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a b s t r a c t

As the software crash usually does great harm, locating the fault causing the crash (i.e., the crashing
fault) has always been a hot research topic. As the stack trace in the crash reports usually contains
abundant information related the crash, it is helpful to find the root cause of the crash. Recently,
researchers extracted features of the crash, then constructed the classification model on the features to
predict whether the crashing fault resides in the stack trace. This process can accelerate the debugging
process and save debugging efforts. In this work, we apply a state-of-the-art metric learning method
called IML to crash data for crashing fault residence prediction. This method uses Mahalanobis distance
based metric learning to learn high-quality feature representation by reducing the distance between
crash instances with the same label and increasing the distance between crash instances with different
labels. In addition, this method designs a new loss function that includes four types of losses with
different weights to cope with the class imbalanced issue of crash data. The experiments on seven open
source software projects show that our IML method performs significantly better than nine sampling
based and five ensemble based imbalanced learning methods in terms of three performance indicators.

© 2020 Published by Elsevier Inc.
1. Introduction

Nowadays, software has played a significant role in people’s
aily work and life. Due to a variety of uncontrollable reasons,
rogrammers will face a lot of software faults during their daily
evelopment and maintenance (Mathur, 2007). The serious faults
an cause program exceptions and failures unexpectedly, also
alled that the software crashes. This kind of terrible situation
ill result in a poor user experience and negatively affect the
eputation of the software company. As developing a software
hat never crashes is impractical, it is critical to find the root
ause of the crash, i.e., the residence of the fault causing the crash
crashing fault for short). This process can help the programmers
ocus on the corresponding code at the location which can greatly
romote the efficiency of the software development and improve
roduct quality.
In order to quickly locate the code of the crashing fault during

he development process, software usually has crash reporting
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system to automatically collect and manage the crash report
when the crash occurred. The crash report contains a rich source
of data about the crash circumstances, such as the crash site
environment and crash stack traces (Dhaliwal et al., 2011). The
stack trace records the exception type, crash location, and the
trajectory of a series of function calls when a program exception
is thrown. An empirical study on Mozilla software stated that
most of the crashing faults locate in the functions that reside
inside the stack trace (Li et al., 2018). If the crashing fault exactly
matches the information of a function in the stack trace, that is,
the crashing fault resides inside the stack trace, developers only
need to focus on the code of the corresponding function; whereas
if the crashing fault is in a function that resides outside the stack
trace, developers have to check the function call sequence which
involves in inspecting massive source code. Therefore, predicting
whether the function of the crashing fault resides in the stack
trace can promote the crash localization process by helping the
developers to quickly determine which part of code need to be
reviewed. The prediction results of the crashing fault residence is
beneficial to optimize the allocation of debugging resources and
save many of inspection efforts. Crashing fault residence predic-
tion is an essential research topic for software quality assurance

activities.

https://doi.org/10.1016/j.jss.2020.110763
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http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2020.110763&domain=pdf
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Gu et al. (2019) were the first to study this issue by propos-
ng a method, called CraTer, to automatically detect whether
he faulty code of a crash exactly matches the information of
function in the stack trace. More specifically, they simulated

he crashes by seeding the fault based on program mutation. For
ach crash instance, they extracted 89 features from the faulty
ode and stack traces, and collected the label information of
he crashing fault from the bug-fixing logs. They used several
raditional classifiers to build the models on the labeled data to
redict the crashing fault residence of new-submitted crashes.
hey treated the crashing fault residence prediction as a typical
inary classification learning problem. In general, the perfor-
ance of classification model heavily relies on the quality of
ata representation. Thus, transforming the feature space to learn
igh-quality feature representations has the potential to promote
he prediction performance of crashing fault residence. In addi-
ion, in the collected data, the number of crash instances that
eside inside the stack trace is much fewer than those that reside
utside the stack trace, that is, the data have the inherent char-
cteristic of class imbalance. As this characteristic can negatively
mpact the performance of the classification model, it is critical to
lleviate this imbalanced issue for performance improvement. In
his work, we propose a new crashing fault residence prediction
odel based on a state-of-the-art feature engineering method
alled Imbalanced Metric Learning (IML) (Gautheron et al., 2019)
to address the above two issues. IML carries out the feature
representation learning by applying Mahalanobis distance based
metric learning to the crash instance data, aiming to enlarge the
distance of crash instances with different labels while shorten the
distance of crash instances with the same label. Meanwhile, IML
addresses the class imbalanced issue by decomposing the loss
function into four parts with different weights according to the
labels of a crash instance pair.

To evaluate the effectiveness of our IML method for predicting
crashing fault residence, we conduct experiments on benchmark
dataset consists of seven open source software projects with
3 performance indicators. Across the seven projects, our IML
method achieves average F-measure value of 0.617 for crash
instances locating inside the stack trace, average F-measure value
of 0.907 for crash instances locating outside the stack trace, and
average MCC value of 0.530. The experimental results show that
our IML method achieves significantly better performance than
9 sampling based imbalanced learning methods and 5 ensem-
ble based imbalanced learning methods on all 3 performance
indicators.

In summary, this paper makes the following main contribu-
tions:

(1) We propose to address both the feature representation
learning and class imbalanced issues for crashing fault
residence prediction with a novel metric learning method
called IML. Our IML method uses the metric learning
method to learn more discriminative feature representa-
tion and utilizes an improved loss function to alleviate the
adverse impact of class imbalance.

(2) We comprehensively evaluate our IML method on seven
open-source software projects using three performance in-
dicators. The experimental results show the significant su-
periority of our IML method over 14 baseline methods
under comparison.

The remainder of this paper is organized as follows. We intro-
duce the background of software crash and stack trace, and previ-
ous studies about stack traces based fault localization in Section 2.
We present the technical details of our IML method in Section 3.
We illustrate our experimental setup, such as the benchmark

dataset, performance indicators, the statistic test method, the
process of data partition, and the parameter configuration in
Section 4. We report the experimental results in Section 5. We
list three types of threats to the validity of our work in Section 6.
Finally, we conclude this work in Section 7.

2. Related work

2.1. Software crash and stack traces

Crash occurs when the software stops functioning properly
and exits, which is one of serious manifestations of the software
failure. Thus, crashes need to be prioritized for fixing. As the
corresponding crash information is helpful for quick defect fixing,
many crash reporting systems are used to automatically collect it
in which the stack trace is one of the recorded information. The
stack trace provides some information related the exception, such
as the type of crash exception and the sequence of function calls
that lead to the exception being thrown. Such information can
be used for crash reproduction (Soltani et al., 2020; Xuan et al.,
2015) and crashing faults localization (Gong et al., 2014; Wu et al.,
2014).

The stack trace includes multiple (assuming t) frame objects.
The first frame (short for Frame 0) records the thrown exception
of the crash while each other frame records the information about
a function that the code is called. The second frame (short for
Frame 1) can be called as the top frame which provides the
location of the exception is thrown and the last frame (short for
Frame t) records the place of the initial function call. The main
terms in the Frame 1 to Frame t include the class name, function
name, and line number of the code. Fig. 1 shows an example of
stack trace collected by a previous work (Gu et al., 2019) in which
the faulty code matches the three elements of the function in
Frame 1.

Here, we give an example to illustrate the application scenario
of methods for crashing fault residence prediction as our IML
method as follows: assume a project team is developing a soft-
ware system and have collected some historical crash data with
labels in the previous development process. One day the system
crashed, and the team members got the corresponding stack trace
with t frames. Without our method, the team members have to
check the sequence of function calls among the stack trace. This
process involves in reviewing many lines of code which requires
many debugging efforts. With our method, the team members
can use the historical labeled crash data to learn the metric
representation and then train a classification model to predict
whether the new crashing fault locates in the stack trace or not.
If yes, the team members only need carefully review the t lines
of code in the frame to find the faulty code and then fix it. This
prediction result can greatly promote the debugging process.

2.2. Fault localization based on stack traces

The work most relevant to our study is the stack traces based
fault (crash or bug) localization. This kind of study resorts the
stack trace information to locate the faulty functions (sometimes
files). Schröter et al. (2010) conducted an empirical study and
showed a strong evidence that the stack traces are important
information to support developers from the Eclipse project in
debugging. In addition, they found that a crashing fault typically
located in one of the top-10 frames of the stack trace. Indi
et al. (2016) stated that the Java exception stack traces were
helpful for the students to analyze and fix bugs in program. Jiang
et al. (2012) proposed a method combining the dynamic infor-
mation generated from stack traces with the static analysis to
locate the faults of null pointer exception. They conducted a

case study on two versions of Ant project and showed that their
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Fig. 1. An example of stack trace.
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method was effective. Wang et al. (2013) proposed a method
called BFFinder to locate defective files with crash correlation
groups which were identified by stack traces. Their experiments
on Firefox and Eclipse projects showed that BFFinder achieved
precision of 100% and 79%, recall of 90% and 65% on the two
projects, respectively. Moreno et al. (2014) proposed a static
method called Lobster for bug localization using the stack traces
based similarity and text retrieval based textual similarity. Their
experiments on 14 projects showed that Lobster achieved better
performance than Lucene based method. Wu et al. (2014) pro-
posed a method called CrashLocator to locate crashing fault at
function level. CrashLocator applied the static analysis methods
to the crash stacks for generating approximate crash traces. For
the functions in the crash traces, CrashLocator used some factors
to calculate the suspicious scores of these functions that cause
the crash. Their experiments on three Mozilla products showed
that CrashLocator outperformed conventional stack-only meth-
ods significantly. Gong et al. (2014) proposed a statistical fault
localization framework to locate functions with crashing faults.
This framework consisted of instrumentation and static analysis,
generation of passing and failing execution traces, and suspi-
ciousness calculation with Ochiai method. Their experiments on
two versions of Firefox project showed that their framework can
locate more than 63.9% and 52.7% of crashing faults by checking
5% of functions on the two versions, respectively. Wong et al.
(2014) proposed a method called BRTracer to identify faulty files
with segmentation and stack trace analysis. Their experiments
on three projects demonstrated that BRTracer performed signifi-
cantly better than a representation method called BugLocator. Wu
et al. (2018) proposed a method called ChangeLocator to locate
the changes that would induce the crashing faults. ChangeLocator
combined traditional code characteristics with crash reporting
information to train a classification model on the data from
the historical fixed crashes, and then calculated the probabil-
ity of a change inducing the crash. The experiments on six re-
lease versions of Netbeans project illustrated that ChangeLocator
was superior to an information retrieval-based fault localization
method.

Different from the above studies that usually calculated sus-
picious scores of the functions being fault, our work applies the
machine learning method to predict the root cause of a crash,
i.e., determining whether the crashing fault matches the class
name, function, and line number of the recorded information
in the stack trace. From this point of view, our work locates
the faulty code at code line level, not the function level. Gu
et al. (2019) were the first to study the crashing fault residence
prediction by proposing a method called CraTer. However, their
work did not perform conversion processing on data for better
feature representation. Following their work, Xu et al. (2019c)
proposed a cross project model called BDA to predict the crashing
fault residence of a project by using the labeled data of an-
other project. However, they did not take the class imbalanced
issue into account and the performance of cross project model
is usually constrained by the distribution differences across data.

Different from the above two studies, our work uses metric
learning method to learn high-quality data representation and
deals with the class imbalanced issue during the process of fea-
ture representation learning. In addition, as we conduct crashing
fault residence prediction using the data within the project, the
distribution difference issue can be ignored.

3. Method

Imbalanced Metric Learning (IML) (Gautheron et al., 2019) is
novel representation learning that focuses on learning a metric

n an imbalanced scenario. Here, we describe the details of IML
ethod for feature representation learning on crash data.

.1. Notations

Assume that the feature set of the crash instances as X =

xi}ni=1 ∈ Rn×m and the corresponding label set as Y = {yi}ni=1 ∈
n×1, where xi = [xi1, xi2, . . . , xim] ∈ Rm denotes the ith crash

instance, yi ∈ {−1, 1} denotes the label of xi, n is the number
of crash instances, and m is the feature dimension. yi = 1 indi-
ates that the corresponding crash fault resides inside the stack
race (short for ‘InTrace’), whereas yi = −1 indicates that the
orresponding crash fault resides outside the stack trace (short
or ‘OutTrace’). We further define Z = X × Y as the labeled data
here z = (x, y) indicates a labeled crash instance. Assume that
he data with n labeled crash instances is defined as S = {zi =

xi, yi)ni=1} = S+
∪S−, where S+ indicates the set of positive crash

nstances (i.e., label with ‘InTrace’) and S− indicates the set of
egative crash instances (i.e., label with ‘OutTrace’). For the used
rash instance data, the number of positive crash instances n+

=

S+
| is much smaller than the number of negative crash instances

−
= |S−

|, which means that the data are class imbalanced.

.2. Metric learning

Metric learning is also known as similarity learning. It recon-
tructs the original data into a more reasonable latent space to
easure the similarity between crash instances expecting that
rash instances with different labels are less similar while the
rash instances with the same label are more similar. Maha-
anobis distance is a commonly used distance measure in metric
earning. The latent space learned by this distance measure is very
uitable for the classification task of kNN model. Mahalanobis
istance can be regarded as an improvement version of Euclidean
istance by correcting the inconsistent and related problems of
arious dimensions in Euclidean distance (Maesschalck et al.,
000; Weinberger and Saul, 2009).
The Euclidean distance (dE(x, x′)) of two crash instances is

efined as

E(x, x′) =

√
(x − x′)⊤I(x − x′) (1)

where I is the identify matrix.
The Mahalanobis distance can be regarded as a modification

of Euclidean distance and is defined as

d (x, x′) =

√
(x − x′)⊤M(x − x′) (2)
M
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where M ∈ Rm×m is a Positive Semi-Definite (PSD) matrix which
can be decomposed as M = L⊤L, where L ∈ Rr×m is a linear
projection induced by M (r is the rank of M). Thus, Eq. (2) can be
rewritten as

dM (x, x′) =

√
(x − x′)⊤L⊤L(x − x′)

=

√
(Lx − Lx′)⊤(Lx − Lx′)

(3)

Compared with Eqs. (1) and (3), the Mahalanobis distance be-
ween two crash instances x and x′ is equivalent to the Euclidean
istance after mapping x and x′ with the projection L into the
-dimensional space, i.e., Lx and Lx′.
Mahalanobis distance based metric learning aims to minimize

he loss ℓ over all pairs of crash instances in data S that can be
expressed as

min
M≽0

J =
1
n2

∑
(z,z′)∈S

ℓ(M, z, z ′) + λ∥M − I∥2
F (4)

here ∥M − I∥2
F is a regularization term under the PSD constraint

≽ 0 and ∥ · ∥
2
F is the Frobenius norm. This term is able

o learn a Mahalanobis metric close to the Euclidean distance
hile satisfying the best of semantic constraints (Gautheron et al.,
019).

.3. Imbalanced metric learning

The main disadvantage of the above metric learning formu-
ation is that the loss function treats any pair of crash instances
z, z ′) equally, that is, it gives the same weight to all pairs of crash
nstance without considering the corresponding labels y and y′.
his treatment is not well suitable for our imbalanced crash data
ince the interest objects are the positive crash instances with
abel ‘InTrace’ which is the minority class. In order to deal with
his problem, Gautheron et al. (2019) optimized the above met-
ic learning formulation by decomposing the loss function into
ultiple parts according to the labels of the two crash instances

n a pair. In other words, the idea is to give different weights
o the crash instance pairs with the purpose of reducing the
egative effect of the class imbalance. More specifically, for all
rash instance pairs (z, z ′) and all M ∈ Rm×m, the loss function
(M, z, z ′) is decomposed into the following form

=

{
L1 = [d2M (x, x′) − 1]+ if y = y′

L2 = [1 + md − d2M (x, x′)]+ if y ̸= y′,
(5)

here [·]+ is the Hinge loss to take the maximum value between
and the element inside the brackets, and md ⩾ 0 is a margin
arameter. From the expression of the two decomposed loss
unctions, we can see that, for the loss function L1, when the
istance between two crash instances of a pair with the same
abel is larger than 1, it will generate loss. Thus, this loss function
ims to narrow the distance of two crash instances with the same
abel less than 1. For the loss function L2, when the distance
etween two crash instances of a pair with different labels is less
han 1 + md, it will cause loss. Thus, this loss function aims to
nlarge the distance of two crash instances with different labels
ore than 1 plus a margin. Fig. 2 shows the effect of the two loss

unctions. The three red squares (i.e., O1, O2, and O3) denote three
rash instances with label ‘OutTrace’ and the two blue squares
i.e., I1 and I2) denote two crash instances with label ‘InTrace’. In
ig. 2(a), for O1 and I1, as the distances between ⟨O1,O2⟩, ⟨O1,O3⟩,
nd ⟨I1, I2⟩ are larger than 1, thus, L1 loss function will bring them
loser together by lessening their distances. In Fig. 2(b), for O1 and
1, as the distances between ⟨O1, I2⟩ and ⟨I1,O3⟩ are smaller than
+md, thus, L2 loss function will separate them further apart by

nlarging their distances. s
Fig. 2. An example of the effect of the two loss functions.

By considering different losses for the crash instance pairs
under district scenarios, the Mahalanobis distance based imbal-
anced metric learning is formalized as the following convex ex-
pression

min
M≽0

J =
a

4|Same+
|

∑
(z,z′)∈Same+

L1 +
a

4|Same−
|

∑
(z,z′)∈Same−

L1

+
1 − a

4|Diff +
|

∑
(z,z′)∈Diff+

L2 +
1 − a

4|Diff −
|

∑
(z,z′)∈Diff−

L2

+ λ∥M − I∥2
F

(6)

where the four terms Same+, Same−, Diff +, and Diff − are defined
s the subsets S+

×S+, S−
×S−, S+

×S−, and S−
×S+ respectively,

nd the parameter a ∈ [0, 1] which is used to balance the
effect of bringing crash instance pairs with the same label closer
and keeping crash instance pairs with different labels apart. The
decomposition by dividing the original loss function of metric
learning into different parts can treat the losses caused by the
crash instance pairs from the above four sets differently.

The difference between Eq. (4) of original metric learning and
Eq. (6) of the imbalanced metric learning is that the former one
gives all crash instance pairs from the 4 subsets (i.e., Same+,
Same−, Diff +, and Diff −) the same weigh 1

n2
, while the latter one

iven the pairs diverse weights. In our crash instance data, the
umber of pairs in Same+ (|Same+

|) and Same− (|Same−
|) are

uch smaller than that in Diff + (|Diff +
|). Intuitively, the pairs

n the subsets Same+ and Diff + should have larger impact on the
oss function compared with the pairs in other two subsets since
he first elements in such pairs are the positive crash instances,
.e., the interest minority class. Thus, such kind of losses should
e given higher weights. For this purpose, IML method employs a
imple strategy to assign the weight to the loss function according
o the number of pairs in the corresponding subset. This weight-
ng strategy enables to treat the four types of loss functions under
he four subsets differently, which makes the learned metric more
obust to imbalanced data.

As the number of the crash instance pairs in the subsets
ame+, Same−, Diff +, and Diff − are n+n+, n−n−, n+n−, and n−n+,
espectively, it is quite inefficient to consider all pairs in these
ubsets for the metric learning especially when the data consist
f a large number of crash instances. There are two strategies
o reduce the pair space: one is to randomly select the pairs
or a crash instance (Zadeh et al., 2016), another is to carefully
elect the pairs for a crash instance based on the nearest neighbor
ule (Lu et al., 2014). In terms of the former one, this strategy
ay generate pairs in only one subset for some crash instances
ince the data are usually imbalanced. For example, for a negative
rash instance, it may randomly select multiple instances with
he same label since they occupy the majority of the data. In
erms of the latter one, for each crash instance, this strategy

elects its multiple (such as k) neighborhood with the same as
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Table 1
Statistic information of the seven projects.
Projects Version # Mutants # Killed mutants # Crashing faults % InTrace

Codec (http://commons.apache.org/codec/) 1.10 2901 2601 610 29.0%
Collections (http://commons.apache.org/collections/) 4.1 6650 5300 1350 20.2%
IO (http://commons.apache.org/io/) 2.5 3337 2728 686 21.7%
Jsoup (http://jsoup.org/) 1.11.1 2657 1892 601 20.0%
JSqlParser (http://github.com/JSQLParser/JSqlParser) 0.9.7 8757 5636 647 9.4%
Mango (http://www.jfaster.org/) 1.5.4 5149 1570 733 7.2%
Ormlite-Core (http://github.com/j256/ormlite-core) 5.1 3563 2751 1303 25.0%
t
n
a
f

well as different labels to form the pairs. Thus, each positive crash
instance will generate k pairs in both subsets Same+ and Diff +,
nd each negative crash instance will generate k pairs in both

subsets Same− and Diff −. From this point of view, this strategy
can well adapt to the imbalanced data. Thus, in this work, our IML
method employs the second strategy to reduce the pair space and
take the imbalance property of the data into account.

4. Experiment setup

In this section, we first detail the used benchmark dataset in-
cluding the basic information of the dataset and the correspond-
ing collection process, then we describe the used performance
indicators, the statistic test method, the used classification model,
the parameter configuration, and the data partition process.

4.1. Benchmark dataset

To evaluate the performance of our IML method for crash-
ing fault residence prediction task, we conduct experiments on
a publicly available benchmark dataset shared by a previous
study (Gu et al., 2019). This dataset consists of seven open source
Java projects, i.e., Apache Commons Codec, Apache Commons
Collections, Apache Commons IO, Jsoup, JSqlParser, Mango, and
Ormlite-Core. Codec provides solutions of common encoders and
decoders. Collections adds many powerful data structures that
speeds up the development of most important Java applications.
IO is a tool library that assists the development of IO function-
ality. Jsoup is a Java HTML parser that can directly parse the
URL address and HTML text content. JSqlParser is a plug-in that
parses SQL statements and translates them into a hierarchy of
Java classes. Mango is a high-performance distributed framework
for object relational mapping. Ormlite-Core is a package that
provides the core functionality for the Java database connectivity
and Android packages.

Table 1 presents the basic information of these projects, in-
cluding the version number, the number of mutants produced by
program mutation (# Mutants), the number of mutants without
passing the test execution based on the test cases (# Killed mu-
tants), the number of remaining crash instances after removing
useless mutants from the killed ones(# Crashes), and the percent-
age of crash instances inside the stack trace (% InTrace). Note that
the crashing faults are the killed mutants that are reserved after
removing useless ones based on some predesignated rules. The
rules consist of four types, i.e., the mutants with all test cases
passed and whose stack traces only include AssertionFailedError,
ComparisonFailure, and test cases (Gu et al., 2019).

The data were collected through 3 steps, including generating
crashing faults, extracting features, and labeling crashing fault
residence. The brief description of each step is presented as
follows:
4.1.1. Generating crashing faults
To obtain the crashing faults, Gu et al. (2019) first seeded

faults into projects with the mutation testing tool PIT system to
simulate the crashing faults following previous studies (Zhang
et al., 2013; Moon et al., 2014). They chose seven default mutation
operators (including conditionals boundary mutator, increments
mutator, invert negatives mutator, math mutator, negate con-
ditionals mutator, return values mutator, and void method call
mutator) to generate the program mutation. Then, they followed
four types of rules to discard some mutants without causing
crashes and the remaining ones are the crash instances used in
this work.

4.1.2. Extracting features
The features of the crashing faults were extracted with a Java

compiler called Spoon (Pawlak et al., 2016) for static program
analysis and transformation. Gu et al. (2019) extracted five types
of features including a total of 89 ones. These features are ex-
tracted from the Stack Trace (short for ST group), the source code
in the Top Frame and Bottom Frame (short for TF group and
BF group, respectively), and the Normalized ones for TF group
and BF group (short for NTF group and NBF group, respectively.)
The features extracted from the stack trace have the potential to
characterize the difficulty of dealing with the crash. The features
extracted from the top frame can represent the state of the
program when it crashes. The features extracted from the bottom
frame can reflect some information of the initial function call. The
brief description of these features are presented in Table 2.

4.1.3. Labeling crashing fault residence
The residence labels of the crashing faults are based on the

three main elements recorded in the frame, i.e., class name,
function name, and line number. The crashing fault is labeled as
‘InTrace’ if its code information is the same as the above three
elements in one of frames in the stack trace, which means that
this crashing fault resides inside the stack trace. Otherwise, the
crash fault is labeled as ‘OutTrace’. The label collection is done by
checking the bug-fixing logs.

4.2. Performance indicators

As predicting the residence of crashing faults is a binary clas-
sification task, we employ some commonly-used indicators, in-
cluding F-measure and Matthew Correlation Coefficient (MCC) in
the field of information retrieval to evaluate the performance of
our IML method. To calculate these indicators, we first define four
basic terms for positive crash instances as follows: True Positive
(TP) denotes the number of crashing faults with label ‘InTrace’
hat are predicted as ‘InTrace’; False Negative (FN) denotes the
umber of crashing faults with label ‘InTrace’ that are predicted
s ‘OutTrace’; True Negative (TN) denotes the number of crashing
aults with label ‘OutTrace’ that are predicted as ‘OutTrace’; False
Positive (FP) denotes the number of crashing faults with label
‘OutTrace’ that are predicted as ‘InTrace’.

Based on the above terms, we can get two commonly-used
indicators that are used to calculate F-measure for positive crash

http://commons.apache.org/codec/
http://commons.apache.org/collections/
http://commons.apache.org/io/
http://jsoup.org/
http://github.com/JSQLParser/JSqlParser
http://www.jfaster.org/
http://github.com/j256/ormlite-core
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Table 2
Brief descriptions of extracted 89 features for crashing faults.
Features Brief description

ST group Features related to the stack trace (ST)

ST01 Type of the exception in the crash
ST02 Number of frames of the stack trace
ST03 Number of classes of the stack trace
ST04 Number of functions of the stack trace
ST05 Whether an overloaded function exists in stack trace
ST06 Length of the name in the top class
ST07 Length of the name in the top function
ST08 Length of the name in the bottom class
ST09 Length of the name in the bottom function
ST10 Number of Java files in the project
ST11 Number of classes in the project

TF group (BF group) Features related to the top frame (TF) and bottom frame (BF)

TF01 (BF01)

Class in the top (bottom) frame

Number of local variables
TF02 (BF02) Number of filed number
TF03 (BF03) Function (except constructor one) number
TF04 (BF04) Imported packages number
TF05 (BF05) Whether the class is inherited from others
TF06 (BF06) Lines of code of comments

TF07 (BF07)

Function in the top (bottom) frame

Lines of code
TF08 (BF08) Number of parameters
TF09 (BF09) Number of local variable
TF10 (BF10) Number of if-statements
TF11 (BF11) Number of loops
TF12 (BF12) Number of for statements
TF13 (BF13) Number of for-each statement
TF14 (BF14) Number of while statements
TF15 (BF15) Number of do-while statements
TF16 (BF16) Number of try blocks
TF17 (BF17) Number of catch block
TF18 (BF18) Number of finally blocks
TF19 (BF19) Number of assignment statements
TF20 (BF20) Number of function calls
TF21 (BF21) Number of return statements
TF22 (BF22) Number of unary operators
TF23 (BF23) Number of binary operators

NTF group (NBF group) Normalizing features in TF group (NTF) and BF group (NBF) by lines of code

NTF01 (NBF01) TF08/TF07 (BF08/BF07)
NTF02 (NBF02) TF09/TF07 (BF09/BF07)
· · · · · ·

NTF15 (NBF15) TF22/TF07 (BF22/BF07)
NTF16 (NBF16) TF23/TF07 (BF23/BF07)
M

i

M

instances (short for FP). The first one is Precision for positive
crash instances (short for PP) which is defined as the ratio of the
umber of crash instances with label ‘InTrace’ that are correctly
redicted to the number of crash instances that are predicted as
InTrace’, i.e., PP =

TP
TP+FP . The second one is Recall for positive

crash instances (short for RP) which is defined as the ratio of the
number of crash instances with label ‘InTrace’ that are correctly
predicted to the number of crash instances with label ‘InTrace’,
i.e., RP =

TP
TP+FN . Then, FP is the harmonic mean of PP and RP as

P =
2 × PP × RP

PP + RP
(7)

Similarly, let define four basic terms for negative crash in-
tance as TP′, FN′, TN′, and FP′, we can get Precision and Recall
or negative crash instances (short for PN and RN) as PN =

TP′

TP′+FP ′

and RN =
TP′

TP′+FN ′ . Then, F-measure for negative crash instances
short for FN) is defined as

FN =
2 × PN × RN

PN + RN
(8)

MCC essentially measures the correlation coefficient between
the actual result and the predicted result by the classification
model. It comprehensively considers the four basic terms TP, TN,
FP, and FN which is deemed as a relatively balanced indicator
for imbalanced data. MCC for positive crash instances (short for
MCCP) is defined as

CCP =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(9)

Similarly, MCC for negative crash instances (short for MCCN)
s defined as

CCN =
TP′

× TN′
− FP′

× FN′√
(TP′

+ FP′)(TP′
+ FN′)(TN′

+ FP′)(TN′
+ FN′)

(10)

According to the definition of the above four basic terms, we
can find that TP = TN′, TN = TP′, FP = FN′, and FN = FP′.
Thus, MCCP = MCCN. This means that MCC can comprehensively
evaluate the overall performance of the method on both labels.

The value range of MCC is between −1 and 1. MCC = 1 means
that the predicted results of the crash instances are completely
consistent with the actual ones while MCC = −1 means that
the predicted results are completely inconsistent with the actual
ones. MCC = 0 means that the performance is equal to random
prediction.

As a result, we total use three indicators. i.e., FP , FN , and MCC
for performance evaluation which are widely used in previous
studies (Gu et al., 2019; Song et al., 2018; Yao and Shepperd,
2020; Xu et al., 2019b; Li et al., 2020) for software engineering

tasks.
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Fig. 3. The framework of Scott-Knott ESD.
.3. Statistic test

To conduct a significant analysis for the performance differ-
nces between our IML method and the comparative methods,
n this work, we use a state-of-the-art statistical test method
alled Scott-Knott Effect Size Difference (SKESD) (Tantithamtha-
vorn et al., 2017). Scott-Knott test employs hierarchical clustering
algorithm to divide the methods with significant performance dif-
ferences into different groups (Ghotra et al., 2015; Xu et al., 2016).
SKESD is an improved version of Scott-Knott test via normality
correction and effect size correction to relieve its two limitations.
More specifically, SKESD amends the normality requirement of
performance results by applying log-transforming (Menzies et al.,
2006) to preprocess them, and merges the groups with negli-
gible effect size into one group by using Cohen’s delta (Cohen,
2013) to quantify the effect size. Compared with the commonly-
used Friedman test with Nemenyi test, Scott-Knott test has the
advantage to cluster the multiple methods into completely non-
overlapping groups with significantly differences. In this work,
we run the Scott-Knott ESD two rounds to analyze the results as
shown in Fig. 3: in the first round, the inputs of SKESD are the
100 different indicator values of each method on each project and
the corresponding outputs are the ranks of the methods on each
project; in the second round, the inputs of SKESD are the outputs
in the previous round and the corresponding outputs are the final
ranks for the methods over all projects. The method with lower
rank means that it achieves better performance.

4.4. Classification model

After obtaining the new feature representation of the crash
data via our IML method, a classification model is needed to
conduct the prediction task. As the Mahalanobis distance based
imbalanced metric learning is designed to improve the accuracy
of the kNN classifier rule in the latent space with the optimization
goal to make the k nearest neighbor samples always belong to
the same class, in this work, we choose kNN as our basic learner
which is a simple instance-based classifier. To determine which
label a crash instance in the test set belongs to, kNN first finds
the k neighbors closest to the test instance from all the crash
instances in the training set; then it counts the label most of the
k neighbors belong to; finally, kNN assigns this label to the test
instance as the prediction result.

4.5. Parameter configuration

For our IML method, there are three parameters that are
needed to tune, i.e., the margin parameter md, regularization
parameter λ, and the balanced parameter a. In this work, we
empirically set md as {1, 10, 100, 1000, 10000}, λ as {0, 0.01, 0.1,
1, 10}, and a ∈ [0, 1] with a step of 0.05 following the previous
work (Gautheron et al., 2019). We use grid search to find the
optimal combination of the three parameters on the training set
and validation set, and then apply the optimal combination to the
test set. For kNN classifier, we empirically set k as 3 to predict the
residence of the crashing fault in the test set.

4.6. Data partition

To investigate the effectiveness of our IML method for predict-
ing the crashing fault residence, we use a two-round stratified
sampling method to divide the data into three parts as the train-
ing set, validation set, and test set. More specifically, in the first
round, we randomly select half of the crash instances with label
‘InTrace’ and ‘OutTrace’ as the test set; in the second round, for
the remaining half of crash instances, we also randomly select
half of the crash instances with label ‘InTrace’ and ‘OutTrace’ as
the training set, and the last remaining crash instances as the
validation set. The stratified sampling ensures the ratios of two
types of crash instances in the three sets are the same as that in
the original data. To reduce the randomness bias of the data parti-
tion, we repeat the data partition process 100 times to neutralize
fluctuations in performance and report the corresponding average
value and standard deviation for each indicator. Note that the
stratified sampling method and multiple runnings for reducing
the variability of the random division are commonly used in
previous studies in the field of software engineering (Wang et al.,
2016; Ryu et al., 2016; Xu et al., 2019a).
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Table 3
FP values of our IML method and the sampling based methods on each project.
Project Original ROS RUS SMO SMOTOM SMOENN BLSMO SVMSMO ADASYN IML

Codec 0.510 ± (0.05) 0.563 ± (0.05) 0.516 ± (0.04) 0.557 ± (0.05) 0.551 ± (0.05) 0.501 ± (0.04) 0.552 ± (0.05) 0.552 ± (0.04) 0.562 ± (0.04) 0.585 ± (0.06)
Collections 0.469 ± (0.04) 0.507 ± (0.03) 0.462 ± (0.03) 0.499 ± (0.03) 0.497 ± (0.03) 0.461 ± (0.03) 0.499 ± (0.03) 0.504 ± (0.03) 0.495 ± (0.03) 0.599 ± (0.05)
IO 0.639 ± (0.05) 0.653 ± (0.04) 0.589 ± (0.05) 0.639 ± (0.04) 0.640 ± (0.04) 0.574 ± (0.04) 0.633 ± (0.05) 0.638 ± (0.05) 0.637 ± (0.04) 0.697 ± (0.05)
Jsoup 0.314 ± (0.08) 0.446 ± (0.05) 0.381 ± (0.04) 0.443 ± (0.05) 0.441 ± (0.04) 0.415 ± (0.04) 0.433 ± (0.05) 0.429 ± (0.05) 0.441 ± (0.04) 0.439 ± (0.07)
JSsqlParser 0.710 ± (0.05) 0.640 ± (0.06) 0.504 ± (0.10) 0.634 ± (0.07) 0.633 ± (0.06) 0.546 ± (0.07) 0.635 ± (0.07) 0.645 ± (0.07) 0.615 ± (0.07) 0.724 ± (0.06)
Mango 0.490 ± (0.12) 0.501 ± (0.09) 0.302 ± (0.08) 0.483 ± (0.08) 0.483 ± (0.08) 0.390 ± (0.07) 0.504 ± (0.10) 0.511 ± (0.10) 0.478 ± (0.08) 0.588 ± (0.10)
Ormlite-Core 0.596 ± (0.04) 0.630 ± (0.03) 0.574 ± (0.03) 0.625 ± (0.03) 0.626 ± (0.03) 0.573 ± (0.02) 0.622 ± (0.03) 0.626 ± (0.03) 0.625 ± (0.03) 0.690 ± (0.04)

Average 0.533 ± (0.12) 0.563 ± (0.08) 0.475 ± (0.10) 0.554 ± (0.08) 0.553 ± (0.08) 0.494 ± (0.07) 0.554 ± (0.07) 0.558 ± (0.08) 0.550 ± (0.07) 0.617 ± (0.09)
Table 4
FN values of our IML method and the sampling based methods on each project.
Project Original ROS RUS SMO SMOTOM SMOENN BLSMO SVMSMO ADASYN IML

Codec 0.814 ± (0.02) 0.769 ± (0.03) 0.684 ± (0.05) 0.760 ± (0.03) 0.759 ± (0.03) 0.605 ± (0.06) 0.756 ± (0.03) 0.772 ± (0.03) 0.752 ± (0.03) 0.827 ± (0.02)
Collections 0.883 ± (0.01) 0.831 ± (0.02) 0.758 ± (0.03) 0.816 ± (0.02) 0.815 ± (0.02) 0.731 ± (0.04) 0.822 ± (0.02) 0.834 ± (0.02) 0.806 ± (0.02) 0.904 ± (0.01)
IO 0.906 ± (0.01) 0.881 ± (0.02) 0.841 ± (0.03) 0.871 ± (0.02) 0.871 ± (0.02) 0.817 ± (0.03) 0.871 ± (0.02) 0.878 ± (0.02) 0.863 ± (0.02) 0.916 ± (0.02)
Jsoup 0.873 ± (0.01) 0.824 ± (0.02) 0.731 ± (0.05) 0.794 ± (0.03) 0.791 ± (0.03) 0.682 ± (0.06) 0.797 ± (0.03) 0.817 ± (0.03) 0.788 ± (0.03) 0.861 ± (0.02)
JSsqlParser 0.975 ± (0.00) 0.958 ± (0.01) 0.900 ± (0.05) 0.954 ± (0.02) 0.953 ± (0.01) 0.924 ± (0.03) 0.956 ± (0.02) 0.958 ± (0.01) 0.949 ± (0.02) 0.974 ± (0.01)
Mango 0.970 ± (0.01) 0.954 ± (0.01) 0.843 ± (0.07) 0.945 ± (0.01) 0.945 ± (0.02) 0.907 ± (0.03) 0.953 ± (0.01) 0.957 ± (0.01) 0.943 ± (0.01) 0.971 ± (0.01)
Ormlite-Core 0.870 ± (0.01) 0.839 ± (0.02) 0.780 ± (0.03) 0.832 ± (0.02) 0.833 ± (0.02) 0.753 ± (0.03) 0.831 ± (0.02) 0.841 ± (0.02) 0.825 ± (0.02) 0.896 ± (0.02)

Average 0.899 ± (0.05) 0.865 ± (0.07) 0.791 ± (0.07) 0.853 ± (0.07) 0.852 ± (0.07) 0.774 ± (0.11) 0.855 ± (0.07) 0.865 ± (0.07) 0.847 ± (0.07) 0.907 ± (0.05)
Table 5
MCC values of our IML method and the sampling based methods on each project.
Project Original ROS RUS SMO SMOTOM SMOENN BLSMO SVMSMO ADASYN IML

Codec 0.329 ± (0.06) 0.354 ± (0.07) 0.261 ± (0.06) 0.342 ± (0.07) 0.333 ± (0.07) 0.225 ± (0.07) 0.334 ± (0.08) 0.34 ± (0.07) 0.347 ± (0.07) 0.415 ± (0.07)
Collections 0.359 ± (0.04) 0.362 ± (0.04) 0.296 ± (0.04) 0.349 ± (0.04) 0.348 ± (0.04) 0.297 ± (0.04) 0.351 ± (0.04) 0.359 ± (0.04) 0.345 ± (0.04) 0.507 ± (0.06)
IO 0.549 ± (0.06) 0.549 ± (0.06) 0.461 ± (0.07) 0.530 ± (0.06) 0.532 ± (0.06) 0.444 ± (0.06) 0.522 ± (0.07) 0.529 ± (0.06) 0.528 ± (0.06) 0.615 ± (0.06)
Jsoup 0.214 ± (0.08) 0.286 ± (0.07) 0.177 ± (0.06) 0.275 ± (0.07) 0.272 ± (0.06) 0.227 ± (0.06) 0.263 ± (0.07) 0.263 ± (0.07) 0.272 ± (0.06) 0.305 ± (0.09)
JSsqlParser 0.708 ± (0.05) 0.605 ± (0.07) 0.476 ± (0.10) 0.601 ± (0.07) 0.599 ± (0.07) 0.514 ± (0.07) 0.603 ± (0.08) 0.612 ± (0.07) 0.580 ± (0.07) 0.710 ± (0.06)
Mango 0.499 ± (0.11) 0.464 ± (0.10) 0.268 ± (0.09) 0.448 ± (0.09) 0.448 ± (0.09) 0.363 ± (0.08) 0.469 ± (0.10) 0.476 ± (0.11) 0.444 ± (0.09) 0.571 ± (0.10)
Ormlite-Core 0.468 ± (0.05) 0.492 ± (0.04) 0.409 ± (0.05) 0.485 ± (0.04) 0.487 ± (0.04) 0.414 ± (0.04) 0.481 ± (0.04) 0.486 ± (0.05) 0.486 ± (0.04) 0.587 ± (0.05)

Average 0.447 ± (0.15) 0.445 ± (0.11) 0.335 ± (0.11) 0.433 ± (0.18) 0.431 ± (0.11) 0.355 ± (0.10) 0.432 ± (0.11) 0.438 ± (0.11) 0.429 ± (0.10) 0.530 ± (0.13)
5. Evaluation results

5.1. RQ1: Does our IML method perform better than sampling based
imbalanced learning methods?

Motivation : As mentioned above, IML method is a metric learn-
ng method to deal with imbalanced data. Since sampling meth-
ds are widely used for imbalanced learning, this question is
roposed to investigate whether our IML method is more effec-
ive to achieve better prediction performance for crashing fault
esidence than sampling methods.
Methods : To answer this question, we choose nine comparative
ampling methods. These methods are only applied to the train-
ng set. For a fair comparison, all these comparative methods and
ur IML method are conducted on the same training set and test
et. These baseline methods are briefly described as follows:

• ROS: Random Over-Sampling randomly duplicates crash in-
stances from the minority class (i.e., the crashing instances
with label ‘InTrace’).

• RUS: Random Under-Sampling randomly removes crash in-
stances from the majority class (i.e., the crashing instances
with label ‘OutTrace’).

• SMO: The Synthetic Minority Oversampling technique syn-
thesizes new crash instances for minority class based on
interpolation.

• SMOTOM: This method uses SMO for over-sampling and
TOMek links for data cleaning.

• SMOENN: This method uses SMO for over-sampling and
Edited Nearest Neighbours for data cleaning.

• BLSMO: This method uses BorderLine SMO algorithm to
generate new synthetic crash instances for minority class.

• SVMSMO: This method uses a SVM algorithm to detect the
crash instances that are used to generate new synthetic
crash instances by SMO for the minority class.

• ADASYN: This method performs over-sampling using
ADAptive SYNthetic sampling approach for the minority
class.
• Original: Original method means that we do not use metric
learning to preprocess the training set and test set. We treat
Original as the most basic method for comparison.

Results : Tables 3, 4, and 5 report the indicator values and
corresponding standard deviations (the value in the bracket de-
notes the standard deviation) of our IML method and the nine
sampling based imbalanced learning methods in terms of FP, FN,
and MCC, respectively. From these tables, we have the following
observations:

First, in terms of FP, our IML method achieves better perfor-
mance than the nine comparative sampling based imbalanced
learning methods on 6 out of 7 projects and gets the best aver-
age FP values across all projects. Compared with the average FP
values of the nine baseline methods, IML achieves improvements
between 9.6% (for ROS) and 29.9% (for RUS) with an average
improvement of 15.2%.

Second, in terms of FN, our IML method achieves better per-
formance than the nine comparative sampling based imbalanced
learning methods on 5 out of 7 projects and gets the best average
FN values across all projects. Compared with the average FN
values of the nine baseline methods, IML achieves improvements
between 0.9% (for Original) and 17.2% (for SMOENN) with an
average improvement of 7.6%.

Third, in terms of MCC, our IML method achieves better per-
formance than the nine comparative sampling based imbalanced
learning methods on all 7 projects and gets the best average
MCC values across all projects. Compared with the average MCC
values of the nine baseline methods, IML achieves improvements
between 18.6% (for Original) and 58.2% (for RUS) with an average
improvement of 28.6%.

Fourth, Fig. 4 visualizes the corresponding statistical test re-
sults by SKESD for our IML method and the nine sampling based
imbalanced learning methods. The methods with significant dif-
ferences are drawn with different colors. The figure shows that
our IML method ranks the first and has significant differences in
performance toward all baseline methods in terms of all three
indicators.
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Fig. 4. Results of Scott-Knott ESD test for our IML method and nine sampling methods.
Table 6
FP values of our IML method and the ensemble based methods on each project.
Project Bagging BalBag BalRF RUSBoost EasyEnse IML

Codec 0.505 ± (0.06) 0.528 ± (0.04) 0.581 ± (0.04) 0.433 ± (0.10) 0.613 ± (0.07) 0.585 ± (0.06)
Collections 0.465 ± (0.04) 0.490 ± (0.03) 0.581 ± (0.04) 0.516 ± (0.07) 0.584 ± (0.04) 0.599 ± (0.05)
IO 0.639 ± (0.05) 0.616 ± (0.05) 0.663 ± (0.05) 0.645 ± (0.08) 0.658 ± (0.09) 0.697 ± (0.05)
Jsoup 0.312 ± (0.08) 0.388 ± (0.04) 0.459 ± (0.04) 0.378 ± (0.09) 0.487 ± (0.05) 0.439 ± (0.07)
JSsqlParser 0.709 ± (0.05) 0.505 ± (0.09) 0.470 ± (0.07) 0.534 ± (0.17) 0.476 ± (0.07) 0.724 ± (0.06)
Mango 0.490 ± (0.12) 0.334 ± (0.06) 0.278 ± (0.05) 0.467 ± (0.15) 0.319 ± (0.09) 0.588 ± (0.10)
Ormlite-Core 0.594 ± (0.04) 0.598 ± (0.03) 0.680 ± (0.02) 0.655 ± (0.07) 0.767 ± (0.08) 0.690 ± (0.04)

Average 0.531 ± (0.12) 0.494 ± (0.10) 0.530 ± (0.13) 0.518 ± (0.10) 0.558 ± (0.13) 0.617 ± (0.09)
Table 7
FN values of our IML method and the ensemble based methods on each project.
Project Bagging BalBag BalRF RUSBoost EasyEnse IML

Codec 0.818 ± (0.02) 0.730 ± (0.04) 0.762 ± (0.03) 0.806 ± (0.03) 0.793 ± (0.04) 0.827 ± (0.02)
Collections 0.886 ± (0.01) 0.795 ± (0.02) 0.845 ± (0.02) 0.888 ± (0.02) 0.838 ± (0.03) 0.904 ± (0.01)
IO 0.907 ± (0.02) 0.864 ± (0.03) 0.878 ± (0.02) 0.912 ± (0.02) 0.872 ± (0.06) 0.916 ± (0.02)
Jsoup 0.874 ± (0.01) 0.763 ± (0.04) 0.757 ± (0.03) 0.868 ± (0.02) 0.778 ± (0.06) 0.861 ± (0.02)
JSsqlParser 0.974 ± (0.01) 0.905 ± (0.04) 0.888 ± (0.04) 0.957 ± (0.01) 0.892 ± (0.04) 0.974 ± (0.01)
Mango 0.968 ± (0.01) 0.879 ± (0.04) 0.809 ± (0.06) 0.959 ± (0.02) 0.844 ± (0.06) 0.971 ± (0.01)
Ormlite-Core 0.876 ± (0.01) 0.804 ± (0.02) 0.858 ± (0.02) 0.894 ± (0.02) 0.905 ± (0.04) 0.896 ± (0.02)

Average 0.900 ± (0.05) 0.820 ± (0.06) 0.828 ± (0.05) 0.898 ± (0.05) 0.846 ± (0.04) 0.907 ± (0.05)
Table 8
MCC values of our IML method and the ensemble based methods on each project.
Project Bagging BalBag BalRF RUSBoost EasyEnse IML

Codec 0.332 ± (0.07) 0.292 ± (0.07) 0.378 ± (0.07) 0.260 ± (0.10) 0.437 ± (0.10) 0.415 ± (0.07)
Collections 0.363 ± (0.05) 0.338 ± (0.04) 0.466 ± (0.05) 0.412 ± (0.08) 0.473 ± (0.06) 0.507 ± (0.06)
IO 0.550 ± (0.06) 0.498 ± (0.07) 0.564 ± (0.06) 0.568 ± (0.09) 0.558 ± (0.12) 0.615 ± (0.06)
Jsoup 0.215 ± (0.08) 0.193 ± (0.06) 0.297 ± (0.06) 0.263 ± (0.09) 0.339 ± (0.08) 0.305 ± (0.09)
JSsqlParser 0.702 ± (0.06) 0.475 ± (0.09) 0.445 ± (0.06) 0.510 ± (0.16) 0.449 ± (0.07) 0.710 ± (0.06)
Mango 0.483 ± (0.12) 0.304 ± (0.08) 0.256 ± (0.07) 0.441 ± (0.15) 0.298 ± (0.10) 0.571 ± (0.10)
Ormlite-Core 0.475 ± (0.05) 0.445 ± (0.05) 0.565 ± (0.04) 0.556 ± (0.08) 0.689 ± (0.10) 0.587 ± (0.05)

Average 0.446 ± (0.15) 0.364 ± (0.10) 0.424 ± (0.11) 0.430 ± (0.12) 0.463 ± (0.12) 0.530 ± (0.13)
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Answer : Our IML method is more effective to achieve signifi-
antly better prediction performance for crashing fault residence
han sampling methods.

.2. RQ2: Is our IML method superior to ensemble based imbalanced
earning methods?

Motivation : Ensemble learning creates multiple base models
n which each model is trained to solve the same problem, then
mproves overall performance on imbalanced data by integrating
he outputs of these base models. This question is proposed
o investigate whether our IML method performs better than
nsemble methods.
Methods : To answer this question, we choose five comparative
nsemble methods. For a fair comparison, all these comparative
ethods and our IML method are also conducted on the same

raining set and test set. The brief descriptions of the five baseline
ethods are presented as follows:

• Bagging: Bagging resamples crashing instances to generate
multiple subsets and trains a model on each subset. The
result is the average of the outputs of these models.
 F
• BalBag: BalancedBagging classifier is a variant Bagging
which includes an additional step to balance the training set
by using RUS.

• BalRF: BalancedRandomForest classifier uses RUS in each
bootstrap sample for balance.

• RUSBoost: RUSBoost classifier uses RUS for the sample at
each iteration of the boosting algorithm to alleviate the class
imbalanced issue.

• EasyEnse: EasyEnsemble classifier creates an ensemble of
different sets by iteratively selecting a random crashing
instance subset.

Results : Tables 6, 7, and 8 report the indicator values and
corresponding standard deviations of our IML method and the
five ensemble based imbalanced learning methods in terms of
FP, FN, and MCC, respectively. From these tables, we have the
ollowing observations:

First, in terms of FP, our IML method achieves better perfor-
ance than the five comparative ensemble based imbalanced

earning methods on 4 out of 7 projects and gets the best average
values across all projects. Compared with the average F values
P P
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Fig. 5. Results of Scott-Knott ESD test for our IML method and five ensemble methods.
Table 9
FP values of our IML method with different classifiers on each project.
Project IML_NB IML_DT IML_SVM IML_LR IML_RF IML_NN IML_3NN IML_5NN IML_7NN IML_9NN

Codec 0.481 ± (0.09) 0.462 ± (0.08) 0.154 ± (0.19) 0.476 ± (0.07) 0.255 ± (0.12) 0.568 ± (0.07) 0.585 ± (0.06) 0.553 ± (0.07) 0.529 ± (0.08) 0.496 ± (0.09)
Collections 0.325 ± (0.23) 0.512 ± (0.07) 0.219 ± (0.23) 0.508 ± (0.05) 0.228 ± (0.12) 0.597 ± (0.05) 0.599 ± (0.05) 0.588 ± (0.05) 0.581 ± (0.06) 0.565 ± (0.07)
IO 0.459 ± (0.29) 0.591 ± (0.08) 0.450 ± (0.29) 0.667 ± (0.05) 0.571 ± (0.11) 0.679 ± (0.05) 0.697 ± (0.05) 0.691 ± (0.05) 0.684 ± (0.06) 0.674 ± (0.06)
Jsoup 0.351 ± (0.11) 0.354 ± (0.08) 0.109 ± (0.15) 0.413 ± (0.07) 0.218 ± (0.12) 0.442 ± (0.07) 0.439 ± (0.07) 0.430 ± (0.08) 0.421 ± (0.09) 0.409 ± (0.10)
Jsqlparser 0.388 ± (0.26) 0.570 ± (0.17) 0.481 ± (0.31) 0.687 ± (0.06) 0.617 ± (0.16) 0.696 ± (0.07) 0.724 ± (0.06) 0.722 ± (0.06) 0.718 ± (0.07) 0.711 ± (0.09)
Mango 0.254 ± (0.22) 0.384 ± (0.15) 0.257 ± (0.27) 0.537 ± (0.11) 0.376 ± (0.17) 0.584 ± (0.10) 0.588 ± (0.10) 0.572 ± (0.11) 0.550 ± (0.12) 0.511 ± (0.16)
Ormlite-Core 0.559 ± (0.10) 0.596 ± (0.07) 0.340 ± (0.29) 0.604 ± (0.04) 0.423 ± (0.13) 0.702 ± (0.05) 0.690 ± (0.04) 0.682 ± (0.04) 0.669 ± (0.05) 0.656 ± (0.05)

Average 0.402 ± (0.10) 0.496 ± (0.09) 0.287 ± (0.13) 0.556 ± (0.09) 0.384 ± (0.15) 0.610 ± (0.09) 0.617 ± (0.09) 0.605 ± (0.09) 0.593 ± (0.10) 0.575 ± (0.10)
Table 10
FN values of our IML method with different classifiers on each project.
Project IML_NB IML_DT IML_SVM IML_LR IML_RF IML_NN IML_3NN IML_5NN IML_7NN IML_9NN

Codec 0.744 ± (0.09) 0.797 ± (0.03) 0.830 ± (0.01) 0.809 ± (0.02) 0.825 ± (0.01) 0.825 ± (0.02) 0.827 ± (0.02) 0.814 ± (0.03) 0.806 ± (0.03) 0.798 ± (0.03)
Collections 0.816 ± (0.10) 0.880 ± (0.02) 0.898 ± (0.01) 0.893 ± (0.01) 0.895 ± (0.01) 0.898 ± (0.01) 0.904 ± (0.01) 0.904 ± (0.01) 0.904 ± (0.01) 0.903 ± (0.01)
IO 0.890 ± (0.03) 0.889 ± (0.02) 0.907 ± (0.02) 0.910 ± (0.01) 0.910 ± (0.01) 0.911 ± (0.02) 0.916 ± (0.02) 0.914 ± (0.02) 0.913 ± (0.02) 0.910 ± (0.02)
Jsoup 0.828 ± (0.07) 0.846 ± (0.03) 0.886 ± (0.01) 0.867 ± (0.02) 0.883 ± (0.01) 0.862 ± (0.02) 0.861 ± (0.02) 0.856 ± (0.02) 0.853 ± (0.03) 0.851 ± (0.03)
Jsqlparser 0.938 ± (0.04) 0.943 ± (0.08) 0.967 ± (0.01) 0.966 ± (0.01) 0.968 ± (0.01) 0.970 ± (0.01) 0.974 ± (0.01) 0.974 ± (0.01) 0.973 ± (0.01) 0.972 ± (0.01)
Mango 0.943 ± (0.06) 0.935 ± (0.09) 0.967 ± (0.01) 0.966 ± (0.01) 0.968 ± (0.01) 0.970 ± (0.01) 0.971 ± (0.01) 0.970 ± (0.01) 0.968 ± (0.01) 0.965 ± (0.01)
Ormlite-Core 0.788 ± (0.07) 0.867 ± (0.03) 0.880 ± (0.02) 0.879 ± (0.01) 0.882 ± (0.01) 0.898 ± (0.02) 0.896 ± (0.02) 0.893 ± (0.02) 0.891 ± (0.02) 0.889 ± (0.02)

Average 0.850 ± (0.07) 0.880 ± (0.05) 0.905 ± (0.05) 0.899 ± (0.05) 0.904 ± (0.05) 0.905 ± (0.05) 0.907 ± (0.05) 0.904 ± (0.05) 0.901 ± (0.06) 0.898 ± (0.06)
Table 11
MCC values of our IML method with different classifiers on each project.
Project IML_NB IML_DT IML_SVM IML_LR IML_RF IML_NN IML_3NN IML_5NN IML_7NN IML_9NN

Codec 0.250 ± (0.09) 0.268 ± (0.09) 0.115 ± (0.14) 0.293 ± (0.08) 0.178 ± (0.10) 0.397 ± (0.08) 0.415 ± (0.07) 0.372 ± (0.08) 0.343 ± (0.09) 0.307 ± (0.09)
Collections 0.221 ± (0.17) 0.394 ± (0.09) 0.222 ± (0.21) 0.413 ± (0.06) 0.254 ± (0.10) 0.497 ± (0.06) 0.507 ± (0.06) 0.500 ± (0.06) 0.495 ± (0.06) 0.480 ± (0.06)
IO 0.392 ± (0.26) 0.485 ± (0.10) 0.421 ± (0.26) 0.580 ± (0.06) 0.514 ± (0.10) 0.593 ± (0.07) 0.615 ± (0.06) 0.609 ± (0.06) 0.601 ± (0.07) 0.590 ± (0.07)
Jsoup 0.213 ± (0.09) 0.210 ± (0.09) 0.088 ± (0.12) 0.287 ± (0.08) 0.175 ± (0.10) 0.307 ± (0.08) 0.305 ± (0.09) 0.296 ± (0.08) 0.289 ± (0.09) 0.280 ± (0.09)
Jsqlparser 0.378 ± (0.26) 0.535 ± (0.18) 0.490 ± (0.31) 0.659 ± (0.07) 0.618 ± (0.15) 0.671 ± (0.08) 0.710 ± (0.06) 0.708 ± (0.07) 0.703 ± (0.07) 0.696 ± (0.09)
Mango 0.268 ± (0.24) 0.353 ± (0.16) 0.280 ± (0.27) 0.513 ± (0.11) 0.407 ± (0.16) 0.564 ± (0.11) 0.571 ± (0.10) 0.557 ± (0.11) 0.536 ± (0.12) 0.502 ± (0.14)
Ormlite-Core 0.396 ± (0.10) 0.467 ± (0.09) 0.310 ± (0.25) 0.489 ± (0.05) 0.397 ± (0.09) 0.601 ± (0.06) 0.587 ± (0.05) 0.577 ± (0.06) 0.564 ± (0.06) 0.549 ± (0.06)

Average 0.303 ± (0.08) 0.387 ± (0.11) 0.275 ± (0.14) 0.462 ± (0.13) 0.363 ± (0.16) 0.519 ± (0.12) 0.530 ± (0.13) 0.517 ± (0.13) 0.504 ± (0.13) 0.486 ± (0.14)
v
t
w

of the five baseline methods, our IML method achieves improve-
ments between 10.6% (for EasyEnse) and 24.9% (for BalBag) with
an average improvement of 17.4%.

Second, in terms of FN, our IML method achieves better per-
formance than the five comparative ensemble based imbalanced
learning methods on 5 out of 7 projects and gets the best average
FN values across all projects. Compared with the average FN
values of the five baseline methods, our IML method achieves
improvements between 0.8% (for Bagging) and 10.6% (for BalBag)
with an average improvement of 5.8%.

Third, in terms of MCC, our IML method achieves better per-
formance than the five comparative ensemble based imbalanced
learning methods on 4 out of 7 projects and gets the best average
MCC values across all projects. Compared with the average MCC
values of the five baseline methods, our IML method achieves im-
provements between 14.5% (for EasyEnse) and 45.6% (for BalBag)
with an average improvement of 25.4%.

Fourth, Fig. 5 visualizes the corresponding statistical test re-
sults by SKESD for our IML method and the five ensemble based
imbalanced learning methods. The figure shows that our IML
method always ranks the first and has significant performance
differences toward all five baseline methods in terms of all three
indicators.
Answer : Our IML method performs significantly better than
nsemble methods for crashing fault residence prediction task.
5.3. RQ3: How does our IML work with different classifiers?

Motivation : As the metric learning method is customized for
kNN model for performance improvement, in this work, we use
the kNN classifier as the basic classification model. This question
is proposed to investigate how different classifiers impact the
performance of our IML method. In addition, as we set our basic
classifier with parameter k = 3, this research question is also
designed to investigate how the kNN classifier with different
parameters work with our IML method.
Methods : To answer this research question, we select addi-
tional five typical classifiers, including Naive Bayes (NB), Decision
Tree (DT), Support Vector Machine (SVM), Logistic Regression
(LR), and Random Forest (RF) for comparison. Besides, to dis-
cuss the performance of different kNN classifiers with distinct
parameter settings, we empirically select additional four settings,
i.e., k = 1, 5, 7, 9 for comparison.
Results : Tables 9, 10, and 11 report the indicator values and
corresponding standard deviations of our IML method with dif-
ferent classifiers in terms of FP, FN, and MCC, respectively. From
these tables, we can observe that:

First, in terms of FP, our IML method using kNN classifier with
k = 3 achieves better performance than other nine comparative
classifiers on 5 out of 7 projects and gets the best average FP
alues across all projects. Compared with the average FP values of
he nine baseline methods, our IML method using kNN classifier
ith k = 3 achieves improvements between 1.1% (for using kNN
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Fig. 6. Results of Scott-Knott ESD test for our IML method with different classifiers.
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classifier with k = 1) and 115.0% (for using SVM) with an average
improvement of 31.0%.

Second, in terms of FN, our IML method using kNN classifier
with k = 3 achieves better performance than other nine compar-
ative classifiers on 4 out of 7 projects and gets the best average FN
values across all projects. Compared with the average FN values of
the nine baseline methods, our IML method using kNN classifier
with k = 3 achieves improvements between 0.2% (for using SVM)
and 6.7% (for using NB) with an average improvement of 1.5%.

Third, in terms of MCC, our IML method using kNN classifier
ith k = 3 achieves better performance than other nine compar-
tive classifiers on 6 out of 7 projects and gets the best average
CC values across all projects. Compared with the average MCC
alues of the nine baseline methods, our IML method using kNN
lassifier with k = 3 achieves improvements between 2.1% (for
sing kNN with k = 1) and 92.7% (for using SVM) with an average
mprovement of 31.6%.

Fourth, Fig. 6 visualizes the corresponding statistical test re-
ults by SKESD for our IML method with different classifiers.
he figure shows that our IML method always ranks the first
nd has significant performance differences toward all other nine
omparative classifiers in terms of all three indicators.
Answer : kNN classifier with k = 3 is a good choice for our IML
method to achieve the better average performance for predicting
crashing fault residence.

6. Threats to validity

6.1. External validity

The generalization of the experimental results threatens the
external validity of our work. As the projects in our benchmark
dataset are all developed in Java language, future replication
experiments are needed to verify whether our conclusion still
holds when applying our IML method to projects that developed
in other languages. Although the crash instances in the dataset
are generated by caused by artificial mutation, previous studies
showed that the faults by mutation can be used as a substitute
for the real-world faults in empirical assessment (Andrews et al.,
2005; Namin and Kakarla, 2011; Just et al., 2014). Thus, the
results derived from the artificial simulated crashing faults can
basically generalize to the real ones.

6.2. Internal validity

The possible faults in the implementation of methods threaten
the internal validity of our work. To minimize this kind of validity,
we implement our IML method by modifying the source code
shared by the original authors to adapt to our crashing fault
residence prediction task. Besides, we make full use of the third-
party libraries in the scikit-learn to implement some off-the-shelf
imbalanced learning methods as our comparative methods aim-
ing to avoid the potential mistakes in the implementation process

by ourselves. D
6.3. Construct validity

The suitability of the used evaluation indicators and statistic
test methods threatens the construct validity of our work. We
use F-measure and MCC to evaluate the effectiveness of our
IML method for the crashing fault residence prediction task. F-
measure and MCC are comprehensive performance indicators
which are more suitable than the ones like precision and recall. In
addition, we use the state-of-the-art statistic test called SKESD for
significance analysis. This statistic test generates non-overlapping
groups with significant differences for multiple methods, which
is better than the traditional statistic test like Friedman test with
Nemenyi test.

7. Conclusion

In this work, we propose a crashing fault residence prediction
model based on a novel metric learning method called IML.
This method learns high-quality feature representation with a
Mahalanobis distance based metric learning method and tack-
les the class imbalanced issue by assigning different weights
to the loss functions of crash instance pairs according to their
labels. The experiments on seven open source software projects
show that our IML method achieves significantly better prediction
performance for crashing fault residence task when compared
with some sampling and ensemble based imbalanced learning
methods.

In the future, we will adapt our IML method to cross project
prediction scenario. In addition, we plan to investigate the effec-
tiveness of our method on more projects and real crashes.
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