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a b s t r a c t

Bug reports which are written by different people have a variety of styles, and such various styles lead
to difficulty in understanding bug reports. To enhance the comprehensibility of bug reports, GitHub
has proposed a template mechanism to guide how to report the bugs. However, there is no study
on the use of bug report templates on GitHub. In this paper, we conduct an empirical study on the
bug report templates on GitHub, including the popularity, benefits, and content of the templates. Our
empirical study finds that: (1) For popularity, more and more open source projects and bug reports are
applying templates over time. (2) For benefits, bug reports written using templates will be resolved
quicker and have a higher comment coverage. (3) For content, the most common items for templates
are expected behavior, describe the bug and to reproduce etc. Additionally, we summarize a taxonomy of
items for bug report templates. Finally, we propose an automatic templating approach for templating
an un-templated bug report. Our approach achieves an accuracy of 0.718 and an F1-score of 0.717 on
average, which shows that our approach can effectively templatize an un-templated bug report.

© 2023 Elsevier Inc. All rights reserved.
1. Introduction

Writing programs without any bugs is difficult for developers
nd practitioners. Users and developers report problems when it
oes not behave as expected (Zimmermann et al., 2009). Specif-
cally, problems are often reported in the form of bug reports. A
ug report is a document that describes the bug and contains the
nformation needed to fix the bug (Nguyen et al., 2011). The rapid
evelopment of software (especially open source software) has
ed to an increasing number of bug reports (Anvik et al., 2005).
or example, GitHub, the world’s leading software development
latform, has more than 20+ million issues in 2019 just in closed
tatus (GitHub, 2019). And creating an issue is the most common
hing that people do in their first hour on GitHub (GitHub, 2021).
ue to the large scale of bug reports, handling them can be
hallenging for developers.
Bug reports are written in natural language by different users

r developers (Zhang et al., 2019). Due to the different styles and
xpertise of different reporters, bug reports suffer from various
tyles and are difficult to understand. For example, we find that
here are more than 61 and 39 kinds of phrase expressions for
escribing the environment of the bug and steps to reproduce the
ug, respectively.
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Fig. 1. An example of a bug report template on GitHub.

To enhance the comprehensibility of bug reports, GitHub has
proposed a template mechanism, where each project can set
a specific template to guide how to describe the bugs. Fig. 1
shows an example of a bug report template on GitHub. The
bug report template consists of a set of items and explanations
(indicated by underlined text) corresponding to the items, where
the explanations are statements or examples of what the items
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o

ean. However, the use of bug report templates such as the
opularity, benefit, and content has never been investigated. In
his paper, we conduct the first empirical study on the bug report
emplates (simplified as templates) on GitHub. We start with
nderstanding the popularity of templates, then explore their
enefits and analyze their content. Additionally, we propose an
utomatic templating approach for templating an un-templated
ug report (i.e., bug reports written without using templates). The
tudy discusses the following research questions in particular.
RQ1: How common do projects use templates on GitHub? We

arefully select 1000 of the most popular GitHub projects. We
ount projects with and without bug report templates and ana-
yze the use of templates over time. We find that more and more
rojects and bug reports are using templates over time.
RQ2: What are the benefits of using templates? We answer

his question in two ways: resolution time cost and comment
overage of a bug report. We calculate the resolution times and
omment coverage for bug reports with and without templates
n each project to explore this question. We find that bug reports
ith templates have shorter resolution times and higher com-
ent coverage, proving that using templates to report a bug is
eneficial.
RQ3: What are the items of template content? To answer this

uestion, we first investigate the most common items, and
hen explore the main item categories by merging semantic-
imilar items (e.g., describe the bug and bug description) according
o their explanations. A category consists of a set of similar
tems. As a result, the most commonly used items are expected
ehavior, describe the bug, to reproduce, additional context, envi-
onment, screenshots, steps to reproduce, desktop, actual behavior,
martphone, current behavior, and issue description. And we sum-
arize a taxonomy of items with 11 categories, e.g., Description,
eproduction, Expected Behavior.
RQ4: How to templatize a bug report? We propose an automatic

emplating approach for templating an un-templated bug report.
he results show that we achieve an average accuracy of 0.718
nd an average F1-score of 0.717.
This paper makes the following contributions:

• We provide insight into the popularity and benefits of
bug report templates, which reflects the importance of bug
report templates.

• We make a comprehensive understanding of template con-
tent by exploring the most common items and the main
item categories.

• We propose an automatic templating approach. The re-
sults show that our approach can effectively templatize an
un-templated bug report.

• We open source our replication package (Our Replication
Package, 2023) for further studies, including the dataset and
the source code of our study.

The rest of this paper is organized as follows. Section 2
resents related work. Section 3 describes the dataset. We
resent the methods and answers to each of the four research
uestions from Sections 4 to 7. Section 8 summarizes the main
hreats of our study. Section 9 discusses the evaluation of un-
emplated bug reports and the implications of our study. The
onclusion is concluded in Section 10.

. Related work

In this section, we introduce the related work about content
ptimization and comprehension of bug reports.
2

2.1. Content optimization of bug reports

Providing as much detail as possible in the bug report would
be laborious and impractical, so it is important to optimize the
content of the bug report.

For bug report fields, Bettenburg et al. (2007) investigate the
quality of bug reports for the first time by surveying Eclipse
developers. The results show that steps to reproduce and stack
traces are the most important information in bug reports, but
steps to reproduce would have the worst impact if it contains
error information. In addition, they provide a content-based tool
for assessing the quality of bug reports. Xie et al. (2013) find
that triager improves the quality of bug reports in three ways:
filtering reports, identifying related products, and adding the
missing information. Moreover, Breu et al. (2010) suggest users
include the fields screenshot, stack trace, and steps to reproduce
in their bug reports by investigating bug reports from Mozilla
and Eclipse. To predict the wrong components of the bug report,
Lamkanfi and Demeyer (2013) propose a data mining technique
to solve it. Considering the complexity of Bugzilla reports, Herraiz
et al. (2008) decrease the number of severity options for bug
reports from seven to three.

For the whole bug report, Wu et al. (2011) find that bug
reports are often incomplete and propose BUGMINER to detect
the completion of bug reports. Xia et al. (2014) find that fixing a
modified bug report takes more time through an empirical study
of open source projects.

2.2. Comprehension of bug reports

Bug reports are primarily based on natural language, so their
comprehensibility is critical.

There are some previous works on the summarization of bug
reports. Rastkar et al. (2010) first propose to generate summaries
for bug reports because they believe that an appropriate summary
would aid developers in rapidly perusing and locating the right
bug report when analyzing existing bug reports. In addition,
Rastkar et al. (2014) build a supervised-based summarizer to
generate summaries automatically. Jiang et al. (2019) propose
a supervised approach to summarize bug reports using crowd-
sourced elicited attributes. Due to the lack of summaries as labels,
many works also build unsupervised approaches to summarize
the bug reports based on classic unsupervised summarization
approaches (Mani et al., 2012), heuristic rules (Lotufo et al., 2015),
and auto encoder (Li et al., 2018). Mani et al. (2012) evaluate
four unsupervised techniques for bug report summarization and
improve the efficacy of the unsupervised by applying a noise
identifier and filtering sentences. Lotufo et al. (2015) propose a
graph-based unsupervised approach inspired by human reading
behaviors. Li et al. (2018) propose a stepped auto-encoder unsu-
pervised network, which successfully integrates the bug report
characteristics into a deep neural network.

In addition, Ko et al. (2006) investigate the way people
describe software bugs by analyzing bug report headings and
proposed more structured report forms based on this. Chen et al.
(2020) propose an approach named ITAPE, which automatically
generates headings for bug reports.

3. Dataset

We describe how we build our dataset, including how we
select and filter projects and how we identify bug reports with
templates.
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.1. Project selection

This paper is based on data from GitHub, an open source
oftware project hosting platform where users can manage their
roject code and browse other users’ open project code. When
ugs are found in open source projects, users can submit bug re-
orts in the issues module to inform developers and other users.
n addition, software developers can also discuss and communi-
ate in the issues module to submit their views in the comment
odule. To ensure a broad and random dataset, we select the

op 1000 most popular projects (with the highest number of
tars) on GitHub, which helps to (1) collect bug reports posted
y different reporters with different writing styles (2) and cover
wide range of project types. Actually, not all projects provide

emplates, 99 projects have English bug report templates and
projects have Chinese templates. For generalizability, we only
onsider templates written in English. Thus, our final dataset
onsists of such 99 projects with English templates.
Finally, we obtain all the templates and issues (issue number,

ssue label, issue status, created time, closed time, body, and
umber of comments) of the 99 projects with templates.

.2. Bug reports and templates identification

.2.1. Identification of bug reports from issues
GitHub gives project members the right to organize and priori-

ize their work. They can label issues with categories or any other
elpful information, e.g., ‘‘bug’’, ‘‘dependence’’, ‘‘environment’’,
‘question’’, and ‘‘ui’’. GitHub encourages projects to tag the ‘‘bug’’
or issues that report a bug (GitHub, 2022). Therefore, we keep
he issues labeled with ‘‘bug’’, ‘‘Bug’’, and ‘‘BUG’’ as bug reports.

.2.2. Identification of bug reports written using templates
Generally, many projects give templates according to their

roject characteristics and require the bug report writers to sub-
it bugs according to the templates. The bug report template
sually consists of a set of items and explanations corresponding
o the items. If a bug report template is used to report a bug,
he bug report writer populates the template based on the items
n the template. However, in practice, a large number of bug
eports do not follow or partially follow the template to write
ug reports. In other words, (1) different projects have different
emplates, and different templates have different items, (2) bug
eports for projects with templates are not always written using
he templates, and (3) bug reports that use templates do not
ecessarily use all the items in the templates. Therefore, for a
roject with a template, if a bug report uses an item from the
emplate, we assume that the bug report is written using the
emplate.

Finally, we obtain 63,105 bug reports from 99 projects with
emplates, including 18,058 bug reports written using templates
nd 45,047 bug reports written without using templates.

. RQ1: How common do projects use templates on GitHub?

We aim to investigate the popularity of bug report templates
n GitHub. All the analyses are conducted quantitatively.

.1. Methodology

We answer this RQ in two ways: (1) the trend of application
verall. (2) the trend of application within projects. We first
xplore the trend of using templates for projects and bug reports
n general, and then explore the trend of using templates in each
roject. The analysis is based on the projects and bug reports

escribed in Section 3.

3

Fig. 2. Trend of the using templates for all projects and templates.

Trend of application overall. We conduct a statistical analysis
t two levels to study the trends of using templates: projects
nd bug reports. For bug reports, when it uses an item from the
roject template, we consider it uses the template, as described
n Section 3.2.2. For projects, we consider whether the project
ses the provided template rather than just providing it. Some
rojects provide templates, but the templates are not used by
ny of the bug reports in the project (e.g., ‘‘feathericons/feather’’).
herefore, we consider a project to start using the template when
here is a bug report in the project written using the template.
o show trends of using templates, we calculate the following
wo indicators from 2014 to 2020: #Ratio of project using
emplates: As of this year, the ratio of the number of projects
sing templates to the number of all projects created. #Ratio
f bug reports using templates: As of this year, the ratio of the
umber of bug reports using the templates to the number of all
ug reports created.
Trend of application within projects. To explore the trend of

sing templates within projects, we conduct further research on
rojects that provided templates. We count the ratio of templated
ug reports for each project and show the ratio distribution for
ll projects from 2014 to 2020. In this case, the ratio of bug
eports using templates in each project in each year is calculated
s follows: the ratio of the number of bug reports using templates
o the number of all bug reports created in the project in that
ear.

.2. Results

Trend of application overall. Fig. 2 shows the ratio of projects
nd bug reports that use templates from 2014 to 2020. We
an find that more and more projects are using templates over
ime. Similarly, more and more bug reports are written using
emplates. Especially in the last few years, it has shown a sig-
ificant growth trend. In 2020, nearly 30% of the bug reports are
ritten using templates. It suggests that bug report templates are
ecoming an increasingly popular way to report bugs.
Trend of application within project. Fig. 3 shows box plots

rom 2014 to 2020 on the ratio of bug reports with templates
or each project. And each box plot shows the distribution of the
atio of bug reports with templates per project. The line in the
raph shows the trend in the mean ratios for each year. We can
ind that as the years grow, the ratio of the per-project using
he templates to write bug reports gets higher. In 2020, nearly



H. Li, M. Yan, W. Sun et al. The Journal of Systems & Software 202 (2023) 111709

t

5
t
t

t

5

u
q
a
d
b
t
r

p
t
y
T
a
c
n
y
t
u
t
t
5
w
t

Fig. 3. Trend of the ratio of templated bug reports for each project with
emplate.

2.8 percent of the bug reports per project are reported using
emplates. It suggests that there is a growing preference to use
emplates to report bug reports for projects with templates.

Summary: On GitHub, more and more projects are using
templates to report bugs, and more and more bug reports
are written using templates. Similarly, for each project
that has a template, more and more bug reports are
written using templates.

5. RQ2: What are the benefits of using templates?

We intend to explore the benefits of bug reports written using
emplates, which is also the research motivation of this paper.

.1. Methodology

The main purpose of a bug report is to help developers
nderstand the bug and resolve it. Therefore, we answer this
uestion in two ways: ‘‘Comment’’ and ‘‘Resolution’’. The first
spect focuses on the effect of improving attention and increasing
iscussion, while the second aspect focuses on the efficiency of
ug resolution. To this end, we explore the benefits by comparing
he metrics of these two aspects calculated separately for bug
eports with and without templates in the project.

As the years increase, the GitHub community grows, and new
rojects and bug reports appear. For a more comprehensive sta-
istical analysis, we first count the overall situation and then by
ear according to the creation time of bug reports in the project.
o reduce errors in the metrics, we keep projects that have
t least 5 bug reports written using templates. Similarly, when
ounting by year, to reduce statistical errors caused by the small
umber of bug reports written using templates created during the
ear in the project, we also include bug reports created before
hat year. And only projects with at least 5 bug reports written
sing templates as of that year are added to the calculation for
hat year. As of 2015, only 2 projects are using the template and
he number of bug reports written using the template is less than
in each of them, so our statistics start in 2016. For each project,
e calculate the following metrics separately for bug reports with
emplates and those without templates.
4

5.1.1. Comments
Some researchers have found that the comments are good

for resolving the bug (Hooimeijer and Weimer, 2007; Panjer,
2007; Ramirez-Mora et al., 2021). Hooimeijer and Weimer (2007)
observed that bug reports with many comments are resolved
more quickly in Firefox, suggesting that bugs that receive more
user attention are fixed faster. Panjer (2007) observed for Eclipse
that comment count affects the lifetime the most. And Ramirez-
Mora et al. (2021) found that the average number of comments
for bugs that were fixed was greater than the average number of
comments for bugs that were not fixed. Therefore, we calculate
two metrics related to the comments for the bug reports with and
without templates in the project.

#Comment Number: The average number of comments for
bug reports with comments in a project.

#Comment Coverage: The ratio of the number of bug reports
covered by comments to the total number of bug reports in a
project. Notably, for a bug report, if the number of comments is
greater than zero, the bug report is covered.

5.1.2. Resolution
Obviously, bug reports written using templates are more

readable, and the more readable bug reports are fixed faster (Bet-
tenburg et al., 2008). So the resolution time can be a good
measure of the quality of a bug report, which also widely adopted
in previous work (Datta et al., 2021; Datta and Lade, 2015; Datta
et al., 2014; Abreu et al., 2021; Zhang et al., 2013). Therefore,
we calculate the resolution times for the bug reports with and
without templates in the project.

#Resolution Time: The average resolution time for resolved
bug reports in a project. For a bug report, the resolution time is
the time cost (measured in days) from ‘‘created time’’ to ‘‘closed
time’’ of the bug report.

To explore whether closed bug reports are actually resolved
(especially those that have been open for a relatively long time to
close), we randomly select 10 bug reports that have been closed
for more than 400 days for manual analysis. By manually checking
and analyzing their comments and commits, we find that 90% of
the bug reports are actually resolved. This indicates that most of
the bug reports are closed only after they are resolved, which is
why a few of them take a relatively long time to close. For exam-
ple, the bug report ‘‘#6134’’ for the project ‘‘sequelize/sequelize’’
is created on June 19, 2016, and fixed and closed after 601 days
on February 11, 2018, via ‘‘Pull Request #9033’’. During the time
it is open, 16 different developers comment one after another
that they encounter the same bug, even two days before the
bug is fixed. And the bug report ‘‘#8044’’ for the project ‘‘elas-
tic/elasticsearch’’ was created on October 10, 2014, and closed on
August 24, 2016, after 684 days by jpountz, who comments that
the bug is fixed in master. Moreover, the ratio of bug reports that
take more than 200 days or 400 days to resolve is small. The ratio
of bug reports with templates that take 200 to 400 days to resolve
is 0.080, and only 0.038 for those that take more than 400 days.
The ratio of bug reports without templates that take 200 to 400
days to resolve is 0.051, and only 0.062 for those that take more
than 400 days.

5.2. Results

5.2.1. Comments
Results of overall statistics. Table 1 shows the overall statis-

tical difference of comments for bug reports with and without
templates in the projects. We can find that the average com-
ment coverage for bug reports with templates is higher than for
those without templates. And the average number of comments

for commented bug reports is also higher when a template is
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Fig. 4. The overall comparison of resolution times between bug reports with
nd without templates.

Table 1
The overall statistical difference of comments for bug reports with and without
templates in our dataset.

Mean

With templates Without templates

#Comment coverage (%) 0.923 0.895
#Comment number 6.994 6.838

Table 2
The annual statistical difference of comments for bug reports with and without
templates in our dataset (Mean).
Year #Comment coverage (%) #Comment number

With
templates

Without
templates

With
templates

Without
templates

2016 0.944 0.877 8.448 6.252
2017 0.936 0.879 8.247 6.788
2018 0.944 0.889 8.205 7.060
2019 0.932 0.898 7.745 7.015
2020 0.923 0.895 6.994 6.838

used. This shows that a clearly structured bug report written
using a template can, to some extent, gain the attention of more
developers and get more discussion.

Results of statistics by year. Table 2 shows the statistical
ifference of comments for bug reports with and without tem-
lates in the projects from 2016 to 2020. It can be seen that
he average comment coverage of bug reports with templates
s higher than for those without templates each year. For bug
eports with comments, the average number of comments for
ug reports with templates is also higher each year than for bug
eports without templates.

.2.2. Resolution
Results of overall statistics. Fig. 4 shows the distribution

differences between bug reports with and without templates
in their resolution times. The left and right violin plots show
the distribution of the average resolution time for bug reports
with and without templates per project, respectively. We can
find that the box plots of the bug reports with templates have
shorter upper whiskers, suggesting that the distribution of the
average resolution time for bug reports with templates is rela-
tively concentrated. Moreover, we can find that the box plots for
bug reports with templates have lower box cap and floor, and
5

Table 3
The overall statistical difference of average resolution time for bug reports with
and without templates in our dataset.

Median (days) Mean (days)

With templates (x) 54.295 58.559
Without templates (y) 68.208 105.685
Differences (y − x) 13.913 47.126

Table 4
The annual statistical difference of average resolution time for bug reports with
and without templates in our dataset.
Year Median (days) Mean (days)

With
templates

Without
templates

With
templates

Without
templates

2016 107.015 75.797 167.947 132.698
2017 108.741 68.124 135.545 111.054
2018 100.677 78.543 135.960 112.977
2019 71.488 82.002 80.702 123.517
2020 54.295 68.208 58.559 105.685

the point in the graph representing the median of the resolution
times is lower with the template than without. All this means
that bug reports with templates are more likely to have a shorter
resolution time. Table 3 shows the statistical difference of resolu-
tion for bug reports with and without templates in the projects. It
can be found that the average resolution time of bug reports with
templates is reduced by 47.126 days on average and 13.913 days
on median compared to those without templates, which shows
that bug reports with templates are more efficient and take less
time to resolve bugs.

Results of statistics by year. Fig. 5 shows the distribution
differences between bug reports with and without templates in
their resolution times from 2016 to 2020. The left and right sides
of each violin plot show the distribution of resolution times for
bug reports with and without templates per project. The solid line
in the violin plot represents the median and the dashed line rep-
resents the quartiles. As can be seen, the distribution of resolution
times for bug reports with templates is increasingly concentrated
in a shorter range of resolution times as the year increases, but
there is no significant change for bug reports without templates.
And, starting in 2019, there is a significant difference in the
distribution of resolution times for bug reports with and without
templates: The distribution of bug reports with templates is more
concentrated in a lower range of resolution times compared to
those without templates. Moreover, starting in 2019, the median
and quartiles of resolution times for bug reports with templates
are shorter than for bug reports without templates. Table 4 shows
the statistical difference in resolution for bug reports with and
without templates in the projects from 2016 to 2020. We can
find that starting from 2019, the median and mean of resolution
times for bug reports with templates starts to be shorter than
for bug reports without templates. In particular, by 2019, the
average resolution time for bug reports with templates is 10.514
days shorter than those without templates on the median and
42.815 days shorter on the mean. By 2020, the average resolution
time for bug reports with templates is 13.913 days shorter than
those without templates on the median and 47.126 days shorter
on the mean. It can be seen that as the years go by, the average
resolution time for bug reports with templates is not only lower
than those without templates, but the difference also becomes
larger. This may be due to the fact that the ratio of bug reports
written using templates is increasing year by year, as concluded
in RQ1. By 2020, the number of new bug reports with templates
in projects is comparable to the number of bug reports without

templates in projects, and comparisons are relatively fair.
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Summary: Bug reports written using templates not only
gain higher comment coverage and more comments, but
also take less time to be resolved.

6. RQ3: What are the items of template content?

We aim to explore what items are most commonly used in
emplates, and what are the main categories of items.

.1. Methodology

After manually checking the templates in our dataset, we find
hat the bug report template for each project is written according
o the characteristics of the project. The template items differ
etween projects, items with different representations may be
he same semantic. For example, the item what happen instead
as the same semantic meaning as the item actual result.
Therefore, we do the following steps to investigate the items:

1) Item quantity analysis. We first count the items of all bug
eport templates to explore which items are commonly used for
emplates. (2) Item category analysis. Based on the results of item
uantity analysis, we use a two-iteration card sorting approach to
ggregate all the items. Such an aggregation step aims to explore
he main categories of items by merging semantic-similar items.
ach category is representative of a class of semantic-similar
tems.

.1.1. Item quantity analysis
We first extract all the items from bug report templates

anually, then format and count the items.
Before we count all items, we do the following two steps:
Item Extraction: Different projects may use different formats

or a same item in the template. For example, both ‘‘##envi-
onment*’’ and ‘‘*Environment**’’ represent the meaning of the
nvironment, but the format is not the same. Extracting all the
tems automatically and accurately is difficult. Therefore, we
anually check the template content to extract all the template

tems.
Item Formatting: We format the items before performing

tatistical analysis. In detail, we remove non-English characters
rom the items, such as ‘‘#’’, ‘‘*’’, and format all items in lowercase.

or example, ‘‘##Environment’’ is formatted as ‘‘environment’’.

6

6.1.2. Item category analysis
In order to explore the taxonomy of the template items for bug

reports, we need to classify items of all templates according to
the corresponding explanations and finally generate a taxonomy
of the items.

We use a two-iteration card sorting (Spencer and Donna,
2009) approach to classifying items. We create one card for each
item, where the card contains the interpretation of the item and
the context of the item.

Iteration 1. We define the initial categories by the semantic
merging of common items based on item explanations, where the
common items are the results of Item Quantity Analysis. Based
on the principle of brevity and common usage, the initial cate-
gory names are defined as follows: Expected Behavior, Description,
eproduction, Additional Context, Environment, Screenshots, and Ac-
ual Behavior. We ask two volunteers manually and independently
lassify all the items based on the initial item categories. After
ndependent classifying, the two volunteers work together to
iscuss disagreements and items that could not be classified.
At the end of this iteration, 11.36% of the items still cannot

e classified after the discussion between the two volunteers
e.g., self-diagnosis). This indicates that the initial categories we
efined are deficient. So we need to adjust the item categories in
teration 2 based on unclassified items.

Iteration 2. The two volunteers then independently classify the
emaining items by merging semantic-similar items together into
new category based on item interpretation. In order to show the
ategory of template items more comprehensively, for the item
ategories with counts greater than 2, we keep them and name
hem based on concise and common usage. For the remaining
nclassified items, each of which is an item category, we classify
hese items into the Other item category for visualization pur-
oses. In addition, we classify those items that have the same
xpression but different meaning in the templates of different
rojects into Other item category as well.
After the classification, we discuss all item categories and

uggest a common bug report template.

.2. Results

.2.1. Results for item quantity statistic
Table 5 shows the most common items for bug report tem-

lates, where ‘‘Count’’ represents the number of the item in all
emplates, ‘‘Ratio’’ represents the ratio of the number of the item
o the number of all items. We do not list the items with a count
ess than 5, because their percentage is no more than 0.1%.

From Table 5, we can find that the commonly used items are
s follows.
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Table 5
Statistics of the most common items.
Rank ItemName Count Ratio

1 Expected behavior 61 10.66%
2 Describe the bug 45 7.87%
3 To reproduce 39 6.82%
4 Additional context 39 6.82%
5 Environment 31 5.42%
6 Screenshots 30 5.24%
7 Steps to reproduce 20 3.50%
8 Desktop 13 2.27%
9 Actual behavior 12 2.10%
10 Smartphone 10 1.75%
11 Current behavior 8 1.40%
12 Issue description 6 1.05%

• The item expected behavior guides to describe what would
happen if the bug is not present.

• The items describe the bug, issue description guide to provide
a brief description of the bug.

• The items to reproduce, steps to reproduce guide to describe
how the bug can be reproduced.

• The item additional context guides to describe any other
information related to the bug.

• The items environment, desktop, smartphone guide to de-
scribe the environment at the time of the bug, such as
operating system or version information.

• The item screenshots guides to give screenshots related to
the bug.

• The items actual behavior, current behavior guide to describe
what actually happens when there is a bug.

6.2.2. Results for the taxonomy
Fig. 6 shows the taxonomy of items by our card sorting for bug

eport templates, which are composed of eleven root categories:
escription, Reproduction, Expected Behavior, Actual Behavior, En-
ironment, Additional Context, Checklist, Screenshots, Log, Solution,
nd Others. The semantic-similar items in each category are rep-
esented as leaves. In addition, the value in the circle box in
he upper right corner shows the item count. As for the value
f the box ‘‘others’’ in the category, it indicates the number of
emantic-similar items with a count of 1.
For each category, we present the specific count (immediately

ollowing the item category name), and discuss it in detail. At the
nd of this section, we suggest a common bug report template.
7

Description (69): This category mainly guides to provide a
rief description of the bug. There are 69 semantic-similar items
n this category, accounting for 12.06% of all items. There are
4 expressions in this category, and more than half of them are
escribe the bug (45). But for brevity, we define the category as
escription. For a bug report, a brief bug description can help
thers quickly understand what the bug report is about.
Reproduction (108): This category mainly guides to describe

he steps to reproduce the bug. There are 108 semantic-similar
tems with 39 expressions in this category, and it accounts for
8.88% of all items, making it the second largest category. For a
ug report, describing how the bug happened so that others can
eeply understand the bug and reproduce it.
Expected Behavior (85): This category mainly guides to de-

cribe what would happen without the bug. There are 85
emantic-similar items with 11 expressions in this category, and
t accounts for 14.86% of all items, making it the third largest cat-
gory. For a bug report, describing what would happen without
he bug can help others explore the reasons for the bug.

Actual Behavior (45): This category mainly guides to describe
hat would happen with the bug. There are 45 semantic-similar

tems with 18 expressions in this category, and it accounts for
.87% of all items. We can see that the count of Actual Behavior
s less than Expected Behavior, because there are some templates
here the Descriptionmay contain Actual Behavior. However, for a
ug report, Actual Behavior and Expected Behavior are meaningful
ategories because it helps others to understand the gap between
ctual Behavior and Expected Behavior in detail and explore the
easons why the bug happens from the gap in results.

Environment (118): This category mainly guides to describe
here the bug happened. That is, it describes the environment

n which the bug happened, e.g., version, desktop. There are 118
emantic-similar items with 61 expressions in this category, and
5 of these expressions have an item count of 1, which illustrates
he diversity of using natural language to describe the same item.
n addition, this category accounts for 20.63% of all projects,
aking it the largest category. For a bug report, Environment

s not only important information for reproducing the bug, but
ometimes it is also one of the reasons why the bug happened.
Screenshots (30): This category mainly guides to provide

creenshots to help explain the bug. There are 30 semantic-
imilar items with 1 expression in this category, and it accounts
or 5.24% of all items. Screenshots is different from other cate-
ories in that it requires images rather than text, which helps to
etter describe the bug.
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Fig. 7. Overall framework of our approach.
Additional Context (52): This category mainly guides to
describe any other context about the bug. There are 52 semantic-
similar items with 10 expressions in this category, and it accounts
for 9.09% of all items. Interestingly, the items in the Additional
ontext category may have different meanings in different tem-

plates. This is because this category guides to describe anything
other than the other items of the template it is in. For example,
‘‘What else should we know about your project/environment’’,
since the template does not have a Environment item, the item
lso guides to report Environment.
Log (15): This category mainly guides to describe any error

ogs about the bug. There are only 15 semantic-similar items
ith 14 expressions in this category, and it accounts for 2.62% of
ll items. It is usually combined with other item categories. For
xample, the item screenshots or logs, and the item other info/logs.
Solution (7): This category mainly guides to provide any ideas

on how to solve the bug. There are only 7 semantic-similar items
with 3 expressions in this category, and it accounts for 1.22% of
all items. In addition, its content may appear in the Additional
ontext of some templates.
Checklist (5): This category mainly guides to let the reporter

o ensure some steps before writing. There are only 5 semantic-
imilar items with 4 expressions in this category, and it accounts
or 0.87% of all items. Even without this category, it does not affect
he understanding of the bug. For example, the item Preflight
Checklist is meant to guide the reporter to confirm that the
relevant steps listed are completed by replacing ‘‘[ ]’’ with ‘‘[x]’’
before writing the report.

Others (38): This category contains 38 (6.64%) items that can-
not be classified. The several reasons are as follows: (1) There
are some items defined with different meanings in different tem-
plates. For example, the explanation of the item bug report in
the project ‘‘bvaughn/react-virtualized’’ is ‘‘Please include either
a failing unit test or a simple repro’’, so the item should be
in the Reproduction category. But its explanation in the project
‘‘SeleniumHQ/selenium’’ is ‘‘a clear and concise description of
what the bug is’’, so the item should belong to the Description
category. (2) There are some items (e.g., affected features) that are
specific to the project. (3) There are some items (e.g., scenario) for
which the template does not provide explanations, so items may
not be classified.

As a result, in addition to the Other category, there are ten
categories of template items. But three of these categories are not
universal, namely Log (2.62%), Solution (1.22%), Checklist (0.87%).
herefore, we suggest a common template which is a combina-

ion of the other seven item categories: Description, Reproduction,

8

Expected Behavior, Actual Behavior, Environment, Screenshots, Ad-
ditional Context. The common template can guide to describe
what the bug is, how the bug happened, what should have hap-
pened, what actually happened, and where it happened, relevant
screenshots, and any other information about it.

From our taxonomy, we can know that the main purpose
of a bug report is to help developers understand the bug and
reproduce it. With the common bug report template, it not only
can help to write a complete and well-structured bug report, but
also can help the un-templated bug report to be templated.

Summary: The common items are expected behavior, de-
scribe the bug, to reproduce, additional context and envi-
ronment etc. We summarize a taxonomy of items with
11 categories, and suggest a common bug report template
through this taxonomy.

7. RQ4: How to templatize a bug report?

We propose a deep-learning based automatic templating ap-
proach and set up experiments to evaluate its effectiveness. The
automatic templating task is formalized as a sentence classifi-
cation task. The input is the sentences of an un-templated bug
report, the output is the predicted labels of the sentences, and
the classification labels of the sentences are item categories in
the bug report template.

7.1. Approach

Fig. 7 illustrates the overall framework of our approach. It
contains three phases: data preparation, training, and classifi-
cation. In the data preparation phase, we extract the sentences
belonging to categories from bug reports. After preprocessing,
we can get the training sentences. In the training phase, we first
learn word embedding to generate a dictionary and convert each
sentence represented by text into a matrix. Then we take the
training sentences represented by matrices as input to train a
CNN model. In the classification phase, for an un-templated bug
report, we first divide it into sentences, preprocess the sentences,
and convert the sentences to matrices. Then we feed the matrix
representation of each sentence into the trained model to predict
the label of each sentence.
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.1.1. Data preparation
To obtain the training sentences with classification labels,

e first extract the sentences belonging to categories from bug
eports, and then preprocess the sentences of each category using
ucene’s StandardAnalyzer (Bialecki et al., 2012) in two steps:
okenization and removal of stop words. For tokenization, we
nly keep tokens that contain English letters, and we only extract
nglish letters and numbers in a reserved token (e.g., ‘‘version:’’
s converted to ‘‘version’’). And all words are converted to lower-
ase. For removal of stop words, we use the default vocabulary of
nglish stop words (Bialecki et al., 2012). And the words are not
temmed in this experiment because the tense of the words may
ffect the classification results of the sentences.

.1.2. Training
In this phase, the preprocessed sentences represented by text

ill be embedded into vectors and then fed into the CNN model.
o convert each sentence into a matrix, we need to learn the word
mbedding of all unique words and generate a dictionary. After
etting the matrices, we take them as input to train a CNN model
o obtain the classification results.

The CNN model consists of an input layer, convolutional layer,
atch normalization (BN) layer, pooling layer, and output layer.
he input layer of CNN receives the matrix representation of
sentence as input. After receiving the input matrix, the con-
olutional layer using various filters (Ioffe and Szegedy, 2015;
u et al., 2015; He et al., 2015; Szegedy et al., 2016) on it to

xtract the information. A BN layer (Ioffe and Szegedy, 2015) is
dded after the convolutional layer to improve training speed and
odel generalization performance. After the output vectors of the
onvolutional layer are normalized, the max-pooling is applied
o get the most important feature captured by each filter. Then,
he pooling outputs are concatenated and delivered to the output
ayer. Since each neuron in the output layer corresponds to one
nique classification category (i.e., one for each item category),
he output layer first performs a linear transformation on the
nput vector and then applies a softmax function to normalize it.

The CNN model uses the loss function to calculate the devia-
ion of the prediction results from the ground truth labels, which
s used in the backpropagation process to update the gradients.
n order to obtain the best CNN model, the loss function needs
o be converged by continuously training and optimizing the
arameters in the CNN. Our loss function is set to:

oss(P, R) = −

n∑
i

Rilog(Pi) (1)

In the above equation, R denotes the ground truth vector and
i denotes the ith element value of R. If R belongs to class i, Ri is 1,
lse is 0. P represents the corresponding prediction vector, which
s the normalized vector generated by the output layer. And the
alue n means the total number of categories.

.1.3. Classification
In order to templatize bug reports that are not using tem-

lates, we need to classify the sentences in the bug reports. We
irst divide the bug reports into sentences and preprocess the
entences in the same way as the Data Preprocessing phase. After
reprocessing, we convert each sentence to a matrix by looking
p the dictionary learned in the training phase. To obtain the
lassification result of each sentence (i.e., the item category of
he sentence), we finally feed the matrix representation of each

entence into the trained CNN.

9

Table 6
Distribution of the dataset.
Category Training Validation Testing

Description 7312 2438 2438
Reproduction 7371 2457 2457
Expected behavior 2732 911 911
Actual behaviors 7444 2482 2482
Environment 8894 2965 2965
Additional context 3415 1139 1139

7.2. Study setup

In this section, we provide the details of our experimen-
tal setup. We first describe the experimental dataset, and
then introduce the evaluation metrics and the comparisons of
approach.

7.2.1. Experimental dataset
We construct a multi-project dataset to evaluate the perfor-

mance of our approach. We use the item categories from the
common template suggested from RQ3 as our classification la-
bels, including Description, Reproduction, Expected Behavior, Actual
Behavior, Environment, and Additional Context. Screenshots is not
used because the content of this category is not textual content.
To minimize the noise in the experimental dataset, we first re-
serve the projects with templates that contain at least five item
categories, and filter out the bug reports with empty content
under the category. Finally, the sentences of bug reports with
categories are extracted to form our experimental dataset. As a
result, there are 19166 bug reports, and 61952 sentences in our
dataset.

Then we randomly divide the dataset into a training set, a
validation set, and a testing set for each category in a 6:2:2 ratio.
To eliminate randomness, we repeat the predictions ten times
and record the average evaluation results. Table 6 shows the
number of sentences in the training set, validation set, and testing
set for each category in the dataset.

7.2.2. Evaluation metrics
For each sentence in the testing set, there are four possible

prediction results. Therefore, we record four basic statistics for
each class: TPi (true positive for class Ci) denotes the number of
sentences that are predicted as class Ci and they do belong to class
Ci. FPi (false positive for class Ci) denotes the number of sentences
that are predicted as class Ci and they actually do not belong to
class Ci. FNi (false negative for class Ci) denotes the number of
sentences that are not predicted as class Ci and they do belong
o class Ci; TNi (true negative for class Ci) denotes the number of
entences that are not predicted as class Ci and they truly do not
elong to class Ci. Based on the above four statistics, we compute
ccuracy to evaluate the overall performance of our approach,
nd compute Precision, Recall, and F1-score for each class to
valuate the performance for a specific item category (Rahman
nd Devanbu, 2013; Jiang et al., 2013; Nam et al., 2013; Guo et al.,
003; Menzies et al., 2010).
Accuracy indicates the proportion of all correctly predicted

entences to all sentences. The value n in the equation means the
otal number of categories.

=

∑n
i TPi∑n

i TPi +
∑n

i FNi
(2)

Precision indicates the proportion of all sentences that are
correctly predicted as class Ci to all sentences that are predicted
s class Ci.

i =
TPi (3)
TPi + FPi
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Table 7
The accuracy achieved by different approaches.
Approach Ours RCNN KNN SVM CART

Accuracy 0.718 0.540 0.503 0.474 0.469

Table 8
The F1-score achieved by different approaches for each item category.
Category Ours RCNN KNN SVM CART

Description 0.683 0.529 0.467 0.453 0.430
Reproduction 0.653 0.474 0.425 0.439 0.402
Expected behavior 0.585 0.009 0.233 0.099 0.230
Actual behavior 0.678 0.473 0.475 0.392 0.464
Environment 0.864 0.786 0.692 0.642 0.669
Additional context 0.732 0.375 0.547 0.474 0.402
Avg. 0.717 0.492 0.504 0.459 0.471

Recall indicates the proportion of all sentences that are cor-
rectly predicted as class Ci to all sentences belong to class Ci.

i =
TPi

TPi + FNi
(4)

F1-score is a summary measure that combines precision and
recall.

Fi =
2 ∗ Pi ∗ Ri

Pi + Ri
(5)

7.2.3. Comparisons of approach
In general, the templating task belongs to text classification.

We choose the following baseline approaches to compare the
performance of our approach:

TextRCNN: Lai et al. (2015) proposed the recurrent convolu-
tional neural network (RCNN) and applied it to the task of text
classification. The model can infer the label or set of labels for a
given text (sentence, document, etc.) and can be used to solve our
problem. We compare our approach with TextRCNN based on the
same dataset and the same word embedding method.

SVM, CART, KNN: Since our approach is based on text classifi-
cation, we also design three simple baseline approaches that use
text classification techniques. We choose Support Vector Machine
(SVM), Classification and Regression Trees (CART), and k-Nearest
Neighbor (KNN) to build three different classifiers, which are
widely used in previous studies (Han et al., 2011; Jiang et al.,
2013; Tantithamthavorn et al., 2015). Our implementation is
based on scikit-learn with default settings, which is an open
source python language based machine learning toolkit. Similarly,
the comparisons are based on the same dataset and the same
word embedding method.

7.3. Results

The accuracy results of each approach are shown in Table 7,
and the best result is in bold. Our approach achieves an accuracy
of 0.718. In comparison, RCNN, KNN, SVM, and CART achieve
an average accuracy of 0.540, 0.503, 0.474, and 0.469, respec-
tively. In summary, our approach improves the average accuracy
over RCNN, KNN, SVM, and CART by 33%, 43%, 51%, and 53%,
respectively.

Tables 8–10 respectively show the F1-score, precision, and
recall achieved by each approach in each item category. Con-
sidering the category imbalance in the dataset, we present the
weighted average (Sklearn Metrics, 2022) of metrics weighted by
the number of sentences in each category in the dataset. All best
results are highlighted in bold.

Table 8 shows the F1-score achieved by each approach in
each item category. It can be seen that our approach achieves
10
Table 9
The precision achieved by different approaches for each item category.
Category Ours RCNN KNN SVM CART

Description 0.647 0.509 0.430 0.487 0.427
Reproduction 0.649 0.401 0.389 0.333 0.382
Expected behavior 0.636 0.800 0.281 0.842 0.228
Actual behavior 0.706 0.479 0.503 0.485 0.457
Environment 0.849 0.746 0.714 0.609 0.691
Additional context 0.767 0.618 0.621 0.795 0.452
Avg. 0.718 0.570 0.511 0.540 0.475

Table 10
The recall achieved by different approaches for each item category.
Category Ours RCNN KNN SVM CART

Description 0.724 0.550 0.510 0.423 0.433
Reproduction 0.657 0.401 0.468 0.643 0.425
Expected behavior 0.542 0.004 0.199 0.053 0.233
Actual behavior 0.652 0.478 0.449 0.329 0.471
Environment 0.879 0.830 0.672 0.680 0.648
Additional context 0.701 0.269 0.488 0.338 0.362
Avg. 0.718 0.527 0.503 0.474 0.469

an F1-score that ranges from 0.585 to 0.864, with a weighted
average of 0.717. In contrast, the average F1-score obtained by
RCNN, KNN, SVM, and CART are 0.492, 0.504, 0.459, and 0.471,
respectively. We see that our approach achieves a higher F1-score
than any other baseline approach in each category. In conclusion,
our approach improves RCNN, KNN, SVM, and CART in terms of
F1-score by 46%, 42%, 56%, and 52%, respectively.

Tables 9 and 10 respectively show the precision and recall
achieved by each approach in each item category. It can be seen
that our approach achieves the best results for most categories,
while SVM achieves the best precision for Expected Behavior and
Additional Context. For the category Additional Context, although
SVM achieves the highest precision (0.795), our approach is very
close to its results (0.767). Moreover, the recall of its approach
(0.338) is much lower than that of our approach (0.701). This
situation may be due to the fact that SVM is insufficient to cover
all the important features of Additional Context and therefore can
only identify only a small part of the sentences of Additional
Context. Similarly, SVM achieves the highest precision of 0.842
for Expected Behavior but with a relatively low recall (0.053). One
reason is that only a small proportion of sentences belong to the
Expected Behavior, which makes SVM prefer the other category,
thus misclassifying most Expected Behavior sentences as the other
categories.

Summary: For each category, our approach achieves the
best performance in terms of F1-score. For all categories,
our approach achieves an accuracy of 0.718 and an F1-
score of 0.717 on average, which improves the other
baselines by a substantial margin.

8. Discussion

In this section, we discuss the evaluation of un-templated bug
reports and the implications of our study.

8.1. Evaluation of un-templated bug reports

To further demonstrate the value of our proposed approach,
we apply it to the real scenario of templating bug reports written
without using templates.

Evaluation Methodology: Since the bug reports written with-
out using templates need to be manually labeled, we randomly
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Table 11
The evaluation results by different approaches for untemplated bug reports.
Approach Ours RCNN KNN SVM CART

Accuracy 0.566 0.197 0.295 0.287 0.205
F1-score 0.572 0.195 0.165 0.151 0.212

select 10 bug reports containing a total of 122 sentences. We
first divide the bug reports into sentences and manually label
all sentences. To minimize errors, we first ask two volunteers
to manually and independently label all the sentences based on
six common items as RQ3 summarized. If there is disagreement,
the two volunteers read the whole bug report and discuss it to
make the final decision. After manual labeling, we preprocess the
sentences in the same way as the Data Preprocessing phase and
convert each sentence into a matrix during the trained dictionary.
Finally, the matrix representations of all sentences are fed into
our trained model and other baselines’ trained models.

Evaluation Results: The accuracy and F1-score results of each
approach are shown in Table 11, and the best results are in bold.
It can be seen that our approach achieves an accuracy of 0.566
and an F1-score of 0.572. In contrast, the accuracy obtained by
RCNN, KNN, SVM, and CART are 0.197, 0.295, 0.287, and 0.205,
respectively. And the F1-scores obtained by RCNN, KNN, SVM, and
CART are 0.195, 0.165, 0.151, and 0.212, respectively. In summary,
our approach achieves higher accuracy and F1-score than any
other baseline approach.

8.2. Implications

The readability of bug reports is critical to facilitate coordina-
tion and communication among developers, so it is important to
understand the content of bug report templates and how to tem-
platize bug reports. We discuss the implications for developers
and researchers.

Implications for Developers: Our analysis of how common
templates are can make developers aware of the popularity of bug
report templates. Our analysis of the benefits of using templates
can make developers aware of the importance of bug report
templates. And our analysis of template content can help project
managers understand how to go about writing a good bug re-
port template for a project. Our automatic templating approach
can help developers templatize an un-templated bug report. In
addition, if the automatic templating approach is integrated into
GitHub, automated feedback can be provided to the bug reporter
at reporting time, so that the bug reporter can know what is
missing in his/her bug report and adds it accordingly (e.g., missing
content about environments).

Implications for Researchers: We are the first to propose
a study of bug report templates on GitHub, reflecting the
importance of bug report templates. Our proposed automatic
templating approach can effectively templatize un-templated bug
reports, pushing the frontiers of research in the comprehensibility
of bug reports. Therefore, we believe that our work highlights an
opportunity for further research to gain more insights into bug
reports.

9. Threats to validity

Threats to internal validity concerns the potential errors in
the implementation of our experiments. The first threat has to do
with identifying bug reports. To ensure the quality of the dataset,
we only consider the issues labeled as ‘‘bug’’, ‘‘Bug’’, ‘‘BUG’’, al-
though this may miss some bug reports. The second threat has to
do with our programming. Although we have double-checked and
thoroughly tested our code, there may still be mistakes that we
 A

11
failed to catch. We also make our source code available for other
researchers to replicate and extend in order to lessen the impact
of undetected errors in our programming. The subjectivity in the
item taxonomy’s construction poses another threat. To reduce
this threat, we adhere to the strict card sorting process and
ask two volunteers to label items independently, thus reducing
personal bias in the manual labeling process.

Threats to external validity concerns the generalizability of
ur results. Our study concentrates on the bug reports of popular
pen source projects on GitHub. Future studies on more projects
nd more bug tracking systems (e.g., JIRA) are needed to mitigate
his issue.

Threats to construct validity concerns the rationality be-
ween the treatment and the outcomes. To gain insight into the
ug report templates, we conducted in-depth research in terms of
ts popularity, benefits, and content, as we believe these aspects
re likely to provide unique insights and value for practitioners
nd researchers. In addition, we use accuracy, precision, recall,
nd F1-score to measure the effectiveness of the approach, which
ave been widely used by past studies (Rahman and Devanbu,
013; Jiang et al., 2013; Nam et al., 2013; Guo et al., 2003;
enzies et al., 2010). Therefore, we believe that the threat to
onstruct validity is not significant.

0. Conclusion and future work

To effectively ensure the quality of software, many projects
se bug reports to collect and document bugs found by users.
itHub has proposed a template mechanism to enhance the com-
rehensibility of bug reports. However, there is no study on the
se of bug report templates on GitHub.
In this paper, we first conduct an empirical study on the

opularity, benefits, and content of bug report templates. For
opularity, we find that the use of bug report templates has
ecome increasingly popular over time. For benefits, we find that
ug reports with templates have shorter resolution times and
igher comment coverage. For content, we discover the most
ommonly used items, summarize the main item categories, and
rovide a common bug report template. Finally, we propose an
utomatic templating approach for templating an un-templated
ug report.
In the future, to further improve the performance of our

pproach, we plan to consider the context of the sentences.
dditionally, we plan to apply our approach to support other bug
eport content optimization tasks, such as duplicate bug report
etection, automatic bug report title generation, and automatic
ug report summary generation.
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