
The Journal of Systems and Software 113 (2016) 296–308

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Automatically classifying software changes via discriminative topic

model: Supporting multi-category and cross-project

Meng Yan b, Ying Fu b, Xiaohong Zhang a,b,c,∗, Dan Yang b, Ling Xu b, Jeffrey D. Kymer b

a Key Laboratory of Dependable Service Computing in Cyber Physical Society, Ministry of Education, Chongqing 400044, PR China
b School of Software Engineering, Chongqing University, Huxi Town, Shapingba, Chongqing 401331, PR China
c State Key laboratory of Coal Mine Disaster Dynamics and Control, Chongqing 400044, PR China

a r t i c l e i n f o

Article history:

Received 14 November 2014

Revised 11 November 2015

Accepted 7 December 2015

Available online 22 December 2015

Keywords:

Software change classification

Multi-category change

Discriminative topic model

a b s t r a c t

Accurate classification of software changes as corrective, adaptive and perfective can enhance software

decision making activities. However, a major challenge which remains is how to automatically classify

multi-category changes. This paper presents a discriminative Probability Latent Semantic Analysis (DPLSA)

model with a novel initialization method which initializes the word distributions for different topics us-

ing labeled samples. This method creates a one-to-one correspondence between the discovered topics

and the change categories. As a result, the discriminative semantic representation of the software change

messages whose largest topic entry directly corresponds to the category label of the change message

which is directly used to perform single-category and multi-category change classification. In the evalu-

ation on five open source projects, the experimental results show that the proposed approach achieves a

more accurate performance than the four baseline methods. Especially with the multi-category classifica-

tion task which improves the recall rate. Moreover, the different projects share the same vocabulary and

the estimated model so that DPLSA is well applicable to cross-project software change message analysis.

© 2015 Elsevier Inc. All rights reserved.

a

r

k

c

a

w

b

i

(

D

s

f

v

s

i

2

(

a

c

c

1. Introduction

To aid further software analysis, it is necessary to classify soft-

ware change as corrective, adaptive, or perfective. The proportion

of each category provides a valuable window into the software de-

velopment practices. Project managers need to be well informed

to enhance their decision making process. For example, if 90% of

the changes in a project are corrective, then it may mean that now

is the time to intensify the quality assurance work like code re-

views and unit tests. It has been applied to many important soft-

ware engineering activities, such as software maintenance (Mockus

and Votta, 2000) and defect prediction (Kim et al., 2008). Various

change cues have been used for classifying software changes, for

example, change author (Hindle et al., 2009a), change file (Alali

et al., 2008), change size (Hattori and Lanza, 2008) and change

messages (Hassan, 2008). In particular, change messages are at-

tractive for software change classification because it does not re-

quire retrieving and then analyzing the source code of the change.

Moreover, retrieving only the message is significantly less expen-

sive, and allows for efficient browsing and analysis of the changes

and their constituent revisions. These characteristics are useful to
∗ Corresponding author. Tel.: +86 15923238399.

E-mail address: xhongz@cqu.edu.cn (X. Zhang).

n

t

t

http://dx.doi.org/10.1016/j.jss.2015.12.019

0164-1212/© 2015 Elsevier Inc. All rights reserved.
nyone who needs to quickly categorize or filter out irrelevant

evisions (Hindle et al., 2009a). However, to the best of our

nowledge, there has been little work classifying a multi-category

hange; but, there have been researches that have found this to be

realistic activity (Fu et al., 2015; Mauczka et al., 2012). In this

ork, we aim to accurately understand the category distribution

y classifying both single-category and multi-category changes.

Researchers have proposed a variety of approaches for retriev-

ng keywords in change messages to classifying software changes

Hassan, 2008; Mauczka et al., 2012; Mockus and Votta, 2000).

espite the great success achieved, there are some unsolved is-

ues remaining in this research, such as the ambiguity coming

rom subjective interpretations of the relationship between rele-

ant words and categories of changes. A similar work has demon-

trated success in automatic software change classification by us-

ng semi-supervised Latent Dirichlet Allocation (LDA) (Fu et al.,

015). We noticed that both Mauczka et al. (2012) and Fu et al.

2015) found that single-category changes are not necessarily re-

listic. A major challenge which remains is how to automatically

lassify multi-category changes. To address this challenge, we fo-

us on automatically classifying software changes by developing a

ovel discriminative Probability Latent Semantic Analysis, referred

o DPLSA. The main difference from Fu et al. (2015) is that the

hree topics in this work have a one-to-one correspondence to

http://dx.doi.org/10.1016/j.jss.2015.12.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.12.019&domain=pdf
mailto:xhongz@cqu.edu.cn
http://dx.doi.org/10.1016/j.jss.2015.12.019

M. Yan et al. / The Journal of Systems and Software 113 (2016) 296–308 297

c

t

s

t

p

o

t

e

e

e

2

s

C

a

n

w

2

a

o

a

m

f

a

t

e

r

u

t

T

e

b

p

t

t

a

a

r

u

f

c

r

c

t

c

i

i

t

t

i

c

r

p

t

a

i

m

s

c

b

p

d

c

s

f

p

w

r

P

n

d

d

2

p

orrective, adaptive and perfective software change categories, such

hat the change message categorization comes down to finding the

ingle maximum entry (single-category) or multi maximum en-

ries (multi-category) in the topic-document distributions, and we

rovide a method of cross-project classification without the need

f re-learning. In particular, we motivated our investigation with

hree research questions:

RQ1 What is a better way to evaluate the relationship between

relevant words and the categories of software changes? A

change message often is a short description written by de-

velopers and the VCS does not enforce how to write a

change message. Consequently, change messages are non-

structured free format text. There are many salient words

relevant to categories in change messages, such as “fix”,

“create” and “correct”. The relationship between the relevant

words and the categories is the key issue in the classification

step. Mauczka et al. (2012) assigned weights to the salient

words which is a subjective interpretation. We wish to per-

form a cross-project training using labeled messages to au-

tomatically determine a probabilistic relationship.

RQ2 How well do the discovered topics correspond to software

changes with multi-category? A change message indicates

a particular maintenance task, such as fixing a defect or

adding a new feature, despite the fact that there exists a

few change messages, which indicate multiple purposes as

Mauczka et al. (2012) and Fu et al. (2015) presented in their

validation step. We wish to create a one-to-one correspon-

dence between discovered topics and categories by using the

discriminative topic model. After that, the discovered topics

can be directly used to perform the classification task in-

cluding single-category and multi-category.

RQ3 What is an accurate way to automatically obtain the dis-

tribution of software changes? A project manager would be

interested in knowing the distribution of categories of soft-

ware changes. We wish to quantify a more accurate distribu-

tion by classifying both single-category and multi-category

changes.

We address our research questions by proposing a topic mod-

ling method. It is inspired by the recent success of topic mod-

ling in mining software repositories (Grant et al., 2012; Hindle

t al., 2011; Hindle et al., 2009b; Pollock et al., 2013; Thomas,

012). Topic models, such as Probability Latent Semantic Analy-

is (Hofmann, 2001), Latent Dirichlet Allocation (Blei et al., 2003),

orrelated Topic Models (Lafferty and Blei, 2006) and their vari-

nts and extensions, have been applied to various software engi-

eering research questions, such as software evolution and soft-

are defect prediction (Chen et al., 2012; Gethers and Poshyvanyk,

010; Grant et al., 2012). Despite the great success achieved, there

re some unsolved, important issues that still remain in this line

f research. First, in the original topic models, some words which

re fully connected to different topics are noisy and irrelevant for

odel construction. Disconnecting the irrelevant words is help-

ul for generating a sparse representation over different topics of

document (Chien and Chang, 2014). In fact, the sparsity of the

opic-document distribution (i.e. with a small number of dominant

ntries and most zero or close to zero entries) is helpful for di-

ectly performing the classification task. Second, a critical issue in

nderstanding the latent topics uncovered from software reposi-

ories is how many topics should be sought (Grant et al., 2013).

here is not a one-to-one correspondence between topics and cat-

gory labels in the traditional models. The topic-document distri-

utions are only used to decide which topics are important for a

articular document and cannot determine which category a par-

icular document belongs to. This is also the limitation in solving

he multi-category problem.
The process of the proposed DPLSA is divided into three phases

s illustrated in Fig. 1. We select single category change messages

s our training datasets and use the semantically salient words de-

ived from the work of Mauczka et al. (2012) to form the vocab-

lary as illustrated in Fig. 1(a). Moreover, the training messages

rom the same category are employed to initialize the category-

onditional probability of a specific word conditioned on the cor-

esponding topic. Hence, semantically salient words are forced to

onnect to the topic partially with a dominated probability. Such

hat, it creates a one-to-one correspondence between topics and

ategories. Due to the special initialization approach, the sparsity

s achieved for the corresponding words to the corresponding top-

cs (Chien and Chang, 2014). Finally, the topic representation of a

est sample is sparse and its maximum entry directly determines

he category to which the test sample belongs because the topic

s the same as the category. When multiple topic entries of a

hange message reach the same maximum, the change message is

egarded as a multi-purpose one.

In our experiments, change messages of five open source

rojects are extracted by using the CVSAnalY (Robles et al., 2004)

ool. The change message is normalized by WordNet (Miller, 1995)

nd Gate (Cunningham et al., 2002). The five different projects

n the experiment shared the same vocabulary and the estimated

odel, and moreover the sparse probabilistic representation of

oftware change messages were directly used to assign software

hanges into Swanson’s maintenance categories (Swanson, 1976)

y finding the maximum topic entry. The proposed approach is

roved capable of classifying changes well through manual vali-

ation performed by professional developers. Especially, the multi-

ategory change classification task that improves the recall rate. In

ummary, the contributions of this paper can be summarized as

ollows:

• We explore the discovered word-topic distributions learned

from labeled change messages and find they provide an ordered

probabilistic relationship between relevant words and the cate-

gories of software changes. As a result, this overcomes the am-

biguity coming from manually subjective weights.
• We explore the discovered topic-document distributions and

find a one-to-one correspondence between these discovered

topics and change categories. The maximum topic entry directly

determines the category to which a change belongs. If multiple

topic entries reach the same maximum, this indicates a change

is a multi-category one.
• We evaluate our approach on five projects and compare the

performance with four baselines. The results indicate that our

performing multi-category classification improves the classifi-

cation performance. As a result, this work provides a more ac-

curate distribution of each category in a project. Besides, we

provide a method of cross-project software change classification

without the need for re-learning. The different projects share

the same vocabulary and the estimated model.

The structure of this paper is as follows. In Section 2 we

resent the related work of our research, including previous soft-

are change classification methods, software change classification

ules, topic modeling in mining software repositories (MSR), and

LSA. We describe our research preparation, models and tech-

iques in Section 3. In Sections 4 and 5, we provide the experiment

esign, results and validation. Then at last in Sections 6 and 7, we

iscuss the potential threats to our findings and draw a conclusion.

. Related work

In this section, we discuss related literature from several as-

ects: previous software change classification methods, software

298 M. Yan et al. / The Journal of Systems and Software 113 (2016) 296–308

Fig. 1. The software change classification process using DPLSA. (a) Three categories of the training sample messages from the same category are used to initialize the

category-conditional probability of a specific word conditioned on the corresponding topic, where K1, K2, K3 indicates corrective, adaptive and perfective, and W1, W2, W3

indicates three group words derived from the work of Mauczka et al. (2012), respectively. (b) The sparse word distributions of each topic are estimated by the standard EM

algorithm in PLSA. (c) The topic distributions of each test message are computed by fixing the estimated words distribution in PLSA. The maximum topic entry determines

to which category this message belongs. When multiple topic entries reach the same maximum, this message is classified as a multi-category one.

i

p

2

m

f

l

h

a

1

p

h

b

c

r

M

(

t

b

t

a

t

c

2

t

a

d

D

fi

t

change classification rules, topic modeling in mining software

repositories (MSR), and Probabilistic Latent Semantic Analysis.

2.1. Previous software change classification methods

A variety of approaches have been presented to classify soft-

ware change. In 2000, Mockus and Votta presented the first tex-

tual approach for classifying software changes (Mockus and Votta,

2000). Their approach was based on the keywords in the textual

message of the changes. For example, if keywords such as “fix”,

“correct”, “error” or “fail” were presented in a change message, the

change was classified as corrective. The validation surveys showed

that 61% of the time, their automatic classification results were

in agreement with developer opinions. Hassan (2008) extended

Mockus’s approach. A case study using change messages from sev-

eral open source projects showed that his approach produced re-

sults similar to manual classifications performed by professional

developers. Hattori and Lanza (2008) investigated the relationship

between the change size and the change category. They found that

the majority of tiny commits were not related to development ac-

tivities. Corrective actions are the ones that generate more tiny

commits. Also, Hindle et al. (2009a) provided another classification

model. They took the terms distribution, author, module, and file

type as features. It was shown that the author’s identity may be

significant for identifying the purpose of a change.

Along with the progress of methodology, an Eclipse plug-in

named Subcat which also used the features of the word distribu-

tion to classify the change messages was developed by Mauczka

et al. (2012). Subcat can automatically assess if a change to the

software was due to a bug fix or refactoring based on a set of

keywords in the change messages. In addition, Subcat further in-

troduced a weighting of keywords and rule sets for ambiguous,

yet strongly indicative words. It is noted that every weight of key-

words in the Subcat was decided using a biased manual method.

Our work differs from Mauczka’s work in that the relationship in

our model is not a simply weight value like 1 or 2, it is presented

as a probabilistic value for each topic, which can deal with ambi-

guity.

In the classification algorithms mentioned above, the classifica-

tion result is a definite 0 or 1 result. However, sometimes, even the

developer himself cannot definitely classify his commit message
nto Swanson’s maintenance categories (Swanson, 1976). Hence, a

robability weight and result would be more insightful (Fu et al.,

015). Fu et al. (2015) provided a topic model based method which

easured the distance between probability distributions to per-

orm change classification by using semi-supervised Latent Dirich-

et Allocation (LDA). Both Fu et al. (2015) and Mauczka et al. (2012)

ave presented that there exists some software changes, which

re conducted for multiple purposes. For example, the content of

817-th change message in Bugzilla is “Bug 155343: header tem-

late interface comment correction; extra parameter renamed to

eader_html.Note; the patch on the bug didn’t apply cleanly to

ranch anymore; fixed manually.2xr=bbaetz.” This indicated the

hange was conducted for correcting bug 155343 and doing some

efactoring work at the same time. Although Fu et al. (2015),

auczka et al. (2012), Hindle et al. (2008) and Mauczka et al.

2015) have addressed the multi-category changes, one issue is

hat they identify the multi-category changes in their manually la-

eling step rather than classifying them in an automatic way. How

o classify the multi-category changes in an automatic way is rarely

ddressed. The difference between their works and this work is

hat this work performs both single-category and multi-category

hange classification in an automatic way.

.2. Software change classification rules

A software change is an activity which is concerned with main-

aining a software system. The research area of the identification

nd classification of such software changes has been evolving for

ecades. The earliest works about the classification rules is “The

imensions of Maintenance” (Swanson, 1976) by Swanson. He de-

nes a maintenance task as a change that is classified into one of

he following three categories:

• Corrective: These changes are made to fix processing failures,

performance failures or implementation failures. For example a

bug fix or the correction of a typing error.
• Adaptive: These changes focus on the changes in the data envi-

ronment or processing environment. For example the introduc-

tion of a new function.
• Perfective: These changes are made to improve processing effi-

ciency, enhance the performance or increase the maintainabil-

ity.

M. Yan et al. / The Journal of Systems and Software 113 (2016) 296–308 299

w

u

b

a

t

(

T

e

e

d

b

(

o

c

i

s

w

I

c

w

(

b

M

b

w

2

o

r

i

i

v

r

s

o

t

c

e

d

o

d

c

s

t

(

l

l

a

t

t

l

e

e

i

c

p

i

b

h

i

d

o

t

a

c

d

a

c

p

n

c

t

k

(

a

t

r

t

i

i

c

t

2

t

t

a

w

t

b

e

d

i

z

t

W

d

g

t

P

d

m

P

1

For the development of the automated classification for soft-

are change, Swanson’s original definition of maintenance tasks is

sed and slightly extended. A modified categorization is provided

y Hassan (2008). In Hassan’s work, a change record is classified

s one of the following three categories.

• Bug Fixing change (BF): These changes are done to fix a bug.
• General Maintenance change (GM): These changes are mainly

about book keeping changes and do not reflect the functions

and features.
• Feature Introduction changes (FI): These changes focus on

adding or enhancing features.

Hindle et al. extended Swanson’s categorization into correc-

ive, adaptive and perfective changes with two additional changes

Hindle et al., 2009a).

• Feature addition: New requirements.
• Non-functional: Legal Source Control System management and

code clean-up.

Our method is based on the technique of topic modeling.

he classification categories are required specific and independent

nough. Hassan’s categories are more understandable, but the gen-

ral maintenance (GM) activity is not specific enough. While Hin-

le’s extension work is more practical, but there are some overlap

etween categories, such as feature addition and adaptive change

Swanson, 1976).

Our approach relies on two sources of information which carry

ut the classification, namely the change message and semanti-

ally salient words of the three categories. The change message

s attached to every software change by developers and encap-

ulates the category of the modification. The semantically salient

ords were made by adopting the work of Mauczka et al. (2012).

n addition, their final keywords dictionary was validated with

ross-project analysis. Since we are dependent on the final key-

ords dictionary by Mauczka et al. (2012), we adopted Swanson’s

Swanson, 1976) original definition of maintenance tasks which has

een widely used among mining software repositories researches.

oreover, a fourth category which indicates the message cannot

e classified in this method, namely Not Sure (NS) was added. It

as also adopted and defined by Hassan.

.3. Topic modeling in mining software repositories

Mining Software Repositories (MSR) is a technique that focuses

n analyzing and understanding these data repositories, which are

elated to the software development lifecycle. The idea of extract-

ng higher-level concepts, aspects, or topics from software repos-

tories has been approached in recent years. Thomas (2012) pro-

ided a long technical-report on topic modeling in mining software

epositories. He surveyed the past decade of 71 highly-relevant

oftware engineering documents and collected dozens of attributes

n each to explore how topic models have helped researchers in

heir efforts of mining software repositories. In his work, several

hallenges for bringing topic models into the domain of software

ngineering were addressed: understanding the peculiarities of the

ata in this domain; choosing the right parameters (e.g., number

f topics); and making results of topic models easier to interpret.

Software projects produce several types of data repositories

uring their lifecycles, such as mailing-lists, bug reports, source

ode, and change messages. Topic models have been applied on

uch data repositories to guide diverse software engineering ac-

ivities. On mailing-lists and bug reports mining, Asuncion et al.

2010) proposed an automated technique that recovers traceability

inks between mailing-lists and diverse artifacts with Latent Dirich-

et Allocation. Ahsan et al. (2009) presented a technique behind an
utomatic bug triage system, which was based on the categoriza-

ion of bug reports. They reduced the dimensionality of the ob-

ained term-to-document matrix by applying feature selection and

atent semantic indexing methods. On source code mining, Savage

t al. (2010) provided a Topic XP tool which can support develop-

rs during software maintenance tasks by extracting and analyz-

ng unstructured information in source code identifier names and

omments using Latent Dirichlet Allocation. Gethers et al. (2011)

rovided another topic tool in source code namely CodeTopics. It

s an Eclipse plug-in that in addition to showing the similarity

etween source code and related high-level artifacts (HLAs) also

ighlights to what extent the code under development covers top-

cs described in HLAs using Latent Dirichlet Allocation. It can help

evelopers to identify functionality that are not implemented yet

r newcomers to comprehend source code artifacts by showing

hem the topics. Considering software change messages, Hindle et

l. (2009b) introduced a windowed topic analysis approach which

an extract a set of topics by analyzing change messages. They

emonstrated its utility compared to global topic analysis. By using

defined time-window of, for example, one month, their approach

an track which topics come and go over time. Another approach

resented by Hindle et al. (2011) is to label change messages with

on-functional requirements by supervised Latent Dirichlet Allo-

ation. They introduced the concept of supervised topic extrac-

ion, using a non-functional requirement (NFR) taxonomy as prior

nowledge which is based on the ISO quality model Commission

2001) for their labels.

A common issue in most of the above works is that they

dopted the original topic model approach. The original goal of the

opic model was not for inference or classification, but rather rep-

esentation and compression of signals. It is hard to define what a

opic is or interpret each topic (Ramage et al., 2009). In this work,

n order to build a discriminative model, we brought the peculiar-

ties of the domain data into the training step to make each topic

orresponds to each category which is useful for decision-making

asks such as classification.

.4. Probabilistic latent semantic analysis

The Probabilistic Latent Semantic Analysis provides a probabilis-

ic formulation to model documents in a text collection. It assumes

hat the words are generated from a mixture of latent topics which

re decomposed from a document. The PLSA ignores the orders of

ords occurring in a document. We briefly outline the principle of

he PLSA and our work in this subsection. More details of PLSA can

e found in Hofmann (2001).

Notations: Here, we use the simple notations described by Lu

t al. (2011), and in this paper the two terms for message and

ocument are identical. The PLSA assumes that all the documents

n the collection D fit into a finite set of K topics and each topic

is associated with a multinomial word distribution P(w|z) over

he vocabulary V. A document d is represented as a bag of words.

e use P(z|d) for the distribution over topics z in a particular

ocument and P(w|z) for the probability distribution over words

iven topic z. To simplify the notations, let φ(j)
w = P(w|z = j) refer

o the multinomial distribution over words for topicj and θ (d)
j

=
(z = j|d) refer to the multinomial distribution over topics for

ocument d.

For PLSA, a document d is regarded as a sample of the following

ixture model.

(w|d) =
K∑

j=1

φ(j)
w θ (d)

j
(1)

The Expectation-Maximization (EM) algorithm (Dempster et al.,

977) is used for estimating the word-topic distributions φ̂ and

300 M. Yan et al. / The Journal of Systems and Software 113 (2016) 296–308

Fig. 2. (a) Illustration for the original PLSA in case that a word wj is assigned using three topics k1, k2 and k3. All three topics are connected to word wj . (b) Illustration for

the partially-connected network in the training step. Only one topic is connected to the word wj with a dominated probability.

3

w

p

d

3

R

a

s

s

f

3

s

3

w

fi

c

v

o

s

a

s

m

s

e

c

s

T

i

o

M

t

o

g

S

r

e

l

3

w

topic-document distributions θ̂ by maximizing the likelihood that

the collection D is generated by this model:

log P(D|φ, θ) =
∑
d∈D

∑
w∈V

{
c(w, d) log

K∑
j=1

φ(j)
w θ (d)

j

}
(2)

where c(w, d) is the number of times word w occurs in document

d. In the E-step, the hidden variable z is estimated based on the

model parameter at the previous iteration:

P(zd,w = j) =
φ(j)

w θ (d)
j∑K

j′=1 φ(j′)
w θ (d)

j′
(3)

Then, in the M-step, the parameters θ (d)
j

and θ (d)
j

, respectively,

are updated as:

θ (d)
j

=
∑

w∈V c(w, d)P(zd,w = j)∑
j′
∑

w∈V c(w, d)P(zd,w = j′) (4)

φ(j)
w =

∑
d∈D c(w, d)P(zd,w = j)∑

w′∈V

∑
d∈C c(w′, d)P(zd,w′ = j)

. (5)

While PLSA is useful for analyzing message data, it is nec-

essary to note several issues of PLSA. First, the number of top-

ics needs to be pre-defined by the user. The performance is sen-

sitive to the number of topics used (Lu et al., 2011). Second,

PLSA ignores the features of training samples for the classifica-

tion problem, such as the structure of the training samples from a

single category, relationship between the samples from a single

category and the word-topic distributions, relationship between

topics and categories. Third, PLSA randomly initializes the word-

topic distributions φ(j)
w so that the words in a document are fully

connected to different topics as shown in Fig. 2(a). It is diffi-

cult to obtain the very sparse distributions φ̂(j)
w and θ̂ (d)

j
in PLSA

because the fully-connected network between words and topics

is generally affected by some noisy, irrelevant or redundant fea-

tures and topics (Chien and Chang, 2014). It is a worth noting

that the sparsity of θ̂ (d)
j

is necessary to directly perform classifi-

cation using θ (dnew)
j

. Furthermore, θ (dnew)
j

only indicates which top-

ics are relevant for dnew not to which category dnew belongs. That

is, θ (dnew)
j

cannot be directly used for performing the classification

task.

In the following three sections, we address these questions by

choosing the salient words in the software change domain to form

the vocabulary and designing a word-topic distribution initializa-

tion method which sufficiently captures the features of the soft-

ware change messages. Thus our findings offer insights about how

to obtain the topic-document distribution with discriminative de-

cision power and perform both single-category and multi-category

classification task directly using θ (dnew)
j

of DPLSA.
. Research methodology

Two steps are necessary to conduct a DPLSA model of a soft-

are change repository: (1) the change message extracting and

reprocessing step and (2) the topic modeling step. These steps are

etailed below and illustrated in Fig. 3.

.1. Data extracting and preprocessing

In this paper, change messages were extracted by CvsAnalY

obles et al. (2004) and preprocessed by WordNet Miller (1995)

nd GATE Cunningham et al. (2002). The preprocessing step con-

ists of sentence splitting, term splitting, stop words filtering, and

temming. The stop words which cannot provide the category in-

ormation were filtered, such as prepositions and pronouns.

.2. Topic modeling

Two steps are necessary in our topic modeling step: (1) con-

truct vocabulary and (2) build DPLSA model.

.2.1. Step 1: constructing vocabulary

The first step of topic modeling is building the vocabulary. Each

ord in a message is viewed as a feature which is represented by a

xed set of topic mixtures. The mixture weights are used to build a

oordinate vector of a word in semantic or topic space. In unsuper-

ised topic modeling, the vocabulary consists of the top N words

rdered by descending frequency in the whole corpus. However,

ome words like “be” occur in most messages, it does not provide

ny information about the category of the change. Therefore, con-

tructing a salient words based vocabulary for topic modeling is

ore insightful.

Researchers like Mockus and Votta (2000) presented a set of

alient keywords which can represent the maintenance type. How-

ver their words were narrow terms which were more suitable for

ommercial projects. Mauczka et al. (2012) provided a change clas-

ification dictionary which was validated by cross-project analysis.

o facilitate cross-project analysis, the semantically salient words

n Table 1 are analyzed and selected derived from the dictionary

f Mauczka et al. (2012). The differences between this work and

auczka et al. (2012) are as follows: First, the salient words in

his work are utilized to form the cross-project vocabulary with-

ut using the category. While each word in their work has a cate-

ory label which is directly used to perform the classification task.

econd, the salient word in this work is assigned a probabilistic

elationship to three categories automatically after training. While

ach word in their work is assigned a weight (either 1 or 2) corre-

ated with a category relying on an empirical way.

.2.2. Step 2: building DPLSA

In the training phase of DPLSA, the messages in the training set

ere examined and labeled as corrective, adaptive and perfective.

M. Yan et al. / The Journal of Systems and Software 113 (2016) 296–308 301

Fig. 3. Research methodology process view.

Table 1

Semantically salient keywords in the cross-project vocabulary.

Bug cause error failure fix bugfix miss null warn wrong bad correct incorrect problem valid invalid fail bad dump except add new create feature function

appropriate available change compatibility configuration text current default future information method necessary old patch protocol provide release replace require

security simple structure switch context trunk useful user version install introduce faster init clean cleanup consistent declaration definition documentation move

template prototype remove static style unused variable whitespace header rename include dead inefficient useless

T

e

d

s

g

m

t

n

j

F

P

φ

c

w

l

l

t

W

i

s

t

p

o

w

g

g

i

r

o

f

E

w

f

t

t

r

t

c

p

n

b

t

e

a

D

t

t

s

t

c

s

c

o

his labeling step was manually analyzed by professional develop-

rs according to Swanson’s category definition. Set D(j) (j = 1, 2, 3)

enotes the collections of corrective, adaptive and perfective, re-

pectively. Obviously, D(j) is a subset of D.

Our objective is to classify a new message to a specify cate-

ory. We can treat each topic in PLSA as one category. The maxi-

um entry of the topic document distribution θ (dnew)
j

determines

he category of a new change message. Thus, we simply specify the

umber of topics equal to the number of categories.

In the initialization, given sufficient training samples from the

th category D(j) the word-topic distribution φ(j)
w is initialized as

ormula (6) shows. This differs from the random initialization in

LSA.

(j)
w = c(w, D(j))/c(D(j)) (6)

(w, D(j)) =
∑

d∈D(j)

c(w, d), c(D(j)) =
∑
v∈V

∑
d∈D(j)

c(v, d) (7)

here c(w, D(j)) is the number of times word w occurs in the col-

ection D(j), c(D(j)) is the number of times all words in the vocabu-

ary V occur in the collection D(j).

As we know, the subspace models are flexible enough to cap-

ure much of the variation in real datasets. Similar to the work of

right et al. (2009), DPLSA also exploits the structure of the train-

ng samples from a single category and assumes that the training

amples from a single category lie in one subspace. This implies

hat φ(j)
w lies in the same subspace spanned by the training sam-

les from the jth category. In addition, this reflects the structure

f the training samples from the jth category and discovers which

ords are informative for this category.
Initialization is a crucial stage in the framework of the EM al-

orithm as it determines the subsequent convergence of the al-

orithm. In the initialization, we treat φ(j)
w in Formula (6) as the

nitialized base for each subspace. It indicates a one-to-one cor-

espondence between topics and categories (i.e., the first, sec-

nd and third topic corresponds to corrective, adaptive and per-

ective, respectively). Since EM finds a local optimum, after the

M algorithm converges, the estimated φ(j)
w is the local optimum

hich is close to the initialized φ(j)
w . It serves as the final base

or each subspace which reflects the most informative words for

his category. In this manner, we treat the first, second and third

opic in the estimated φ(j)
w as corrective, adaptive and perfective,

espectively.

From Formulas (6) and (7), DPLSA initializes φ(j)
w using the

raining samples from a single category such that word w uniquely

onnects with a topic or category j and the redundant features are

runed for φ(j)
w . In this manner, DPLSA reduces redundant con-

ections between topic or category j. The estimated word distri-

ution P(w|z) over the vocabulary V turns out to be a sparse ma-

rix containing several components with near zero values and φ̂(j)
w

ffectively reflects which words are informative for topicj. Given

test message dnew and fixing the estimated value P̂(w|z) from

PLSA, we obtain the topic document distribution θ (dnew)
j

of the

est message dnew by the EM algorithm. The topic coverage dis-

ribution for each message serves as an alternative discriminative

emantic representation of the message, which is potentially better

han the original word-based representation in supporting classifi-

ation of software change messages because topics directly corre-

pond to categories. The topic-document distributions θ (dnew)
j

indi-

ate this particular document dnew belongs to which category. In

ther words, θ (dnew)
j

possesses classification decision power. Thus,

302 M. Yan et al. / The Journal of Systems and Software 113 (2016) 296–308

Table 2

Experiment data list.

Projects Application type Start date Collecting date Devs Changes

Bugzilla Project management Aug 1998 Mar 2012 62 27,539

Wireshark Packet analyzer Sep 1998 May 2012 43 40,551

Boost Prog. library July 2000 May 2012 294 42,208

Firebird RDBMS May 2001 May 2012 43 48,622

Python Interpreter Aug 1998 May 2012 216 45,032

C

Table 3

Training data set and test data set.

Projects

Labeled set Test

setCorrective Adaptive Perfective

Bugzilla 100 100 100 7661

Wireshark 100 100 100 32,916

Boost 100 100 100 25,002

Firebird 100 100 100 7377

Python 100 100 100 34,766

m

c

t

t

c

i

c

r

t

d

c

m

i

t

c

t

e

l

s

t

o

w

s

i

s

4

e

s

j

i

F

S

i

the maximum entry of the topic document distribution θ (dnew)
j

de-

termines the category of a new change message, that is:

∗ = arg max
j

(θ (dnew)
j

), j ∈ {corrective, adaptive, perfective} (8)

As mentioned in Section 1, a few of the change messages may

indicate multiple purposes. Multiple purposes indicate a software

change has multiple categories. For example, a software change is

conducted not only to fix a bug but also to clean up. Then we

should label it as “corrective” and “perfective”. Consider the exis-

tence of multiple categories, in formula (8), we allow C∗ be a set of

categories when there are more than one topic entries that reach

the same maximum in the distribution of θ (dnew)
j

. Moreover, if the

distribution of θ (dnew)
j

is a zero vector, in other words, the content

of this message cannot be classified by this method, the change

message would be classified as “Not Sure”.

In summary, the main differences between DPLSA and PLSA are

as follows: First, DPLSA is a supervised method, the training sam-

ples in DPLSA are labeled. While PLSA is an unsupervised method.

Second, DPLSA initializes the word-topic distribution φ(j)
w as For-

mulas (6) and (7) shows. As a result, there is a one-to-one cor-

respondence between topics and categories. While PLSA uses a

random initialization method. Third, the initialization method in

DPLSA determines that the number of topics is equal to the num-

ber of categories. While in PLSA, there is no agreed-upon standard

method for choosing the value for the number of topics.

The main differences between DPLSA and the sLDA method in

Fu et al. (2015) are as follows: First, in the training phase, half of

the training samples were labeled as signifier documents in sLDA,

and it initialized the word-topic distribution φ(j)
w in a random way.

While in DPLSA, all the training messages are labeled and we im-

proved the initialization step as Formulas (6) and (7) by using the

labels. Second, we classify a new message by directly finding the

maximum of the topic-document distribution, since we treat the

topics as categories. The topic-document distribution in their work

did not possess a one-to-one correspondence between topics and

categories. Thus, they classified a new message by measuring the

distance between topic-document distributions of the new change

and the category signifier change.

4. Experiment

4.1. Data sets

Five open source projects in Table 2 were chosen to build, test,

and verify this method. The following criteria were used to select

the projects:

Public accessible. The candidate open source projects were ma-

ture projects and had public accessible source control repos-

itories.

Number of commits and developers. For this work, only

projects with near 30,000 commits were considered. In or-

der to validate if the topic modeling understands natural

languages and the expression diversity of different projects

or developers, only projects with at least 40 developers were

considered.
Repository type. The preprocessing step in this work was con-

ducted by CvsAnalY tool. Only projects with CVS or subver-

sion repositories were supported.

Previous support. Most of the candidate projects were used by

previous researchers. For example, Wireshark, Boost, Firebird

and Python listed in Table 2 were also analyzed by Mauczka

et al. (2012).

In our experiment, we consider the distinct messages whereas

essages with less than five words are not used in our classifi-

ation so we filter them out from the experiment data. The de-

ails of the training set and the test set are in Table 3. In Firebird,

he test set appears a little exceptional compared with the original

hanges in Table 2. The percentage of short messages is surpris-

ngly high. After checking the data, we find that there are 31,698

hanges with the same message of “increment build number”. The

eason why there are too many changes with the same message is

hat the message was not carried out by humans and the messages

o not actually include any source code modifications. For example

ommits generated by the “cvs2svn” repository-converter or com-

its that just “tag” a version. In the work Mauczka et al. (2012),

f words like “cvs2svn” occurred, these changes were classified in

he “Blacklist” type. However, our approach stressed a probability

orrelation. We referred to Swanson’s original definition of main-

enance tasks without the “Blacklist” category.

To facilitate cross-project analysis, 1500 messages (100 per cat-

gory per project) in the training set were manually examined and

abeled as corrective, adaptive and perfective according to Swan-

on’s classification definition by professional developers. The de-

ails of the labeled set and test set are as Table 3 shows. Since the

bjective of the training set is to provide information about which

ords are informative for each category, the single-category mes-

ages are informative enough to provide such information. Thus,

t is rational that the training set in this work only includes the

ingle-category messages.

.2. Exploring word-topic distributions (RQ1)

A probability relationship between relevant words and cat-

gories automatically generated by learning from labeled mes-

ages can overcome the ambiguity coming from manually sub-

ective weights in the previous method. To explore the probabil-

ty relationship learned from the labeled training set in Table 3,

ig. 4 shows the word-topic distributions estimated by DPLSA.

ince DPLSA possesses a one-to-one correspondence between top-

cs and categories, we use the corrective, adaptive and perfective

M. Yan et al. / The Journal of Systems and Software 113 (2016) 296–308 303

Fig. 4. Word distributions over three topics P(w|z) in DPLSA, which are corrective, adaptive and perfective, respectively.

Table 4

A list of top 10 topic words and the probability generated by DPLSA.

Corrective Adaptive Perfective

bug(0.3110) add(0.2827) remove(0.2374)

fix(0.2501) change(0.1277) move(0.0977)

error(0.0966) new(0.1012) include(0.0924)

problem(0.0754) version(0.0713) header(0.0913)

fail(0.0556) function(0.0693) template(0.0741)

cause(0.0302) patch(0.0629) variable(0.0580)

null(0.0262) default(0.0365) rename(0.0569)

miss(0.0222) install(0.0292) cleanup(0.0558)

correct(0.0175) old(0.0283) unused(0.0397)

bad(0.0167) create(0.0228) clean(0.0365)

(

t

o

t

t

t

u

t

t

r

i

o

e

w

i

s

t

t

b

a

l

t

s

c

4

s

4

B

t

t

F

3

s

m

i

i

i

s

a

c

o

s

c

t

e

I

i

4

t

p

b

the sequence is the same as the initialization step) to represent

he three topics. It is seen that the estimated word distributions

ver the vocabulary V in Fig. 4 turns out to be a sparse distribu-

ion, i.e., three groups of informative words connect to different

opics with a single dominate probability. And the sparse word-

opic distributions φ̂(j)
w contain many entries with near zero val-

es effectively reflecting which words are informative for each

opic j.

To explore the informative words for each topic, Table 4 lists

he Top 10 topic words for each topic in descending order by their

elevant probability. The probability value determines which word

s more relevant for the topic which is different from the previ-

us subjective weighted value. In Table 4, the words within differ-

nt topics are very distinct from each other. It is obvious that the

ords within a topic are closely related and those words cross-

ng topics are significantly apart from each other. Hence, we can

ee that the 1st topic relates to the corrective category, the 2nd

opic relates to the adaptive category, while the 3rd topic relates

o the perfective category, such that a one-to-one correspondence

etween topics and categories is created.

In conclusion, the word-topic distributions generated by DPLSA

re sparse and discriminative. This characterizes a probability re-

ationship between relevant words and categories, and overcomes
he ambiguity caused by the manually assigning method. As a re-

ult, a one-to-one correspondence between topics and categories is

reated. It possesses the decision-making power in classification.

.3. Exploring topic-document distributions (RQ2)

To illustrate the correspondence between discovered topics and

oftware change categories in the test samples, Fig. 5 displays

00 single-category messages per category randomly selected from

ugzilla by using DPLSA. The horizontal axis denotes three topics

hat correspond to three categories and the vertical axis denotes

he topic-document distributions. Each line presents a test sample.

ig. 6 displays 330 multi-category messages which is comprised of

00 two-category messages (Fig. 6a–c) and 30 three-category mes-

ages (Fig. 6d) randomly selected from Firebird. For single-category

essages, it is seen in Fig. 5 that there is only one dominate topic

n the topic-document distributions. For multi-category messages,

t is seen in Fig. 6 that there are more than one dominate topic

n the topic-document distributions. A topic-document distribution

erves as an alternative discriminative semantic representation of

change message whose largest entry directly corresponds to the

ategory label. The results show that the semantic representation

f change messages is sparse and discriminative. It directly corre-

ponded to software changes with both single-category and multi-

ategory.

In conclusion, there is a one-to-one correspondence between

he discovered topics and change categories. The maximum topic

ntry solely determines the category in a single-category change.

f multiple topic entries reach the same maximum, this indicates it

s a multi-category change.

.4. Exploring the category distributions (RQ3)

To illustrate the distribution of software changes, the classifica-

ion results of our approach are as Table 5 shows. The fifth column

resents the multi-category changes, including four category com-

inations. Table 6 lists the four detail category combinations of the

304 M. Yan et al. / The Journal of Systems and Software 113 (2016) 296–308

Fig. 5. The topic-document distributions of 400 single-category messages per category randomly selected from Bugzilla by using DPLSA.

5

a

a

t

q

d

f

i

d

w

s

a

a

m

5

e

s

t

s

n

s

b

P

R

w

fi

s

multi-category. Table 7 shows the final proportion of three cate-

gories in five projects. Take the proportion of corrective category

for the example, its proportion is computed by:

Proportioncorrective

= Singlecorrective + 1
2
(corr&adap + corr&perf) + 1

3
corr&perf&perf

All Changes − Not SureChanges

(9)

In Formula (9), Singlecorrective represents the number of changes

in the second column in Table 5, ‘corr&adap’ represents the

number of changes in the second column in Table 6 while

‘corr&adap&perf’ represents the number of changes in the fifth col-

umn in Table 6. We make a few observations.

• In five projects, the average percentage of multi-category mes-

sages is near 9%. It indicates that the multi-category messages

are an existed common phenomenon which was ignored in

most previous software change classifications.
• In Bugzilla and Firebird, the percentage of corrective changes

is higher than both adaptive and perfective changes as Table 7

shows. In Boost, Wireshark and Python, the percentage of adap-

tive changes accounts for more than both corrective and perfec-

tive changes.
• Due to the diversity of developer’s expression habits, there are

still some messages which cannot be classified by this method.

After checking the data, this is because of irregular writing or

because the content contains nothing about the purpose related

to the three categories. The number of Not Sure changes is ac-

ceptable, less than 22%. Therefore, we conclude that our ap-

proach identifies most of the categories of software changes.

The distribution difference of three categories can be seen from

Tables 5 and 7. We believe that Table 7 provides a more accurate

distribution by classifying both single-category and multi-category

changes after the validation in Section 5.
. Validation

To evaluate our classification results, we did a survey with

small number of professional software developers which were

ccessible to us and we could easily interview them to explain

heir replies when necessary. Five developers were surveyed by our

uestionnaires, each with 80 messages which were selected ran-

omly including both single-category and multi-category messages

rom each project. Too many surveyed messages for a participant

s a big burden to finish an accurate survey (Hassan, 2008). We

etermined the test set size as a trade-off value in an empirical

ay which is similar to the works in Table 8. At the time of our

tudy, these developers worked in different software domains, such

s security, databases, cloud computing, and software project man-

gement. All the participants had used version control systems for

ost of their software career.

.1. Conducting the validation

We took precision, recall and F-measure (Sebastiani, 2002) to

valuate the classification performance. The F-measure value con-

iders both the precision (p) and the recall (r) of the classification

o compute the value, where the p is the number of correct re-

ults divided by the number of all returned results and the r is the

umber of correct results divided by the number of results which

hould have been returned. The precision and recall are calculated

y:

recision(H,V) = 1

|V |
|V |∑
i=1

|Yi ∩ Zi|
|Zi| (10)

ecall(H,V) = 1

|V |
|V |∑
i=1

|Yi ∩ Zi|
|Yi| (11)

here V is our validation set, H indicates our classi-

er, Zi = H(xi) indicates the prediction label set of mes-

age x , Y indicates the label set by participants. Y ⊆L,
i i i

M. Yan et al. / The Journal of Systems and Software 113 (2016) 296–308 305

Fig. 6. The topic-document distributions of 330 multi-category messages including 300 two-categories messages (100 in (a), 100 in (b), 100 in (c)) and 30 three-categories

messages (d) in Firebird by using DPLSA.

Table 5

Automatic classification results.

Projects Corrective Adaptive Perfective Multi-category Not Sure All

Bugzilla 5718(74.64%) 717(9.36%) 433(5.62%) 555(7.24%) 238(3.11%) 7661

Wireshark 8107(24.63%) 9181(27.89%) 4641(14.10%) 2924(8.88%) 8063(24.50%) 32,916

Boost 6410(25.64%) 7710(30.84%) 2520(10.08%) 2793(11.17%) 5569(22.27%) 25,002

Firebird 2682(36.36%) 1560(21.15%) 791(10.72%) 643(8.72%) 1701(23.06%) 7377

Python 9019(25.94%) 12044(34.64%) 3257(9.37%) 2880(8.28%) 7566(21.76%) 34,766

Table 6

Detail categories of the multi-category in Table 5.

Projects Corr&Adap Corr&Perf Adap&Perf Corr&Adap&Perf All multi-category

Bugzilla 501(90.27%) 15(2.70%) 31(5.59%) 8(1.44%) 555

Wireshark 1178(40.29%) 552(18.88%) 968(33.11%) 226(7.73%) 2924

Boost 1181(42.28%) 481(17.22%) 881(31.54%) 250(8.95%) 2793

Firebird 289(44.95%) 126(19.60%) 198(30.79%) 30(4.67%) 643

Python 1358(47.15%) 326(11.32%) 1045(36.28%) 151(5.24%) 2880

L

t

m

a

s

F

e

a

p

5

m

Table 7

The final proportion of three categories in five projects.

Projects Corrective Adaptive Perfective

Bugzilla 80.54% 13.28% 6.18%

Wireshark 36.40% 41.56% 22.03%

Boost 37.69% 45.41% 16.90%

Firebird 51.08% 31.96% 16.97%

Python 36.44% 48.88% 14.68%

t

m

c

c

w

t

= {′corrective′
, ′adaptive

′
, ′perfective

′}. In the manual valida-

ion, a message can be assigned to both single-category and

ulti-category by the participant. The F-measure is interpreted

s a weighted average of the precision and recall and the higher

core indicates a better classification performance.

−measure = 2∗(Precision∗Recall)

Precision + Recall
(12)

The performance of this method is as Table 9 shows. The av-

rage F-measure of five projects is 0.7618. The robust performance

cross five projects indicates that our method is valid for cross-

roject classifying of software changes.

.2. Comparing with published methods

To make our results comparable with previously published

ethods, we choose the same preprocessed datasets in this work
o compare with four methods. The first one is a lightweight

ethod presented by Hattori and Lanza (2008) which is a typi-

al keywords retrieving based method. It classified each software

hange according to the first keywords found in the message. The

ords remaining in the message are non-stop words and it retains

he original order. If a software change is conducted for multiple

306 M. Yan et al. / The Journal of Systems and Software 113 (2016) 296–308

Table 8

The size of evaluation size in similar papers.

Study Number of Number of changes

Study participants per participant

(Mockus and Votta, 2000) 5 30

(Hassan, 2008) 6 18

(Mauczka et al., 2012) 5 21

(Fu et al., 2015) 5 60

Our work 5 80

Table 9

Validation results.

Projects Precision Recall F-measure

Bugzilla 0.8812 0.7479 0.8091

Wireshark 0.6813 0.7813 0.7278

Boost 0.7813 0.7125 0.7453

Firebird 0.8042 0.8000 0.8021

Python 0.7313 0.7188 0.7249

Table 10

Detailed comparison results.

Category Classification F-measure

DPLSA sLDA First key Naïve Bayes L-LDA

Corrective 0.7832 0.7857 0.7052 0.6607 0.7612

Adaptive 0.7297 0.7841 0.7614 0.4886 0.7543

Perfective 0.7574 0.5761 0.5761 0.3370 0.7137

Corr&&Adap 0.7738 0.6512 0.5891 0.5581 0.6357

Corr&&Perf 0.6836 0.6250 0.6042 0.4375 0.6179

Adap&&Perf 0.7680 0.5000 0.4583 0.3542 0.6340

Corr&&Adap&&Perf 0.5000 0.5000 0.5000 0.5000 0.5000

t

m

t

t

m

b

i

p

L

c

p

R

N

d

r

p

a

w

e

c

t

s

m

purposes, e.g., a developer can do some refactoring work while

fixing a bug, the method classifies the change according to the

first keyword found. In this work, we call their method the “First

key” method. Specially, the keywords in the First key method must

have a category label. When implementing the method, we adopt

the same keywords in this work and keep the category label pro-

vided by Mauczka et al. (2012). The second one is the work of

Fu et al. (2015) which is based on semi-supervised LDA (sLDA).

We implement it as the description in Fu et al. (2015), i.e., we

keep the number of topics K to be 3, the hyper-parameters α to

be 50/K, β to be 0.01, and iterations to be 100. The third one

is a common classification method: the Naïve Bayes method. We

adopt the term frequencies as features and implement the multi-

nomial Naïve Bayes method. The above three baselines only pro-

vide single-category classifications. The fourth one produces both

single-category and multi-category classifications, namely Labeled

LDA (L-LDA) (Ramage et al., 2009), which also creates a one-to-

one correspondence between topics and categories. We adopt the
Fig. 7. Precision, Recall, F-measure comparison betwee
oolbox provided by Zeng (2012) which includes the L-LDA imple-

entation. We apply the four methods to automatically classify

he same validation dataset and calculate the performance with

he survey. We take the precision, recall and F-measure value to

ake the comparison. Fig. 7 shows the performance comparison

etween Naïve Bayes, “First key”, sLDA, L-LDA and our method.

The following conclusions are drawn from the validation results

n Fig. 7. First, considering the average F-measure value across five

rojects, DPLSA improves the sLDA, First key, Naïve Bayes, and L-

DA methods by 8.12%, 15.29%, 50.63% and 4.69%, respectively. Spe-

ially, we believe that the high recall of DPLSA results from the

ower of classifying multi-category changes. It also answers the

Q3. Second, topic model based methods beat the First key and

aïve Bayes methods in average. We believe that it is the result of

iscovering hidden semantic relations between words. Third, the

obust average F-measure value (0.7618) of the five projects also

roves our topic model based approach is valid for cross-project

nalysis in software change classification.

Other observations. Considering the results across five projects,

e list the classification F-measure values of each method over

ach category in Table 10 and the number of instances in each

ase in Table 11. There are some notations which need explana-

ion in Table 11: R indicates “right” which means the method re-

ult is the same as the survey result. W indicates “wrong” which

eans the method result has no intersection with the survey
n Naïve Bayes, First key, sLDA, L-LDA and DPLSA.

M. Yan et al. / The Journal of Systems and Software 113 (2016) 296–308 307

Table 11

Number of instances in each category of different methods.

Category Instances DPLSA sLDA First key Naïve Bayes L-LDA Errors in

in survey R W P M R W P R W P R W P R W P M all methods

Corrective 112 80 21 11 11 88 24 0 79 33 0 74 38 0 79 24 9 9 2

Adaptive 88 55 20 13 13 69 19 0 67 21 0 43 45 0 63 20 5 5 0

Perfective 92 60 18 14 15 53 39 0 53 39 0 31 61 0 56 22 14 15 0

Corr&&Adap 43 15 2 26 15 0 1 42 0 5 38 0 7 36 0 2 41 0 0

Corr&&Perf 32 3 1 28 7 0 2 30 0 3 29 0 11 21 1 3 28 1 0

Adap&&Perf 32 8 1 23 16 0 8 24 0 10 22 0 15 17 0 4 28 5 0

Corr&&Adap&&Perf 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0

r

i

t

n

o

T

I

t

c

m

(

s

p

c

t

b

c

s

3

o

w

c

T

T

c

6

o

8

e

s

m

i

c

a

t

w

m

c

t

o

a

v

p

h

w

e

f

d

t

p

(

k

i

c

c

w

i

u

v

s

t

t

d

7

m

m

t

c

r

l

m

c

t

e

w

t

c

i

l

r

d

n

m

c

t

w

o

d

I

a

r

d

p

d

o

esult. P indicates “partial right” which means the method result

s not the same as the survey result, but it has intersection(s) with

he survey result. M indicates “Multi-category” which means the

umber of multi-category instances in the method result. Obvi-

usly, the column M does not exist in a single-category method.

he following observations are seen from Tables 10 and 11: (1)

n DPLSA, sLDA, Naïve Bayes and L-LDA, the corrective is easiest

o classify among all the cases and the corr&&adap is easier to

lassify among the multi-category cases. The First key method is

ore feasible to classify the adaptive among all the categories.

2) Considering the single-category case, other methods may be

uperior to DPLSA in some particular cases. For example, sLDA

erforms better than DPLSA in the corrective and the adaptive

ases, whereas First key and L-LDA performs better that DPLSA in

he adaptive case. However, it is seen that DPLSA is more feasi-

le to classify multi-category commits, including the corr&&adap,

orr&&perf and adap&&perf. (3) There are 108 multi-category in-

tances in the survey, 77 multi-category instances in DPLSA and

5 multi-category instances in L-LDA. On the multi-category cases

f the survey, there are 4 wrong classifications in DPLSA and 9

rong classifications in L-LDA. (4) The “Errors in all methods” indi-

ates the instances which are classified wrong in all five methods.

here are only 2 commits which all the methods have trouble with.

his reflects that different methods are feasible to handle different

ommits.

. Limitation and threats to validity

Size of evaluation set. We determined the test set size as a trade-

ff value in an empirical way which is similar to the works in Table

. Using a more systematic approach for choosing the size of the

valuation dataset is better. However, the size of surveyed mes-

ages needed cannot be controlled in a systematic approach. Too

any surveyed messages are a big burden for participants to fin-

sh an accurate survey. Also, too few surveyed messages may not

ontain any multi-category messages. It may impact the diversity

nd suffer from bias in the test set. Therefore, we tried to mitigate

his problem by setting a trade-off test size value.

Over-fitting problem in PLSA. PLSA is reported not very robust

hen applied to unseen documents, the problem of over-fitting

ay limit the performance (Lu et al., 2011). In this work, the vo-

abulary is constructed by a set of semantically salient words. And

he original random initialization method in PLSA is replaced by

ur discriminative initialization method. All the unseen documents

re assigned a probability distribution by sharing the same salient

ocabulary and estimated model, which can alleviate the un-robust

roblem in unseen documents.

Baseline approaches. Several keywords retrieving based methods

ave been presented in software change classification, such as the

orks of Mockus and Votta (2000), Hassan (2008), and Mauczka

t al. (2012). A comparison with all these methods should be used

or completeness. However, the difference of the change category

efinitions or the inaccessibility of the tools relied on prevent
hem from being implemented for comparison. Therefore, we im-

lemented a typical keywords retrieving based method First key

Hattori and Lanza, 2008) as a baseline which can represent the

eywords retrieving method thinking in this line of research.

Unclassified change messages and vocabulary. During our exper-

ment, we found that there were several change messages which

annot be categorized into any three categories. After checking the

ontents, we found a phenomenon that most of these messages

ere written irregularly or there was little information included. It

s correlated with the cross-project vocabulary. If we yield a vocab-

lary by using an automatic way, more words will be added in the

ocabulary which can classify more messages. However, many un-

alient words (e.g. “be”) are also included which may be noisy for

opic modeling (Chien and Chang, 2014). Therefore, we captured a

ypical and salient words set in the vocabulary from a cross-project

ictionary presented by Mauczka et al. (2012).

. Conclusions and future work

In this paper, we investigated an artifact of software develop-

ent, namely, the change messages attached to every change com-

itted to a version control system. It presented a discriminative

opic model technique supporting multi-category classification and

ross-project. The results of a set of controlled experiments car-

ied out to validate whether it can evaluate the probability re-

ationship between relevant words and categories and provide a

ore accurate distribution of software changes. In summary, the

onclusions are drawn as follows: first, we provide a simple ini-

ialization approach for topic models, which sufficiently consid-

rs the subspace structure of the training datasets and assigns the

ord-document distributions by using the training samples from

he same category and the semantically salient words. It over-

omes difficulties in determining an appropriate number of top-

cs by making the topics in DPLSA correspondence with category

abels of change messages. Second, we define a one-to-one cor-

espondence between topics and categories. The estimated topic-

ocument distributions of software change messages are discrimi-

ative and sparse, which allows it to perform single-category and

ulti-category change classification. Third, the experiments were

onducted on 5 open source projects. The achieved results prove

hat the DPLSA approach provides an average F-measure of 0.7618

hich improves the sLDA, First key, Naïve Bayes, and L-LDA meth-

ds by 8.12%, 15.29%, 50.63% and 4.69%, respectively. Besides, the

ifferent projects share the same vocabulary and estimated model.

t also proves that the DPLSA is well applicable to cross-project

nalysis without the need for re-learning.

In the future, we plan to further enhance the exploration of the

esults of our work. For example, why are some commits more

ifficult to classify and what common features do these commits

ossess? We plan to perform our work on more projects and con-

uct a field study by interviewing developers in both industrial and

pen source projects. This consists of including more projects and

308 M. Yan et al. / The Journal of Systems and Software 113 (2016) 296–308

H

K

L

L

M

M

M

M

P

R

R

S

S

S

T

W

Z

M

a

d
i

Y

S
n

m

X

C
i

C
w

D
w

S
e

a

L

i
P

i
m

J

f

n
w

a
c

a

participants, designing surveys, obtaining feedback statistics and

interviewing participants.

Acknowledgments

The work described in this paper was partially supported by the

National Natural Science Foundation of China (grant nos. 91118005,

61173131), Changjiang Scholars and Innovative Research Team in

University (grant no. IRT1196), Chongqing Graduate Student Re-

search Innovation Project (grant no. CYS14008), and the Funda-

mental Research Funds for the Central Universities (grant nos. CD-

JZR12098801 and CDJZR11095501).

References

Ahsan, S.N., Ferzund, J., Wotawa, F., 2009. Automatic software bug triage system
(bts) based on latent semantic indexing and support vector machine. In: Pro-

ceedings of the 4th International Conference on Software Engineering Advances.
ICSEA 2009, pp. 216–221.

Alali, A., Kagdi, H., Maletic, J.I., 2008. What’s a typical commit? A characterization of

open source software repositories. In: Proceedings of the 16th IEEE International
Conference on Program Comprehension. ICPC 2008, pp. 182–191.

Asuncion, H.U., Asuncion, A.U., Taylor, R.N., 2010. Software traceability with topic
modeling. In: Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering. ICSE 2010, pp. 95–104.
Blei, D.M., Ng, A.Y., Jordan, M.I., 2003. Latent Dirichlet allocation. J. Mach. Learn. Res.

3, 993–1022.
Chen, T.H., Thomas, S.W., Nagappan, M., Hassan, A.E., 2012. Explaining software de-

fects using topic models. In: Proceedings of the 9th IEEE Working Conference

on Mining Software Repositories. MSR 2012, pp. 189–198.
Chien, J.-T., Chang, Y.-L., 2014. Bayesian sparse topic model. J. Signal Process. Syst.

74, 375–389.
Commission, I.O.F.S.I.E., 2001. Software engineering–Product quality–Part 1: Quality

model. ISO/IEC 9126, 2001.
Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., 2002. GATE: an architecture

for development of robust HLT applications. In: Proceedings of the 40th Annual

Meeting on Association for Computational Linguistics. ACL 2002, pp. 168–175.
Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood from incomplete

data via the EM algorithm. J. R. Stat. Soc., Ser. B (Methodol.) 39, 1–38.
Fu, Y., Yan, M., Zhang, X., Xu, L., Yang, D., Kymer, J.D., 2015. Automated classification

of software change messages by semi-supervised latent Dirichlet allocation. Inf.
Software Technol. 57, 369–377.

Gethers, M., Poshyvanyk, D., 2010. Using relational topic models to capture coupling

among classes in object-oriented software systems. In: Proceedings of the IEEE
International Conference on Software Maintenance. ICSM 2010, pp. 1–10.

Gethers, M., Savage, T., Penta, M.D., Oliveto, R., Poshyvanyk, D., Lucia, A.D., 2011.
CodeTopics: which topic am I coding now? In: Proceedings of the ACM/IEEE

33rd International Conference on Software Engineering. ICSE 2011, pp. 1034–
1036.

Grant, S., Cordy, J.R., Skillicorn, D.B., 2012. Using topic models to support software

maintenance. In: Proceedings of the 16th European Conference on Software
Maintenance and Reengineering. CSMR 2012, pp. 403–408.

Grant, S., Cordy, J.R., Skillicorn, D.B., 2013. Using heuristics to estimate an appropri-
ate number of latent topics in source code analysis. Sci. Comput. Program. 78,

1663–1678.
Hassan, A.E., 2008. Automated classification of change messages in open source

projects. In: Proceedings of the 2008 ACM symposium on Applied computing,

SAC 2008, pp. 837–841.
Hattori, L.P., Lanza, M., 2008. On the nature of commits. In: Proceedings of the

23rd IEEE/ACM International Conference on Automated Software Engineering.
ASE 2008, pp. 63–71.

Hindle, A., Ernst, N.A., Godfrey, M.W., Mylopoulos, J., 2011. Automated topic nam-
ing to support cross-project analysis of software maintenance activities. In: Pro-

ceedings of the 8th Working Conference on Mining Software Repositories. MSR
2011, pp. 163–172.

Hindle, A., German, D.M., Godfrey, M.W., Holt, R.C., 2009. Automatic classication of

large changes into maintenance categories. In: Proceedings of the 17th IEEE In-
ternational Conference on Program Comprehension. ICPC 2009, pp. 30–39.

Hindle, A., German, D.M., Holt, R., 2008. What do large commits tell us?: a tax-
onomical study of large commits. In: Proceedings of the 2008 International

Working Conference on Mining Software Repositories. ACM, Leipzig, Germany,
pp. 99–108.

Hindle, A., Godfrey, M.W., Holt, R.C., 2009b. What’s hot and what’s not: windowed

developer topic analysis. In: Proceedings of the IEEE International Conference
on Software Maintenance, ICSM 2009, pp. 339–348.
ofmann, T., 2001. Unsupervised learning by probabilistic latent semantic analysis.
Mach. Learn. 42, 177–196.

im, S., Whitehead, E.J., Zhang, Y., 2008. Classifying software changes: clean or
buggy? IEEE Trans. Software Eng. 34, 181–196.

afferty, J.D., Blei, D.M., 2006. Correlated topic models. Adv. Neural Inf. Process. Syst.
18, 147–154.

u, Y., Mei, Q., Zhai, C., 2011. Investigating task performance of probabilistic topic
models: an empirical study of PLSA and LDA. Inf. Retrieval 14, 178–203.

auczka, A., Brosch, F., Schanes, C., Grechenig, T., 2015. Dataset of developer-labeled

commit messages. In: 2015 IEEE/ACM 12th Working Conference on Mining Soft-
ware Repositories (MSR), pp. 490–493.

auczka, A., Huber, M., Schanes, C., Schramm, W., Bernhart, M., Grechenig, T., 2012.
Tracing your maintenance work–a cross-project validation of an automated clas-

sification dictionary for commit messages. In: Fundamental Approaches to Soft-
ware Engineering, pp. 301–315.

iller, G.A., 1995. WordNet: a lexical database for English. Commun. ACM 38, 39–

41.
ockus, A., Votta, L.G., 2000. Identifying reasons for software changes using historic

databases. In: Proceedings of the International Conference on Software Mainte-
nance. ICSM 2000, pp. 120–130.

ollock, L., Vijay-Shanker, K., Hill, E., Sridhara, G., Shepherd, D., 2013. Natural
language-based software analyses and tools for software maintenance. Software

Engineering. Springer„ Berlin, Heidelberg, pp. 94–125.

amage, D., Hall, D., Nallapati, R., Manning, C.D., 2009. Labeled LDA: a supervised
topic model for credit attribution in multi-labeled corpora. In: Proceedings of

the Conference on Empirical Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, pp. 248–256.

obles, G., Koch, S., Gonzalez-Barahona, J.M., 2004. Remote analysis and measure-
ment of libre software systems by means of the CVSAnalY tool. In: Proceedings

of the 2nd ICSE Workshop on Remote Analysis and Measurement of Software

Systems. RAMSS 2004, pp. 51–56.
avage, T., Dit, B., Gethers, M., Poshyvanyk, D., 2010. Topic XP: exploring topics in

source code using latent Dirichlet allocation. In: Proceedings of the IEEE Inter-
national Conference on Software Maintenance. ICSM 2010, pp. 1–6.

ebastiani, F., 2002. Machine learning in automated text categorization. ACM Com-
put. Surv. (CSUR) 34, 1–47.

wanson, E.B., 1976. The dimensions of maintenance. In: Proceedings of the 2nd

International Conference on Software Engineering. ICSE 1976, pp. 492–497.
homas, S.W., 2012. Mining software repositories with topic models. School of Com-

puting, Queen’s University Technical Report 2012-586.
right, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y., 2009. Robust face recognition

via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 210–227.
eng, J., 2012. A topic modeling toolbox using belief propagation. J. Mach. Learn.

Res. 13, 2233–2236.

eng Yan was born in 1989 and received his B.S. in Chongqing University in 2011,

nd his M.S. degree in Software Engineering in 2013. He is currently a Ph.D. can-

idate of the School of Software Engineering, Chongqing University. His research
nterests include data mining of software engineering and topic modeling.

ing Fu was born in 1991 and received her B.S. in Chongqing University in 2013.

he is a M.S. candidate of the School of Software Engineering, Chongqing University
ow. Her research interests include data mining of software engineering and topic

odeling.

iaohong Zhang received the Ph.D. degree in Computer Software and Theory from

hongqing University, PR China in 2006, where he also received the M.S. degree
n Applied Mathematics. He is a professor in School of Software Engineering at

hongqing University. His current research interests include data mining of soft-
are engineering, topic modeling, image semantic analysis and video analysis.

an Yang received the Ph.D. degree from Chongqing University, PR China in 1997,
here he also received the M.S. degree in 1985 and B.S. in 1982. He is a professor in

chool of Software Engineering at Chongqing University. His current research inter-
sts include data mining of software engineering, topic modeling, image semantic

nalysis and video analysis.

ing Xu was born in 1975 and received her B.S. in Hefei University of Technology

n 1998, and her M.S. degree in Software Engineering in 2004. She received her
h.D. degree in Computer Science Technology from Chongqing University, PR China

n 2009. Her research interests include data mining of software engineering, topic
odeling, and image processing.

effrey D. Kymer received a B.S. in Computer Science and a B.S. in Mathematics

rom Westfield State College in Westfield, Massachusetts, USA in 1986. He is a se-

ior lecturer in School of Software Engineering at Chongqing University. He has
orked on a range of software products from a top selling CD-Rom (the MPC Wiz-

rd) to one of the first multi-track audio boards. His current research interests in-
lude software engineering, computational linguistics, teaching, data mining, and

lternate computer interfaces.

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00285-X/sbref0034

	Automatically classifying software changes via discriminative topic model: Supporting multi-category and cross-project
	1 Introduction
	2 Related work
	2.1 Previous software change classification methods
	2.2 Software change classification rules
	2.3 Topic modeling in mining software repositories
	2.4 Probabilistic latent semantic analysis

	3 Research methodology
	3.1 Data extracting and preprocessing
	3.2 Topic modeling
	3.2.1 Step 1: constructing vocabulary
	3.2.2 Step 2: building DPLSA

	4 Experiment
	4.1 Data sets
	4.2 Exploring word-topic distributions (RQ1)
	4.3 Exploring topic-document distributions (RQ2)
	4.4 Exploring the category distributions (RQ3)

	5 Validation
	5.1 Conducting the validation
	5.2 Comparing with published methods

	6 Limitation and threats to validity
	7 Conclusions and future work
	 Acknowledgments
	 References

