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a b s t r a c t

Software information sites (e.g., StackOverflow, Freecode, etc.) are increasingly essential for software
developers to share knowledge, communicate new techniques, and collaborate. With the rapid growth
of software objects, tags are widely applied to aid developers’ various operations on software
information sites. Since tags are freely and optionally selected by developers, the differences in
background, expression habits, and understanding of software objects among developers may cause
inconsistent or inappropriate tags. To alleviate the problems of tag synonyms and tag explosion, we
propose TagDC, i.e., a composite Tag recommendation method with Deep learning and Collaborative
filtering.

TagDC consists of two complementary modules: the word learning enhanced CNN capsule module
(TagDC-DL) and the collaborative filtering module (TagDC-CF). It can improve the understanding of
software objects from different perspectives. Given a new software object, TagDC can calculate a
list of the combined confidence probabilities of tags and then recommend TOP-K tags by ranking
the probabilities in the list. We evaluated our TagDC on nine datasets with different scales. The
experimental results show that TagDC achieves a better effectiveness against two state-of-the-art
baseline methods (i.e., TagCNN and FastTagRec) with a substantial improvement.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

Software information sites (Wang et al., 2015; Hong et al.,
017; Zhou et al., 2017; Liu et al., 2018) such as StackOverflow,
skDifferent, and AskUbuntu are increasingly essential for soft-
are developers. These sites support developers to post online
o share knowledge, communicate new techniques, and collabo-
ate (Hong et al., 2017; Zhou et al., 2017; Liu et al., 2018). Gener-
lly, the contents (e.g., questions, answers, project descriptions,
ags, etc.) of these sites are termed as software objects (Wang
t al., 2015; Zhou et al., 2017; Liu et al., 2018). The tag is a brief
abel consisting of a few words provided as metadata to software
bjects. Tags are useful for efficiently organizing and classifying
he contents of these sites and improving the ease of various
perations for developers (Liu et al., 2018). High-quality tags are
xpected to be concise and accurate enough to summarize the
ey topics of software objects.
Software information sites allow users to tag their posts in

heir own words arbitrarily. Recent researches show that it is
ot easy for them to select consistent and appropriate tags (Zhou
t al., 2017; Liu et al., 2018). The choice of tags depends not only
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on the developers’ expertise and language skills, but also on their
expression preferences. As a result, the two major challenges
for selecting tags are tag synonyms (Joorabchi et al., 2015) and
tag explosion (Barua et al., 2014) as the evolution of software
information sites.

Tag synonyms describe the phenomenon that tags have the
same or similar meanings. Such synonymous tags often have dif-
ferent expressions such as acronyms or full spelling, hyphens or
no hyphens, spaces or no spaces, upper or lower cases, etc. (Zhou
et al., 2017). Even the widely recognized tags are described dif-
ferently. For instance, some developers often describe ‘‘c#’’ as
‘‘csharp’’, ‘‘javascript’’ as ‘‘js’’. Tag explosion indicates that the
ever-increasing software objects also lead to dramatic growth
of tags. By manually investigating the number of tags in each
software object, we found that there exist at least one but no
more than five tags per posting in the Q&A developer software
information sites (e.g., StackOverflow, AskDifferent, etc.) and no
more than ten tags per posing in Freecode. As a result, there
are more than 58 thousand tags on StackOverflow, more than
5.5 thousand tags on AskUbuntu, and more than 1.1 thousand
tags on AskDifferent before July 2019. Liu et al. (2018) found
that the objects become increasingly poorly classified with such a
vast amount of tags accumulated on these sites, which seriously
influences the accuracy and speed of users’ queries.
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Table 1
Example of three similar software objects.

NO. 94,058 software object

Title Moving from VSS to SVN

Body I need to write a script to make a source safe
project ready to be moved to subversion
· · · · · · Is there
anything else you can think of that needs to
be done before I move the project to SVN?

Tags svn, version-control, visual-sourcesafe

NO. 102,230 software object

Title Synchronize SourceSafe with SVN.

Body Our company has a policy imposing the
requirement of keeping source code in a
SourceSafe repository.
· · · · · · I’ve tried hard to persuade the
management to migrate to SVN with no
success.

Tags svn, version-control, synchronization,
visual-sourcesafe

NO. 320,694 software object

Title Do modern-day VisualStudio .NET projects still
use Visual SourceSafe, or SVN?

Body I’m getting back into .NET after numerous
years in PHP/MySQL · · · · · · has SVN become a
standard
in .NET projects these days?

Tags .net, svn, visual-sourcesafe
Automatic tag recommendation techniques can deal with
hese challenges by reusing the existing high-quality tags. Ex-
sting automatic tag recommendation techniques can be roughly
ategorized into two main categories: content-based methods
nd collaborative filtering based methods. The content-based
ethods (such as FastTagRec (Liu et al., 2018) and TagCNN Zhou
t al., 2019) employ traditional machine learning or deep learning
echniques to construct a multi-label classifier based on the
ontents of historical software objects. These methods can assign
everal tags by learning from the relationship between software
bjects and tags. The collaborative filtering based methods (such
s TagMulRec Zhou et al., 2017) focus on the tags of similar histor-
cal software objects by locating the TOP-N similar objects based
n the semantic similarities between the current recommended
oftware objects and historical objects.
In this paper, to combine the advantages of the above two

ategories, we propose TagDC, i.e., a composite Tag recommen-
dation method with Deep Learning (TagDC-DL) and Collaborative
Filtering (TagDC-CF). In detail, TagDC combines the word repre-
entation learning enhanced CNN capsule module and the collab-
rative filtering module.
TagDC-DL is a content-based method, which builds a multi-

abel classifier through deep learning techniques for tag recom-
endation. To improve the accuracy of tag recommendation, we
se a Bi-LSTM model to extract each word’s contextual informa-
ion to enhance long-distance semantics expression. A followed
NN model with multiple kernels is applied to further extract the
ocal features. Specifically, we leverage the capsule network to
utput the multi-label confidence probability for each tag due to
ts superiority in multi-label text classification (Peng et al., 2019;
hao et al., 2018). Additionally, as shown in Table 1, we find that
hese three software objects expressing similar topics have the
ame tags ‘‘svn’’ and ‘‘visual-sourcesafe’’. Hence, we can consider
ecommending tags for new software objects by reusing the tags
ttached to similar objects.
TagDC-CF focuses on the similarities among software ob-
jects. It is a collaborative filtering technique that can output the
similarity-based confidence probability for each tag. We treat
these two modules as complementary. Combining deep learning
techniques and collaborative filtering techniques is expected to
improve our model’s effectiveness for more accurate classifica-
tion.

Then, a linear combination outputs the combined confidence
probability corresponding to each tag for new software objects.
The TOP-K tags in the candidate tag set with the highest prob-
abilities would be recommended to developers. In our method,
the tags recommended to new software objects are selected from
our candidate tag set, which is composed of relatively commonly
used tags in each site. Such a recommendation mechanism can
alleviate the problem of tag explosion and tag synonyms by
reducing the creation of inappropriate tags and different tags with
similar meanings.

To investigate the effectiveness of our proposed method, we
compare the TagDC against two state-of-the-art baselines Fast-
TagRec (Liu et al., 2018) and TagCNN (Zhou et al., 2019) on nine
datasets with different scales. These datasets are divided into
various scales according to the number of software objects. Con-
sidering the weighted average on Recall@5 and Recall@10 values,
TagDC achieves an improvement rate of 18.5% and 23.2% against
TagCNN, and an improvement rate of 23.8% and 33.2% against
FastTagRec. This demonstrates that our method outperforms two
state-of-the-art methods (i.e., FastTagRec and TagCNN) with a
substantial improvement. Our study investigates the following
research questions:

RQ1: Compared with the state-of-the-art approaches, how
effective is our proposed TagDC? Motivation: The first research
question is performed to evaluate whether the proposed method
TagDC outperforms two state-of-the-art tag recommendation
methods FastTagRec (Zhou et al., 2019) and TagCNN (Liu et al.,
2018). If TagDC shows advantages over two baselines, then our



C. Li, L. Xu, M. Yan et al. / The Journal of Systems & Software 170 (2020) 110783 3
Fig. 1. A software object posted on StackOverflow.
Fig. 2. A project posted on Freecode.
method is beneficial for tag recommendation tasks. Result: TagDC
outperforms two state-of-the-art methods on all evaluation met-
rics with a substantial improvement.

RQ2: What is the contribution of TagDC-DL and TagDC-CF to
TagDC? Motivation: TagDC contains two important modules that
affect the model effectiveness. One is TagDC-DL, as described in
Section 2.4.1. The other is TagDC-CF, as shown in Section 2.4.2.
In this research question, we conduct experiments to evaluate
the contribution of TagDC-DL and TagDC-CF to TagDC. Result:
TagDC combines the advantages of deep learning and collabora-
tive filtering techniques, while TagDC-DL affects the effectiveness
most.

RQ3: How effective are different variations of TagDC-DL? Mo-
tivation: TagDC-DL contains several components (e.g., Bi-LSTM,
CNN, capsule networks). This research question aims to eval-
uate whether each component in TagDC-DL is helpful for ex-
perimental results. Result: TagDC-DL can benefit from the word
representation learning process and capsule networks for tag
recommendation tasks.

RQ4: How efficient is TagDC? Motivation: Tag recommenda-
tion methods are expected to recommend tags for a new posting
in negligible time. As shown in Fig. 3, Our TagDC needs to be
trained before used for tag recommendation. Reporting the time
usage of model training and prediction helps us to better mea-
sure the efficiency of TagDC. Result: TagDC’s time usage for the
training and prediction phases is acceptable for various-scale
datasets.

The main contributions of this paper are described as follows:

• We propose TagDC, a composite tag recommendation ap-
proach combined with two complementary modules: the
deep learning module using word learning enhanced CNN
capsule (TagDC-DL) and the collaborative filtering module
(TagDC-CF). It analyzes and addresses the tag recommenda-
tion problem from two different views, and takes advantage
of both the semantic similarities among software objects
and objects’ deep semantic features for more accurate tag

recommendation.
• TagDC is evaluated on nine datasets, which are divided into
various scales based on the number of software objects.
The experimental results show that TagDC outperforms two
state-of-the-art baseline approaches (i.e., TagCNN and Fast-
TagRec) with a substantial improvement. The training and
prediction time of TagDC are acceptable. It indicates that
our method is scalable enough to be applied to various-scale
software information sites.

The remaining structure of the paper is as follows: In Section 2,
we describe our proposed method in detail. In Section 3, we
present the experimental details, including experimental setting,
baseline methods, and evaluation metrics, followed by the anal-
ysis of experiments results in Section 4. In Section 5, we make a
discussion about our method. In Section 6, we review the related
work. Finally, we conclude this paper and discuss plans for future
work in Section 7.

2. Approach

In this section, we formally formulate our research question
and present the overview and the details of our proposed method.

2.1. Problem formulation

Generally, software information sites can be divided into the
developer Q&A sites and the developer open-source sites (Liu
et al., 2018). The software object in a developer Q&A site such as
StackOverflow is a question with several answers. The software
object in an open-source developer site such as Freecode is a
project with descriptions. Fig. 1 gives a specific example of a
software object on StackOverflow. These software objects consist
of title, body, and tags. Some postings also include code snippets
located in the body. Fig. 2 depicts an open-source project on
Freecode that contains the project name, project description, and
tags.

A software information site can be regarded as a set S =

{o1, . . . , on} that consists of a set of software objects oi(1 ≤



4 C. Li, L. Xu, M. Yan et al. / The Journal of Systems & Software 170 (2020) 110783

t
o

w
o
T
i
r
a
r
e

t
‘
s
p
o
t
s

2

m
a

w
a
o
e
s
c
w
O
u
d

Fig. 3. The overall workflow of TagDC.
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i ≤ n). For the ith software object in a developer Q&A site,
the attributes of oi contain a title oi.title, a body oi.body, several
ags oi.tags, etc. Similarly, the attributes of oi in the developer
pen-source site contain a description oi.d, several tags oi.tags,

etc. We combine the information from oi.title and oi.body into a
new description oi.d for the developer Q&A site. Therefore, we
can assume that all the software objects contain a description
oi.d and several corresponding tags oi.tags. To alleviate the impact
of inappropriate tags, we use the same filtering rule as previous
tag recommendation tasks (Zhou et al., 2017; Liu et al., 2018;
Zhou et al., 2019). For each dataset, TagDC removes the low-
frequency tag with an occurrence frequency of less than or equal
to a predefined threshold. The remaining tags are collected to
build a candidate tag set. Like one-hot encoding (Rodríguez et al.,
2018), we denote the candidate tag set as T = {t1, t2, . . . , ts},
here s indicates the number of candidate tags, and the value
f ti defines whether the ith tag is assigned to a software object.
he value of ti is either 0 or 1, where 1 indicates that the ith tag
s selected and 0 indicates it is not selected. Assuming that tags
ecommended for each software object oi is a subset of T . Given
new software object, TagDC aims to recommend semantically

elevant tags to users from tags candidate set T by accurately
xtracting the features of software objects.
To avoid confusion, we clarify the difference between two

erms ‘‘software object’’ and ‘‘description’’. As mentioned above,
‘Software object’’ is the basic element of a software information
ite that contains a set of attributes such as questions, answers,
roject descriptions, tags, etc. The ‘‘description’’ is an integral part
f a software object. There is an inclusive relationship between
hem. Especially, we only focus on its description and tags for a
oftware object in tag recommendation tasks.

.2. Overall framework

Fig. 3 presents the overall workflow of our TagDC. The process
ainly includes three phases: data preparation, model training,
nd tag prediction.
In the data preparation phase, TagDC collects historical soft-

are objects from the original software information sites. Then,
typical preprocessing process is applied to decrease the noise
f descriptions in objects. We adopt both Word2vec (Mikolov
t al., 2013) and Doc2vec (Le and Mikolov, 2014) to capture the
emantic features from the corpus. For all descriptions in the
orpus, Word2vec outputs the corresponding word vectors of all
ords, while Doc2vec directly outputs their document vectors.
ur representation module saves all the word vectors and doc-
ment vectors of the corpus. In the model training phase, each
escription would be represented into a matrix for TagDC-DL
y querying the vectors of all words through word embedding.
eanwhile, the document vector of each description input to
agDC-CF would be converted through document embedding.
hen, TagDC-DL and TagDC-CF output a multi-label confidence
robabilities list and a similarity-based confidence probabilities
ist. A linear combination is then used to weigh the sum of
hese two lists for the combined confidence probabilities list.
inally, the TOP-K tags with the largest combined confidence
robabilities would be recommended in the tag prediction phase.
The following subsections show the details of the three phases.

.3. Phase I: Data preparation

This subsection shows the details of our data preparation pro-
ess, including data preprocessing and description representation.

.3.1. Data preprocessing
We first remove rare tags and software objects. A tag is rare

f its number of appearances is less than or equal to a predefined
hreshold of 50. For a fair comparison, this threshold value is the
ame as the prior work (Wang et al., 2015; Zhou et al., 2017;
iu et al., 2018; Zhou et al., 2019), and all the experiments are
mplemented with the same threshold. There are two main rea-
ons for the rare tags mentioned in recent tag recommendation
esearches (Zhou et al., 2017; Liu et al., 2018; Zhou et al., 2019).
ne is that the tag is inaccurate. For example, the tag ‘‘sql-server’’
s incorrectly written as ‘‘sql-severe’’ in NO.27674781 software
bject of StackOverflow. The other one is that tags correspond
o relatively rare topics and are not widely recognized by devel-
pers (Zhou et al., 2017; Liu et al., 2018; Zhou et al., 2019). Then,
e remove a software object if all its tags are rare.
For software objects in a developer Q&A site, we combine a

itle and a body as a description. We also remove code snippets
rom a body (see Fig. 1), which is located in the specific HTML ele-
ent components (⟨code⟩ · · · ⟨\code⟩) (Liu et al., 2018). Similarly,

or a developer open-source site, we extract project descriptions
nd tags from the software objects. In this way, we can ensure
hat each software object has been extracted as a description with
everal tags.
To normalize the texts in the descriptions to extract the key

eatures, we use NLTK (natural language toolkit) (Bird et al., 2009)
ith default parameters for extracting phrases, including case
onversion, tokenization, stop words removal, stemming, and
pecial punctuation removal. To remove stop words, we use a
tandard vocabulary of English stop words. When removing the
pecial punctuation, we keep the special punctuation in some
eaningful words such as ‘‘c#’’, ‘‘c++’’, ‘‘.net’’, etc. Finally, by
anually investigating the numbers in these descriptions, we
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find that tags with numbers account for less than 2% of all tags.
Their corresponding descriptions account for less than 1% of all
descriptions. Therefore, we can consider that numbers have only
a limited effect on the experimental results. Although a small part
of the numbers may indicate important information (e.g., version
numbers, etc.), they become isolated and meaningless due to the
preprocessing process. Thus, we remove them from the text.

2.3.2. Description representation
TagDC uses both Word2vec and Doc2vec for description rep-

resentation. Among them, Doc2vec has been demonstrated with
significant insights for text representation (Lau and Baldwin,
2016). It outputs a global representation for each description for
TagDC-CF. However, Doc2vec directly outputs a global document
vector for each description, which may miss the rich seman-
tic relations in a description from the word level. In contrast,
Word2vec can embed each word in a description into a word
vector (Mikolov et al., 2013). The rich semantics features can be
extracted from the word level through deep learning techniques.
Therefore, for TagDC-DL, we first use Word2vec to embed words
into vectors, and then use deep learning techniques (i.e., Bi-LSTM,
CNN, capsule networks) to extract rich semantic features for each
description.

In detail, For TagDC-DL, a description can be represented into a
matrix by querying the vectors of all words thoughWord2vec. We
set words that are not in the corpus to zero vectors. Typically, the
input of TagDC-DL is assumed to be a fixed shape, but the length
of these descriptions is different. Then, we perform a truncation
strategy (Williams and Peng, 1990) to ensure that the lengths
of all descriptions are set to a fixed value of l. Parts of more
than l words are discarded, and the description containing less
than l words would be supplemented by zero vectors. In our
experiments, the value of l is set based on the length distribution
of descriptions in a software information site. For TagDC-CF,
Doc2vec can embed a description into document vector directly.

2.4. Phase II: Model training

In this subsection, we present each step of TagDC-DL and
TagDC-CF in detail.

2.4.1. TagDC-DL module
As shown in Fig. 4, TagDC-DL is a word learning enhanced CNN

capsule module, which involves three sections:
(1) Word representation learning. It enhances the semantics

expression of the original word vector by combining the word
vector with surrounding contextual information.

(2) Description representation learning. We use the kernels
in the convolutional layer sliding over each description to extract
local features and generate the feature maps.

(3) Tag probability calculating. By calculating the length of
each tag category based on capsule networks, we can obtain a list
of multi-label confidence probabilities for each software object.
Then several tags with the highest confidence probabilities are
assigned to the current object.

Word Representation Learning. Given a software object oi, let
oi.d ∈ Rl×d denote the input description representation extracted
from oi, where l is the length of the description, and d is the word
vector size. Let xi ∈ Rd be the ith d-dimensional word vector in
the description oi.d. The matrix presentation of the description
oi.d = [x1, . . . , xl] is first fed into a Bi-LSTM layer to extract
features. Consider the sentence extracted from NO.562 software
object: ‘‘Uploading my first decently sized web app to my shared
host provided me with a fresh set of challenges, by which I mean,
sleepless nights’’. Understanding the meaning of the words ‘‘chal-
lenges’’ needs to consider their context. Typically, the Bi-LSTM
model has been proven effective in extracting the long-distance
semantics of sequence information from two directions (Lai et al.,
2015). It can accurately summarize the contextual information of
each word as a hidden state, which denotes the representation of
the time step i processed by the Bi-LSTM layer with n units. Gen-
erally, in Bi-LSTM, the forward contextual information

−→
hi ∈ Rn

generated by the forward LSTM is corresponding to its previous
memory cell −→ci−1, hidden state

−→
hi−1, and current input vector xi.

The backward contextual information
←−
hi ∈ Rn generated by

the backward LSTM is corresponding to its next memory cell
←−ci+1, hidden state

←−
hi+1 and current input vector xi, which can be

respectively computed as shown below:
−→
hi = f (LSTM)(−→ci−1,

−→
hi−1, xi),

←−
hi = f (LSTM)(←−ci+1,

←−
hi+1, xi).

(1)

We combine both the word itself and its corresponding con-
textual information hi ∈ R2n to catch the accurate and com-
prehensive word representation. The final vector representation
x′i ∈ Rd+2n of the ith word can be indicated as follows:

hi = [
−→
hi ,
←−
hi ] x′i = [xi, hi]. (2)

Description Representation Learning. For each description,
the matrix representation X ∈ Rl×(d+2n)

= [x′1, . . . , x
′

l] is then fed
into a convolution layer to extract local features. As kernels in the
convolutional layer slide over each description, features at dif-
ferent positions can be detected. A zero-padding strategy (Zhang
et al., 2017) is adopted to model the boundary of each description.
Given a kernel Ki with a bias term b, a feature map ci can be
emitted as Eq. (3):

ci = f (Ki ◦ X + b), (3)

where f denotes the ReLU activation function. Furthermore, we
use multiple kernels to get various feather maps in our model.
All I features are arranged as follows:

C = [c1, c2, . . . , cI ] ∈ Rl×I . (4)

Furthermore, we employ three parallel networks with differ-
ent kernel window sizes (Ki) of 2, 3, 4, respectively. Then we
concatenate all the feature maps from the three branches of the
convolutional layer as the final description representation D ∈
Rl×3I .

Tag Probability Calculating. Recently, capsule networks with
dynamic routing have made promising achievements in the field
of textual representation (Peng et al., 2019; Zhao et al., 2018;
Kim et al., 2018; Xiao et al., 2018). Capsules contain a set of
locally invariant neurons that are effective at recognizing spatial
relationships in high-level features and further representing these
features in a wider space by converting them into vector-outputs
rather than scalar-outputs. Therefore, we use a capsule network
model after a convolutional layer.

The primary capsule layer is essentially a convolutional cap-
sule layer, which can summarize the detail of the generated
higher-level features. The basic semantics feature maps D gener-
ated by the convolutional layer are fed into the primary capsule
layer to extract higher-level features. When sliding over D, a se-
ries of convolution operations are performed in each convolution
kernel Kj to output a series of d-dimension capsules. Similar to
the calculation in the convolutional layer, the capsule pj ∈ R in
the primary capsule is calculated as:

pj = g(Kj ◦ D+ b), (5)

where g denotes the nonlinear Squash activation function, which
can limit the length of vector-outputs between 0 and 1 to repre-
sent the probability of each class, and b is the bias term.
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m

P

Fig. 4. The Structure of TagDC-DL. Given a description, we first use a Bi-LSTM model to enhance the semantic representation by combining the word vector itself
with its context, followed by a convolutional network to extract local features. Finally, a capsule network is used to calculate the confidence probability of each
candidate tag for tag recommendation.
s

With J kernels in the primary capsule layer, the capsule feature
aps are assembled as:

= [p1, p2, . . . , pJ ]. (6)

Then, dynamic routing (Zhao et al., 2018) is performed on the
primary capsule layer to generate the capsules for the tag capsule
layer, the jth tag capsule vj is calculated as Eq. (7).

vi =
∑

i

cijûj|i,

ûj|i = Wijpi,

cij =
exp(bik)∑
j exp(bik)

.

(7)

where ûj|i is the prediction vector calculated by multiplying the
output vector pi of the primary capsule layer by a weight ma-
trix Wij, and cij is the coupling coefficient related to the whole
iterative process of dynamic routing. Generally, the coupling co-
efficient indicates the connection strength between two capsules
in the adjacent layers. Let bik be the log prior probability coupled
from the ith capsule in the primary capsule layer to the jth
capsule in the tag capsule layer. The coupling coefficient cij is
formulated by a routing softmax function, which can make sure
the sum of all coupling coefficients for the jth capsule is 1.

As shown in Fig. 4, the final tag capsule layer accepts the
output-vectors from all capsules in the primary capsule layer. It
generates t final tag capsules vj, j ∈ (1, t) for classification by
dynamic routing mentioned above, where t denotes the number
of candidate tag in a software information site. The length of
vj represents the multi-label confidence probability of each tag
assigned to a software object. We notice that the length of all
tag capsules do not add up to 1. Hence, the capsule network can
recognize multiple classes simultaneously, which is suitable for
our tag recommendation tasks.

Next, we choose the margin loss objective function defined in
Eq. (8) to guide the training process of TagDC-DL.

L =
t∑

j=1

[Tj max(0,m+ − ∥vj∥)2

+λ(1− Tj)max(0, ∥vj∥ −m−)2],

(8)

where Tj denotes whether the jth tag exists or not, and the value
is 1 if and only if the jth tag is selected by the current description.
 T
m+ and m− are the thresholds of the upper and lower bounds,
which are set to 0.9 and 0.1. ∥vj∥ is the length of the tag capsule
vj, λ is a fixed value of 0.5, which can stop the initial learning by
decreasing the lengths of all classes’ activity vectors (Peng et al.,
2019).

Finally, we can obtain a multi-label confidence probabilities
list of all tags for each description. The confidence probability list
TagTagDC−DL

i of the ith description is defined as Eq. (9):

TagTagDC−DL
i = [∥v1∥, ∥v2∥, . . . , ∥vt∥]. (9)

2.4.2. TagDC-CF module
Generally, software objects with similar descriptions corre-

spond to similar tags. Consequently, TagDC-CF is expected to be
beneficial to our tag recommendation task. Given a new software
object oi, TagDC-CF first calculates the cosine similarities between
it to all historical software objects based on the document vectors
of these objects. Then TOP-N software objects most similar to oi
are located. Their tags are used to recommend tags for oi.

Doc2vec has been demonstrated with significant insights for
text representation and achieved higher classification accuracy
than other document representation methods in text classifica-
tion domains (Lau and Baldwin, 2016). Given a software object
oi, Doc2vec can embed its description into a vector Di.

Let oj be another historical software object and Dj as its de-
scription vector, the similarity between oi and oj can be measured
by the cosine similarity between Di and Dj:

δ(Di,Dj) =
Di · Dj

|Di ∥ Dj|
. (10)

Let Ti = [t1, t2, . . . , tn] be the tags list for oi, where n is
the number of candidate tags. The similarity-based confidence
probabilities list calculated in Eq. (11) is the weighted sum over
all the similarities of the TOP-N objects most similar to oi and
these objects’ tags list Tj.

TagTagDC−CF
i =

N∑
j=1

δ(Di,Dj)Tj. (11)

For example, assuming that Dp and Dq are the TOP-2 most
imilar to Di with cosine similarity of 0.3 and 0.2 to Di, and
= [1, 1, 0] and T = [1, 0, 1] are their corresponding tags
p q
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Table 2
Statistics of nine software information sites.
Site size Site name Software objects Tags Final software objects Final tags

Small

StackOverflow@small 50,000 9,243 47,836 437
AskDifferent 77,978 1,049 77,503 469
Database Administrator 51,031 969 50,687 293
Freecode 47,978 9,018 43,638 427
Wordpress 71,338 770 70,491 403

Medium
Askubuntu 248,641 3,041 246,138 1,146
Serverfault 233,000 3,482 231,319 1,312
Unix 104,748 2,407 103,243 770

Large StackOverflow@large 11,203,032 44,265 11,193,763 18,856
C

list respectively. Based on Eq. (11), the calculation process of the
similarity-based confidence probabilities list for Di is:

TagTagDC−CF
i = 0.3[1, 1, 0] + 0.2[1, 0, 1] = [0.5, 0.3, 0.2].

Algorithm 1: How to Adjust the Value of α and β

Input: Historical Software Objects Set O
Tags: Tags for O
EM: Evaluation Metrics Mentioned in Eq. (15)
TestSize: The Size of Testing Set

Output: α, β

Initialize The Contribution Weights α = 0, β = 0;
Building TagDC-DL Based on O;
Building TagDC-CF Based on O;
Select a subset As Testing Set T from O with The Size TestSize;
for All Software Object oi ∈ T do

Calculate The Multi-Label Confidence Probabilities TagTagDC−DLi for oi;

Calculate The Similarity-Based Confidence Probabilities TagTagDC−CFi for oi;
end
for α from 0 to 1, Every Time The Increase of α is 0.05 do

for β from 0 to 1, Every Time The Increase of β is 0.05 do
Compute Combined Confidence Probabilities Tagpredicti According to
Eq. (13);
Evaluate The effectiveness of The Combined Model Based on EM;

end
end
return α and β Which Produce The Best Result on EM

2.5. Phase III: Tag prediction

As shown in the above subsections, given a new software
bject, TagDC-DL and TagDC-CF respectively output the multi-
abel confidence probabilities list and the similarity-based con-
idence probabilities list. Let α ∈ [0, 1] and β ∈ [0, 1] be
the different contribution weights of the multi-label confidence
probabilities list and the similarity-based confidence probabilities
list, the combined confidence probabilities list for oi can be for-
mulated by a lineal combination calculation as Eq. (12). The detail
of this lineal combination calculation shown in Algorithm 1.

Tagpredict
i = αTagTagDC−DL

i + βTagTagDC−CF
i . (12)

3. Experimental evaluation

3.1. Experimental settings

For a fair comparison, we evaluate the effectiveness of TagDC
by conducting experiments on the same datasets used by our
baselines (Liu et al., 2018; Zhou et al., 2019). We also use the
same division rule of datasets as our baselines (Liu et al., 2018;
Zhou et al., 2019). We define a dataset as a small-scale dataset
if the number of its software objects is less than 100,000, as a
medium-scale dataset if the number of its software objects is
between 100,000 and 1,000,000, and as a large-scale dataset if the
number of its software objects is more than 1,000,000. We divide
our datasets into five small-scale datasets StackOverflow@small,
AskDifferent, Database Administrator, Freecode, Wordpress,
three medium-scale datasets AskUbuntu, Unix, Severfault, and
one large-scale dataset StackOverflow@large. Among them,
StackOverflow@small contains the software objects posted from
July 1st, 2008 to December 10th, 2008, while StackOverflow@large
selects the posted before July 1st, 2014. For the other seven sites,
we collect the posted before December 31st, 2016. We use the
old data in evaluation because older data is relatively stable, as
mentioned in past tag recommendation tasks (Wang et al., 2015;
Zhou et al., 2017; Liu et al., 2018; Zhou et al., 2019). For each
dataset, we divide it into training sets, validation sets, and test
sets based on a ratio of 80%-10%-10% according to the posting
time of software objects. The older data are used for training.

As described in Section 2.3.1, we should first remove rare tags
and their corresponding software objects. To make the experi-
mental results more comparable, we use the same threshold as
the baselines (Liu et al., 2018; Zhou et al., 2019). We remove
software objects if all of their tags occur no more than 50 times
for all datasets. Table 2 presents the statistics of the ten datasets.
Columns 2 and 3 list the number of Software Objects and Tags.
olumns 4 and 5 list the number of Final Software Objects and

Final Tags after removing low-frequency software objects and
tags.

Furthermore, we design a human study to determine the
ground truth of our experimental data. We invite five developers,
including four master students and one doctoral student, to inves-
tigate whether historical software objects are tagged correctly. All
of these developers are experienced in Java and Python.

Since these invited participants are all experienced in Java and
Python, we randomly select a total of 100 postings, including 50
postings about Java and 50 postings about Python from Stack-
Overflow. Among these postings, the maximum number of tags
is 5, the minimum number of tags is 1, and the average number
of tags is 3. All these five developers are invited to investigate
whether these 100 postings are correctly tagged in their own
time. The postings assigned to each developer are identical. For
each tag in a posting, if more than three people mark it as an
appropriate tag, we can think it is suitable for the current posting.
We collect and analyze responses from these five developers. The
results show that 84% of postings are completely tagged correctly,
and most of the remaining postings have only one irrelevant tag.
Thus, we can believe that our experimental data is reliable.

The parameter settings significantly affect the effectiveness of
tag recommendation tasks. For TagDC-CF, we train the Doc2vec
model for 25 epochs with a default learning rate.

TagDC-DL needs fixed-length inputs. To determine the appro-
priate maximum length of descriptions, we made a statistic about
the length of all preprocessed descriptions in each dataset. The
length distribution of descriptions in each dataset is shown in
Fig. 5. We use the upper quartile to represent the maximum
length of the description to ensure that most of the descriptions
are complete. The maximum length of descriptions is set to 46,
54, 67, 36, 56, 53, 75, 55, 66 for StackOverflow@small, AskDif-
ferent, Database Administrator, Freecode, Wordpress, AskUbuntu,
Severefault, Unix, StackOverflow@large, respectively.
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Fig. 5. Length distribution of descriptions in each dataset.
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The dimensions of word embedding vectors are empirically set
nd tuned based on the validation set’s effectiveness. For each
ataset, we tried the various dimension values from 50 to 500
tep by 50, and chose a relatively appropriate dimension value
o obtain an acceptable result with an acceptable computational
ost. The word embedding vector is set to 200-dimension for five
mall-scale sites and three medium-scale sites, 300-dimension for
he large-scale site. We conduct the size of mini-batch with 400
or StackOverflow@large and 200 for other sites. For the optimiza-
ion algorithm, we tried Adam, AdaGrad, and RMSProp to train
ur model, and found that Adam achieved the best effectiveness.
urthermore, Kingma and Ba (2014) found that Adam combines
he advantages of AdaGrad and RMSProp. The learning rate also
ignificantly affects the process of model training. If it is too small,
oo many steps are required for acceptable effectiveness. On the
ontrary, a large learning rate will likely lead to oscillation. There-
ore, we use the Adam optimization algorithm with a learning
ate scheduler beginning at 0.001 and shrinking with a 0.1 factor
o adjust the learning rate dynamically. An early stopping strategy
s used to stop training in time for preventing over-fitting. The
etwork parameters for each layer are also empirically set and
uned based on the validation set’s effectiveness. We tried various
alues for these parameters and selected relatively appropriate
nes:

• Bi-LSTM layer: the number of hidden units as 256.
• Convolutional layer: three kinds of kernel size as 2, 3, 4,

respectively, the number of kernels as 256, the stride as 1,
and the activation function as ReLU .
• Primary capsule layer: the dimension of the primary capsule

as 32, the kernel size in this layer as 3, the stride as 1,
the number of channels as 4, and the activation function as
Squash.
• Tag capsule layer: the dimension of the tag capsule as 16.

All the experiments are performed on Keras with 8 TITAN V
ards and 96G RAM. The operating system and software platforms
re Ubuntu 16.04, Python 3.6.4, and Keras 2.1.5.

.2. Evaluation metrics

To validate the effectiveness of TagDC, we employ three eval-
ation metrics (Recall@k, Precision@k, and F1 − score@k), which
ave been widely used in past tag recommendation tasks (Hong
 a
et al., 2017; Zhou et al., 2017; Liu et al., 2018). The value of k
is set to 5 and 10 according to previous researches (Hong et al.,
2017; Zhou et al., 2017; Liu et al., 2018). Let T indicate a test set
composed by n software objects oi{1 ≤ i ≤ n}. Using the trained
model, we can eventually recommend TOP-K tags Tagpredict

i with
the highest probability for each object, and the actual tags set
is defined as Tagactual

i . The definitions of these three metrics are
expressed as follows:

Recall@k is the percentage of its recommend tags selected from
the recommended lists Tagpredict

i , which is computed by Eq. (13),
and the mean prediction recall rate for all software objects in T
is defined by Eq. (14).

Recall@ki =

⎧⎨⎩
|Tagpredicti

⋂
Tagactuali |

|k| , |Tagactual
i | > |k|,

|Tagpredicti
⋂

Tagactuali |

|Tagactuali |
, |Tagactual

i | < |k|.
(13)

ecall@k =
∑
|n|
i=1 Recall@ki
|n|

. (14)

Precision@k is the percentage of true tags in the recommended
ists Tagpredict

i , which is computed by Eq. (15). The mean pre-
iction precision rate for all software objects in T is defined by
q. (16).

recision@ki =
|Tagpredict

i
⋂

Tagactual
i |

|k|
, (15)

recision@k =
∑
|n|
i=1 Precision@ki
|n|

. (16)

F1−score@k can be seen as a harmonic average of Precision@k
nd Recall@k. For oi, F1 − score@ki of it is computed by Eq. (17),
nd F1− score@k, the mean prediction F1-score of the test set T
s defined by Eq. (18).

1− score@ki = 2 ∗
Precision@ki × Recall@ki
Precision@ki + Recall@ki

, (17)

1− score@k =
∑
|n|
i=1 F1− score@ki

|n|
. (18)

As mentioned in past tag recommendation tasks (Wang et al.,
015, 2018; Zangerle et al., 2011). Recall@k is the primary evalu-
tion metric in tag recommendation fields. Since users often use
small number of tags (less than k) for their postings in practical
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applications. As defined in Eq. (15), the value of Precision@k is
usually small due to the large value of k. As defined in Eq. (17),
he value of F1 − score@k is also influenced by the low value of
recision@k.

. Results and analysis

In this section, we conduct experiments to answer the follow-
ng four research questions.

.1. RQ1. Compared with the state-of-the-art approaches, how effec-
ive is our proposed TagDC?

Motivation: The first research question is performed to evalu-
te whether the proposed method TagDC outperforms two state-
f-the-art tag recommendation methods FastTagRec (Zhou et al.,
019) and TagCNN (Liu et al., 2018). If TagDC shows advan-
ages over two baselines, then our method is beneficial for tag
ecommendation tasks.

We compare TagDC with two state-of-the-art techniques (i.e.,
agCNN (Zhou et al., 2019), FastTagRec Liu et al., 2018) on nine
atasets with different scales (see Table 2). FastTagRec (Liu et al.,
018) constructs a suitable tag recommendation framework by
sing a single hidden layer neural network. It exploits the rank
onstraint of words and utilizes shared parameters among fea-
ures to avoid the limitation in large tag output space. TagCNN
Zhou et al., 2019) applies a convolutional network for tag classi-
ication. It employs the kernels in the convolutional layer sliding
ver each description to extract local features from different po-
itions. For comparison, we re-implement their best-performing
odel on our dataset by using the open-source codes or experi-
ent settings of these two approaches provided by the authors.
hree evaluation metrics Recall@k, Precision@k, and F1− score@k
resented above are used for evaluation, k denotes the number
f recommended tags, and its value is set to 5 and 10 according
o previous work (Hong et al., 2017; Zhou et al., 2017; Liu et al.,
018).
Additionally, to make a more robust statistical comparison

or each dataset, we consider the experimental results (Recall@k,
recision@k, F1 − score@k) for each software object in the test
et. We perform a Wilcoxon signed-rank test (Wilcoxon) at a
ignificance level to analyze the statistical difference between our
ethod and baselines. Then, for each dataset, we also considered
ll software objects in the test set to get the result distribution
ifference between our method and baselines. We reported the
ercentage of the samples whose results achieved by TagDC
in/equal/lose the results achieved by two baselines.
Table 3 summarizes the experimental results of three meth-

ds. The best values of experimental results are in bold, and the
in/equal/lose ratios (W/E/L) between TagDC and the baseline
re in italics. From an overall perspective, TagDC achieves com-
etitive results against TagCNN and FastTagRec on all datasets
or all six evaluation metrics. To get more accurate results, for
ach dataset, we weighted average the experimental results with
he number of software objects in the test set. Experimental
esults with the number of software objects in the test set. Con-
idering the weighted average of experimental results, TagDC
mproves TagCNN by 4.8%, 2.7%, 3.5%, 4.8%, 3.7%, 3.2% in terms
f Recall@5, Precision@5, F1 − score@5, Recall@10, Precision@10,
1 − score@10, and FastTagRec by 7.6%, 4.5%, 6.4%, 7.9%, 5.6%,
.4% in terms of Recall@5, Precision@5, F1 − score@5, Recall@10,
recision@10, F1− score@10. Furthermore, the Wilcoxon signed-
ank test results show the experimental results between TagDC
nd two baselines with a significance level (p < 0.001). This
onfirms that the improvement of TagDC against two baselines
is statistically significant. The percentage of the results of TagDC
that win/equal/lose the results achieved by two baselines also
shows that TagDC achieves better or equal effectiveness on most
of the software objects.

Furthermore, to determine whether TagDC achieves signif-
icant improvements against two state-of-the-art baseline ap-
proaches, we calculate the improvement ratio ξEM for all eval-
ation metrics(Recall@k, Precision@k, F1 − score@k) according to

the distance to 1 (Costa et al., 2016) based on Eq. (19).

ξEM =
EMc − EMo

1− EMo
, (19)

where EMc is the result of TagDC, and EMo is the result of baseline
methods in terms of all evaluation metrics.

Comparing the weighted average of the experimental results
on three methods, our TagDC achieves the improvement ratio
of 18.5%, 4.4%, 7.0%, 23.2%, 4.8%, 4.8% for TagCNN and 23.8%,
7.2%, 12.1%, 33.2%, 7.1%, 7.8% for FastTagRec in terms of Recall@5,
Precision@5, F1 − score@5, Recall@10, Precision@10 and F1 −
core@10, respectively. Therefore, we can conclude that the pro-
osed method has substantially outperformed two baseline state-
f-the-art methods with a noticeable margin on all datasets.
his demonstrates TagDC is suitable for various-scale software
nformation sites.

In theory, FastTagRec only applies a simple single hidden
ayer neural network for tag recommendation. It was limited
o architectures with only a few hidden units for feature ex-
raction. TagCNN can extract the local semantic from different
ositions of descriptions with n-gram filters. However, Filters
ith fixed sizes may lose the long-distance semantic in texts. Our
ethod addresses the tag recommendation task by combining

he advantages of deep learning techniques and collaborative
iltering techniques. Furthermore, three strategies are applied
o improve the effectiveness of TagDC-DL. A Bi-LSTM model is
irst used to extract the context of each word for extracting
ong-distance semantics. A convolutional network is used for
onsecutive semantics extraction. A capsule network that is ef-
ective at recognizing spatial relationships in high-level features
s applied to represent features generated by the convolutional
ayer in the broader space. The semantics extraction can ben-
fit more with the consideration of consecutive semantics and
ong-distance semantics.

TagDC outperforms two state-of-the-art methods on all
evaluation metrics with a substantial improvement.

4.2. RQ2. What is the contribution of TagDC-DL and TagDC-CF to
TagDC?

Motivation: TagDC contains two important modules that af-
fect the model effectiveness. One is TagDC-DL, as described in
Section 2.4.1. The other is TagDC-CF, as shown in Section 2.4.2. In
this research question, we conduct experiments to evaluate the
contribution of TagDC-DL and TagDC-CF to TagDC.

Figs. 6(a) and 6(b) show the results of our tests on TagDC-DL
and TagDC-CF and the whole TagDC. Compared with TagDC-
DL and TagDC-CF, TagDC consistently performs better than the
reduced feature component. From the results, we can observe
that TagDC-DL makes a major contribution to the effectiveness
of the proposed TagDC. TagDC-CF is the complementary part
for TagDC-DL, which helps TagDC achieve about 0.8%-3.0% im-
provements in terms of Recall@5 and 0.5%-1.9% improvements in
terms of Recall@10 over TagDC-DL. Especially, TagDC outperforms
TagDC-DL with a relatively noticeable margin on Freecode.
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Table 3
TagDC vs. TagCNN & FastTagRec on nine datasets.

Sites Recall@5 Precision@5 F1-score@5

TagDC TagCNN FastTagRec TagDC TagCNN FatTagRec TagDC TagCNN FastTagRec

StackOverflow@small 0.854 0.812a 0.801a 0.356 0.343a 0.338a 0.481 0.463a 0.452a

(W/E/L) − 13%/77%/10% 16%/75%/9% – 13%/77%/10% 16%/75%/9% – 13%/77%/10% 16%/75%/9%

AskDifferent 0.807 0.773a 0.689a 0.425 0.404a 0.357a 0.529 0.504a 0.471a

(W/E/L) − 15%/77%/8% 29%/64%/7% – 15%/77%/8% 29%/64%/7% – 15%/77%/8% 29%/64%/7%

Database Administrator 0.787 0.736a 0.692a 0.384 0.354a 0.332a 0.501 0.462a 0.449a

(W/E/L) − 16%/74%/10% 26%/70%/4% – 16%/74%/10% 26%/70%/4% – 16%/74%/10% 26%/70%/4%

Freecode 0.715 0.644a 0.588a 0.349 0.306a 0.284a 0.445 0.389a 0.364a

(W/E/L) − 18%/71%/11% 27%/62%/11% – 18%/71%/11% 27%/62%/11% – 18%/71%/11% 27%/62%/11%

Wordpress 0.745 0.707a 0.632a 0.342 0.312a 0.278a 0.441 0.414a 0.386a

(W/E/L) − 14%/79%/7% 25%/69%/6% – 14%/79%/7% 25%/69%/6% – 14%/79%/7% 25%/69%/6%

Askubuntu 0.765 0.724a 0.684a 0.385 0.360a 0.346a 0.488 0.465a 0.437a

(W/E/L) − 26%/66%/8% 27%/64%/9% – 26%/66%/8% 27%/64%/9% – 26%/66%/8% 27%/64%/9%

Serverfault 0.757 0.699a 0.666a 0.394 0.364a 0.344a 0.496 0.457a 0.435a

(W/E/L) − 23%/68%/9% 28%/64%/8% – 23%/68%/9% 28%/64%/8% – 23%/68%/9% 28%/64%/8%

Unix 0.771 0.685a 0.627a 0.373 0.337a 0.309a 0.479 0.430a 0.397a

(W/E/L) − 21%/69%/10% 33%/59%/8% – 21%/69%/10% 33%/59%/8% – 21%/69%/10% 33%/59%/8%

StackOverflow@large 0.756 0.701a 0.682a 0.419 0.392a 0.374a 0.537 0.501a 0.472a

(W/E/L) − 21%/73%/6% 30%/64%/6% – 21%/73%/6% 30%/64%/6% – 21%/73%/6% 30%/64%/6%

Weighted Average 0.757 0.702 0.681 0.416 0.389 0.371 0.533 0.498 0.469

Sites Recall@10 Precision@10 F1-score@10

TagDC TagCNN FastTagRec TagDC TagCNN FastTagRec TagDC TagCNN FastTagRec

StackOverflow@small 0.917 0.890 0.887a 0.198 0.191 0.187a 0.319 0.305 0.303a

(W/E/L) − 10%/82%/8% 12%/80%/8% – 10%/82%/8% 12%/80%/8% – 10%/82%/8% 12%/80%/8%

AskDifferent 0.902 0.873a 0.815a 0.244 0.227a 0.216a 0.373 0.351a 0.342a

(W/E/L) − 11%/84%/5% 26%/70%/4% – 11%/84%/5% 26%/70%/4% – 11%/84%/5% 26%/70%/4%

Database Administrator 0.889 0.854a 0.816a 0.223 0.209a 0.201a 357 0.338a 0.323a

(W/E/L) − 14%/78%/8% 20%/73%/7% – 14%/78%/8% 20%/73%/7% – 14%/78%/8% 20%/73%/7%

Freecode 0.834 0.763a 0.692a 0.209 0.185a 0.172a 0.321 0.283a 0.262a

(W/E/L) − 14%/76%/10% 24%/68%/8% – 14%/76%/10% 24%/68%/8% – 14%/76%/10% 24%/68%/8%

Wordpress 0.861 0.832a 0.765a 0.204 0.187a 0.173a 0.315 0.297a 0.283a

(W/E/L) − 11%/83%/6% 21%/74%/5% – 11%/83%/6% 21%/74%/5% – 11%/83%/6% 21%/74%/5%

Askubuntu 0.870 0.832a 0.770a 0.224 0.214a 0.198a 0.344 0.327a 0.303a

(W/E/L) − 24%/71%/5% 27%/68%/5% – 24%/71%/5% 27%/68%/5% – 24%/71%/5% 27%/68%/5%

Serverfault 0.861 0.823a 0.708a 0.234 0.218a 0.196a 0.357 0.337a 0.304a

(W/E/L) − 21%/72%/7% 28%/65%/7% – 21%/72%/7% 28%/65%/7% – 21%/72%/7% 28%/65%/7%

Unix 0.877 0.816a 0.722a 0.229 0.212a 0.182a 0.344 0.326a 0.282a

(W/E/L) − 18%/74%/8% 30%/63%/7% – 18%/74%/8% 30%/63%/7% – 18%/74%/8% 30%/63%/7%

StackOverflow@large 0.839 0.795a 0.762a 0.271 0.232a 0.213a 0.364 0.331a 0.309a

(W/E/L) − 18%/77%/5% 27%/68%/5% – 18%/77%/5% 27%/68%/5% – 18%/77%/5% 27%/68%/5%

Weighted Average 0.841 0.793 0.762 0.268 0.231 0.212 0.363 0.331 0.309

aDenotes that the p− value < 0.001 when testing the difference of TagDC and baselines.
Table 4 provides a detailed analysis of the experimental results
btained. We give an example with two software objects to un-
erstand the complementary function of TagDC-CF to TagDC-DL.
t is observed that TagDC with both deep learning techniques and
ollaborative filtering techniques achieves more accurate results
han TagDC-DL for ‘‘iterator’’ and ‘‘opp’’ in these two software
bjects. The reason might be that TagDC-DL depends on enough
raining samples, but there are a few software objects with these
wo tags. TagDC-CF can locate the most similar objects to the cur-
ent object and use their tags for recommendation. This suggests
 L
that TagDC-CF can act as a complementary part to complete the
effectiveness of TagDC-DL.

TagDC combines the advantages of deep learning and col-
laborative filtering techniques, while TagDC-DL affects the
effectiveness most.

4.3. RQ3. How effective are different variations of TagDC-DL?

Motivation: TagDC-DL contains several components (e.g., Bi-
STM, CNN, capsule networks). This research question aims to
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Fig. 6. The recall comparisons of TagDC, TagDC-DL and TagDC-CF.
evaluate whether each component in the TagDC-DL module is
beneficial for experimental results.

In this research question, we perform the following four vari-
ations of our TagDC-DL (see Table 5) and evaluate their contribu-
tion to the whole module on all datasets.

• TagDC-CNN: without the word representation learning pro-
cess and capsule networks. TagDC-CNN is the same as
TagCNN (Zhou et al., 2019).
• TagDC-WC: without the capsule network.
• TagDC-CC: without the word representation learning pro-

cess.
• TagDC-DL: the whole module described in Fig. 4.

For the first two models without the capsule network, we
adopt a fully-connected layer with the sigmoid loss function
to calculate the independent confidence probability for each
candidate tag. We also use binary cross-entropy to train these
two models. In particular, TagDC-CNN is the same as a baseline
TagCNN (Zhou et al., 2019). To visually show the differences
between these variations of TagDC-DL, we use the six evaluation
metrics to evaluate the effectiveness. The experimental results are
shown in Table 6.

It is observed that the word representation learning process
and the capsule networks are useful for improving the effective-
ness on these datasets. With the word representation learning
process, TagDC-DL achieves better effectiveness over TagDC-CC
on all datasets, TagDC-WC outperforms TagDC-CNN also on all
datasets. Similarly, the effectiveness gaps between TagDC-CNN
and TagDC-CC, TagDC-WCC and TagDC-DL also show that the
capsule network improves the effectiveness. Especially, TagDC-DL
achieves the best effectiveness on all datasets. The experimen-
tal results of these four variations again prove that both the
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Table 4
Examples of tag recommendation using TagDC-DL, TagDC-CF and TagDC on StackOverflow.

NO. 330 software object

Title Should I use nested classes in this case?

Body I am working on a collection of classes used
for video playback and recording. · · · · · ·
Nested classes are a
new concept to me. Just want to see what
programmers think about the issue.

Tags c++, oop, class, nested-class

the results of tag Recommended:

TagDC-DL c++, class, nested-class, c, dictionary,

TagDC-CF c++, class, database, c, opp

TagDC c++, class, nested-class, opp, c

NO. 250,874 software object

Title Iterator pattern in VB.NET (C# would use
yield!)

Body How do implement the iterator pattern in
VB.NET, which does not have the yield
keyword?

Tags vb.net design-patterns iterator yield

the results of Tag Recommended:

TagDC-DL c#, .net, vb.net, lambda, design-patterns

TagDC-CF c#, .net, c++, vb.net, iterator

TagDC c#, .net, vb.net, design-patterns, iterator
Table 5
The construction of different TagDC-DL variations.
Model Word representation learning CNN Capsule networks

TagDC-CNN
√

TagDC-WC
√ √

TagDC-CC
√ √

TagDC-DL
√ √ √

word representation learning process and the capsule networks
contribute to tag recommendation tasks.

TagDC-DL can benefit from the word representation learn-
ing process and capsule networks for tag recommendation
tasks.

4.4. RQ4. How efficient is TagDC?

Motivation: Tag recommendation methods are expected to
ecommend tags for a new posting in negligible time. As shown in
ig. 3, TagDC needs to be trained before used for tag recommen-
ation. Reporting the time usage of model training and prediction
elps us measure the efficiency of TagDC better.
To investigate the training time needed to construct our rec-

mmendation model and the prediction time to recommend tags,
e record the start time and the end time of training and pre-
iction phases. For building our TagDC, we first need to train
ord vectors through Word2Vec as the input of TagDC-DL and
ocument vectors through Doc2vec as the input of TagDC-CF.
herefore, the cost of training Word2vec and Doc2vec is also
overed in the training time. The experimental results are given
n Table 7.

It is observed that TagDC’s training time never exceeds 924 s
n five small-scale datasets, 3965 s on three medium-scale
atasets, and 214,819 s on one large-scale dataset. Although the
training time for StackOverflow@large is relatively significant, our
model can be done offline. In the prediction phase, TagDC only
takes negligible time to recommend tags for each software object.

TagDC’s time usage for the training and prediction phases
is acceptable for various-scale datasets.

5. Discussion

In this section, we first discuss the impact of an important
parameter of TagDC-CF and evaluate the effectiveness of our
method on a new dataset. Then we provide the implications of
the results taken from our experiments, followed by the analysis
of threats to validity.

5.1. What is the impact of changing the number of TOP-N selected
similar software objects on the effectiveness of TagDC-CF?

The number of similar software objects is an important pa-
rameter that affects the effectiveness of TagDC. To better re-
flect the changing trend of experimental results as the number
of similar software objects increases, we select five small-scale
datasets, including StackOverflow@small, AskDifferent, Database
Administrator, Freecode, and Wordpress to conduct this group
of experiments. For each dataset, we perform TagDC-CF on it
and gradually increase the N value from 10 to 100 step by 10.
Fig. 7(a)–7(f) respectively depict the trend of experimental results
on these five datasets in terms of Recall@5, Precision@5, F1 −
score@5, Recall@10, Precision@10 and F1−score@10 when varying
the number of TOP-N similar software objects.

From the experimental results, we can see that the parameter
N affects evaluation results. For all five datasets, As the value of
N increases, the experimental results in terms of these six eval-
uation metrics first steadily rise, then the growth rate becomes
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Table 6
Recall@k, Precision@k, and F1-score@k of different TagDC variations.

Site Model Recall@5 Precision@5 F1-score@5 Recall@10 Precision@10 F1-score@10

StackOverflow@small TagDC-CNN 0.812 0.343 0.463 0.890 0.191 0.305
TagDC-WC 0.823 0.347 0.466 0.894 0.193 0.308
TagDC-CC 0.831 0.349 0.469 0.899 0.193 0.310
TagDC-DL 0.842 0.354 0.476 0.908 0.195 0.313

AskDifferent TagDC-CNN 0.773 0.404 0.504 0.873 0.227 0.351
TagDC-WC 0.780 0.409 0.510 0.878 0.230 0.356
TagDC-CC 0.784 0.412 0.514 0.881 0.232 0.358
TagDC-DL 0.792 0.419 0.521 0.892 0.238 0.364

Database Administrator TagDC-CNN 0.736 0.354 0.462 0.854 0.209 0.338
TagDC-WC 0.742 0.359 0.464 0.857 0.211 0.341
TagDC-CC 0.748 0.364 0.468 0.860 0.215 0.344
TagDC-DL 0.759 0.369 0.476 0.869 0.218 0.348

Freecode TagDC-CNN 0.644 0.306 0.389 0.763 0.185 0.283
TagDC-WC 0.657 0.311 0.394 0.772 0.188 0.287
TagDC-CC 0.668 0.317 0.404 0.802 0.193 0.295
TagDC-DL 0.685 0.327 0.415 0.815 0.196 0.299

Wordpress TagDC-CNN 0.707 0.312 0.414 0.832 0.187 0.297
TagDC-WC 0.713 0.315 0.417 0.836 0.191 0.300
TagDC-CC 0.718 0.322 0.420 0.841 0.194 0.304
TagDC-DL 0.731 0.332 0.431 0.849 0.199 0.312

AskUbuntu TagDC-CNN 0.724 0.360 0.465 0.832 0.214 0.327
TagDC-WC 0.738 0.364 0.469 0.846 0.217 0.330
TagDC-CC 0.744 0.367 0.472 0.851 0.219 0.332
TagDC-DL 0.757 0.377 0.478 0.862 0.221 0.338

Severefault TagDC-CNN 0.699 0.364 0.457 0.823 0.218 0.337
TagDC-WC 0.722 0.372 0.471 0.835 0.223 0.343
TagDC-CC 0.735 0.377 0.477 0.843 0.226 0.347
TagDC-DL 0.746 0.383 0.485 0.854 0.229 0.350

Unix TagDC-CNN 0.685 0.337 0.430 0.816 0.212 0.326
TagDC-WC 0.711 0.346 0.445 0.838 0.218 0.330
TagDC-CC 0.732 0.357 0.456 0.850 0.222 0.333
TagDC-DL 0.749 0.362 0.464 0.862 0.224 0.335

StackOverflow@large TagDC-CNN 0.701 0.392 0.501 0.795 0.232 0.331
TagDC-WC 0.722 0.404 0.515 0.811 0.248 0.346
TagDC-CC 0.735 0.409 0.524 0.823 0.259 0.354
TagDC-DL 0.748 0.415 0.532 0.834 0.268 0.360
P
O
r

5

s
m

Table 7
The training and prediction time of TagDC on nine datasets.
Sites Training time (s) Prediction time (ms)

StackOverflow@small 624 7.525
AskDifferent 924 11.480
Database Administrator 873 11.442
Freecode 565 6.644
Wordpress 846 9.221
Askubuntu 3,965 13.732
Serverfault 3,666 14.741
Unix 1,689 10.849
StackOverflow@large 214,819 783.623

slow. When N reaches a certain value, the results begin to de-

crease. That is because noise is inevitably introduced considering

software objects with low similarity to the current recommended

object. Therefore, We conclude that an appropriate number of

similar software objects is to be preferred.
 t
5.2. How our method performs on new data?

To evaluate whether our TagDC can perform well on rela-
tively new software objects, we construct a new dataset called
StackOverflow@new by collecting the postings from January 1st,
2020 to March 1st, 2020. The older data is relatively unlikely to
be modified again. Therefore, we set the deadline for March 1st,
2020 to ensure the stability of the data. The details of StackOver-
flow@new are in Table 8. We implement our method and two
baselines on this dataset with the same experimental settings.
The experimental results are shown in Table 9.

It is observed in Table 9 that TagDC achieves higher Recall@k,
recision@k, and F1−score@k values than two baselines on Stack-
verflow@new. This confirms the effectiveness of our method on
ecently posted software objects.

.3. Implications of our work

Implications for researchers: The key implication for re-
earchers is to take inspiration from our automatic tag recom-
endation method. To the best of our knowledge, postings in
he software information sites is a hot research topic in the field
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Fig. 7. The effect of the number of TOP-N selected software objects for TagDC-CF.
Table 8
Statistics of StackOverflow@new.
Site name Software objects Tags Final Software objects Final tags

StackOverflow@new 267,804 16,708 264,624 1556
Table 9
TagDC vs. TagCNN & FastTagRec on StackOverflow@new.
Model Recall@5 Precision@5 F1-score@5 Recall@10 Precision@10 F1-score@10

TagDC 0.798 0.380 0.494 0.882 0.218 0.336
TagCNN 0.732 0.349 0.454 0.828 0.204 0.318
FastTagRec 0.686 0.328 0.426 0.781 0.193 0.298
of software engineering. Thus, the feature extraction of post-

ings is significantly important. Our method is a useful attempt

to improve the capacity of feature extraction for postings by
combining both deep learning techniques and collaborative filter-
ing techniques. Deep learning techniques can effectively extract
rich semantics features from postings. For example, the Bi-LSTM
model can extract long-distance semantics, while the CNN model
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and capsule networks can extract consecutive semantics. Consid-
ering the consecutive semantics and long-distance semantics of a
posting simultaneously helps to mine the key information more
accurately. The collaborative filtering techniques take advantage
of the similarities among postings for more accurate semantics
learning. The key to our method is to improve the capacity of
feature extraction of postings. Therefore, we believe that some re-
searches about postings (e.g., summarizing the topics of postings,
answers tagging, etc.) can benefit from our method.

Implications for practitioners: The key implication for prac-
titioners is to apply TagDC to help them tag new postings. For a
mature software information site, the topics of the new postings
are possibly associated with existing popular tags. TagDC collects
these tags as the candidate tag set, and recommend several tags
from the candidate tag set for new postings. The tags recom-
mended by TagDC can provide a reference for developers when
they select tags for new postings. This not only helps users more
easily select the appropriate tags, but also reduce the creation of
new tags. Thus, we think that TagDC can facilitate the tagging
process of developers.

5.4. Threats to validity

In this subsection, we analyze several potential threats to the
validity of our experimental results from different aspects.

Internal Threats: The internal threats are related to the re-
liability of our selected datasets. Because developers are free to
create tags in their own words, errors are inevitably introduced.
To alleviate the problem, we apply the same strategies as past tag
recommendation tasks (Wang et al., 2015; Zhou et al., 2017; Liu
et al., 2018; Zhou et al., 2019). For example, because the older
data is relatively unlikely to be modified again, we conduct our
experiments on the widely used software information sites and
choose relatively older software objects to ensure the stability of
experimental data. We also filter out the tags rarely appear and
software objects whose tags are all low-frequency. Furthermore,
we have designed a case study to determine the ground truth
of our experimental data. To be consistent with past tag recom-
mendation tasks, we use the same datasets including Freecode.
However, Freecode is an old dataset that has not been updated
since June 2014. Using this old dataset may be a potential threat
to the validity of our experimental results.

External Threats: The external threats refer to the generality
of the proposed method. We have deployed TagDC on eight
software information sites with more than 11 million software
objects. In future work, more datasets will be selected for eval-
uation. Our current work only considers popular tags in the
candidate tag set. For unpopular tags, it is not easy to directly use
our approach. We need to consider their corresponding software
objects as training data to retrain our model when there are
enough software objects.

6. Related work

Many automatic tag recommendation approaches have also
been proposed in the field of software engineering recently.
TagRec was first proposed by Al-Kofahi et al. (2010) to au-
tomatically infer several tags for work items in IBM Jazz. It
is based on the fuzzy set theory and considered the dynamic
evolution of a system. Later Wang et al. (2015) proposed Tag-
Combine to recommend tags for software objects on software
information sites. TagCombine is composed of three modules: a
multi-label ranking module, a similarity module, and a tag-term
module. However, the multi-label ranking module in TagCombine
converts the multi-label classification task into many binary clas-

sification. It has to train thousands of binary classifier models
for large-scale software information sites such as StackOver-
flow@large. Therefore, TagCombine is limited in relatively small
software information sites. Then Wang et al. proposed (Wang
et al., 2014) EnTagRec, including two modules (Bayesian inference
module and Frequentist inference module), which outperformed
the effectiveness of TagCombine. However, it is not a scalable
method because it depends on all information in a site to train
a model. Several years later, Wang et al. (2018) improved the
original EnTagRec and put forward EnTagRec++ by taking con-
sideration of users’ information to improve the accuracy of tag
recommendation task. A more advanced method TagMulRec was
proposed by Zhou et al. (2017), which built indices for the
descriptions extracted from software objects and ranks the scores
of all candidate tag for tag recommendation. However, TagMulRec
only utilizes a small part of information as only several most
similar software objects to the given software object in a software
information site are taken into account. Then a tag recommenda-
tion method based on topic modeling approaches was proposed
by Hong et al. (2017). It recommends tags for software objects
by computing tag scores based on both the document similarities
and the occurrence of historical tags. Lately, Liu et al. put forward
FastTagRec based on a single hidden layer neural network (Liu
et al., 2018), which was not only scalable and accurate, but also
faster than the existing approaches. It adopts the semantic rela-
tionship between historical software objects and their responding
tags to perform the tag recommendation task. Sonam et al.
(2019) proposed the TagStack system, a machine learning and
feedback-based method to recommend tags on StackOverflow.
Then, Zhou et al. (2019) discussed the advantage of deep learning
methods over traditional machine learning methods in the field
of tag recommendation. They found that TagCNN achieved the
state-of-the-art results.

Similarly, tags studies have been a hot research topic in the
software engineering field in recent years. Eynard et al. (2013)
found the intrinsic advantages of Tag-based systems and the
inherent lexical ambiguities of tags. They analyzed the label-
based system and proposed a theoretical basis for solving tag
synonyms. Treude and Storey (2009) carry out an empirical re-
search for a large project to study how tagging had been adopted
and adapted in the last two years. They concluded that the
tagging mechanism provided significant help in bridging the gap
between technical and social aspects of organizing work items.
Later Thung et al. (2012) implemented a user study with several
related participants. The research results show that the collabora-
tive tagging mechanism was promising to detect similar software
applications as a useful information source. Wang et al. (2012)
performed a group of experiments on the Freecode site to re-
search the semantic relationship among tags, and defined the
relationship as a taxonomy. To utilize the relationship among tags
to alleviate the rapid growth of tags, Beyer and Pinzger (2015)
investigated the strategy to build synonym tag pairs for Stack-
Overflow and developed a tag synonym recommendation method
TSST by implementing this strategy. Beyer and Pinzger (2016)
continued their previous research and proposed a new approach
to classify tag synonyms into various meaningful topics. Saleh
and El-Tazi (2017) proposed a method based on the topic model,
which generated tag groups by capturing topics of documents and
classifying the top tags associated with documents. Chen et al.
(2019) created a hierarchical organization based on the tags in
StackOverflow to help categorize the vast and growing contents
posted on this software information site.

7. Conclusion and future work

In this paper, we propose a novel composite model TagDC
with two modules (i.e., TagDC-DL and TagDC-CF) for tag recom-
mendation task. Our proposed method leverages the information
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from the description of each software object. It combines the
advantages of deep learning techniques and collaborative filtering
techniques. In detail, TagDC-DL constructs a multi-label classifier
by learning from the historical software objects and their corre-
sponding tags. TagDC-CF is a complementary part of TagDC-DL. It
can enhance our model’s effectiveness by locating the most simi-
lar software objects to the current object. Extensive experiments
are conducted on nine datasets to evaluate TagDC from different
respects. The experimental results show that TagDC substantially
improves state-of-the-art methods for the tag recommendation
task.

In the future, we plan to take additional features (e.g., code
snippets, screenshots, etc.) into consideration for a comprehen-
sive representation of each object. In the current model, we
use the document vector of each description to measure the
cosine similarities among software objects. There may exist more
appropriate input for TagDC-CF, which will be explored in our
future work. When combining two modules, we use a linear
combination strategy. The other combination strategies will be
attempted in the future. The method will be popularized to more
software information sites. Furthermore, our current work cannot
recommend unpopular tags that are not in the candidate tag
set directly. In the future, we plan to explore the solution for
recommending unpopular tags.
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