scheme K = 20 as the model parameter.

5.2 RQ2: Model Effectiveness

In the experiments, we use the same dataset to train the models of comparison
methods and PLRes, and test them with the same testing set. For the CF meth-
ods need to find similar users or services(UIPCC and LACF), the number of
neighbours is set to 10. And for the deep learning method(NCF and LDCF),
we set the number of MLP layers as six and the number of neurons in each
layer as [256,128,128,64,64,1]. For the MF method(PMF and NCF), we set
the number of implicit features as 10. For the parameters that all models need
to be used, we set the learning rate to be 0.001, the batch size to be 256 and
the maximum number of iterations to be 50. As for the loss function and
optimizer, we use the default parameters for each model to ensure that they
work well.

Table 3 shows the detailed test results of the above approaches and
our model in six different densities. The QoS attribute used in Table 3(b)
is response time, and the QoS attribute used in Table 3(b) is throughput.
Figure 11 shows the advantages of our method more intuitively. Figure 11(a)
and 11(b) correspond to response time, while Figure 11(c) and 11(d) corre-
spond to throughput. According to the comparison result, with the increase
of density and the training data, the MAE and RMSE performance of these
methods are all improved, and PLRes always performs best at the same
density.

In the experiment using the response time dataset, can be observed in
the Figure 11(a), the performance comparison of MAE, the models using
deep learning(NCF, LDCF and PLRes) are all below 0.45 at the density of

1212 W. Zhang et al.

Table 3 Experimental results of 6 different QoS prediction approaches

(a) Response Time

Evaluation
Metrics Methods

density
5% 10% 15% 20% 25% 30%

MAE

UIPCC 0.625 0.581 0.501 0.450 0.427 0.411
PMF 0.570 0.490 0.460 0.442 0.433 0.428

LACF 0.630 0.560 0.510 0.477 0.456 0.440
NCF 0.440 0.403 0.385 0.359 0.344 0.338

LDCF 0.406 0.371 0.346 0.336 0.325 0.314
PLRes 0.356 0.317 0.297 0.285 0.279 0.273

RMSE

UIPCC 1.388 1.330 1.250 1.197 1.166 1.145
PMF 1.537 1.320 1.230 1.179 1.156 1.138

LACF 1.439 1.338 1.269 1.222 1.188 1.163
NCF 1.333 1.274 1.242 1.218 1.184 1.177

LDCF 1.297 1.223 1.184 1.164 1.132 1.113
PLRes 1.244 1.187 1.140 1.123 1.108 1.094

(b) Throughput

Evaluation
Metrics Methods

density
5% 10% 15% 20% 25% 30%

MAE

UIPCC 26.721 22.385 20.264 18.964 17.922 17.080
PMF 19.081 15.968 14.669 13.932 13.399 13.107

LACF 23.168 19.626 17.795 16.667 15.850 15.236
NCF 15.175 13.565 13.017 11.842 11.245 10.561

LDCF 13.616 12.179 11.447 10.723 10.364 9.953
PLRes 13.099 11.358 10.528 10.053 9.648 9.305

RMSE

UIPCC 60.771 54.520 50.741 48.277 46.450 45.022
PMF 57.876 48.038 43.995 41.748 40.297 39.425

LACF 58.967 53.105 49.766 47.625 46.014 44.773
NCF 51.423 45.751 42.284 41.721 38.627 37.924

LDCF 47.045 43.286 40.690 38.838 37.553 36.422
PLRes 44.908 40.525 37.741 36.663 35.654 34.916

5%, which perform better than the other three models(UIPCC, PMF, LACF),
whose MAE were all above 0.55. Similarly, at other densities, the models
using deep learning are more effective. This strongly proves the ability of
deep learning to fit nonlinear features in QoS prediction. In terms of the
performance comparison of RMSE, it can be observed from the Figure 11(b)
that the performance of deep learning models are better than those of CF
models at the density of 5% and 10%. It reflects that the CF method is difficult
to perform well under sparse density, while the deep learning method greatly
alleviates this problem. When the density is greater than 10%, although the

A Probability Distribution and Location-aware ResNet Approach 1213

0.05 0.10 0.15 0.20 0.25 0.30
Density

0.3

0.4

0.5

0.6

M
A

E
Response Time

UIPCC

PMF

LACF

NCF

LDCF

PLRes

(a) RT@MAE

0.05 0.10 0.15 0.20 0.25 0.30
Density

1.10

1.25

1.40

1.55

R
M

S
E

Response Time
UIPCC

PMF

LACF

NCF

LDCF

PLRes

(b) RT@RMSE

0.05 0.10 0.15 0.20 0.25 0.30
Density

10

15

20

25

M
A
E

Throughput
UIPCC

PMF

LACF

NCF

LDCF

PLRes

(c) TP@MAE

0.05 0.10 0.15 0.20 0.25 0.30
Density

35

40

45

50

55

60
R
M
S
E

Throughput
UIPCC

PMF

LACF

NCF

LDCF

PLRes

(d) TP@RMSE

Figure 11 Performance comparison of 6 different QoS prediction approaches.

CF models gradually outperform the deep learning method NCF, LDCF and
PLRes still perform best. This may be related to the introduction of location
characteristics and probability distribution characteristics.

In experiments using the throughput dataset, it can be seen from Fig-
ure 11(c) and 11(d), the performance of the six methods obviously different.
Under the six densities, MAE and RMSE performance relationships is:
PLRes < LDCF < NCF < PMF < LACF < UIPCC. The three methods
with better performance are all deep learning methods, which proves the
effectiveness of the method using deep learning in QoS prediction.

It is worth mentioning that compared with the baseline model LDCF,
PLRes improves MAE performance of response time by 12.35%, 14.66%,
14.17%, 15.37%, 14.24% and 13.22%, RMSE performance by 4.10%,
2.95%, 3.24%, 3.48%, 2.13% and 1.78% respectively under the density of
5%–30%. PLRes improves MAE of throughput by 3.80%, 6.74%, 8.03%,

1214 W. Zhang et al.

6.25%, 6.91%, 6.51%, RMSE performance by 4.54%, 6.38%, 7.25%, 5.60%,
5.06%, 4.13% respectively under the density of 5%–30%. Futhermore, we
recorded the QoS prediction results of LDCF and PLRes in all tests(QoS
attributes of response time and throughput with 6 different densities), and
apply the Wilcoxon signed-rank [27] test on the prediction results of PLRes
and LDCF to analyze the statistical difference between the two models. The
results showed that all the p-value are less than 0.01, which indicates that the
improvement of PLRes against LDCF is statistically significant.

5.3 RQ3: Effect of Probability Distribution

In order to examine the impact of probability distribution, we removed the
characteristics of probability distribution, and only took user ID, service ID,
user location, service location as the factors to conducted the experiment with
the same ResNet model. For the two models, we set the same training data for
training, set the maximum number of iterations to 50, and saved the model
with the best testing results.

The results of the two models at different densities are shown in Figure 12,
the “noPD” in the legend represents the model without probability distribu-
tion. Figures 12(a) and Figures 12(b) are the test results for the response
time dataset, and Figures 12(c) and Figures 12(d) are the test results for the
throughput dataset. Experimental results on the response time dataset show
that the model PLRes using the probability distribution features achieves
better results, but the difference is close. However, the experiment on the
throughput dataset shows that PLRes performs significantly better than noPD.

From the results, the performance of the model with the probability
distribution as the feature has better performance than the model without the
probability distribution feature at all six densities. The results fully prove
that the introduction of probability distribution is beneficial to improve the
performance of the model. The reason is that the probability distribution
reflects the user preference and the network stability of users and services.
Therefore, the introduction of probability distribution is helpful to reduce the
sensitivity to abnormal data and to reduce the overfitting of the model.

5.4 RQ4: Effect of Location

We will verify the importance of location information to our model in this
section. We try to train the model using only ID and probability distribution
as characteristics, and compare the testing results with PLRes. We use the
“noLocation” stand for a model without the location feature in the resulting

A Probability Distribution and Location-aware ResNet Approach 1215

0.05 0.10 0.15 0.20 0.25 0.30
Density

0.28

0.30

0.32

0.34

0.36

M
A

E
Response Time

PLRes noPD

(a) RT@MAE

0.05 0.10 0.15 0.20 0.25 0.30
Density

1.10

1.15

1.20

1.25

R
M

S
E

Response Time
PLRes noPD

(b) RT@RMSE

0.05 0.10 0.15 0.20 0.25 0.30
Density

10

11

12

13

14

M
A
E

Throughput
PLRes noPD

(c) TP@MAE

0.05 0.10 0.15 0.20 0.25 0.30
Density

35.0

37.5

40.0

42.5

45.0

47.5
R
M
S
E

Throughput
PLRes noPD

(d) TP@RMSE

Figure 12 Performance comparison of PLRes and the model without the probability distri-
bution feature.

figure. Figure 13 shows our test results, in which the test results of PLRes are
represented by blue lines, and the test results of the model that only used ID
and probability distribution as the characteristics are represented by orange
lines. Figure 13(a) is the MAE result and Figure 13(b) is the RMSE result
with the QoS attribute response time, Figure 13(c) and Figure 13(d) is the
test result with the QoS attribute throughput.

In the four subgraphs, although the performance trends of the two models
were similar with the increase of density, the PLRes model using location
information always performed better, indicating that location characteristics
do have an improved effect on QoS prediction. The reason is that the users
in the same region tend to be in similar network status, while users in dif-
ferent regions usually have different network conditions. Therefore, location
information can be used as an important reference factor for user similarity,

1216 W. Zhang et al.

0.05 0.10 0.15 0.20 0.25 0.30
Density

0.28

0.30

0.32

0.34

0.36

0.38

M
A

E
Response Time

PLRes noLocation

(a) RT@MAE

0.05 0.10 0.15 0.20 0.25 0.30
Density

1.10

1.15

1.20

1.25

1.30

R
M

S
E

Response Time
PLRes noLocation

(b) RT@RMSE

0.05 0.10 0.15 0.20 0.25 0.30
Density

10

11

12

13

14

M
A
E

Throughput
PLRes noLocation

(c) TP@MAE

0.05 0.10 0.15 0.20 0.25 0.30
Density

35.0

37.5

40.0

42.5

45.0

47.5
R
M
S
E

Throughput
PLRes noLocation

(d) TP@RMSE

Figure 13 Performance comparison of PLRes and the model without the location feature.

which is also the reason why partial collaborative filtering methods use
location information. In addition, location information can reflect the distance
between the user and the server, which also tends to affect service efficiency.
Even if the invoked service is the same one, users who closer to the server
always get better network response and bandwidth.

5.5 RQ5: Effect of Shortcuts

The method of feature reuse in ResNet is to use shortcuts, which add original
features directly to trained data. In this section, we discuss the impact of
shortcuts on our experimental results. In this set of experiments, we used
the DNN and the ResNet to learn the same dataset respectively, so as to
prove the effectiveness of the shortcuts. We set the PLRes to use two residual
blocks, each of which contains two full connection layers, so in the DNN

A Probability Distribution and Location-aware ResNet Approach 1217

0.05 0.10 0.15 0.20 0.25 0.30
Density

0.28

0.30

0.32

0.34

0.36

M
A

E
Response Time

PLRes DNN

(a) RT@MAE

0.05 0.10 0.15 0.20 0.25 0.30
Density

1.10

1.15

1.20

1.25

R
M

S
E

Response Time
PLRes DNN

(b) RT@RMSE

0.05 0.10 0.15 0.20 0.25 0.30
Density

10

11

12

13

M
A
E

Throughput
PLRes DNN

(c) TP@MAE

0.05 0.10 0.15 0.20 0.25 0.30
Density

36

38

40

42

44

R
M
S
E

Throughput
PLRes DNN

(d) TP@RMSE

Figure 14 Performance comparison of PLRes and the model without the shortcuts.

we set the number of hidden layers to 4. In PLRes, the number of neurons
in the two residual blocks is [128, 64], and the number of neurons in each
hidden layer in the DNN is [128, 128, 64, 64]. The testing results are shown
in Figure 14. Figure 14(a) and Figure 14(b) are the result of the QoS attribute
response time, Figure 14(c) and Figure 14(d) are the result of the QoS
attribute throughput.

In the four subgraphs, the performance of PLRes, which using shortcuts,
is better than that of DNN without shortcuts at all densities, which proves
that the use of residual network is conducive to the improvement of model
performance. Although shortcuts are used to improve the performance of
our network in deeper networks, increasing the number of network layers
also means increasing the cost of time and space. Therefore, we hope that
the introduction of shortcuts can also help improve the performance of the
model even when the network is shallow. In this experiment, only 2 residual

1218 W. Zhang et al.

blocks (4 hidden layers) are used, which also significantly improves the
performance, indicating that feature reuse is effective in this model, and the
introduction of shortcuts improves the performance of the model. It may
be related to the increased number of parameters in shortcuts, but more
importantly, the shortcut emphasizes the original feature and strengthens the
relationship between features and QoS values.

6 Related Work

In the existing QoS prediction methods, collaborative filtering is the most
widely used technology. Collaborative filtering fully considers the user’s pref-
erence, so it is commonly used in the recommendation system and performs
well in the personalized recommendation.

Collaborative filtering methods can be divided into two categories:
memory-based and model-based. The memory-based collaborative filtering
method usually achieves the prediction of the target by obtaining similar users
or services with similar neighbors. Therefore, memory-based collaborative
filtering can be subdivided into user-based, service-based and hybrid-based.
Linden et al. [18] help the recommend system find similar items of what
the user needs and add them to the recommended sequence by the item-
to-item collaborative filtering. Adeniyi et al. [1] used K-Nearest-Neighbor
(KNN) classification method to find similar items for recommendation sys-
tems. Zou et al. [39] improved the method to integrate similar users and
services, proposed a reinforced collaborative filtering approach. In the model-
based collaborative filtering, machine learning method is used to study the
training data to achieve the prediction of QoS. Matrix factorization is the
most typical and commonly used model-based method, which turns the
original sparse matrix into the product of two or more low-dimensional
matrices. In QoS prediction, matrix factorization often captures the implicit
expression of users and services. Zhu et al. [38] propose an adaptive matrix
factorization approach to perform online QoS prediction. Wu et al. [28]
using the FM(Factorization Machine approach), which is based on MF to
predict missing QoS values. Tang et al. [24] considered the similarity as
a character, proposed a collaborative filtering approach to predict the QoS
based on factorization machines. However, CF can only learn linear features,
so many methods begin to consider in-depth learning that can effectively learn
nonlinear features.

Deep learning is a subset of machine learning, and it combines the
characteristics of the underlying data to form a more abstract and deep

A Probability Distribution and Location-aware ResNet Approach 1219

representation. Due to its strong learning ability on hidden features, it has
been widely used in various recommendation systems [35, 12, 13, 26].

In QoS prediction, some methods combine deep learning with collabo-
rative filtering. Zhang et al. [36] proposed a new deep CF model for service
recommendation to captures the high-dimensional and nonlinear character-
istics. Soumi et al. [4] proposed a method which is a combination of the
collaborative filtering and neural network-based regression model. Xiong
et al. [30] proposed a deep hybrid collaborative filtering approach for ser-
vice recommendation (DHSR), which can capture the complex invocation
relations between mashups and services in Web service recommendation by
using a multilayer perceptron. Deep learning is also often used in methods
using the timeslices of service invocation. Xiong et al. [29] propose a novel
personalized LSTM based matrix factorization approach that could capture
the dynamic latent representations of multiple users and services. Hamza
et al. [15] uses deep recurrent Long Short Term Memories (LSTMs) to
forecast future QoS.

In some existing researches [5, 17, 34, 20, 6], location information is con-
sidered as one of the characteristics of QoS prediction. Li et al. [16] propose
a QoS prediction approach combining the user’s reputation and geographical
information into the matrix factorization model. Tang et al. [25] exploits
the users’ and services’ locations and CF to make QoS predictions. Chen
et al. [6] propose a matrix factorization model that using both geographical
distance and rating similarity to cluster neighbors. These approaches have
improved the accuracy of QoS prediction, and their experimental results fully
demonstrate the validity of location information.

7 Conclusion and Future Work

In this paper, we propose a probability distribution and location-aware QoS
approach based on ResNet named PLRes. The model uses ID, location
information and probability distribution as the input characteristics. PLRes
encodes the ID and geographic location of the users and services, and
embedded them into the high-dimensional space. Then all the features(the
embedded ID and location features, and the probability distribution) are
concatenated into a one-dimensional vector and input into ResNet for learn-
ing. We trained the model and conducted experiments on the WS-DREAM
dataset. The experimental results fully prove that the features of location
and probability distribution are conducive to improving the accuracy of the
QoS prediction model. As a deep learning method, PLRes gives full play

1220 W. Zhang et al.

to its advantages in learning high-dimensional nonlinear characteristics, and
compared with the advanced deep learning method LDCF, PLRes effectively
alleviates the gradient disappearance problem.

Although the proposed approach improves the QoS prediction perfor-
mance compared with the existing methods in the experiment, it still has some
limitations. On the one hand, the model learns to encode with the existing
users and services, so the QoS value prediction of new users and services
may not be as accurate as that of the existing users and services. On the other
hand, the QoS value is constantly changing. If the training data is out of date,
the prediction result will be subject to wide error.

In the future, we will further consider the combination of the current
model and collaborative filtering method to make full use of the advantages
of collaborative filtering. In addition, we did not consider the time factor for
the user to invoke the service in this paper. Since the service is constantly
updated, the QoS of different timeslices may change greatly, so the time fea-
ture is also necessary in QoS prediction. We will further consider predicting
missing QoS value through QoS changes of different time slices in the next
work.

Acknowledgements

The work described in this paper was partially supported by the Nation-
alKey Research and Development Project (Grant no. 2018YFB2101201),
the National Natural Science Foundation of China (Grant no. 61602504),
the Fundamental Research Funds for the Central Universities (Grant no.
2019CDYGYB014), the Natural Science Foundation Projects in Chongqing
(Grant no. cstc2019jcyj-msxmX0442).

References

[1] D.A. Adeniyi, Z. Wei, and Y. Yongquan. Automated web usage data
mining and recommendation system using k-nearest neighbor (knn)
classification method. Applied Computing and Informatics, 12(1):90–
108, 2016.

[2] E. Ahmad, M. Alaslani, F. R. Dogar, and B. Shihada. Location-
aware, context-driven qos for iot applications. IEEE Systems Journal,
14(1):232–243, 2020.

A Probability Distribution and Location-aware ResNet Approach 1221

[3] Weihong Cai, Xin Du, and Jianlong Xu. A personalized qos prediction
method for web services via blockchain-based matrix factorization.
Sensors, 19(12):2749, 2019.

[4] Soumi Chattopadhyay and Ansuman Banerjee. Qos value prediction
using a combination of filtering method and neural network regres-
sion. In Sami Yangui, Ismael Bouassida Rodriguez, Khalil Drira, and
Zahir Tari, editors, Service-Oriented Computing – 17th International
Conference, ICSOC 2019, Toulouse, France, October 28–31, 2019, Pro-
ceedings, volume 11895 of Lecture Notes in Computer Science, pages
135–150. Springer, 2019.

[5] K. Chen, H. Mao, X. Shi, Y. Xu, and A. Liu. Trust-aware and location-
based collaborative filtering for web service qos prediction. In 2017
IEEE 41st Annual Computer Software and Applications Conference
(COMPSAC), volume 2, pages 143–148, 2017.

[6] Zhen Chen, Limin Shen, Dianlong You, Chuan Ma, and Feng Li.
A location-aware matrix factorisation approach for collaborative web
service qos prediction. Int. J. Comput. Sci. Eng., 19(3):354–367, 2019.

[7] T. Cheng, J. Wen, Q. Xiong, J. Zeng, W. Zhou, and X. Cai. Personalized
web service recommendation based on qos prediction and hierarchical
tensor decomposition. IEEE Access, 7:62221–62230, 2019.

[8] Shuai Ding, Chengyi Xia, Qiong Cai, Kaile Zhou, and Shanlin Yang.
Qos-aware resource matching and recommendation for cloud computing
systems. Appl. Math. Comput., 247:941–950, 2014.

[9] Feng-Jian Wang, Yen-Hao Chiu, Chia-Ching Wang, Kuo-Chan Huang.
A Referral-Based QoS Prediction Approach for Service- Based Sys-
tems. Journal of Computers, 13(2):176–186, 2018.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. CoRR, abs/1512.03385, 2015.

[11] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and
Tat-Seng Chua. Neural collaborative filtering. In Rick Barrett, Rick
Cummings, Eugene Agichtein, and Evgeniy Gabrilovich, editors, Pro-
ceedings of the 26th International Conference on World Wide Web,
WWW 2017, Perth, Australia, April 3–7, 2017, pages 173–182. ACM,
2017.

[12] W. Hong, N. Zheng, Z. Xiong, and Z. Hu. A parallel deep neural network
using reviews and item metadata for cross-domain recommendation.
IEEE Access, 8:41774–41783, 2020.

1222 W. Zhang et al.

[13] I. M. A. Jawarneh, P. Bellavista, A. Corradi, L. Foschini, R. Montanari,
J. Berrocal, and J. M. Murillo. A pre-filtering approach for incorporating
contextual information into deep learning based recommender systems.
IEEE Access, 8:40485–40498, 2020.

[14] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. In Yoshua Bengio and Yann LeCun, editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7–9, 2015, Conference Track Proceedings, 2015.

[15] Hamza Labbaci, Brahim Medjahed, and Youcef Aklouf. A deep learn-
ing approach for long term qos-compliant service composition. In
E. Michael Maximilien, Antonio Vallecillo, Jianmin Wang, and Marc
Oriol, editors, Service-Oriented Computing – 15th International Con-
ference, ICSOC 2017, Malaga, Spain, November 13–16, 2017, Pro-
ceedings, volume 10601 of Lecture Notes in Computer Science, pages
287–294. Springer, 2017.

[16] Shun Li, Junhao Wen, Fengji Luo, Tian Cheng, and Qingyu Xiong. A
location and reputation aware matrix factorization approach for per-
sonalized quality of service prediction. In 2017 IEEE International
Conference on Web Services (ICWS), pages 652–659. IEEE, 2017.

[17] Shun Li, Junhao Wen, and Xibin Wang. From reputation perspective:
A hybrid matrix factorization for qos prediction in location-aware
mobile service recommendation system. Mobile Information Systems,
2019:8950508:1–8950508:12, 2019.

[18] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommen-
dations: Item-to-item collaborative filtering. IEEE Internet Comput.,
7(1):76–80, 2003.

[19] An Liu, Xindi Shen, Zhixu Li, Guanfeng Liu, Jiajie Xu, Lei Zhao, Kai
Zheng, and Shuo Shang. Differential private collaborative web services
qos prediction. World Wide Web, 22(6):2697–2720, 2019.

[20] Wei Lo, Jianwei Yin, ShuiGuang Deng, Ying Li, and Zhaohui Wu.
Collaborative web service qos prediction with location-based regular-
ization. In Carole A. Goble, Peter P. Chen, and Jia Zhang, editors, 2012
IEEE 19th International Conference on Web Services, Honolulu, HI,
USA, June 24–29, 2012, pages 464–471. IEEE Computer Society, 2012.

[21] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factoriza-
tion. In John C. Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis,
editors, Advances in Neural Information Processing Systems 20, Pro-
ceedings of the Twenty-First Annual Conference on Neural Information

A Probability Distribution and Location-aware ResNet Approach 1223

Processing Systems, Vancouver, British Columbia, Canada, December
3–6, 2007, pages 1257–1264. Curran Associates, Inc., 2007.

[22] Qibo Sun, Lubao Wang, Shangguang Wang, You Ma, and Ching-Hsien
Hsu. Qos prediction for web service in mobile internet environment.
New Rev. Hypermedia Multim., 22(3):207–222, 2016.

[23] Mingdong Tang, Yechun Jiang, Jianxun Liu, and Xiaoqing (Frank) Liu.
Location-aware collaborative filtering for qos-based service recommen-
dation. In Carole A. Goble, Peter P. Chen, and Jia Zhang, editors, 2012
IEEE 19th International Conference on Web Services, Honolulu, HI,
USA, June 24–29, 2012, pages 202–209. IEEE Computer Society, 2012.

[24] Mingdong Tang, Wei Liang, Yatao Yang, and Jianguo Xie. A fac-
torization machine-based qos prediction approach for mobile service
selection. IEEE Access, 7:32961–32970, 2019.

[25] Mingdong Tang, Tingting Zhang, Jianxun Liu, and Jinjun Chen. Cloud
service qos prediction via exploiting collaborative filtering and location-
based data smoothing. Concurrency and Computation: Practice and
Experience, 27(18):5826–5839, 2015.

[26] Xuna Wang, Qingmei Tan, and Lifan Zhang. A deep neural network
of multi-form alliances for personalized recommendations. Information
Sciences, 531:68–86, 2020.

[27] Frank Wilcoxon. Individual comparisons by ranking methods. In Break-
throughs in statistics, pages 196–202. Springer, 1992.

[28] Yaoming Wu, Fenfang Xie, Liang Chen, Chuan Chen, and Zibin Zheng.
An embedding based factorization machine approach for web service
qos prediction. In E. Michael Maximilien, Antonio Vallecillo, Jianmin
Wang, and Marc Oriol, editors, Service-Oriented Computing – 15th
International Conference, ICSOC 2017, Malaga, Spain, November 13–
16, 2017, Proceedings, volume 10601 of Lecture Notes in Computer
Science, pages 272–286. Springer, 2017.

[29] Ruibin Xiong, Jian Wang, Zhongqiao Li, Bing Li, and Patrick C. K.
Hung. Personalized LSTM based matrix factorization for online qos
prediction. In 2018 IEEE International Conference on Web Services,
ICWS 2018, San Francisco, CA, USA, July 2–7, 2018, pages 34–41.
IEEE, 2018.

[30] Ruibin Xiong, Jian Wang, Neng Zhang, and Yutao Ma. Deep hybrid
collaborative filtering for web service recommendation. Expert systems
with Applications, 110:191–205, 2018.

1224 W. Zhang et al.

[31] Yueshen Xu, Jianwei Yin, ShuiGuang Deng, Neal N. Xiong, and Jianbin
Huang. Context-aware qos prediction for web service recommendation
and selection. Expert Syst. Appl., 53:75–86, 2016.

[32] Hong-Jian Xue, Xinyu Dai, Jianbing Zhang, Shujian Huang, and Jiajun
Chen. Deep matrix factorization models for recommender systems. In
Carles Sierra, editor, Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, August 19–25, 2017, pages 3203–3209. ijcai.org, 2017.

[33] Yuyu Yin, Lu Chen, Yueshen Xu, Jian Wan, He Zhang, and Zhida Mai.
Qos prediction for service recommendation with deep feature learning
in edge computing environment. MONET, 25(2):391–401, 2020.

[34] Y. Yuan, W. Zhang, and X. Zhang. Location-based two-phase clustering
for web service qos prediction. In 2016 13th Web Information Systems
and Applications Conference (WISA), pages 7–11, 2016.

[35] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based
recommender system: A survey and new perspectives. ACM Comput.
Surv., 52(1), February 2019.

[36] Yiwen Zhang, Chunhui Yin, Qilin Wu, Qiang He, and Haibin Zhu.
Location-aware deep collaborative filtering for service recommenda-
tion. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
2019.

[37] Zibin Zheng, Hao Ma, Michael R. Lyu, and Irwin King. Qos-aware web
service recommendation by collaborative filtering. IEEE Trans. Serv.
Comput., 4(2):140–152, 2011.

[38] Jieming Zhu, Pinjia He, Zibin Zheng, and Michael R. Lyu. Online qos
prediction for runtime service adaptation via adaptive matrix factoriza-
tion. IEEE Trans. Parallel Distrib. Syst., 28(10):2911–2924, 2017.

[39] Guobing Zou, Ming Jiang, Sen Niu, Hao Wu, Shengye Pang, and
Yanglan Gan. Qos-aware web service recommendation with reinforced
collaborative filtering. In Claus Pahl, Maja Vukovic, Jianwei Yin,
and Qi Yu, editors, Service-Oriented Computing – 16th International
Conference, ICSOC 2018, Hangzhou, China, November 12–15, 2018,
Proceedings, volume 11236 of Lecture Notes in Computer Science,
pages 430–445. Springer, 2018.

A Probability Distribution and Location-aware ResNet Approach 1225

Biographies

Wenyan Zhang received her bachelor degree from Chongqing University,
China in 2019 and went on to pursue her master degree at Chongqing
University in the same year. Her research interests are in service discovery
and recommendation.

Ling Xu is an Associate Professor at the School of Big Data & Software
Engineering, Chongqing Univeristy, China. She received her B.S. degree in
Hefei University of Technology in 1998, and her M.S. degree in software
engineering in 2004. She received her Ph.D. degree in Computer Applica-
tion from Chongqing University, P.R. China in 2009. Her research interests
include mining software repositories, bug rediction and localization.

1226 W. Zhang et al.

Meng Yan is a post-doctoral research fellow in College of Computer Science
and Technology, Zhejiang University. He received his PhD degree in June
2017 from the School of Software Engineering, Chongqing University. His
currently research focuses on how to improve developer’s productivity, how
to improve software quality and how to reduce the effort during software
development by analyzing rich software repository data. More information
at: https://yanmeng.github.io/

Ziliang Wang received the B.S. degree from Nanchang Hangkong Uni-
versity, Jiangxi, China, in 2017. He is currently pursuing the Ph.D degree
in software engineering in Chongqing University, Chongqing, China. His
current research interests include service computing, smart city and system
structure.

https://yanmeng.github.io/

A Probability Distribution and Location-aware ResNet Approach 1227

Chunlei Fu is currently a senior engineer at School of Big Data & Soft-
ware Engineering, Chongqing University. He received his PhD degree at in
School of Automation, Chongqing University, China, in 2014. He received a
postdoctoral training at the school of computer science in Chongqing Univer-
sity, studying Knowledge-Based Software Engineering. His major research
interests include Knowledge Graph, Service Computing, and Software Engi-
neering.

	Introduction
	Preliminaries
	QoS Matrix
	QoS Distribution
	Residual Network

	Proposed Approach
	The Framework of the Proposed Model
	Input Layer
	Embedding Layer
	Middle Layer
	Output Layer
	Model Learning
	Loss function selection
	Optimizer selection

	Experimental Setup
	Research Questions
	Experimental Dataset
	Dataset
	Preprocessing

	Comparison Methods
	Evaluation Metrics

	Experimental Results
	RQ1: Impact of Parameter Settings
	Impact of depths
	Impact of loss function
	Impact of learning rate
	Impact of K

	RQ2: Model Effectiveness
	RQ3: Effect of Probability Distribution
	RQ4: Effect of Location
	RQ5: Effect of Shortcuts

	Related Work
	Conclusion and Future Work

