
R E S E A R CH A R T I C L E - M E T HODO LOG Y

Improving deep-learning-based fault localization with
resampling

Zhuo Zhang1,4 | Yan Lei2,3 | Xiaoguang Mao4 | Meng Yan2,3 | Ling Xu2,3 |

Junhao Wen2,3

1Guangxi Key Laboratory of Trusted Software,

Guilin University of Electronic Technology,

Guilin, China

2Key Laboratory of Dependable Service

Computing in Cyber Physical Society,

Chongqing University, Ministry of Education,

Chongqing, China

3School of Big Data & Software Engineering,

Chongqing University, Chongqing, China

4College of Computer, National University of

DefenseTechnology, Hunan, China

Correspondence

Yan Lei, School of Big Data & Software

Engineering, Chongqing University, Chongqing,

China.

Email: yanlei@cqu.edu.cn

Funding information

Guangxi Key Laboratory of Trusted Software,

Grant/Award Number: kx202008;

Fundamental Research Funds for the Central

Universities, Grant/Award Number:

2019CDXYRJ0011; National Natural Science

Foundation of China, Grant/Award Numbers:

61602504, 61379054, and 61672529;

Scientific Research Fund of Hunan Provincial

Education Department, Grant/Award Number:

15A007

Abstract

Many fault localization approaches recently utilize deep learning to learn an effective

localization model showing a fresh perspective with promising results. However,

localization models are generally learned from class imbalance datasets; that is, the

number of failing test cases is much fewer than passing test cases. It may be highly

susceptible to affect the accuracy of learned localization models. Thus, in this paper,

we explore using data resampling to reduce the negative effect of the imbalanced

class problem and improve the accuracy of learned models of deep-learning-based

fault localization. Specifically, for deep-learning-based fault localization, its learning

feature may require duplicate essential data to enhance the weak but beneficial

experience incurred by the class imbalance datasets. We leverage the property of

test cases (i.e., passing or failing) to identify failing test cases as the duplicate

essential data and propose an iterative oversampling approach to resample failing

test cases for producing a class balanced test suite. We apply the test case

resampling to representative localization models using deep learning. Our empirical

results on eight large-sized programs with real faults and four large-sized programs

with seeded faults show that the test case resampling significantly improves fault

localization effectiveness.

K E YWORD S

fault localization, debugging, neural networks, deep learning, resampling

1 | INTRODUCTION

In the process of software development and maintenance, debugging is to find and fix the bugs within the program. It usually needs much manual

involvement and has been proved to be one of the most expensive and time-consuming activities for software developers. In order to reduce the

cost, researchers have developed many fault localization techniques to provide the assistance in seeking the positions of the faults in the program

(e.g., previous studies1-7). The recent progress on deep learning shows its promising ability of learning useful models in various applications

(e.g., image classification, object detection, and segmentation) and providing tremendous improvement in robustness and accuracy.8Some

researchers have exploited the use of this learning ability to discuss and evaluate the potential of deep learning in fault localization.9,10,12 Their

research has shown that deep learning provides a new perspective for fault localization and can significantly improve localization effectiveness.

Given a faulty program, they require a collection of specific data to construct a test suite; then execute the test suite and abstract the runtime

information of the test suite as an information model for fault localization algorithms; finally based on the information model, evaluate the suspi-

ciousness of each statement (or other program elements) of being faulty. Test cases are indispensable for the information model, and also used as

the input to initiate the learning process for fault localization. There are two classes of test cases with distinct features: passing test cases and

Received: 23 February 2020 Revised: 30 July 2020 Accepted: 4 August 2020

DOI: 10.1002/smr.2312

J Softw Evol Proc. 2020;e2312. wileyonlinelibrary.com/journal/smr © 2020 John Wiley & Sons, Ltd. 1 of 18

https://doi.org/10.1002/smr.2312

https://orcid.org/0000-0003-4504-6806
mailto:yanlei@cqu.edu.cn
https://doi.org/10.1002/smr.2312
http://wileyonlinelibrary.com/journal/smr
https://doi.org/10.1002/smr.2312
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsmr.2312&domain=pdf&date_stamp=2020-08-26

failing test cases. Based on the two classes of test cases, deep-learning-based fault localization10 utilizes their execution information (i.e., code

coverage) as training samples, and their test results (i.e., passing or failing) as the labels, to learn an effective localization model. However, it is diffi-

cult to construct failing test cases in reality; that is, the number of passing test cases is much more than that of failing test cases. It leads to the

class imbalance phenomenon and a bias to the feature learned from passing test cases. In deep learning, the class imbalance phenomenon of the

training set causes negative impact on the classifier.13,14 It will affect the accuracy of the learned localization model. Furthermore, the research15

has found that the effect of including more passing test cases is unpredictable and adding passing test cases could both improve or degrade diag-

nostic accuracy. Thus, the bias to passing test cases may worsen the learning process of an effective localization model.

Since fault localization based on deep learning has the learning feature distinct from traditional fault localization, we explore using the learning

feature to address the issues discussed above. Failing test cases are always beneficial (or safe) for fault localization effectiveness15,16 whereas

they are difficult to be constructed. In reality, it is almost infeasible to generate more failing test cases for improving fault localization effective-

ness. However, due to the learning feature, we may not need to generate more failing test cases, i.e. we may use the existing failing test cases by

oversampling those data with beneficial impact on the localization model. Oversampling is to randomly sample with replacement (i.e., cloning) the

minority class (e.g., failing test cases) to the same size as the majority class (e.g., passing test cases).17 In this way, we can enhance the learning of

the weak but beneficial experience for fault localization. The weak but beneficial experience means the weak but beneficial pattern learned from

the minority class. It means that we leverage the cloning of failing test cases to augment the experience learned from failing test cases and reduce

the bias to passing test cases. Consequently, it may improve fault localization effectiveness.

Following this idea, it means that we can augment useful data using oversampling for improving deep-learning-based fault localization. We

face two problems with using oversampling. One is what data is useful for oversampling. Since failing test cases are beneficial for fault localization,

we solve this problem by using the learning feature; that is, we clone failing test cases into existing ones to augment the weak experience learned

from failing test cases. The other one is how much data should be augmented. In fault localization, Zhang et al.18 have found that a class-balanced

test suite is useful for localization. In deep learning, many studies have shown that algorithms trained with balanced data surpass those trained

with imbalanced data in performance.19,20 Therefore, we use oversampling to iteratively argument test cases until we obtain a balanced test suite,

in which passing test cases and failing test cases are with the same number.

Some may argue that although oversampling is simple yet effective and incurs a little cost, there are many data resampling techniques more

effective than oversampling technique, meaning that it should be better to use other more effective techniques rather than oversampling. The

resampling techniques can be roughly categorized into three commonly used types: oversampling, undersampling, and sampling with the creation

of artificial data. Undersampling technique randomly removes the data from the majority class (e.g., passing test cases) in order to be the same

number as the minority class (e.g., failing test cases). Since the number of minority class (e.g., failing test cases) is usually very small, the size of the

test suite will substantially reduced after undersampling. It is harmful for deep-learning-based fault localization, because it requires many test

cases and a small test suite will cause much information loss. Sampling with the creation of artificial data (e.g., SMOTE21 and ADASYN22) will gen-

erate new artificial data similar to the minority class and fix the same label of the minority class to the new artificial data. For example, we gener-

ate a new image by switching the eyes of a dog of an image. We can still identify the label of the new image as a dog. However, in software

testing and debugging, we cannot simply conclude that a test case similar to a failing test case should be the failing test case. Consequently, we

cannot simply fix the labels of the similar new data as the same as the minority class. Since a new artificial datum is denoted as a vector in deep-

learning-based fault localization, showing an execution path of a program. It is necessary to generate a test case executing such path and run the

test case to obtain the exact label (i.e., failing or passing). It is very costly to generate a test case according to an execution path in practice, and

even worse, a specific input may not theoretically exist to execute such path, meaning that we cannot generate a test case to execute such path.

As a reminder, such verification process is also very costly. Furthermore, the research23 has shown that a test case similar to a failing test case is

usually not the failing test case. It means that we spend much effort to generate a set of test cases similar to failing test cases, most of them are

still not the failing test cases. Consequently, the dataset still suffers from the imbalanced class problem.

Thus, we propose a test case resampling approach using failing test cases to enhance the effectiveness of deep-learning-based fault localiza-

tion techniques. Our approach first identifies failing test cases as duplicate essential data; then iteratively resamples failing test cases into original

test cases; finally stops the iterative resampling process until obtaining a balanced test suite, where the number of failing test case is the same as

that of passing test cases. The balanced test suite augments the weak but beneficial experience related to failing test cases, thus obtaining a more

well-learned localization model. To evaluate our test case resampling approach, we design and conduct a large-scale empirical study on 12 real-life

programs, among which eight programs are with real faults and four ones are with seeded faults. The results show that oversampling failing test

cases to construct a class-balanced test suite can improve the performance of four representative deep-learning-based fault localization tech-

niques. Specifically, our approach can save the number of the statements to be examined up to 63.30% on CNN-FL,10 84.44% on MLP-FL,12

61.20% on BPNN-FL,2,24 and 56.35% on BiLSTM-FL,10,25respectively.

The main contributions of this paper can be summarized as follows:

• We propose an over-sampling approach by resampling failing test cases to augment the weak but beneficial experience for deep-learning-

based fault localization.

2 of 18 ZHANG ET AL.

• We evaluate the test case resampling approach across various large real-life programs, showing the potential of using resampling to alleviate

the class imbalance problem for improving fault localization.

The structure of the rest paper is organized as follows. Section 2 introduces deep-learning-based fault localization. Section 3 describes our

test case augmentation approach. Section 4 presents the results of our empirical study including experiment subjects, experiment design, data

analysis, and threats to validity. Section 5 summarizes related work, and Section 6 concludes.

2 | DEEP-LEARNING-BASED FAULT LOCALIZATION

Deep-learning-based fault localization utilizes the promising learning ability26-30 of a neural network to learn a fault localization model to evaluate

the suspiciousness of each statement being faulty. We will introduce four state-of-the-art deep-learning-based fault localization approaches used

for the experiments, that is, CNN-FL, MLP-FL, BPNN-FL, and BiLSTM-FL. They share the similar structure and just use different types of neural

networks. Specifically, CNN-FL10 uses Convolutional Neural Networks (CNN), MLP-FL12 utilizes Multi-Layer Perceptron (MLP), BPNN-FL uses a

Back-Propagation Neural Network2,24(BPNN), and BiLSTM-FL10,25 utilizes a recurrent neural network named Bi-directional Long Short-Term

Memory (BiLSTM).

2.1 | Information model

Deep-learning-based fault localization first defines an information model to represent the runtime information of a test suite. Figure 1 shows the

definition of the information model. Specifically, given a program P with N statements, it is executed by a test suite T with M test cases, which

contain at least one failing test case (see Figure 1). The element xij = 1 means that the statement j is executed by the test case i, and xij = 0 other-

wise. The M ×N matrix records the execution information of each statement in the test suite T. The error vector e represents the test results. The

element ei equals to 1 if the test case i failed, and 0 otherwise. The error vector shows the test results of each test case (i.e., failures or

non-failures). Since they can associate the execution information of a statement (i.e., the matrix) with failures or non-failures (i.e., the error vector),

deep-learning-based fault localization techniques use the matrix and the error vector as the training samples and their corresponding labels,

respectively, where each training sample is an N-dimensional vector.

2.2 | Training process

Figure 2 shows the architecture of deep-learning-based fault localization: one input layer, deep leaning components, several hidden layers, and

one output layer. In the input layer, deep-learning-based fault localization takes the information model defined in the Figure 1 as input.

F IGURE 2 The architecture of deep-learning-based fault localization

F IGURE 1 The information mode of deep-learning-based fault localization

ZHANG ET AL. 3 of 18

Specifically, h rows of the matrix M ×N, and its corresponding error vector is used as an input, which are the coverage information of h tests and

their corresponding test results starting from the ith row, where i2 {1,1 + h,1 + 2h,… ,1 + (bM/hc + 1) × h}. In deep learning components, there may

be convolution layers, pooling layers, or fully connected layers. After that, there may be some hidden layers. CNN-FL, MLP-FL, BPNN-FL, and

BiLSTM-FL use convolutional neural network, multi-layer perceptron, back-propagation neural network, and bi-directional long short-term mem-

ory for deep learning components, respectively. In the output layer, the models use sigmoid function10 because values sent into a sigmoid function

will be 0 to 1. Each element in the result vector of the sigmoid function has a difference with the corresponding element of the target vector. The

back propagation algorithm is used to fine-tune the parameters of the model, and the goal is to minimize the difference between training result

y and error vector e. The network is trained iteratively.

The training process will learn a trained model, reflecting the complex nonlinear relationship between the statement coverage and test results.

Finally, the models construct a set of virtual test cases (see Figure 3) as the testing input to measure the association of each statement with test

results. Concretely, each time the models choose one virtual test case and input it to the network, the output is the estimation of the probability

of causing a failure by executing the virtual test case. Furthermore, suppose that if the virtual test only covers one statement, the output is also

the estimation of the probability of causing a failure by executing the statement. The estimation can show the suspiciousness of a statement of

being faulty.

Thus, as shown in Figure 3, the models construct N virtual tests, equaling to the number of the statements, where each virtual test only

covers one statement. Specifically, the element xi = 1 means that the statement i is only covered by the virtual test ti, and xi = 0 in the other virtual

tests. When the coverage vector of a virtual test is inputted to the trained neural network, the output of the network is the estimation of the vir-

tual test's execution result of being a failure by covering only one statement. The value of the result is between 0 and 1. The larger the value is,

the more likely it is that the statement only covered by the coverage vector is the buggy statement. For example, the statement i is likely to be

the buggy statement. Then debugging engineers input ti to the trained neural network (e.g., the CNN of CNN-FL, the MLP of MLP-FL, the BPNN

of BPNN-FL, and the BiLSTM of BiLSTM-FL), and the output of virtual test ti represents the probability of test execution result of being a failure

by only covering the statement i. The value of the result is the suspiciousness of the statement i.

2.3 | Example

We take CNN-FL as an example to illustrate how deep-learning-based fault localization approaches work. In Figure 4, there is a faulty program

P with 16 statements, among which s3 is the faulty statement. And there are five test cases, t1 to t5. In Figure 4, the table is the information model

of deep-learning fault localization (see Figure 1), and its detailed description can refer to Section 3.2.

The first step of CNN-FL is to construct a CNN model with one input layer with the number of nodes being 16 (i.e., the number of the state-

ments), two convolution layers, two pooling layers with rectified linear units, two fully connected layers with the number of nodes in each layer

simply set to be 8, and one output layer with the number of nodes being 1, outputting the result with sigmoid function.

The second step is to train the neural networks with coverage data, and input the error vector into the target vector. The batch size h is 3 in

this example. Therefore, CNN-FL chooses the first three vectors in the information model (see Figure 4) as its first input matrix ((1, 1, 1, 0, 0, 0,

1, 1, 1, 1, 0, 1, 1, 1, 0, 0), (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0), (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1)) and its target output vector (1, 0, 0).

CNN-FL will repeat training the network by choosing three vectors in the information model each time until the loss is small enough and reach

the condition of convergence. After training, CNN-FL will output a localization model, revealing the complex nonlinear relationship between state-

ment coverage information and test results.

The third step is to construct a virtual test set (see Figure 3) that contains 16 test cases, where each test case covers only one statement out

of 16 statements. We will input the virtual test set into the trained model, outputting a suspiciousness vector, where the elements of the vector

denote the suspiciousness of each statement of being faulty. This step finally organizes the localization result as a ranking list of all statements in

descending order of suspiciousness. As shown in Figure 4, the ranking list of CNN-FL is {s16, s5, s7, s4, s8, s14, s15, s6, s3, s9, s1, s10, s11, s2, s12, s13},

where CNN-FL ranks the faulty statement s3 as the ninth place.

F IGURE 3 Virtual test cases

4 of 18 ZHANG ET AL.

3 | TEST CASE RESAMPLING

3.1 | Methodology

In a typical software testing process, the test cases in a test suite after execution can be categorized into two classes, that is, passing test cases

and failing test cases.31 Deep-learning-based fault localization utilizes the two classes of test cases to fix the labels. However, it is difficult to con-

struct failing test cases in reality; that is, the number of passing test cases is much higher than that of failing test cases. It leads an apparent bias

to the experience learned from passing test cases. The biased experience will weaken the feature learned from failing test cases.19,20

It is necessary to reduce the effect of biased experience on the learning process. Data resampling17 is usually the solution to address the

biased problem. For example, suppose that there is a test suite with 98 passing test cases and two failing test cases. We apply undersampling17

and delete 96 passing test cases. The test suite has the same number of passing test cases and failing ones. A small sample with four test cases

means much useful information may be removed and are inadequate to conduct deep learning to learn an effective localization model. The second

solution is sampling with the creation of artificial data,17 which is similar to the two failing test cases. In deep-learning-based fault localization, the

minority class corresponds to failing test cases and the label of minority class is the failing result. However, a test case similar to the minority class

(that is, failing test cases) is not necessarily a failing test case.23 The third one is oversampling, 17,21,22 which clones the data from the minority

class to generate a balanced dataset. Since many resampling approaches are more effective than oversampling, oversampling is not the first

choice. However, the aforementioned discussion shows that oversampling may be the one possible candidate solution to alleviate the biased

problem in deep-learning-based fault localization.

Thus, we try to propose a test case resampling approach based on oversampling. In deep learning, oversampling (i.e., cloning) specific data will

improve the loss function of their corresponding class and thus augment the experience learned from those data.32 Therefore, the basic idea is

that if we know that a weak but beneficial experience learned from some data, we can leverage the learning feature by cloning those data to argu-

ment this weak but beneficial experience.

To initiate the realization of the basic idea, we should first identify those data related to the weak but beneficial experience. The research15,16

has found failing test cases are always beneficial (or at least safe) for fault localization effectiveness.16 However, failing test cases are much less

than passing test cases. It means that the experience learned from failing test cases is weak. The learning feature enables the use of cloning failing

test cases for enhancing its corresponding experience.

Next, we should identify how many failing test cases should be cloned as the augmentation. In both fault localization and deep learning, many

studies18-20 have found that a class-balanced test suite is useful for localization, and also the algorithms trained with balanced data surpass those

trained with imbalanced data in performance. It means that we should clone failing test cases into original test suite until the passing test cases

and the failing test cases have the same number. We define a ratio θ = Pnum/Fnum, where Pnum and Fnum denote the number of passing test

cases and the number of failing test cases, respectively. Our test case resampling approach will clone failing test cases until the ratio θ = 1.

F IGURE 4 An example illustrating the test case resampling

ZHANG ET AL. 5 of 18

Algorithm 1 shows how our resampling approach uses iterative over-sampling to generate a balanced test suite. Line 1 to line 2 get the num-

ber of passing test cases (i.e., Pnumorig) and the number of failing test cases (i.e., Fnumorig) in Torig, respectively. Line 3 to line 4 assign the original

test suite and its failing test cases toTnew and TorigF. We iteratively clone the entire set of original failing test cases to let the number of failing test

cases be close to the number of the original passing test cases. Specifically, line 5 to line 8 will iteratively oversample failing test cases until the

number of failing test cases is close to that of original passing tests. In other words, we will clone the entire original failing test cases TorigF with

(k − 1) times and add all cloned failing test cases to the test suiteTnew, where k = bPorig/Forigc is the integer part of Porig/Forig, addTests(TorigF,Tnew) is a

function to add all test cases of TorigF into the test suiteTnew, that is, Tnew = TorigF [Tnew. Now, the number of failing test cases inTnew is k ∗ Fnumorig;

we still require to add m failing test cases to obtain a balanced test suite, where m = Pnumorig− k ∗ Fnumorig. Line 9 to line 12 randomly clone

m failing test cases from the original failing ones TorigF and add the m failing test cases to Tnew, getRandomTest(TorigF) is a function randomly

returning a test case from TorigF. Finally, in the new test suite TNew, the number of failing test cases equals to that of passing test cases, meaning

the ratio θ = 1.

Deep learning-based fault localization uses the execution information (i.e., coverage information) and test results (i.e., failure or non-failure) of

the new test suite TNew to construct and train a neural network, thus learning a localization model. Based on the localization model, it evaluates

the suspiciousness of each statement of being faulty, and outputs a ranking list of all statements in terms of suspiciousness 1.

3.2 | An illustrative example

This section uses an example to illustrate how the test case resampling approach is applied to deep-learning-based fault localization (e.g., CNN-FL

and MLP-FL). Figure 4 illustrates a faulty program P with 16 statements (i.e., the first and second rows), among which s3 is the faulty statement.

The third row shows the names of the test cases, the input variables of the program, the statements, and the test results. The next five rows are

the execution information of the five test cases, where the first column on the left are five test cases (i.e., t1 to t5), the second column represents

the values of the input variables in each test case, the next 16 columns show the execution information of 16 statements in each test case, and

the rightmost column shows the test results of each test case. Specifically, the cells below each statement indicate whether the statement is cov-

ered by the execution of a test case or not (1 for executed and 0 for not executed), and the rightmost cells represent whether the execution of a

test case is failed or not (0 for pass and 1 for fail). We can observe that there are five test cases, in which the test case t1 is a failing test case. The

next 8 rows are localization results (the suspiciousness and the ranks of each statement) by using CNN-FL and MLP-FL. The rightmost cells with

resampled show the localization results corresponds to the ones of CNN-FL and MLP-FL after applying our resampling approach.

Since we have only one failing test case, our test case resampling approach iteratively clones the test case t1 three times. Then, it adds the

three test cases into original test suite to form a new test suite with four failing test cases and four passing test cases. We input the new test suite

into CNN-FL and MLP-FL, and they will conduct the process as described above. They also output a suspiciousness vector with the suspicious-

ness of each statement of being faulty.

1Code available at https://github.com/zhuozhangNUDT/test-case-resampling.

6 of 18 ZHANG ET AL.

https://github.com/zhuozhangNUDT/test-case-resampling

As shown in Figure 4, there are four ranking lists of all statements in descending order of suspiciousness. With the original test suite, CNN-FL

is {s16, s5, s7, s4, s8, s14, s15, s6, s3, s9, s1, s10, s11, s2, s12, s13}, and MLP-FL is {s5, s4, s16, s11, s15, s6, s13, s12, s2, s8, s9, s3, s14, s10, s1, s7}. With the test

case resampling, CNN-FL is {s1, s8, s14, s3, s16, s5, s10, s12, s6, s11, s9, s13, s7, s15, s2, s4}, and MLP-FL is{s5, s1, s14, s11, s9, s2, s3, s15, s8, s16, s4, s13, s12,

s10, s7, s6}. We can observe that CNN-FL and MLP-FL rank the faulty statement s3 as the ninth and the 12th place, respectively. After applying

our test case resampling, CNN-FL and MLP-FL rank the faulty statement s3 as the fourth and seventh place, respectively. It means that our test

case resampling approach has promoted both five places of the faulty statement in CNN-FL (from ninth to fourth) and MLP-FL (from 12th to sev-

enth), showing better localization results.

4 | AN EXPERIMENTAL STUDY

4.1 | Experimental setup

To evaluate the effectiveness of our approach, we use the four state-of-the-art deep learning-based fault localization approaches: CNN-FL,10

MLP-FL,12 BPNN-FL,2,24 and BiLSTM-FL,10,25 for the experiments. We will compare the effectiveness of the two approaches in two scenarios:

using the test case resampling approach and without using it. Furthermore, we choose those widely used large-sized programs in the field of soft-

ware debugging (e.g., previous studies1,2,4-7) for the experiments, varying from 5 KLOC to 491 KLOC.

Table 1 summarizes the characteristics of the subject programs used. For each program, it depicts a brief functional description (column

“Description”), the number of faulty versions (column “Versions”), the number of thousand lines of statements (column “KLOC”), the number of

test cases (column “Test”), and the type of the faults (column “Type”). The first four programs (i.e., chart, math, mockito, and time) are from

Defects4J2, which is a database and extensible framework providing real faults to enable reproducible studies in software testing research.33

Python, gzip, and libtiff are collected from ManyBugs3, space is acquired from the SIR4.The next four programs are seeded faults of the four sperate

releases of nanoxml acquired from the SIR.

The physical environment on which we conducted the experiments was on a computer containing a CPU of Intel I5-2640 with 128G physical

memory and two 12G GPUs of NVIDIA TITAN X Pascal. The operating systems were Ubuntu 16.04.3. We conducted the experiments on the

MATLAB R2016b.

4.2 | Evaluation metrics

To evaluate fault localization effectiveness, we adopt two widely used metrics: fault localization accuracy (referred as EXAM)34 and relative

improvement (referred as RImp).35-37 EXAM is defined as the percentage of statements to be examined before finding the actual faulty state-

ment. A lower value of EXAM indicates better performance. RImp is to compare the total number of statements that need to be examined to find

2Defects4J, http://defects4j.org
3ManyBugs, http://repairbenchmarks.cs.umass.edu/ManyBugs/
4SIR, http://sir.unl.edu/portal/index.php

TABLE 1 Summary of subject programs

Program Description Versions KLOC Test Type

chart JFreeChart 26 96 2205 Real

math Apache Commons Math 106 85 3602 Real

mockito Framework for unit tests 38 6 1075 Real

time Joda-Time 27 53 4130 Real

python General-purpose language 8 407 355 Real

gzip Data compression 5 491 12 Real

libtiff Image processing 12 77 78 Real

space ADL interpreter 35 6.1 13585 Real

nanoxml:v1 XML parser 7 5.4 206 Seeded

nanoxml:v2 XML parser 7 5.7 206 Seeded

nanoxml:v3 XML parser 10 8.4 206 Seeded

nanoxml:v5 XML parser 7 8.8 206 Seeded

ZHANG ET AL. 7 of 18

http://defects4j.org
http://repairbenchmarks.cs.umass.edu/ManyBugs/
http://sir.unl.edu/portal/index.php

all faults using a deep learning-based fault localization approach with the test case resampling versus the number that need to be examined by

using the deep learning-based fault localization approach without the test case resampling. A lower value of RImp shows better improvement of

our approach over the one without test case resampling.

4.3 | Data analysis

4.3.1 | EXAM distribution

Figures 5 and 6 illustrate the EXAM comparison between our test case resampling approach and other localization approaches in all faulty ver-

sions. Specifically, Figure 5A,C shows the EXAM comparison between CNN-FL and CNN-FL using our test case resampling approach in the con-

text of real faults and seeded faults, respectively; Figure 5B,D shows the comparison between MLP-FL and MLP-FL using resampling in the

context of real faults and seeded faults, respectively. Figure 6A,C shows the EXAM comparison between BPNN-FL and BPNN-FL using our test

case resampling approach in the context of real faults and seeded faults, respectively; Figure 6B,D shows the comparison between BiLSTM-FL

and BiLSTM-FL using resampling in the context of real faults and seeded faults, respectively. In Figures 5and 6, the horizontal axis represents the

percentage of statements examined in all versions of subjects (i.e., EXAM), while the vertical axis is the percentage of fault located in all faulty

F IGURE 5 EXAM comparison between using test case resampling approach and without using it

8 of 18 ZHANG ET AL.

versions. A point in Figures 5 and 6 denotes when a percentage of statements is examined in each faulty version, the percentage of faulty versions

has located their faults. From the eight subfigures, we can observe that the curves of CNN-FL (resampling), MLP-FL (resampling), BPNN-FL

(resampling), and BiLSTM-FL (resampling) are always above the ones of CNN-FL, MLP-FL, BPNN-FL, and BiLSTM-FL in both real faults and

seeded faults. The results show that our approach improves the localization effectiveness of CNN-FL, MLP-FL, BPNN-FL,24 and BiLSTM-FL.

Before applying our resampling approach, the localization effectiveness on real faults are much higher than that of artificial faults. Thus, the

resampling approach performs differently in the two scenarios; that is, the improvement on seed faults is much higher than real faults.

Furthermore, Table 2 illustrates the three types of EXAM scores of our test case resampling approach in comparison with CNN-FL, MLP-FL,

BPNN-FL, and BiLSTM-FL on real faults while Table 3 illustrates the three types of EXAM scores on seeded faults. For each approach, it provides

three types of EXAM scores: best, average, and variance. The best score means the minimum EXAM score of all the versions of a program, showing

the best effectiveness of an approach can reach. The average score means the average Exam score of all the versions of a program, showing the

average effectiveness of an approach can achieve. The variance score means the variance of EXAM scores of all the versions of a program, show-

ing whether the effectiveness of an approach is stable or not.

As shown in Table 2, we observe that among the eight real-faults programs, CNN-FL using test case resampling obtains five firsts in best

EXAM scores, seven firsts in average Exam scores, and five firsts in variance EXAM scores compared with CNN-FL without test case resampling.

MLP-FL using test case resampling obtains four firsts in best EXAM scores, six firsts in average EXAM scores, and seven firsts in variance EXAM

scores compared with MLP-FL without test case resampling. BPNN-FL using test case resampling obtains five firsts in best EXAM scores, six firsts

F IGURE 6 EXAM comparison between using test case resampling approach and without using it

ZHANG ET AL. 9 of 18

in average Exam scores, and four firsts in variance EXAM scores compared with BPNN-FL without test case resampling. BiLSTM-FL using test case

resampling obtains six firsts in best EXAM scores, seven firsts in average EXAM scores, and five firsts in variance EXAM scores compared with

BiLSTM-FL without test case resampling.

And in Table 3, among the four seeded-faults programs, CNN-FL using test case resampling obtains three firsts in best EXAM scores, three

firsts in average Exam scores, and one first in variance EXAM scores compared with CNN-FL without test case resampling. MLP-FL using test case

resampling obtains three firsts in best EXAM scores, three firsts in average EXAM scores, and three firsts in variance EXAM scores compared with

MLP-FL without test case resampling. BPNN-FL using test case resampling obtains three firsts in best EXAM scores, four firsts in average Exam

scores, and three first in variance EXAM scores compared with BPNN-FL without test case resampling. BiLSTM-FL using test case resampling

obtains three firsts in best EXAM scores, three firsts in average EXAM scores, and three firsts in variance EXAM scores compared with BiLSTM-FL

without test case resampling.

The results show that after applying our test case resampling approach, CNN-FL, MLP-FL, BPNN-FL, and BiLSTM-FL become more effective

and more stable on both real faults and seeded faults.

4.3.2 | RImp distribution

For a detailed improvement, we adopt RImp to evaluate our approach. Figure 7 shows RImp score of using test case resampling over the four fault

localization approaches (i.e., CNN-FL, MLP-FL, BPNN-FL, and BiLSTM-FL) with original test suite.

As shown in Figure 7A, the RImp score is less than 100% in all programs except for time and nanoxml:v1, meaning that CNN-FL using

resampling improves fault localization effectiveness in almost all programs. Except for time and nanoxml:v1, the statements that need to be exam-

ined decrease ranging from 36.97% in gzip to 99.31% in python. This means that CNN-FL using test case resampling needs to examine from

36.97% to 99.31% of statements that CNN-FL with original test suite needs to examine of. It also means that the test case resampling approach,

in comparison with CNN-FL, obtains a maximum saving of 63.03% (100% − 36.97% = 63.03%) in gzip and a minimum saving of 0.69%

(100% − 99.31% = 0.69%) in python. The average saving is 16.61%, which means that the test case resampling approach can save an average of

16.61% of the number of statements examined by using CNN-FL to locate all faults.

TABLE 2 The best, average, and variance EXAM scores on real faults

python gzip libtiff space chart math mockito time

best 0.033764 0.006329 0.110802 0.100686 0.041451 0.031021 0.167024 0.054494

CNN-FL average 0.276977 0.104460 0.302835 0.339422 0.220833 0.214605 0.232968 0.072166

variance 0.208231 0.088525 0.107424 0.139387 0.155409 0.259628 0.053328 0.249930

best 0.030410 0.064984 0.191492 0.087243 0.088083 0.020305 0.136181 0.050280

CNN-FL (resampling) average 0.226208 0.277906 0.278616 0.324122 0.178832 0.128861 0.195547 0.059650

variance 0.194044 0.066240 0.113832 0.121806 0.197779 0.153522 0.067376 0.132512

best 0.133016 0.006329 0.195170 0.111660 0.145078 0.119571 0.008208 0.344848

MLP-FL average 0.322419 0.244269 0.412189 0.402564 0.356506 0.349378 0.185645 0.341644

variance 0.159671 0.174213 0.214892 0.167041 0.186936 0.324996 0.147868 0.451910

best 0.107999 0.106013 0.177695 0.183539 0.165803 0.053801 0.014632 0.297301

MLP-FL (resampling) average 0.243261 0.249593 0.331293 0.394992 0.258620 0.072022 0.093986 0.344287

variance 0.100335 0.178988 0.140644 0.138368 0.080551 0.025768 0.082215 0.066448

best 0.271173 0.229535 0.231676 0.279287 0.210502 0.237418 0.136181 0.211274

BPNN-FL average 0.407999 0.321778 0.543658 0.450206 0.424556 0.579186 0.290354 0.344847

variance 0.159670 0.102828 0.358621 0.137370 0.218310 0.179720 0.179765 0.041784

best 0.165299 0.128664 0.142857 0.209054 0.237911 0.217418 0.157218 0.220280

BPNN-FL (resampling) average 0.328829 0.543658 0.449286 0.404938 0.310345 0.316742 0.249408 0.338449

variance 0.208231 0.188520 0.107411 0.073834 0.128450 0.151738 0.181736 0.116387

best 0.518816 0.118297 0.046811 0.073876 0.236184 0.168077 0.110992 0.159963

BiLSTM-FL average 0.357230 0.267565 0.356844 0.412287 0.317215 0.242409 0.261782 0.307159

variance 0.145292 0.137333 0.258995 0.199216 0.087361 0.105122 0.136977 0.208166

best 0.143540 0.106013 0.046811 0.073880 0.199807 0.174187 0.114056 0.187301

BiLSTM-FL (resampling) average 0.260260 0.258730 0.310721 0.377503 0.266184 0.199571 0.191514 0.322165

variance 0.133467 0.192020 0.107428 0.117970 0.154077 0.116386 0.060189 0.066925

10 of 18 ZHANG ET AL.

As shown in Figure 7B, the RImp score is less than 100% in all programs, meaning that MLP-FL using resampling improves fault localization

effectiveness in all programs. In comparison with MLP-FL, the test case resampling approach gets a maximum saving of 84.44%

(100% − 15.56% = 84.44%) in math, a minimum saving of 3.80% (100% − 97.20% = 3.80%) in python, and an average saving of 38.35%.

As shown in Figure 7C, the RImp score is less than 100% in all programs, meaning that BPNN-FL using resampling improves fault localization

effectiveness in all programs. In comparison with BPNN-FL, the test case resampling approach gets a maximum saving of 84.44%

(100% − 38.80% = 61.20%) in nanoxml:v2, a minimum saving of 0.82% (100% − 91.27% = 8.73%) in space, and an average saving of 26.38%.

As shown in Figure 7D, the RImp score is less than 100% in all programs, meaning that BiLSTM-FL using resampling improves fault localiza-

tion effectiveness in all programs. In comparison with BiLSTM-FL, the test case resampling approach gets a maximum saving of 56.35%

(100% − 43.65% = 56.35%) in math, a minimum saving of 0.82% (100% − 99.18% = 0.82%) in nanoxml:v1, and an average saving of 21.02%.

Based on the RImp scores, we can observe that there is a significant saving after using our test case resampling approach. Hence,

oversampling failing test cases is an effective way in improving deep learning-based fault localization.

4.3.3 | Statistical comparison

Although RImp can show more detailed improvement, the analysis using RImp evaluates effectiveness from the overview of the results and may

miss other detailed views of the results. For example, the RImp scores of libtiff and python in Figure 7A are very close to 100%, which means that

CNN-FL using test case resampling performs closely to CNN-FL with the original test suites in libtiff and python. However, a case may happen.

Suppose that CNN-FL using test case resampling has higher but not quite higher effectiveness than CNN-FL with the original test suite in each

faulty version of a program, the RImp score will show that they perform closely. Nevertheless, in this case, it is difficult to conclude that CNN-FL

using test case resampling performs closely to CNN-FL without resampling because CNN-FL using test case augmentation performs better in each

faulty version of the program. For another example, suppose that CNN-FL using test case resampling just has very higher effectiveness than

CNN-FL with the original test suite in several faulty versions of a program, and however, CNN-FL with the original test suite has moderately

TABLE 3 The best, average, and variance EXAM scores on seeded faults

nanoxml:v1 nanoxml:v2 nanoxm_v3 nanoxml:v5

best 0.298781 0.169492 0.282927 0.258621

CNN-FL average 0.301829 0.193974 0.391880 0.367228

variance 0.004311 0.108019 0.097831 0.097317

best 0.304878 0.084746 0.191667 0.224138

CNN-FL (resampling) average 0.329268 0.167608 0.356243 0.318096

variance 0.034493 0.127572 0.157328 0.084009

best 0.115854 0.067797 0.353846 0.241379

MLP-FL average 0.185976 0.171375 0.476591 0.344978

variance 0.099167 0.083306 0.116304 0.130271

best 0.079268 0.028249 0.014925 0.260465

MLP-FL (resampling) average 0.094512 0.062147 0.240357 0.365608

variance 0.021558 0.033131 0.137631 0.128446

best 0.115854 0.0711860 0.222222 0.255172

BPNN-FL average 0.109756 0.141243 0.365546 0.491228

variance 0.041780 0.039548 0.18173 0.254450

best 0.079268 0.079096 0.191667 0.264138

BPNN-FL (resampling) average 0.085366 0.084746 0.320773 0.460465

variance 0.031680 0.031116 0.210672 0.226850

best 0.109756 0.028249 0.120833 0.060185

BiLSTM-FL average 0.073171 0.090395 0.304167 0.302326

variance 0.031223 0.066928 0.116380 0.218311

best 0.109756 0.084746 0.092683 0.060185

BiLSTM-FL (resampling) average 0.079268 0.073446 0.202308 0.224138

variance 0.030258 0.041781 0.179720 0.203110

ZHANG ET AL. 11 of 18

higher effectiveness in most faulty versions of the programs. The sheer high effectiveness of CNN-FL using test case resampling in the several

faulty versions may make its RImp score over CNN-FL with original test suite lower than 100%, showing that CNN using test case resampling per-

forms better than CNN-FL with the original test suite. However, in such case, we cannot conclude that CNN using test case resampling performs

better than CNN-FL with the original test suite.

Thus, we need a rigorous method to obtain a detailed result and adopt Wilcoxon-Signed-Rank Test38 to achieve this goal. Wilcoxon-Signed-

Rank Test is a non-parametric statistical hypothesis test for testing the differences between pairs of measurements F(x) and G(y), which do not fol-

low a normal distribution. At a given significant level σ, we can use both two-tailed and one-tailed p-value to obtain a conclusion. For the two-

F IGURE 7 The RImp of test case resampling over deep-learning fault localization

TABLE 4 Statistical results on CNN-FL (resampling) versus CNN-FL

Wilcoxon-Signed-Rank test

Program Two-tailed One-tailed (right) One-tailed (left) Conclusion A-Test

chart 6.98E−03 9.89E−01 5.45E−03 BETTER 0.88

gzip 4.31E−03 9.85E−01 2.95E−02 BETTER 0.92

libtiff 5.45E−03 9.87E−01 6.87E−03 BETTER 0.80

math 1.09E−02 9.69E−01 9.07E−03 BETTER 0.67

mokito 3.35E−02 9.43E−01 2.09E−02 BETTER 0.84

python 1.00E+00 5.72E−01 5.72E−01 SIMILAR 0.44

space 3.57E−02 8.26E−01 1.83E−02 BETTER 0.55

time 6.55E−01 5.00E−01 8.14E−01 SIMILAR 0.50

nanoxml:v1 3.17E−02 4.89E−02 9.77E−01 WORSE 0.13

nanoxml:v2 4.93E−02 7.98E−01 3.95E−02 BETTER 0.67

nanoxml:v3 4.63E−02 7.99E−01 2.65E−02 BETTER 0.61

nanoxml:v5 1.09E−02 9.69E−01 9.07E−03 BETTER 0.78

Total 4.02E−05 9.99E−01 2.04E−05 BETTER 0.72

12 of 18 ZHANG ET AL.

tailed p-value, if p ≥ σ, the null hypothesis H0 that F(x) and G(y) are not significantly different is accepted; otherwise, the alternative hypothesis H1

that F(x) and G(y) are significantly different is accepted. For one-tailed p-value, there are two cases: the right-tailed case and the left-tailed case.

In the right-tailed case, if p ≥ σ, H0 that F(x) does not significantly tend to be greater than the G(y) is accepted; otherwise, H1 that F(x) significantly

tends to be greater than the G(y) is accepted. And in the left-tailed case, if p ≥ σ, H0 that F(x) does not significantly tend to be less than the G(y) is

accepted; otherwise, H1 that F(x) significantly tends to be less than the G(y) is accepted.

The experiments performed four paired Wilcoxon-Signed-Rank tests (i.e., CNN-FL [resampling] versus CNN-FL, MLP-FL [resampling] versus

MLP-FL, BPNN-FL [resampling] versus BPNN-FL, and BiLSTM-FL [resampling] versus BiLSTM-FL) by using EXAM as the pairs of measurements

F(x) and G(y). Each test uses both the two-tailed and one-tailed checking at the σ level of 0.05. Specifically, given a localization technique FL1, we

use the list of EXAM of FL1 using test case resampling in all faulty versions of all programs as the list of measurements of F(x), while the list of

measurements of G(y) is the list of Exam of FL1 without resampling in all faulty versions of all programs. Hence, in the two-tailed test, FL1 using

resampling has SIMILAR effectiveness as FL1 when H0 is accepted at the significant level of 0.05. And in the one-tailed test (right), FL1 using

resampling has WORSE effectiveness than FL1 when H1 is accepted at the significant level of 0.05. Finally, in the one-tailed test (left), FL1 using

resampling has BETTER effectiveness than FL1 when H1 is accepted at the significant level of 0.05.

Tables 4-6, and 7 show the statistical results on CNN-FL MLP-FL, BPNN-FL, and BiLSTM-FL using test case resampling versus CNN-FL,

MLP-FL, BPNN-FL, and BiLSTM-FL with the original test suite. Take chart in Table 4 as an example. The p values of two-tailed, one-tailed (right),

TABLE 5 Statistical results on MLP-FL (resampling) versus MLP-FL

Wilcoxon-Signed-Rank test

Program Two-tailed One-tailed (right) One-tailed (left) Conclusion A-Test

chart 6.79E−03 9.78E−01 5.02E−03 BETTER 0.81

gzip 3.45E−02 8.60E−01 2.09E−02 BETTER 0.72

libtiff 7.96E−03 9.70E−01 5.28E−03 BETTER 0.88

Math 1.09E−02 9.69E−01 9.07E−03 BETTER 0.89

mokito 4.51E−02 9.09E−01 2.45E−02 BETTER 0.88

python 4.65E−02 8.19E−01 2.92E−02 BETTER 0.63

space 7.96E−03 9.99E−01 4.24E−04 BETTER 0.74

time 1.80E−02 9.63E−01 1.86E−02 BETTER 0.93

nanoxml:v1 1.80E−02 9.63E−01 1.86E−02 BETTER 0.96

nanoxml:v2 1.09E−02 9.69E−01 9.07E−03 BETTER 0.78

nanoxml:v3 2.77E−02 9.89E−01 1.80E−02 BETTER 0.94

nanoxml:v5 5.93E−02 3.95E−01 7.89E−01 SIMILAR 0.33

Total 1.79E−02 9.91E−01 9.03E−03 BETTER 0.75

TABLE 6 Statistical results on BPNN-FL (resampling) versus BPNN-FL

Wilcoxon-Signed-Rank test

Program Two-tailed One-tailed (right) One-tailed (left) Conclusion A-Test

chart 6.79E−03 9.78E−01 5.02E−03 BETTER 0.81

gzip 2.25E−02 9.11E−01 1.40E−02 BETTER 0.68

libtiff 4.31E−02 9.85E−01 2.95E−02 BETTER 0.88

Math 1.09E−02 9.69E−01 9.07E−03 BETTER 0.95

mokito 4.34E−02 9.76E−01 2.74E−02 BETTER 0.88

python 4.79E−02 9.23E−01 4.02E−02 BETTER 0.75

space 7.96E−04 9.99E−01 4.24E−04 BETTER 0.72

time 1.80E−02 9.63E−01 1.86E−02 BETTER 0.95

nanoxml:v1 1.80E−02 9.63E−01 1.86E−02 BETTER 0.95

nanoxml:v2 1.08E−02 9.69E−01 9.07E−03 BETTER 0.67

nanoxml:v3 2.77E−02 9.89E−01 1.80E−02 BETTER 0.95

nanoxml:v5 2.85E−02 9.09E−01 2.11E−02 BETTER 0.67

Total 1.92E−09 9.99E−01 9.83E−10 BETTER 0.78

ZHANG ET AL. 13 of 18

and one-tailed (left) are 6.98E−03, 9.82E−01, and 5.45E−03, respectively. It means that the EXAM of CNN-FL using resampling is significantly less

than that of CNN-FL with the original test suite. Therefore, we obtain a BETTER conclusion; that is, our test case resampling approach signifi-

cantly improves the localization effectiveness of CNN-FL in chart. We can observe that CNN-FL using resampling approach obtains BETTER

results in all programs except for two SIMILAR results in python and time and one WORSE result in nanoxml:v1; MLP-FL using resampling

approach obtains the BETTER results in all programs except for one SIMILAR result in nanoxml:v5; BPNN-FL using resampling approach obtains

the BETTER results in all programs; BiLSTM-FL using resampling approach obtains BETTER results in all programs except for two SIMILAR results

in time and nanoxml:v2.

To further assess the difference quantitatively, we use the nonparametric Vargha-Delaney A-test, which is recommended in previous

study,39 to evaluate the magnitude of the difference by measuring effect size (scientific significance). For A-test, the bigger deviation of A-

statistic from the value of 0.5, the greater difference of the two studied groups. Vargha and Delaney40 suggest that A-test of greater than 0.64

(or less than 0.36) is indicative of “medium” effect size and of greater than 0.71 (or less than 0.29) can be indicative of a promising “large” effect

size. Based on the A-Test results in Tables 4-6, and 7, our approach has six “large” effect sizes and two “medium” effect sizes over CNN-FL,

11 “large” effect sizes, and one “medium” effect size over MLP-FL, nine “large” effect sizes and three “medium” effect sizes over BPNN-FL, and

eight “large” effect sizes and one “medium” effect size over BiLSTM-FL. Thus, our approach significantly improves the localization effectiveness of

the four deep-learning-based fault localization approaches.

Many studies have shown that algorithms trained with balanced data surpass those trained with imbalanced data in performance.18-20 Thus,

our resampling approach generates a balanced test suite. To further verify whether a balanced test suite is better than unbalanced test suite, we

use our resampling approach to clone different ratios of failing test cases. Specifically, we use the ratio θ = Pnum/Fnum, where Pnum and Fnum

denote the number of passing test cases and the number of failing test cases. We resample failing tests to generate different test suites with θ =

0.25, θ = 0.5, θ = 1 (i.e., our approach), θ = 1.25, and θ = 1.5. Table 8 shows the statistical results of our approach with θ = 1 versus different ratios

in 12 programs. Take (θ = 1) versus (θ = 1.25) as an example. In comparison with (θ = 1.25), our approach (θ = 1) obtains 11 BETTER results

(91.67%) on MLP-FL, CNN-FL, and BPNN-FL, respectively, and 12 BETTER results (100%) on BiLSTM-FL. Based on the results of Table 8, we can

conclude that the balanced test suites are better than unbalanced ones, being consistent with the previous research. 18-20

Thus, based on all the results and analysis, we can safely conclude that our test case resampling approach significantly improves CNN-FL,

MLP-FL, BPNN-FL, and BiLSTM-FL, showing that leveraging the learning feature to use the oversampling of critical data into deep learning-based

fault localization is potential to improve fault localization effectiveness.

4.4 | Threats to validity

There are some threats to the validity of our experiments. We adopted deep learning methods, whose outputs are not stable, meaning that the

fault localization results are not the same through different training times. That drawback is caused by a characteristic of neural network technol-

ogy. To make the results more reliable, we followed the convention by repeating the fault localization process; that is, we computed 10 times and

used the average score as the results for the experimental study.

TABLE 7 Statistical results on BiLSTM-FL (resampling) versus BiLSTM-FL

Wilcoxon-Signed-Rank test

Program Two-tailed One-tailed (right) One-tailed (left) Conclusion A-Test

chart 4.65E−02 8.19E−01 2.92E−02 BETTER 0.92

gzip 4.86E−02 7.05E−01 3.94E−02 BETTER 0.80

libtiff 2.25E−02 9.11E−01 1.40E−02 BETTER 0.80

Math 4.93E−02 7.89E−01 3.95E−02 BETTER 0.87

mokito 3.96E−01 7.12E−01 4.94E−02 BETTER 0.66

python 6.79E−03 9.78E−01 5.02E−03 BETTER 0.83

space 8.69E−03 9.96E−01 4.57E−03 BETTER 0.81

time 6.55E−01 5.00E−01 8.14E−01 SIMILAR 0.50

nanoxml:v1 4.55E−02 8.14E−01 4.91E−02 BETTER 0.50

nanoxml:v2 1.00E+00 6.05E−01 6.05E−01 SIMILAR 0.56

nanoxml:v3 2.77E−02 9.89E−01 1.80E−02 BETTER 0.77

nanoxml:v5 1.80E−02 9.63E−01 1.86E−02 BETTER 0.73

Total 3.47E−05 9.99E−01 1.76E−05 BETTER 0.74

14 of 18 ZHANG ET AL.

In our experiment, cloning failing test cases to seek a balanced distribution may cause the model to overfit the minority class in some cases.

We use dropout to alleviate this problem, and the results show that our approach is effective for improving fault localization. However, it is still

difficult to solve the overfitting problem fundamentally. Thus, it is worthwhile to conduct the research on alleviating overfitting problem (e.g., the

generation of noisy failing test cases) for more improvement in terms of fault localization effectiveness.

Another threat to external validity is the subject programs used for our experiments. Our subject programs are commonly used in fault locali-

zation and program repair, which are all from the real-life development. Thus, the results should be reliable. However, the experimental results

may not apply to all programs because there are still many unknown and complicated factors in realistic debugging that could affect the experi-

ment results. For example, since our approach is derived from the existing state-of-the-art localization approaches, it may not hold in some cases

where these localization approaches suffer from, for example, the multiple-fault case. Thus, it is worthwhile to conduct the experiments on more

large-sized programs with all real faults to further strengthen the experimental results.

We adopt the widely used metrics, EXAM and RImp, to evaluate localization effectiveness. According to the extensive use of the measure-

ment, the threat is acceptably mitigated.

5 | RELATED WORK

In this section, we briefly survey the class proportion of data sets and fault localization studies, especially coverage-based fault localization and

fault localization using learning algorithms. More work on fault localization can refer to the survey2 by Wong et al.

In the field of machine learning and fault localization, the class proportion of data sets has been widely studied. Wong et al.41 show that the

class imbalance phenomenon of data sets has an influence on the efficiency of classification. To some extent, deep learning-based fault localiza-

tion can be viewed as a pattern of classification problem, which can be influenced by the characteristics of test suites. Japkowizc et al.13

TABLE 8 Statistical results on our approach versus different resampling ratios

Comparison on fault localization approaches

(θ = 1) vs. (θ = 1.5) Result (θ = 1) vs. (θ = 0.5) Result

MLP-FL BETTER 10 (83.33%) MLP-FL BETTER 11 (91.67%)

SIMILAR 2 (16.67%) SIMILAR 1 (8.33%)

WORSE 0 (0%) WORSE 0 (0%)

CNN-FL BETTER 10 (83.33%) CNN-FL BETTER 9 (75%)

SIMILAR 1 (8.33%) SIMILAR 3 (25%)

WORSE 1 (8.33%) WORSE 0 (0%)

BPNN-FL BETTER 11 (91.67%) BPNN-FL BETTER 11 (91.67%)

SIMILAR 1 (8.33%) SIMILAR 1 (8.33%)

WORSE 0 (0%) WORSE 0 (0%)

BiLSTM-FL BETTER 11 (91.67%) BiLSTM-FL BETTER 10 (83.3%)

SIMILAR 0 (0%) SIMILAR 0 (0%)

WORSE 1 (8.3%) WORSE 2 (16.67%)

(θ = 1) vs. (θ = 1.25) Result (θ = 1) vs. (θ = 0.25) Result

MLP-FL BETTER 11 (91.67%) MLP-FL BETTER 12 (100%)

SIMILAR 1 (8.33%) SIMILAR 0 (0%)

WORSE 0 (0%) WORSE 0 (0%)

CNN-FL BETTER 11 (91.67%) CNN-FL BETTER 11 (91.67%)

SIMILAR 0 (0%) SIMILAR 1 (8.33%)

WORSE 1 (8.33%) WORSE 0 (0%)

BPNN-FL BETTER 11 (91.67%) BPNN-FL BETTER 12 (100%)

SIMILAR 1 (8.33%) SIMILAR 0 (0%)

WORSE 0 (0%) WORSE 0 (0%)

BiLSTM-FL BETTER 12 (100%) BiLSTM-FL BETTER 10 (83.3%)

SIMILAR 0 (0%) SIMILAR 1 (8.33%)

WORSE 0 (0%) WORSE 1 (8.33%)

ZHANG ET AL. 15 of 18

empirically draw a conclusion that the class imbalance phenomenon of the training set causes a negative impact to classifier problems. Baudry

et al.42 conduct the experiments and show that fewer test cases could achieve the same fault localization effectiveness. Hao et al. 43 improve the

localization effectiveness by using test suite reduction techniques. However, Yu et al.44 suggest that test suite reduction techniques may reduce

the effectiveness of fault localization. Gong et al.31 conduct an experimental study showing that the identical number of passing test cases and

the failing test cases is beneficial for fault localization. In contrast, our approach uses data resampling to alleviate the biased problem in deep-learn-

ing-based fault localization.

Machine learning techniques are used in the context of fault localization based on statement coverage and test results of test cases. Wong

et al.24 propose a fault localization approach based on back-propagation (BP) neural network, which introduces and implements a simple struc-

ture. Due to the drawbacks of BP networks (e.g., paralysis), Wong et al.45 afterwards propose another approach based on radial basis function

(RBF) networks to improve fault localization using BP networks. Recently, deep learning method has witnessed a rapid development to tackle the

limitations of traditional machine learning techniques and is successfully applied in many disciplines, for example, computer vision and natural lan-

guage processing. Based on the methods proposed by Wong et al. and advantages of deep learning methods, Zheng et al.12 construct a fault local-

ization model using Multi-Layer Perceptrons (MLP). Zhang et al.9 use dynamic slices to enhance fault localization effectiveness in the context of

deep neural networks. Briand et al.36 propose a fault localization method using decision tree algorithm and construct those rules that classify test

cases into various partitions. Zhang et al.10 explore more on deep learning and propose a fault localization approach based on convolutional neural

networks. Differently, our approach aims at using test case resampling to alleviate the biased problem in those localization approaches based on

learning algorithms.

Coverage-based fault localization techniques convert program spectrum data from test executions to suspiciousness score of program entities

and rank them in descending order.46 Among existing coverage-based localization methods, spectrum-based fault localization is the most popular

one. Chen et al.47 propose Jaccard technique, Jones et al.48 propose Tarantula technique, and Abreu et al.49 apply Ochiai technique. The three

techniques are widely used and compared techniques in the subsequent studies. Wong et al.50 use data and control flow to present many suspi-

ciousness evaluation formulas such as Wong1–3 and Wong30. Wong et al.51,52 also propose DStar (D*) based on crosstab. Xie et al.53,54 investi-

gate more than 30 suspiciousness evaluation formulas and theoretically prove the maximal formulas for single-fault scenarios, and further, they55

discussed the limits of purely coverage-based fault localization approaches. Pearson et al.56 afterward conduct a systematical study on evaluating

and summarizing the existing coverage-based fault localization. Papadakis et al.57 propose mutation-based fault localization, in which mutants that

are killed mostly by failing tests provide a good indication about the location of a fault. Coverage-based fault localization does not use learning

algorithms and thus has no learning feature from learning algorithms such as deep learning. In contrast, our approach studies deep learning-based

fault localization and utilizes its learning feature to propose a test case augmentation approach for improving deep-learning-based fault localiza-

tion's effectiveness.

6 | CONCLUSION

The recent rapid progress on deep learning shows the promising potential of many neural network architectures in making sense of data. The fault

localization community notices the potential of deep learning and has proposed deep-learning-based fault localization showing promising results.

This paper explores more on deep-learning-based fault localization; that is, we notice its learning feature distinct from traditional fault localization

approach. Due to the learning feature, if we can identify a weak but beneficial experience learned from some specific data, we can leverage the

learning feature by oversampling the data to argument this weak but beneficial experience.

Following this idea, we propose a test case resampling approach for deep-learning-based fault localization. This approach first identifies failing

test cases as the critical data corresponding to the weak but beneficial experience, then use iterative oversampling to clone those failing test cases

into the original test cases, and finally feeds the new test suite into deep-learning-based fault localization. To evaluate the effectiveness of our

approach, we conduct a large-scale experimental study on eight programs with real faults and four programs with seeded faults. The results show

that our test case resampling approach significantly improves fault localization effectiveness, revealing that oversampling critical data is an effec-

tive way of using the learning feature.

In future, we plan to optimize our test case resampling approach by introducing the context into the learning process. Furthermore, we will

explore more on the learning feature of deep-learning-based fault localization and obtain more insights of this feature beneficial for improving

fault localization effectiveness. Besides, how to reduce the effect as far as possible and whether there are differences in various kinds of faults

are also of great interest to our research.

ACKNOWLEDGEMENTS

This work is partially supported by the Guangxi Key Laboratory of Trusted Software (no. kx202008), the National Natural Science Foundation of

China (nos. 61602504, 61379054, and 61672529), the Fundamental Research Funds for the Central Universities (no. 2019CDXYRJ0011), and

the Scientific Research Fund of Hunan Provincial Education Department (no. 15A007).

16 of 18 ZHANG ET AL.

ORCID

Yan Lei https://orcid.org/0000-0003-4504-6806

REFERENCES

1. Debroy V, Wong WE. A consensus-based strategy to improve the quality of fault localization. Software: Pract Exper. 2013;43(8):989-1011.

2. Wong WE, Gao R, Li Y, Rui A, Wotawa F. A survey on software fault localization. IEEE Trans Softw Eng (TSE). 2016;42(8):707-740.

3. Le TDB, Oentaryo RJ, Lo D. Information retrieval and spectrum based bug localization: better together. In: Joint Meeting on Foundations of Software

Engineering (FSE 2015); 2015; Bergamo, Italy:579-590.

4. Sun C, Khoo SC. Mining succinct predicated bug signatures. In: Joint Meeting on Foundations of Software Engineering (FSE 2013); 2013; Saint Petersburg,

Russia:576-586.

5. Chan WK, Cai Y. In quest of the science in statistical fault localization. Softw: Pract Exper. 2013;43(8):971-987.

6. Neelofar N, Naish L, Ramamohanarao K. Spectral-based fault localization using hyperbolic function. Softw: Pract Exper. 2018;48(3):641-664.

7. Tu J, Xie X, ChenTY, Xu B. On the analysis of spectrum based fault localization using hitting sets. J Syst Softw. 2019;147:106-123.

8. Lecun Y, BengioY, Hinton G. Deep learning. Nature. 2015;521(7553):436.

9. Zhang Z, Lei Y, Tan Q, Mao X, Zeng P, Chang X. Deep learning-based fault localization with contextual information. IEICE Trans Info Syst. 2017;

100(12):3027-3031.

10. Zhang Z, Lei Y, Mao X, Li P. CNN-FL: An effective approach for localizing faults using convolutional neural networks. In: The 26th International Con-

ference on Software Analysis, Evolution and Reengineering (SANER 2019). IEEE; 2019; Hangzhou, China, China:445-455.

11. Zheng W, Hu D, Wang J. Fault localization analysis based on deep neural network. Math Probl Eng. 2016;2016:1-11.

12. Japkowicz N, Stephen S. The class imbalance problem: a systematic study. Intell Data Anal. 2002;6(5):429-449.

13. Guo H, Viktor HL. Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach. Sigkdd Explor. 2004;6(1):

30-39.

14. Rui A, Zoeteweij P, Golsteijn R, Gemund AJCV. A practical evaluation of spectrum-based fault localization. J Syst Softw. 2009;82(11):1780-1792.

15. Lei Y, Sun C, Mao X, Su Z. How test suites impact fault localization starting from the size. IET Softw. 2018;12(3):190-205.

16. Tantithamthavorn C, Hassan AE, Matsumoto K. The impact of class rebalancing techniques on the performance and interpretation of defect prediction

models. IEEE Trans Softw Eng. 2018:1-22.

17. Zhang L, Yan L, Zhang Z, Zhang J, Chan WK, Zheng Z. A theoretical analysis on cloning the failed test cases to improve spectrum-based fault localiza-

tion. J Syst Softw. 2017;129:35-57.

18. He H, Garcia EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng (TKDE). 2008;21(9):1263-1284.

19. Krawczyk B. Learning from imbalanced data: open challenges and future directions. Progr Artif Intell. 2016;5(4):221-232.

20. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16(1):321-357.

21. He H, Bai Y, Garcia EA, Li S. ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on

Neural Networks (IEEE World Congress on Computational Intelligence); 2008; Hong Kong, China:1322-1328.

22. Artzi S, Dolby J, Tip F, Pistoia M. Directed test generation for effective fault localization. In: The 19th International Symposium on Software Testing

and Analysis (ISSTA 2010). ACM; 2010; Trento, Italy:49-60.

23. Wong W, Qi Y. BP neural network-based effective fault localization. Int J Softw Eng Knowl Eng. 2009;19(04):573-597.

24. Graves A, Mohamed Ar, Hinton G. Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics,

Speech and Signal Processing. IEEE; 2013:6645-6649.

25. Jarrett K, Kavukcuoglu K, Ranzato M, Lecun Y. What is the best multi-stage architecture for object recognition? In: IEEE International Conference on

Computer Vision (ICCV 2010); 2010; Kyoto, Japan:2146-2153.

26. Lecun Y, Huang FJ, Bottou L. Learning methods for generic object recognition with invariance to pose and lighting. In: The 2004 IEEE Computer Soci-

ety Conference on Computer Vision and Pattern Recognition (CVPR 2014), Vol. 2; 2004; Columbus, OH, USA:II-104.

27. Lee H, Grosse R, Ranganath R, Ng AY. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: The

26th Annual International Conference on Machine Learning (ICML 2009); 2009; Montreal, Canada:609-616.

28. Pinto N, Doukhan D, DiCarlo JJ, Cox DD. A high-throughput screening approach to discovering good forms of biologically inspired visual representa-

tion. PLoS Comput Biol. 2009;5(11):e1000579.

29. Turaga SC, Murray JF, Jain V, et al. Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput. 2010;22(2):

511-538.

30. Gong C, Zheng Z, Li W, Hao P. Effects of class imbalance in test suites: an empirical study of spectrum-based fault localization. In: Computer Software

and Applications Conference (COMPSAC 2012); 2012; Izmir, Turkey:470-475.

31. Huang S, Gao M, Yang D, Huang X, Elgammal A, Zhang X. Unbalanced graph-based transduction on superpixels for automatic cervigram image seg-

mentation. In: The 12th International Symposium on Biomedical Imaging (ISBI 2015). IEEE; 2015; New York, NY, USA:1556-1559.

32. Jalali D, Ernst MD. Defects4J: a database of existing faults to enable controlled testing studies for Java programs. In: International Symposium on Soft-

wareTesting and Analysis (ISSTA 2014); 2014; Hilton San Jose, Bay Area, California, USA:437-440.

33. Mao X, Lei Y, Dai Z, Qi Y, Wang C. Slice-based statistical fault localization. J Syst Softw. 2014;89(1):51-62.

34. Debroy V, Wong WE, Xu X, Choi B. A grouping-based strategy to improve the effectiveness of fault localization techniques. In: International Confer-

ence on Quality Software (QSIC 2010); 2010; Zhangjiajie, China:13-22.

35. Briand LC, Labiche Y, Liu X. Using machine learning to support debugging with tarantula. In: The IEEE International Symposium on Software Reliability

(ISSRE 2007); 2007; Trollhattan, Sweden:137-146.

36. Lei Y, Mao X, Dai Z, Wang C. Effective statistical fault localization using program slices. In: Computer Software and Applications Conference

(COMPSAC 2012); 2012; Izmir, Turkey:1-10.

37. Corder GW, Foreman DI. Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach. Wiley; 2013.

38. Arcuri A, Briand L. A practical guide for using statistical tests to assess randomized algorithms in software engineering. In: 2011 33rd International

Conference on Software Engineering (ICSE). IEEE; 2011; Honolulu, HI, USA:1-10.

ZHANG ET AL. 17 of 18

https://orcid.org/0000-0003-4504-6806
https://orcid.org/0000-0003-4504-6806

39. Vargha A, Delaney HD. A critique and improvement of the CL common language effect size statistics of McGraw and Wong. J Edu Behav Stat. 2000;

25(2):101-132.

40. Wong E, Wei T, Qi Y, Zhao L. A crosstab-based statistical method for effective fault localization. In: International Conference on Software Testing,

Verification, and Validation (ICST 2008); 2008; Lillehammer, Norway:42-51.

41. Baudry B. Improving test suites for efficient fault localization. In: International Conference on Software Engineering (ICSE 2006); 2006; Shanghai,

China:82-91.

42. Hao D, Pan Y, Zhang L, Zhao W, Mei H, Sun J. A similarity-aware approach to testing based fault localization. In: IEEE International Conference on

Automated Software Engineering (ASE 2005); 2005; Long Beach, CA, USA:291-294.

43. Yu Y. An empirical study of the effects of test-suite reduction on fault localization. In: ACM/IEEE International Conference on Software Engineering

(ICSE 2009); 2009; Leipzig, Germany:201-210.

44. Wong WE, Debroy V, Golden R, Xu X, Thuraisingham B. Effective software fault localization using an RBF neural network. IEEE Trans Reliab. 2012;

61(1):149-169.

45. Naish L, Lee HJ, Ramamohanarao K. A model for spectra-based software diagnosis. ACM Trans Softw Eng Methodol. 2011;20(3):1-32.

46. Chen MY, Kiciman E, Fratkin E, Fox A, Brewer E. Pinpoint: problem determination in large, dynamic internet services. In: International Conference on

Dependable Systems and Networks (DSN 2002); 2002; Washington, DC, USA, USA:595-604.

47. Jones JA. Fault localization using visualization of test information. In: International Conference on Software Engineering (ICSE 2004); 2004; Edinburgh,

UK, UK:54-56.

48. Abreu R, Zoeteweij P, Van Gemund AJ. An evaluation of similarity coeffcients for software fault localization. In: Proceedings of the 12th Pacific Rim

International Symposium on Dependable Computing (PRDC 2006); 2006; Riverside, USA:39-46.

49. Wong WE, Qi Y, Zhao L, Cai KY. Effective fault localization using code coverage. In: Computer Software and Applications Conference (COMPSAC

2007); 2007; Beijing, China:449-456.

50. Wong WE, Debroy V, Choi B. A family of code coverage-based heuristics for effective fault localization. J. Syst. Softw. 2010;83(2):188–208.
51. Wong WE, Debroy V, Li Y, Gao R. Software fault localization using DStar (D*). In: IEEE Sixth International Conference on Software Security and

Reliability (SERE 2012); 2012; Gaithersburg, Maryland, USA:21-30.

52. Xie X, Chen TY, Kuo FC, Xu B. A theoretical analysis of the risk evaluation formulas for spectrum-based fault localization. ACM Trans Softw Eng

Methodol (TOSEM). 2013;22(4):31.

53. Xie X, Kuo FC, Chen TY, Yoo S, Harman M. Provably Optimal and Human-Competitive Results in SBSE for Spectrum Based Fault Localisation. Germany:

Springer, Berlin, Heidelberg; 2013:224-238.

54. Yoo S, Xie X, Kuo FC, Chen TY, Harman M. Human competitiveness of genetic programming in SBFL: Theoretical and Empirical Analysis. ACM Trans

Softw Eng Methodol. 2017;26(1):4:1-4:30.

55. Pearson S, Campos J, Just R, et al. Evaluating and improving fault localization. In: The International Conference on Software Engineering (ICSE 2017);

2017; Buenos Aires, Argentina:609-620.

56. Papadakis M, Traon YL. Metallaxis-FL: mutation-based fault localization. Softw Test Verif Rel. 2015;25(5-7): 605-628.

How to cite this article: Zhang Z, Lei Y, Mao X, Yan M, Xu L, Wen J. Improving deep-learning-based fault localization with resampling.

J Softw Evol Proc. 2020;e2312. https://doi.org/10.1002/smr.2312

18 of 18 ZHANG ET AL.

https://doi.org/10.1002/smr.2312

	Improving deep-learning-based fault localization with resampling
	1 INTRODUCTION
	2 DEEP-LEARNING-BASED FAULT LOCALIZATION
	2.1 Information model
	2.2 Training process
	2.3 Example

	3 TEST CASE RESAMPLING
	3.1 Methodology
	3.2 An illustrative example

	4 AN EXPERIMENTAL STUDY
	4.1 Experimental setup
	4.2 Evaluation metrics
	4.3 Data analysis
	4.3.1 EXAM distribution
	4.3.2 RImp distribution
	4.3.3 Statistical comparison

	4.4 Threats to validity

	5 RELATED WORK
	6 CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Euroscale Coated v2)
 /PDFXOutputConditionIdentifier (FOGRA1)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENG (Modified PDFX1a settings for Blackwell publications)
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

