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A B S T R A C T

Context: Deep Learning (DL) frameworks like TensorFlow can help developers implement DL applications
(e.g., computer vision) faster and easier. When using DL frameworks, developers encountered a large number
of questions and posted them on Stack Overflow (SO).
Objective: The goal of this paper is to conduct a comprehensive empirical study on the SO questions,
summarize the implementation issues, and suggest future opportunities.
Methods: This paper focuses on three DL frameworks (i.e., TensorFlow, PyTorch, and Theano), groups 2,401
relevant SO questions into various implementation issues, and constructs a taxonomy. We also analyze the
popularity and difficulty of these issues under the taxonomy.
Results: For the identified various implementation issues, we constructed a taxonomy consisting of seven major
categories with 63 subcategories. Our analysis reveals that 91.7% of questions are related to the implementa-
tion categories of data processing, model setting, model training, and model prediction. Developers frequently
address the remaining three categories (i.e., Model evaluation, runtime environment, and visualization), where
runtime environment is the most difficult category. Based on empirical findings, we provide some suggestions
for future research.
Conclusion: In this paper, we summarized the issues of DL implementation and proposed corresponding
opportunities for future study. We expect this paper to help developers and researchers understand these
issues and design better tools to improve the productivity of DL implementation.
. Introduction

Deep Learning (DL) is represented in the form of a neural network
nd automatically learns the decision logic from training data [1–
]. The DL technique has been widely applied in several application
omains [4–6] and significantly improved the performance of those
pplication domains in comparison with the state of the art [7–11],
ncluding computer vision [12], natural language processing [13],
achine translation [14], speech and audio processing [15], disease
iagnosis [16], auto-driving [17]. Due to the advantages of the DL
echnique, DL has attracted considerable attention in both academia
nd industry for more than 15 years [1,4,7,18].

To help DL developers use DL techniques easier and better, many
L frameworks were proposed. Following Han et al. [19], we investi-
ated three representative frameworks widely used for DL implemen-
ation and empirical study: Theano, one of the oldest frameworks [20];
ensorFlow, the most widely-deployed DL framework developed by
oogle [21]; PyTorch, one of the most popular frameworks presented
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by Meta in the recent years [22]. By using these DL frameworks, devel-
opers can devote themselves to their application development [23]. In
this way, they can be free from the complex and tedious work of low-
level developments [23], such as task scheduling (e.g., control flow and
data transfer between tasks) and common algorithm implementations
(e.g., batch normalization and average pooling).

Using these DL frameworks, developers can substantially accelerate
their software development [19]. However, different from traditional
software development, the bottlenecks of DL development for develop-
ers are building model structure, data processing, model optimization
techniques, etc. [7]. Due to these bottlenecks, many developers are
facing the challenges in improving the efficiency of DL implementation.
Therefore, developers submitted a great number of specific implemen-
tation questions in Stack Overflow (SO), one of the most popular
question-and-answer (Q&A) websites for developers, and expected solu-
tions that are answered by other developers. Analyzing these questions
can help DL developers point out their interests and requirements.
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To characterize the challenges that developers encountered in devel-
oping DL applications, researchers conducted many empirical studies
on the DL frameworks. Previously, researchers focused on the high-
level topics of interest discussed in SO. For example, Zhang et al. [24]
identified seven kinds of frequently asked DL questions in SO, including
implementation, program crash, training anomaly, model deployment,
comprehension, installation, and performance. Han et al. [25] lever-
aged the Latent Dirichlet Allocation (LDA) technique to cluster DL
questions. In recent years, many in-depth empirical studies have been
conducted on one of these high-level topics, such as programming
bugs [26,27], technical debts [23,28], deployment [1], library depen-
dency [19], computation performance [1,8], etc. However, the in-depth
empirical study on DL implementation has not been investigated.

To fill the knowledge gap, this paper presents the first large-scale
empirical study on analyzing DL implementation questions. It aims to
summarize these specific questions with some implementation issues,
and build a taxonomy based on the summarized issues. In this way,
researchers and developers can have a comprehensive and in-depth
understanding of the common implementation issues using DL frame-
works. A better understanding can not only help developers accom-
plish their implementation tasks quickly, but also guide researchers in
building better tools to improve developers’ development productivity.

To reach this goal, we collected and manually inspected 2401 rep-
resentative implementation questions from SO related to three widely
adopted DL frameworks, including TensorFlow, PyTorch, and Theano.
We chose to collect data from SO because SO is one of the most widely
used data source for an empirical study on DL [19,27,29]. In this study,
we investigated the following three aspects:

• Taxonomy of Implementation Issues. To identify specific im-
plementation issues, we qualitatively extracted the issues behind
each collected question. Finally, we build a comprehensive tax-
onomy consisting of seven categories (i.e., data processing, model
setting, model training, model prediction, model evaluation, run-
time environment, and visualization) with 63 subcategories. The
resulting taxonomy indicates that developers suffered from a wide
spectrum of implementation issues. Besides, we found that the
first four categories accounted for 91.7% of all questions.

• Popularity Analysis. A popular implementation issue indicates
that many developers suffered from this issue in practices [30,31].
To conduct the popularity analysis, we measured the popularity
of a question using the viewcount recorded by SO and the score
voted by different SO developers. A higher viewcount implies
that many developers are interested in the implementation issue,
while a larger score suggests the usefulness of a question with
answers to address developers’ issues. Generally, we found that
the viewcount and score are highly correlated; model evaluation,
runtime environment, and visualization are the most popular
categories.

• Difficulty Analysis. A difficult implementation issue implies that
this issue cannot be addressed in a short time and it will strongly
hinder developers’ implementation productivity [32,33]. To per-
form the difficulty analysis, we measured the difficulty of a
question by the response time of an accepted answer follow-
ing Chen et al. [31]. We found that the runtime environment is
the most difficult implementation category, due to the complexity
of manipulating computation devices, such as GPU.

The major contributions of this study are:

• grouping 2401 relevant questions into various implementation
issues and building a comprehensive taxonomy on these issues to
help developers and researchers understand what implementation
issues occurred in practices.

• analyzing the popularity and difficulty of implementation issues
under the taxonomy to help developers and researchers under-
stand which issues are frequently occurred and which are difficult
2

to address.
• providing some implications and future research directions for
developers and researchers to understand how these implementa-
tion issues could be addressed to improve the DL implementation
productivity.

• sharing our replication package with dataset and scripts in pub-
lic [34] as an additional contribution to the research community
for other researchers to replicate and build upon.

The remainder of this paper is organized as follows. Section 2
presents the methodology for this empirical study. Sections Section 3
provide the results for our empirical study, respectively. Subsequently,
Section 4 discusses the implications and the threats to the validity of
our study. Section 5 introduces the related work. Finally, Section 6
concludes this paper and gives directions for future work.

2. Methodology

Section 2.1 presents the study subject of this paper. Section 2.2
illustrates the overall workflow for data collection and analysis in this
study. To characterize the implementation questions discussed in SO,
we first described how we collected data in Section 2.3. Subsequently,
Section 2.4 presented the procedures to construct the taxonomy. Be-
sides, Section 2.5 showed the measurements for post popularity and
difficulty.

2.1. Study subject

Developers frequently do not know how to implement a require-
ment for a DL application when coding with a DL framework, such
as TensorFlow [19,24]. Following the definition described by Zhang
et al. [24], this paper calls the summarization of this kind of question
implementation issues. Different from the work by Zhang et al. [24],
we aim to investigate what are the ‘‘implementation issues’’ instead of
simply calling these questions with a category name. To reach the goal,
we take the related questions asked in SO as our basic study subject
and extract implementation issues by summarizing the semantics of dif-
ferent questions. Moreover, we regarded the extracted implementation
issues as a secondary study subject and constructed a taxonomy based
on it to further understand these issues.

2.2. Overall workflow

As shown in Fig. 1, this study first performs data collection in three
steps, including downloading raw data from SO, extracting candidates
related to DL implementation, and manually refining the candidates.
Based on the collected data, we constructed a two-level taxonomy in
four steps: (1) grouping specific implementation questions from all
candidate data to understand the semantics expressed in these ques-
tions; (2) assigning implementation phase (e.g., model training) to each
question to investigate which phase do these questions belong to; (3)
summarizing implementation objects under different phases to better
understand each implementation phase; (4) optimizing the constructed
two-level taxonomy by manual inspections. Details are described in the
following subsections.

2.3. Data collection

In this study, we collected raw data from SO because it is one of the
most popular community-driven Q&A websites for DL developers. In
SO, developers frequently posted their questions and quickly received
answers from others, where the developers range from novices to
experts. In this way, SO recorded a set of non-trivial implementation is-
sues. Generally, we extracted 3842 candidate posts and finally obtained

2401 refined posts. Details can be found as follows.
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Fig. 1. Process of data collection and analysis.
2.3.1. Raw data download
We downloaded the entire post dataset [35] from the official Stack

Exchange Data Dump on September 6th, 2021. Afterwards, we filled
these data into MongoDB [36], an open-source non-rational database,
to facilitate data searching and filtering. This dataset contained 22m+
questions and 33m+ answers in total.

The data structure can be found in file readme.txt [37] on the
official website. In this data, the relevant features are: (1) Id: the unique
number assigned to each post; (2) Title: the title of a post question;
(3) Tags: the tags assigned by question owner; (4) CreationDate: the
date-time of a question or an answer was created by its owner; (5)
ClosedDate: a question would be deleted if the post is a duplication
of existing posts or the question is meaningless, which is decided by
developers’ voting; (6) Viewcount: the total number of times that a
post was viewed by developers; (7) Score: the total scores assigned by
different developers (equaling to upvotes minus downvotes), where a
higher score indicates that the post is more interesting and useful for
developers.

2.3.2. Candidates extraction
From the entire candidates, we included 90,697 questions with tags

marked as ‘Tensorflow’, ‘PyTorch’, or ‘Theano’ from the raw data at
first following Han et al. [19], as all three DL libraries are typical
and widely studied [25–27]. Note that it is possible that a post is
not marked as these tags but is related to these three DL frameworks.
However, the sampled posts cover a large number of representative
posts, which can help us to understand the implementation issues.
According to Treude et al. [38], the SO questions can be classified into
ten categories, such as how-to, error, decision help, etc., where how-
to is the most frequently asked question that requests implementation
instructions. As we focused on the implementation issues, we extracted
14,203 ‘‘how-to’’ questions from candidates and excluded the other
irrelevant categories. The other categories are filtered out because
they belong to model configuration (i.e., environment), programming
knowledge (decision help, conceptual, non-functional, and novice), im-
plementation bugs (i.e., discrepancy and error), and others (i.e., review
and noise), according to the description of Treude et al. [38]. Using
keywords ‘‘how-to’’ is a simple and viable way to sample candidate
questions relevant to implementation issues from the large-scale SO
dataset. However, we found that other patterns (e.g., environment and
decision help) may be described in the ‘‘how-to’’ pattern and belong
to a programming issue. Meanwhile, some ‘‘how-to’’ questions may not
be relevant to programming issues. To address this issue, we further
refined the collected questions as described in Section 2.3.3.

To support the analysis of post difficulty, we obtained 4327 posts
with accepted answers. In other words, we removed the posts without
accepted answers as the difficulty (defined in Section 2.5.2) of a post is
measured by the response time of the accepted answers following Chen
et al. [39], where the answers contain implementation code. In ad-
dition, we discarded 485 closed posts depending on the appearance
of the ‘ClosedDate’ in data, because they were duplicates of other
questions or their topics were irrelevant to SO, which were determined
by developers’ votes [40]. In this way, we sampled 3842 candidate
posts from SO.
3

Table 1
Number (percentage) of posts for three DL frameworks created in different years.

Year TensorFlow PyTorch Theano Total

2014 0 (00.0%) 0 (00.0%) 5 (00.2%) 5 (00.2%)
2015 15 (00.6%) 0 (00.0%) 8 (00.3%) 23 (01.0%)
2016 160 (06.7%) 0 (00.0%) 28 (01.2%) 188 (07.8%)
2017 316 (13.2%) 20 (00.8%) 6 (00.2%) 342 (14.2%)
2018 324 (13.5%) 56 (02.3%) 0 (00.0%) 380 (15.8%)
2019 463 (19.3%) 101 (04.2%) 0 (00.0%) 564 (23.5%)
2020 447 (18.6%) 151 (06.3%) 0 (00.0%) 598 (24.9%)
2021 172 (07.2%) 129 (05.4%) 0 (00.0%) 301 (12.5%)
Total 1897 (79.0%) 457 (19.0%) 47 (02.0%) 2401 (100.0%)

2.3.3. Data refinement
Moreover, we observed that many candidates were still irrelevant

to implementation issues. These irrelevant questions may belong to
other high-level topics, such as program crash (e.g., how to fix an
error) and deployment (e.g., how to deploy or configure a model).
To refine the candidates, the second and third authors inspected each
candidate independently and excluded the posts not belonging to the
implementation but the other six categories as defined by Zhang et al.
[24], including program crash, training anomaly, model deployment,
comprehension, installation, and performance. The agreement of the
authors’ assessment was measured using pairwise inter-rater reliability
with Cohen’s Kappa statistic [41]. The agreement rate was ‘‘moderate’’
(0.53). Before the formal data refinement, we conducted a pilot study
with 100 randomly selected samples and found the observations. The
agreement rate is not very high due to the small size of the sampling.
The disagreements on 174 posts were resolved after open discussions
between these two authors. In any case, if they did not reach a con-
sensus, the first author was consulted as a tie-breaker. Specifically, the
first author gave an independent comment for a case. Based on this con-
sultation result, the three authors discussed the inconsistencies again
and made the decision together. We spent two weeks accomplishing
the data refinement process. Finally, we obtained 2401 refined posts
and excluded 1441 noisy candidates.

2.3.4. Data characteristics
Table 1 showed the number and percentage of posts for three DL

frameworks created in different years. From the table, we can find
that the collected 2401 posts contained 1897 TensorFlow posts, 457
PyTorch posts, and 47 Theano posts, respectively. Although the number
of Theano posts is small, the results drawn from the whole 2401
posts can help researchers and developers understand the common
implementation issues shared by three DL frameworks. Moreover, dur-
ing the last eight years, most posts were submitted during the years
2018–2020, accounting for 64.2% of total posts. Furthermore, we can
observe that all the Theano posts were submitted before 2018. For the
TensorFlow posts, the total number surged from 2015 and reached a
peak in 2019. As for PyTorch, related posts were created from 2017
and the total number kept increasing.

2.4. Procedures to build taxonomy

As developers wrote their implementation questions in different
ways, we aim to extract the core semantics from different questions and
build a comprehensive taxonomy by summarizing their semantics. After
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analyzing the syntax of the questions, we observed that the semantics
of a question (e.g., how to restore a model after training) are commonly
represented by three parts: (1) Verb Phrase, describing the core object
nd related operation involved in an implementation issue (e.g., re-
tore model); (2) Phase, expressing the phase of DL implementation
e.g., model training) in an explicitly or implicitly way; (3) Noisy Words,
epresenting the implementation issue in various forms. As the accepted
nswers of the extracted posts provide the implementation code, we
an confirm that the posts are implementation issues instead of design
roblems.

Based on the observation, we first grouped specific questions in
ifferent implementation issues with a representative verb phrase (e.g.,
oad model). We classified the SO posts using linguistic patterns based
n our prior work [42]. We found that the core semantics of the post
uestion can be represented by its important keywords, especially for
he verb phrase. This is because the implementation questions com-
only ask how to implement a programming object. Similarly, Xie et al.

43] also indicated the importance of the verb phrase in capturing the
unctionality in descriptions. We then construct a taxonomy with two
evels: Phase (Level-I), relating an issue to a DL implementation phase
e.g., model training); Object (Level-II), summarizing the operational
arget for a set of implementation issues (e.g., model or layer). In this
tudy, we choose to classify the SO posts based on the ‘‘phase’’ because
1) the DL phases (e.g., model training and prediction) are commonly
iscussed in studies [44,45], which can help developer understand
he related tasks; and (2) we observed developers also referred to the
‘phase’’ in the SO posts (e.g., how to dense a dataset during model
raining).

Our study can be regarded as a special case of the constant compar-
son method, which aims to organize excerpts of raw data into groups
ccording to attributes and organize those groups in a structured way to
ormulate a new theory [46]. In our study, we used the representative
erb phrases as the incidents at first. This is because the verb phrase can
e used for sentence reduction and text summarization [47]. For the
omain of software engineering, the verb phrase can be used to summa-
ize developers’ intent, such as issue report [48], user queries [43], and
rogramming requirement [42]. Second, we integrated the incidents
ith a two-level taxonomy (i.e., Phase and Object). The Object level
ims to summarize the programming components for the implementa-
ion issues while the Phase describes when the implementation issues
appened.

From the taxonomy, we can understand the implementation issues
iscussed by developers, the common objects involved in different
ssues, and the important implementation phases related to these issues.

e built the taxonomy in the following steps.

.4.1. Step-1: Grouping questions into implementation issues
We manually extracted verb phrases from 2401 questions in the

orm of ⟨𝑣𝑒𝑟𝑏, 𝑜𝑏𝑗𝑒𝑐𝑡⟩. As the verbs and objects could be represented
n different ways but with the same semantics, we unified them and
rouped the questions into implementation issues. Specifically, we split
he extracted 2401 verb phrases into 100 sets, where each set contains
4 verb phrases while the last set has 25. The second and third authors
nified the word choice of verb phrases set by set. For a set, the authors
nspect each phrase in order and normalize them with the following
ules: (1) for a phrase appeared before (e.g., load model), they then
nspect the next; (2) for a new phrase (e.g., restore checkpoint or load
heckpoint) with the same meaning of a previous one, they choose the
requently used one (i.e., restore checkpoint) as the representative; (3)
f a phrase is too specialized with limited counts (e.g., pick output), they
eplaced it with a hypernym (i.e., get output); and (4) if the meaning of
new phrase is unclear, they reread the post question again and clarify

he phrase (i.e., get output of RNN layer). After accomplishing one
et, two authors checked their difference and unified an inconsistency
ith the same normalization rules. In the first 20 sets, it takes a long

ime for authors to reach a consensus due to the frequently occurring
iscrepancy between authors and incompatibility among sets. However,
his situation was mitigated substantially from the later sets. And the
4

iscrepancy and incompatibility no longer appeared close to 50 sets.
Table 2
Definitions of seven DL implementation phases.

No. Phase Description

1 Data processing Structuring data and manipulating structured data.
2 Model setting Setting the network structure of the DL model.
3 Model training Training a constructed DL model.
4 Model prediction Testing a trained DL model on a prediction task.
5 Model evaluation Measuring the performance of model training or

prediction.
6 Runtime environment Setting the devices (e.g., CPU or GPU) for running

DL models.
7 Visualization Presenting a visual representation of DL model or

process.

2.4.2. Step-2: Assigning questions with implementation phase (Level-I)
The second and third authors inspected each question indepen-

dently, and built the Level-I categories (i.e., Phase) by organizing the
question through card sorting [49]. For the card sorting activity, the
second and third authors sorted the questions into seven piles: data
processing, model setting, model training, model prediction, model
evaluation, runtime environment, and visualization. As shown in Ta-
ble 2, we pre-defined the seven phases [50] based on the understanding
of implementation issues grouped in Step-1. Specifically, each card
has a title, i.e., the name of the category. The title and the keyword
(i.e., concrete problem description) were carefully read by the authors
to determine whether the keyword belongs to this title. The disagree-
ments were resolved by open discussion, where the first author joined
as a tie-breaker.

2.4.3. Step-3: Summarizing the objects for implementation issues (Level-II)
To bridge the implementation issues and phases, we constructed

the Level-II categories (i.e., Object) to summarize the common objects
involved in different implementation issues and regarded them as
important elements for different phases (Level-I). In specific, for each
phase in Level-I, we extracted the core object (e.g., ‘‘layer’’) in the
related issues described with the verb phrases (e.g., ‘‘freeze layer’’
and ‘‘initialize LSTM layer’’). Note that the verb phrase can be easily
extracted from our investigated ‘‘how-to’’ implementation questions
(e.g., ‘‘how to rotate an image for data augmentation’’) with multiple
objects (i.e., ‘‘image’’ and ‘‘data’’), the core object (‘‘image’’) can be
identified from the verb phrase (‘‘rotate image’’).

2.4.4. Step-4: Optimizing the two-level taxonomy
Due to the difficulty of manual labeling, we estimate and optimize

the taxonomy as follows. First, we assigned each question with the
three-level elements: (1) the issue represented by the unified verb
phrase, (2) the object summarized from the issues, and (3) the phase
assigned for each issue. For example, we assigned the question ‘‘how to
plot training loss’’ with a triplet ⟨plot training loss, model, visualization⟩.
To optimize the taxonomy, the second and third authors checked
whether a triplet can represent the semantics of the related question,
respectively. We found that the agreement rate was ‘‘moderate’’ (0.57)
in terms of Cohen’s Kappa statistic [41]. They addressed the disagree-
ments through open discussion with the help of the first author. Totally,
we spent three weeks accomplishing the whole construction work of
taxonomy.

2.5. Feature measurement

Besides, we aimed to investigate the most popular and difficult
implementation posts under our constructed taxonomy, respectively. To
investigate these two aspects, we measured the popularity and difficulty

with the following metrics.
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2.5.1. Popularity
We measured the popularity of a post according to two metrics

provided by SO. One is the ‘viewcount’, the total number of times that
a post was viewed by developers [29,31]. A higher viewcount implies
that more developers are interested in such implementation issues.
Meanwhile, the second metric is the ‘score’ voted by different develop-
ers [31,51]. A higher score suggests the usefulness of posts to address
developers’ implementation issues. Besides, we observe that the trend
of the score is similar to that of viewcount. To confirm this observation,
we estimated the correlation between viewcount and score for all pairs
of implementation posts. The statistical test showed the correlation
coefficient was 0.91 with p-value < 0.05. This statistical result indicated
that these two popularity metrics are strongly correlated in statistical
significance. In other words, a frequently viewed post would obtain a
higher score, and the viewcount is enough to measure the popularity
of implementation posts. Therefore, we analyze the popularity of our
taxonomy in terms of viewcount.

2.5.2. Difficulty
Following Chen et al. [39], we measured the difficulty of a post with

the widely adopted metric, namely response time. It equals the duration
time between the raised question and the accepted answer [33]. This
metric is useful because researchers observed that SO developers would
like to answer a new question in a very short time to gain more rep-
utations, so that the response time can effectively reflect the difficulty
of a post in general [31–33]. Although we used the widely adopted
metric, it is worth noting that precisely measuring the difficulty is
challenging. This is because the response time and acceptance time
could be impacted by many factors. For example, when a question
is regarding a new/small field, the response time could be long. The
reason may not be that the question is difficult but most of the users of
SO are not familiar with the field. The acceptance time of a question
could also be long because of for example forgetting to accept the
answer, which does not mean the question is a difficult one.

3. Results

This section provides our constructed taxonomy in Section 3.1
and describes seven subcategories in Sections 3.2–3.8, respectively.
Section 3.9 and Section 3.10 analyzed the popularity and difficulty of
different implementation categories, respectively.

3.1. Taxonomy of implementation issues

Table 3 illustrated the count and percentage of related posts on
our constructed hierarchical taxonomy of implementation issues using
DL frameworks. The taxonomy was organized into two-level cate-
gories with seven major categories (Level-I). These major categories
contained 63 subcategories (Level-II), such as tensor, trained model,
etc. From the table, we can notice that the top three submitted posts
related to data processing, model setting, and model training, which
accounted for 86.4% of the total posts. We discussed and exemplified
each subcategory in the following subsections.

To analyze the difference between different DL frameworks, we
measured the difference by computing the Pearson correlation for the
post counts in Level-II (Object), as shown in Table 4. In the table, a
significant correlation level (i.e., p-value < 0.05) is marked by a star.
From the table, we can notice that TensorFlow shows similar count
distribution with PyTorch (coefficient = 0.94, p-value < 0.05) and
Theano (coefficient = 0.87, p-value < 0.05), respectively. Moreover, we
investigated the correlation between TensorFlow and the total counts
of three frameworks, and the results show that the correlation is strong
(coefficient = 1.00) and significant (p-value < 0.05). These statistical
results suggest that the findings generated from the total counts could
be generalizable for the three DL frameworks investigated in our study.
Therefore, we did not investigate the characteristics of the taxonomy
5

from each framework, respectively. w
Finding 1: We constructed a taxonomy of 7 categories with 63
subcategories, indicating the diversity of implementation issues. Data
processing, model setting, and model training were the most frequently
discussed categories. The findings generated from the taxonomy are
generalizable for each DL framework.

3.2. Data processing

Data Processing (D) refers to the manipulation of ten data types:
data, tensor, image, variable, matrix, dataset, batch, vector, place-
holder, and label. In this study, we come up with such classification
by extracting the word from what the post questions describe. For
example, if a question describes an object as a variable (or tensor),
we record it as a variable (tensor). Similarly, many questions tell an
object as ‘‘data’’, e.g., ‘‘reshape data’’, which could be any of the other
data types. Note that the questions describing an object as a specific
data type involve data manipulations that are related to that type and
distinct from the rest of the types, e.g., ‘‘get covariance matrix’’, while
the questions tell an object as ‘‘data’’ involve general manipulations
that are not for a specific type. Since the use of more abstract types
will result in the loss of much information about the post questions, we
use data types as subcategories, and regard both data and other types
as the same classification level, and a post will not be classified into
multiple types. Then, the number of data processing posts is the sum
of the numbers of the ten different recorded types. Other phases also
applies this classification method.

Note that the dataset indicates the data that could be used for model
training, prediction, or evaluation. As illustrated in Table 3, most of the
processing objects were data, tensor, and image, which were related to
426, 387, and 105 posts, respectively. Together, these three data types
accounted for 81.6% of the total posts in the data processing.

For the ten data types described above, the key difference is their
processing methods. To understand these methods, we categorized
related implementation issues into five groups as shown in Table 5.
In this table, we did not distinguish the data types and called them
all ‘‘data’’. From the table, we can observe that: 169 posts focused on
data creation and initialization (a), e.g., creating sparse data or freezing
elements in data during creation, where the row ‘‘create data’’ means
the requirement of data creation (e.g., variable or tensor); the row
‘‘create (random/sparse / ...) data’’ indicates some special requirements
of data creation (e.g., the data needs to be random or sparse). 135
posts addressed the process of data reading (i.e., ‘‘read data’’) and
saving (i.e., ‘‘save data’’) (b). 108 posts are about getting and checking
the status of data (c), e.g., getting the shape of data and checking
whether data contains zero values. Different from ‘‘read data’’ which
loads existing data stored from disk to memory, ‘‘get data’’ means the
operation of accessing one data in memory (e.g., getting one variable
from a programming context). Moreover, 445 posts suffered from issues
in data transforming and data type conversion (d). And 268 posts
devoted to making some basic computations or operations on data (e),
such as addition or sampling.

Finding 2: Among the 1125 data processing issues, 81.7% of the
processing objects are general data, tensor, and image; 63.4% of
the posts raised implementation questions on data transformation,
conversion, computation, and operation.

3.3. Model setting

Model Setting (M) considers how to set the structure of a DL soft-
are. Table 6 presented the 11 kinds of model settings. From the table,
e can notice that 519 posts talked about implementation issues on
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Table 3
Count and percentage of posts for the taxonomy.

Level-I (Phase) Level-II (Object) TensorFlow PyTorch Theano Total

(D) Data Processing

1. Data 328 (13.7%) 91 (03.8%) 7 (00.3%) 426 (17.7%)
2. Tensor 279 (11.6%) 102 (04.2%) 6 (00.2%) 387 (16.1%)
3. Image 77 (03.2%) 28 (01.2%) 0 (00.0%) 105 (04.4%)
4. Variable 60 (02.5%) 10 (00.4%) 3 (00.1%) 73 (03.0%)
5. Matrix 25 (01.0%) 14 (00.6%) 4 (00.2%) 43 (01.8%)
6. Dataset 26 (01.1%) 4 (00.2%) 0 (00.0%) 30 (01.2%)
7. Batch 18 (00.7%) 9 (00.4%) 1 (00.0%) 28 (01.2%)
8. Vector 10 (00.4%) 6 (00.2%) 1 (00.0%) 17 (00.7%)
9. Placeholder 15 (00.6%) 0 (00.0%) 0 (00.0%) 15 (00.6%)
10. Label 1 (00.0%) 0 (00.0%) 0 (00.0%) 1 (00.0%)
Total 839 (34.9%) 264 (11.0%) 22 (00.9%) 1125 (46.9%)

(M) Model Setting

1. Layer 256 (10.7%) 42 (01.7%) 7 (00.3%) 305 (12.7%)
2. Model 134 (05.6%) 25 (01.0%) 2 (00.1%) 161 (06.7%)
3. Weight 41 (01.7%) 11 (00.5%) 3 (00.1%) 55 (02.3%)
3. Trained model 40 (01.7%) 13 (00.5%) 0 (00.0%) 53 (02.2%)
4. Model graph 24 (01.0%) 1 (00.0%) 0 (00.0%) 25 (01.0%)
5. Activation 10 (00.4%) 1 (00.0%) 2 (00.1%) 13 (00.5%)
7. Saved model file 11 (00.5%) 0 (00.0%) 0 (00.0%) 11 (00.5%)
8. Trained weight 4 (00.2%) 2 (00.1%) 0 (00.0%) 6 (00.2%)
9. Filter 5 (00.2%) 0 (00.0%) 0 (00.0%) 5 (00.2%)
10. Operation 5 (00.2%) 0 (00.0%) 0 (00.0%) 5 (00.2%)
11. Summary 4 (00.2%) 0 (00.0%) 0 (00.0%) 4 (00.2%)
Total 534 (22.2%) 95 (04.0%) 14 (00.6%) 643 (26.8%)

(T) Model Training

1. Loss 67 (02.8%) 14 (00.6%) 0 (00.0%) 81 (03.4%)
2. Model 47 (02.0%) 11 (00.5%) 1 (00.0%) 59 (02.5%)
3. Gradient 36 (01.5%) 8 (00.3%) 2 (00.1%) 46 (01.9%)
4. Trained model 15 (00.6%) 1 (00.0%) 1 (00.0%) 17 (00.7%)
5. Weight 11 (00.5%) 5 (00.2%) 0 (00.0%) 16 (00.7%)
6. Variable 9 (00.4%) 4 (00.2%) 0 (00.0%) 13 (00.5%)
7. Checkpoint 12 (00.5%) 0 (00.0%) 0 (00.0%) 12 (00.5%)
8. Learning rate 6 (00.2%) 5 (00.2%) 0 (00.0%) 11 (00.5%)
9. Statement 9 (00.4%) 1 (00.0%) 1 (00.0%) 11 (00.5%)
10. Batch 7 (00.3%) 0 (00.0%) 0 (00.0%) 7 (00.3%)
11. Training progress 6 (00.2%) 1 (00.0%) 0 (00.0%) 7 (00.3%)
12. Layer 5 (00.2%) 1 (00.0%) 0 (00.0%) 6 (00.2%)
13. Training data 5 (00.2%) 0 (00.0%) 0 (00.0%) 5 (00.2%)
14. Training step 4 (00.2%) 0 (00.0%) 0 (00.0%) 4 (00.2%)
15. Optimizer 3 (00.1%) 1 (00.0%) 0 (00.0%) 4 (00.2%)
16. Session 3 (00.1%) 0 (00.0%) 0 (00.0%) 3 (00.1%)
17. Training history 2 (00.1%) 0 (00.0%) 0 (00.0%) 2 (00.1%)
18. Derivative 1 (00.0%) 1 (00.0%) 0 (00.0%) 2 (00.1%)
Total 248 (10.3%) 53 (02.2%) 5 (00.2%) 306 (12.7%)

(P) Model Prediction

1. Model 72 (03.0%) 6 (00.2%) 1 (00.0%) 79 (03.3%)
2. Prediction result 27 (01.1%) 9 (00.4%) 1 (00.0%) 37 (01.5%)
3. Layer 8 (00.3%) 0 (00.0%) 0 (00.0%) 8 (00.3%)
4. Weight 3 (00.1%) 0 (00.0%) 0 (00.0%) 3 (00.1%)
5. Threshold 1 (00.0%) 0 (00.0%) 0 (00.0%) 1 (00.0%)
Total 111 (04.6%) 15 (00.6%) 2 (00.1%) 128 (05.3%)

(E) Model Evaluation

1. Accuracy 12 (00.5%) 4 (00.2%) 0 (00.0%) 16 (00.7%)
2. Other metrics 13 (00.5%) 3 (00.1%) 0 (00.0%) 16 (00.7%)
3. Result 9 (00.4%) 1 (00.0%) 1 (00.0%) 11 (00.5%)
4. Time 3 (00.1%) 2 (00.1%) 0 (00.0%) 5 (00.2%)
5. Evaluation method 2 (00.1%) 2 (00.1%) 0 (00.0%) 4 (00.2%)
6. Training 1 (00.0%) 0 (00.0%) 0 (00.0%) 1 (00.0%)
Total 40 (01.7%) 12 (00.5%) 1 (00.0%) 53 (02.2%)

(R) Runtime Environment

1. GPU 12 (00.5%) 5 (00.2%) 0 (00.0%) 17 (00.7%)
2. GPU memory 8 (00.3%) 0 (00.0%) 1 (00.0%) 9 (00.4%)
3. GPU/CPU 3 (00.1%) 1 (00.0%) 0 (00.0%) 4 (00.2%)
4. TPU 1 (00.0%) 1 (00.0%) 0 (00.0%) 2 (00.1%)
5. CPU 1 (00.0%) 1 (00.0%) 0 (00.0%) 2 (00.1%)
6. RAM 1 (00.0%) 0 (00.0%) 0 (00.0%) 1 (00.0%)
Total 26 (01.1%) 8 (00.3%) 1 (00.0%) 35 (01.5%)

(V) Visualization

1. Data 38 (01.6%) 0 (00.0%) 2 (00.1%) 40 (01.7%)
2. Model 26 (01.1%) 5 (00.2%) 0 (00.0%) 31 (01.3%)
3. Evalution 9 (00.4%) 4 (00.2%) 0 (00.0%) 13 (00.5%)
4. Layer 8 (00.3%) 0 (00.0%) 0 (00.0%) 8 (00.3%)
5. Progress 8 (00.3%) 0 (00.0%) 0 (00.0%) 8 (00.3%)
6. Result 6 (00.2%) 1 (00.0%) 0 (00.0%) 7 (00.3%)
7. Tensorboard 4 (00.2%) 0 (00.0%) 0 (00.0%) 4 (00.2%)
Total 99 (04.1%) 10 (00.4%) 2 (00.1%) 111 (04.6%)
how to manipulate a DL layer (M1), model (M2), and trained model
(M4). In this study, the model means the whole DL components and
6

the layer indicates one component of the model. As the objects (layer,
model, trained model) could be exchanged in practices (e.g., an LSTM
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Table 4
Correlation of post counts between different DL frameworks, ‘‘Total’’ indicates the total counts for all frameworks.

Level-I (Phase) TensorFlow vs. PyTorch TensorFlow vs. Theano TensorFlow vs. Total

(D) Data Processing 0.98* (p = 0.00) 0.85* (p = 0.00) 1.00* (p = 0.00)
(M) Model Setting 0.98* (p = 0.00) 0.86* (p = 0.00) 1.00* (p = 0.00)
(T) Model Training 0.92* (p = 0.00) 0.42 (p = 0.08) 1.00* (p = 0.00)
(P) Model Prediction 0.69 (p = 0.13) 0.22 (p = 0.68) 0.99* (p = 0.00)
(E) Model Evaluation 0.68 (p = 0.21) 0.84 (p = 0.08) 0.99* (p = 0.00)
(R) Runtime Environment 0.70 (p = 0.12) 0.39 (p = 0.45) 0.99* (p = 0.00)
(V) Visualization 0.18 (p = 0.69) 0.82* (p = 0.02) 0.99* (p = 0.00)
All 0.94* (p = 0.00) 0.87* (p = 0.00) 1.00* (p = 0.00)

* Denotes that the correlation level shows statistical significance (i.e., p-value < 0.05).
Table 5
Implementation issues for Data Processing (D) subcategories in terms of the verb phrases.

Summary of issues Implementation issues Count Total

(a) Create/Initialize

1. create data 33

169
2. create (random/sparse/mutable/constant/consecutive/adversarial) data 11
3. (initialize/assign/feed/change/label/remap/rename) data 102
4. (encode/decode/tokenize/parse) data 20
5. freeze (data/element) 3

(b) Read/Save 1. read data 95 1352. save data 40

(c) Get/Check

1. get data 43

1082. get (type/structure/shape/dimension/size/length/count/summary) of data 44
3. get (index/label/coordinate/decoder) of data 15
4. check (exist/in/empty/zero/invertible) for data 6

(d) Transform/Convert

1. (combine/concatenate/stack/merge/unpack/unstack/map/cluster) data 56

445

2. convert data type 127
3. (transform/transpose/rotate/expand/reverse/flatten/distort/shift) data 28
4. (mutate/pad/mask) data 24
5. (upscale/rescale/enlarge/upsampling/add-Gaussian-noise) data 7
6. (reshape/resize/repeat/vectorize) data 74
7. (augment/interpolate/principal-component-analysis) data 12
8. (slice/split/extract/crop/segment/interleave/subset) data 81
9. remove (element/duplicates) from data 8
10. (normalize/denormalize/standardize/clip) data 16
11. (append/insert/extend) data 12

(e) Compute/Operate

1. (add/sum/increment/subtract/decay/multiply/divide) data 72

268

2. (square/product/tensordot/mean-square/square-error) data 11
3. (average/mean/variance/covariance) data 11
4. (intersect/trace/softmax/factorize) data 9
5. compute (distance/entropy/similarity/difference/divergence) 16
6. compute (histogram-equalization/hessian-matrix/statistics) 11
7. (find/replace/sample/compare) data 69
8. (enqueue/synchronize/share) data 3
9. (iterate/index/sort/shuffle/filter/permutate/serialize) data 66

Total – 1125
t

can be used as a layer of another model) and these posts cover a
large number of posts, we analyze these posts together. Subsequently,
we summarized the specific objects (Table 7) and related operation
requirements (Table 8), respectively.

Table 7 summarized the 46 kinds of specific objects (e.g., em-
bedding and pooling) of M1, M2, and M4. We can notice that the
frequently discussed specific models or layers are convolution network,
long short-term memory (LSTM), embedding network, and dropout
network. Meanwhile, Table 8 showed the key operations working on
the model or layer listed in Table 7. The verb groups (a–c) are the same
as the verbs listed in Table 5 for data processing. However, there were
97 special operations (f), such as splitting a model, doing singular value
decomposition (SVD) on a layer, selecting the best-trained model, etc.

When setting a model, some important components were frequently
discussed in 95 posts, such as how to manipulate the model weight (M3)
and the trained weight (M8), how to create customized activation func-
tion (M6), filter (M9), operation (M10). Meanwhile, for a constructed
model or layer, 40 posts discussed the implementation issues on their
inner components, including how to process the model graph (M5),
saved model file (M7), and the summary (M11) of model structure using
7

DL frameworks. (
Finding 3: Among the 643 model setting posts, 80.7% of the imple-
mentation posts were about setting model or its layer, involving 43
types of specific DL models with 37 kinds of operations; the remaining
posts focused on setting inner components of a layer or model or
handling the recording of the structure.

3.4. Model training

Model Training (T) aims to build and optimize a constructed DL
model. Table 9 presented 18 different types of objects during model
training. We can find that similar to model setting many posts were
relevant to DL model (T2), trained model (T4), and layer (T12) with
a total of 82 implementation questions. Different from the model or
layer listed in Table 7 for model setting, the model training only
covered a limited number of kinds. Besides, a significant effort was
spent on optimizing the inner components of a model or layer, which
included 173 relevant posts, e.g., normalizing the loss (T1), ascending
he gradient (T3), clipping the weight (T5), updating the model variable

T6), decaying the learning rate (T8), setting the optimizer (T15), and
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Table 6
Implementation issues for Model Setting (M) subcategories in terms of the verb phrases, where details on M1, M2, M4
are summarized in Tables 7–8. Note that Model (M2) indicates the whole DL structure; Summary (M15) copes with the
implementation issues on the recording of model setting; Trained Model (M5) cares about the structure changing while
Trained Weight (M11) focused on the operations on model weights.

Level-II (Object) Implementation Issues Count Total

(M1) Layer – 305 305

(M2) Model – 161 161

(M3) Weight

4. (get/copy/save/restore) weight 15

55
5. (share/embed/mask/merge) weight 10
6. (addition/multiply/product/average/decay) weight 5
7. (initialize/regularize/mutate) weight 17
8. (transform/convert/reset/change) weight 8

(M4) Trained Model – 53 53

(M5) Model Graph

1. (create/save/restore) model graph 15

252. (convert/copy) model graph 4
3. (add/find) model graph 2
4. get (input/output) of model graph 4

(M6) Activation
1. create (Gaussian/linear/PReLU/ReLus) activation 8

132. (change/regularize) activation 2
3. get (type/shape/output) of activation 3

(M7) Saved Model File 1. (format/convert) saved model file 7 112. get (tag-name/content/activation) of saved model file 4

(M8) Trained Weight 1. (create/get/mask/restore) trained weight 6 6

(M9) Filter 1. (create/enlarge/delete) filter 5 5

(M10) Operation 1. (get/append/join/name) operation 5 5

(M11) Summary 1. (create/restore) summary 4 4

Total – 643
m
t
t

Table 7
Object types of layer, model, and trained model in model setting.

No. Object types Count No. Object types Count

1 Model 143 24 Deconvolution 3
2 Layer 88 25 Lambda 3
3 Convolution 43 26 Flatten 2
4 Trained model 42 27 Standardization 2
5 LSTM 27 28 Decoder 2
6 Embedding 22 29 DNN 2
7 Dropout 15 30 Inception 2
8 RNN 13 31 convLSTM 1
9 Input 13 32 Feedforward 1
10 Dense 12 33 Probabilistic 1
11 Pooling 11 34 Logistic 1
12 Normalization 8 35 Nonlinear 1
13 Fully connected 7 36 Gradient reversal 1
14 Output 7 37 Sharpening 1
15 Hidden 6 38 Reshaping 1
16 BERT 5 39 Attention 1
17 Softmax 4 40 Mask 1
18 Autoencoder 4 41 Sorting 1
19 CNN 4 42 Encoder/decoder 1
20 VGG 4 43 Encoder 1
21 Transformer 3 44 Regression 1
22 :inear 3 45 AlexNet 1
23 MLP 3 46 ResNet 1
– – – – Total 519

computing the derivative (T18). Besides, 11 posts are about the issues of
mplementing control (i.e., looping or branching) statement (T9) during
raining.

Moreover, for the remaining posts, 28 of them cared about the
raining process. For example, developers wanted to limit the total
umber of checkpoint (T7), switch training progress (T11) from model
ptimization to validation, early stop the training step (T14), exit the
raining session (T16), and save the training history (T17) for each
poch. Furthermore, 12 posts discussed implementation issues on ma-
ipulating batch (T10) and training data (T13), such as how to sample
r shuffle a batch during the model training, and how to reshape or
8

dd Gaussian noise to training data. m
Finding 4: For the 306 model training posts, 80.2% of posts were
devoted to the implementation issues on the training model, layer, or
inner parts of components; the remaining posts concentrated on the
training progress and related data.

3.5. Model prediction

Model Prediction (P) focuses on the testing tasks for a trained model.
Table 10 showed that 90 related posts targeted the model objects.
Specifically, 79 prediction tasks involved the issues on a model (P1),
such as the gated recurrent unit (GRU), deep neural network (DNN),
and recurrent neural network (RNN) models. Eight prediction tasks
worked on a model layer (P3), e.g., input and embedding layer. Three
posts discussed the issues on model weights (P4), such as freezing
weight during prediction, or performing prediction on a specific weight.
On the other hand, 37 tasks were looking for the answers to check
and manipulate the prediction result (P2), e.g., getting, selecting, and
aggregating the label of the prediction result. Meanwhile, one task
aimed to lower the threshold (P5) to control the prediction result.

Finding 5: For the 128 model prediction posts, 70.3% of them
addressed the implementation issues on the testing model, layer, and
weight; the remaining posts were related to the manipulation of
prediction results.

3.6. Model evaluation

Model Evaluation (E) endeavors to measure the performance of
odel training or prediction. As illustrated in Table 11, 53 evaluation

asks were grouped into six categories. From the table, we can notice
hat 37 posts addressed the implementation issues on the performance
easurement in terms of accuracy (E1), other metrics (E2), and time
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Table 8
Verb types of layer, model, and trained model in model setting.

Summary of verb Verb types Count Total

(a) Create/Initialize

1. create 136

2393. (initialize/feed/change/name/rename) 98
4. decode 2
5. freeze weight 3

(b) Read/Save 1. restore 50 762. save 26

(c) Get/Check 1. get 4 92. get (shape/dimension) 5

(d) Transform/Convert

1. (combine/concatenate/stack/merge/convert) 57

84

3. (transpose/expand/flatten/reverse) 9
4. (pad/mask) 4
5. (scale/rescale) 3
6. reshape 1
8. split 2
9. remove 6
10. normalize 2

(e) Compute/Operate

1. (add/sum/multiply) 6

143. mean 1
7. find 1
8. share 6

(f) Special Operation

1. (add/split/remove/change/prune/SVD layer) 21

97

2. add (variable/constant/threshold/bias/filter/sliding-window) 7
3. (regularize/unfreeze) weight 4
4. get (feature/tokenizer) 4
5. change (axis/activation/class-count) 3
6. (select-best/copy) 3
7. get layer from model 8
8. get (name/scope) 3
9. get (input/output) 32
10. get (weight/bias/unit/encoder/stride/activation) 12

Total – 519
(E4), such as computing accuracy for a training epoch, calculating
a specific metric (e.g., F1-score and perplexity), and measuring the
computation time during model preprocessing. To analyze the mea-
sured performance, 11 posts were about the issues on results (E3) for
validation or prediction. In specific, developers addressed the issues
on how to compute the confusion matrix, class probabilities, and error
ratio; how to find errors during the model evaluation. Moreover, four
posts cared about the evaluation method (E5), including how to use
cross-validation for evaluation, and how to parallelize the process
to reduce evaluation time. Additionally, one evaluation post aims to
determine the overfitting of a model training process (see Table 11).

Finding 6: For the 53 model evaluation posts, 69.8% of them worked
on performance measurement in terms of accuracy, other metrics, and
time. The remaining posts were devoted to analyzing the prediction
result, choosing the best evaluation method, and determining the
overfitting of model training.

3.7. Runtime environment

Runtime Environment (R) refers to the key devices for accomplishing
the above implementation issues. We grouped relevant 35 posts into
six parts as shown in Table 12. We can find that 17 posts worked
on GPU (R1), such as checking the available GPU, selecting one GPU,
using multiple GPU for model training/testing, and prefetching data
into GPU. Nine posts discussed the implementation issues on the GPU
memory (R2), including how to check, add, limit, and clear memory
usage. Besides, four posts talked about the issues on the usage of TPU
(R4) and CPU (R5), while four other posts aimed to switch the usage
between GPU/CPU (R3). In addition, one more post sought a way to
9

free the memory of RAM (R6).
Finding 7: For the 35 posts on runtime environment, 74.3% of
them addressed the implementation issues on the usage of GPU; the
remaining posts involved the usage of other devices (i.e., CPU, TPU,
and RAM), and the switch of GPU and CPU.

3.8. Visualization

Visualization (V) aims to present a visual representation of the other
implementation tasks for better understanding. Table 13 illustrated the
seven visualization subcategories. The table shows that 40 posts asked
the methods to visualize data (V1), such as printing a tensor, variable,
or image. 39 posts found the answers to display model (V2) or layer
(V4), e.g., displaying the weight and activation of a model, and printing
the shape of an input layer. Additionally, eight posts addressed the
issues on printing the progress (V5) of model training, validation, or
evaluation. Meanwhile, 20 posts discussed the issues on visualization
method for prediction result (V6) and evaluation (V3) outputs (e.g., con-
fusion matrix and accuracy). Besides, four posts asked for ways to use
Tensorboard (V7), a visualization toolkit in the TensorFlow framework.

Finding 8: For the 111 visualization posts, 42.3% of them addressed
the implementation issues on visualizing data or prediction results;
35.1% of posts found a way to visually represent a model or layer;
the remaining ones are related to the visualization issues of model
evaluation, progress, and the tool Tensorboard.

3.9. Popularity analysis

As described in Section 2.5.1, we measured the popularity of an
implementation issue by the viewcount and score, where a higher view-
count indicates an issue is frequently inspected by many developers
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Table 9
Implementation issues for Model Training (T) subcategories in terms of the verb phrase. Note that ‘‘Statement’’ indicates the
usage of looping and branching statements during model training.

Level-II (Object) Implementation issue Count Total

(T1) Loss
1. (compute/get/save/restore) loss 74

812. (replace/remove) loss 3
3. (mask/normalize/regularize) loss 4

(T2) Model

1. train one model 29

59
2. train (RNN/UNet/CNN/LSTM/GAN/Tflean/Bert/DNN) model 18
3. train (multi-task/autoencoder/regression) model 5
4. change input for training epoch 1
5. save model during training 6

(T3) Gradient

1. (compute/change/update) gradient 23

46
2. (differentiate/accumulate) gradient 4
3. (get/find/track/save) gradient 13
4. (ascend/clip/invert/scale) gradient 5
5. stop using gradient 1

(T4) Trained Model 1. (restore/save) trained model 15 172. tune trained model 2

(T5) Weight
1. (train/update) weight 6

162. (freeze/decay/clip) weight 5
3. (get/save) weight 5

(T6) Variable 1. (create/get/count/save/restore) variable 9 132. (assign/train/update) variable 4

(T7) Checkpoint 3. (save/restore) checkpoint 11 124. limit checkpoint 1

(T8) Learning Rate 1. (get/log/save) learning rate 4 112. (change/decay) learning rate 7

(T9) Statement 1. (create/delete) branch 9 112. (create/skip) loop 2

(T10) Batch 1. (get/sample) batch during training 3 72. (feed/shuffle/change) batch during training 4

(T11) Training Progress

1. (check/switch training/validation) mode 3

72. get training step 1
3. change random number during training 1
4. (save/stop) training 2

(T12) Layer
1. train (embedding/convolution/dropout) layer 3

62. unfreeze layer 1
3. (reset/test) layer for training epoch 2

(T13) Training Data 1. (load/sample/count/reshape) training data 4 52. add Gaussian noise to training data 1

(T14) Training Step 1. (initialize/get) training step 2 42. (reduce/early-stop) training step 2

(T15) Optimizer 1. (get/compute) optimizer 4 4

(T16) Session 1. (get/restore/exit) session 3 3

(T17) Training History 1. (get/save) training history for training epoch 2 2

(T18) Derivative 1. (get/compute) derivative 2 2

Total – 306
Table 10
Implementation issues for Model Prediction (P) subcategories in terms of the verb phrase.

Level-II (Object) Implementation issue Count Total

(P1) Model
1. test one model 60

792. test (GRU/DNN/RNN/LSTM/FeedForward/Resnet/CNN/BERT/Inception) model 17
3. feed data during testing 2

(P2) Prediction Result
1. get prediction (result/label/index) 27

372. (select/save) prediction result 4
3. (convert/mask/normalize/aggregate) prediction result 6

(P3) Layer 1. test (one/LSTM) layer 4 82. test (input/embedding) layer 4

(P4) Weight 1. (load/freeze) weight during prediction 2 32. perform prediction using weight 1

(P5) Threshold 1. lower threshold for prediction 1 1

Total – 128
and a larger score means that more developers confirmed its useful-
10

ness. To understand the popularity of the implementation issues, we

calculated the median values for different categories and subcategories,

respectively.
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Table 11
Implementation issues for Model Evaluation (E) subcategories in terms of the verb phrases.

Level-II (Object) Implementation issue Count Total

(E1) Accuracy
1. compute accuracy 5

162. compute accuracy for (one/epoch/training ) 5
3. compute accuracy for (pixel-wise/in-class/multi-label) 6

(E2) Other Metrics

1. compute custom metric 6

16
2. compute (F1-score/R2-score/AUC/Recall/MAP) 6
3. compute perplexity 2
4. compute hamming loss 1
5. compute PSNR 1

(E3) Result

1. compute confusion matrix 6

112. compute class probabilities 1
3. compute error ratio 2
4. find error 2

(E4) Time
1. compute preprocessing time 1

52. compute (total/layer) training time 3
3. compare (training/testing) time 1

(E5) Evaluation Method 1. use cross-validation 3 42. parallelize evaluation 1

(M6) Training 1. determine overfitting 1 1

Total – 53
(
T
p
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v
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Table 12
Implementation issues for Runtime Environment (R) subcategories in terms of the verb
phrases.

Level-II (Object) Implementation issue Count Total

(R1) GPU

1. check (available/used) GPU 2

172. (select/use) one GPU 7
3. use multiple GPUs 7
4. prefetch data to GPU 1

(R2) GPU Memory
1. check memory usage 2

92. use more memory 2
3. (limit/reduce/clear) memory 5

(R3) GPU/CPU 4. check if using GPU or CPU 2 45. (select/switch) GPU or CPU 2

(R4) TPU 1. check TPU 1 22. use TPU 1

(R5) CPU 1. use CPU 2 2

(R6) RAM 1. free memory 1 1

Total – 35

From Table 14, we can notice that the median score is no more than
while the median viewcount shows a wide range from 69 to 7643.5.
his case implies that many developers met implementation issues, they
nly viewed the post but not voted.

Table 14 shows that visualization (V) is the most popular category
with median viewcount 1047, where most viewcounts come from the
model (1817), evaluation (1535), Tensorboard (1301), and progress
(1277). These popular posts indicate that many developers would like
to visualize the model settings, prediction performance, and running
progress, which can help implement DL models correctly. Runtime
environment (R) ranks second in terms of popularity (median view-
count = 761), where many developers inspected the posts on switching
GPU/CPU (7643.5). Meanwhile, model evaluation (E) is the third most
popular category (median viewcount = 755). Many developers in-
pected the posts on the evaluation issues during model training (2015)
nd testing (1274), instead of the evaluation measurements and others.

Among the remaining category, model setting ranks the highest
median viewcount = 639). We can notice that most viewcounts come
rom the setting of operation (3978) and the recording of model setting
i.e., save model file), suggesting the lack of this knowledge for many
evelopers. The other subcategories (e.g., model, layer, activation, and
eight) draw a similar degree of popularity. Furthermore, although
odel training (T) shows lower popularity (median viewcount = 529),

our subcategories involve many viewcounts including the derivative
11
2615), training step (2528), layer (2423), and learning rate (2353).
his result implies that many developers suffered from issues in im-
lementing the customized optimization method, instead of invoking a
tandard API in the library. For the model prediction with a median
iewcount of 568, many views focused on the implementation issues
bout prediction result. Besides, data processing (D) ranks the last
median viewcount = 475). We can notice that many relevant posts
are about the processing of images (765), indicating a large number
f image-processing practitioners.

Finding 9: The most popular implementation issues are related to
the Level-II categories model evaluation, runtime environment, and
visualization in terms of the median viewcount; the posts score is
strongly correlated with the viewcount, indicating a frequently viewed
post is also useful for developers.

3.10. Difficulty analysis

To analyze the difficulty of an implementation issue, we measured
it by the response time (days) of an accepted answer as described in
Section 2.5.2. Same to popularity analysis, we measured the difficulty
of a category or subcategory in our taxonomy using the median values.

As illustrated in Table 14, the most difficult category is the runtime
environment (R). The related implementation posts took about 0.33
median days to receive an accepted answer. The issues on TPU (7.14)
and CPU (5.40) are the most difficult subcategories compared to GPU
(0.53) and GPU memory (0.06), which implies that many developers
lack such implementation experiences. Mode setting (M) is the second
difficult category (0.15), where most of the difficulties come from the
setting of the model summary. The third difficult category is visual-
ization (V) with median days 0.14, where Tensorboard issues involved
more time (18.32 days). For the model training (T), we can notice that
the response time on issues of the derivative is long (179.25 days),
this is because someone answered the question but the answer was not
accepted, and no one answered for a long time afterwards. Considering
its high popularity (median viewcount 2615), many developers suffered
from this kind of difficult issue. While the responses in the SO are
positive, there may be a need for sustained attention to these difficult
issues

As to the other three categories, the overall difficulty degree is
smaller with median days ≤0.10. Model prediction (P) shows higher
difficulty, where the manipulating threshold took the second longest
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Table 13
Implementation issues for Visualization (V) subcategories in terms of the verb phrases.

Level-II (Object) Implementation issue Count Total

(V1) Data 1. print (data/tensor/variable) 30 402. display image 10

(V2) Model

1. display model 8

312. display (weight/filter/activation/learning-rate/gradient) of model 11
3. plot training loss 11
4. display regressed equation 1

(V3) Evaluation
1. display confusion matrix 6

132. print accuracy 5
3. plot (accuracy/ROC) curve 2

(V4) Layer 1. print shape of input layer 1 82. print output of (certain/hidden/output) layer 7

(V5) Progress 3. print (training/prediction/evaluation) progress 7 84. print checkpoint 1

(V6) Result 1. print prediction (result/label) 6 72. display tested image 1

(V7) Tensorboard 1. display tensorboard 3 42. reset tensorboard 1

Total – 111
time among all subcategories, due to this question has gone unanswered
for a long time since it was posted. The difficulty of data processing (D)
is close to (0.08), which demonstrates that issues in this category are
relatively easy to address. The implementation issues on batch show a
higher response time (0.15), suggesting that this data type needs more
attention for developers. Moreover, the difficulty of model evaluation
(E) ranks last but the evaluation during training (7.79) is not easy for
developers.

To understand the relationship between the posts of popularity and
difficulty, we conducted a correlation analysis on all posts. The statis-
tical test showed that the Pearson correlation coefficient is 0.17 with
p-value < 0.05, indicating a small correlation with high confidence.

his statistical result indicates that a popular post is not necessarily
ifficult.

Finding 10: The most difficult implementation issues are coming
from the category of runtime environment, followed by model setting,
visualization, and model training; the posts on setting derivative and
manipulating threshold for model prediction require a median of more
than four months to receive an accepted answer.

4. Discussion

This section presents the implications and future directions to ad-
dress the implementation issues in Section 4.1, and discusses the po-
tential threats to validity in Section 4.2.

4.1. Implication

In this study, we investigated the taxonomy, popularity, and diffi-
culty of DL implementation issues, respectively. Based on the findings,
we discussed our insights and practical implications for developers,
researchers, and practitioners as follows.

Generally, developers suffered from various DL issues when imple-
menting DL models. There is a requirement of comprehensive handbook
for developers to list the taxonomy of frequently occurred implementa-
tion issues with highlighted the difficulties and high-quality solutions.
Otherwise, they have to repeat the search of Stack Overflow and try dif-
ferent possible solutions after reading many answers. Our constructed
taxonomy could be used as a reference to build the handbook in the
future.

In our taxonomy, data processing, model setting, and model training
dominated the implementation issues. This is because developers do
12
not know the original data structure and have to implement their
customized algorithms to handle the data; they are unclear of the
model structure in details and inexperience of building, recording, and
restoring models; they are struggling in optimizing a model in terms
of each specific objects (e.g., gradient, derivative, and optimizer) in
their own ways. Besides, developers have difficulties in addressing the
implementation issues on runtime environment due to their lack of
experience in dealing with hardware (e.g., GPU, TPU, and CPU).

To address these issues, we first suggest researchers and practi-
tioners providing more visualization tools to help developer easily
understand the data, model, and running procedures. The popularity
of visualization posts can confirm this requirement, although the to-
tal number is still small. Besides, to help developers avoid repeated
implementations, a reusable high-quality toolkit with easy-to-use APIs
is required. To mitigate the difficulties on runtime environment, the
DL framework needs to incorporate better libraries to help developers
control the environment easier.

4.2. Threats to validity

In this section, we discuss the threats to the validity of our empirical
study.

4.2.1. Selection of DL frameworks
Our empirical study on implementation issues was based on three

selected DL frameworks, which may lead to potential selection bias for
this study. The validity of our findings may be threatened by including
more DL frameworks, such as Keras [52] and DL4J [24]. We plan to
investigate them in the near future. To mitigate the negative effect
of the selection bias, we chose three representative DL frameworks as
our study subjects, namely TensorFlow, PyTorch, and Theano. More-
over, these three frameworks are widely used in research studies and
industrial applications [7,9].

4.2.2. Scope of data sampling
In this study, collecting data from other source, e.g., issue tracker

on GitHub [27], may threaten the validity of our findings. We plan
to investigate the differences of implementation issues requested in
various data sources in the future. We filtered the collected data
based on tags (i.e., ‘‘TensorFlow’’, ‘‘PyTorch’’, and ‘‘Theano’’) of posts.
However, it is possible that a post is not marked as one of these tag but
is related to the three DL frameworks. We noticed that related works
commonly filtered the data on tags, due to the difficulty of filtering

this kind of post [19,24,29]. Therefore, we followed the related works
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Table 14
Median viewcount, score, response time (days) under the taxonomy.

Level-I (Phase) Level-II (Object) Viewcount Score Response

(D) Data Processing

1. Data 529.00 1.00 0.09
2. Tensor 402.00 1.00 0.06
3. Image 765.00 1.00 0.10
4. Variable 650.00 1.00 0.06
5. Matrix 350.00 1.00 0.06
6. Dataset 436.00 0.00 0.09
7. Batch 263.00 0.00 0.15
8. Vector 466.00 2.00 0.04
9. Label 368.00 0.00 0.01
Overall 475.00 1.00 0.08

(M) Mode Setting

1. Layer 603.00 1.00 0.13
2. Model 639.00 1.00 0.17
3. Weight 861.00 1.00 0.14
4. Trained Model 883.00 1.00 0.21
5. Model Graph 608.00 1.00 0.42
6. Activation 693.00 0.00 0.06
7. Saved Model File 1672.00 2.00 0.28
8. Trained Weight 1061.00 0.50 0.05
9. Filter 277.00 1.00 0.05
10. Operation 3978.00 2.00 0.04
11. Summary 891.50 4.00 1.23
Overall 639.0 1.00 0.15

(T) Model Training

1. Loss 322.00 1.00 0.10
2. Model 283.00 1.00 0.11
3. Gradient 864.50 1.50 0.20
4. Trained Model 993.00 2.00 0.05
5. Weight 713.50 1.50 0.26
6. Variable 576.00 0.00 0.03
7. Checkpoint 1493.00 2.50 1.00
8. Learning Rate 2353.00 3.00 0.06
9. Statement 119.00 1.00 0.07
10. Batch 537.00 1.00 0.09
11. Training Progress 879.00 4.00 0.03
12. Layer 2423.00 2.00 1.17
13. Training Data 368.00 1.00 0.06
14. Training Step 2528.00 2.00 2.57
15. Optimizer 261.50 0.50 0.27
16. Session 1551.00 1.00 0.03
17. Training History 141.50 1.50 0.34
18. Derivative 2615.00 6.00 179.25
Overall 529.00 1.00 0.11

(P) Model Prediction

1. Model 570.00 1.00 0.18
2. Prediction Result 959.00 1.00 0.05
3. Layer 147.00 1.00 0.20
4. Weight 184.00 1.00 0.01
5. Threshold 69.00 0.00 128.43
Overall 568.00 1.00 0.10

(E) Model Evaluation

1. Accuracy 676.50 1.00 0.07
2. Other Metrics 983.50 1.50 0.65
3. Result 1274.00 1.00 0.01
4. Time 177.00 0.00 0.04
5. Evaluation Method 404.00 1.00 0.07
6. Training 2015.00 9.00 7.79
Overall 755.00 1.00 0.05

(R) Runtime Environment

1. GPU 312.00 1.00 0.53
2. GPU Memory 2399.00 3.00 0.06
3. GPU/CPU 7643.50 6.00 2.78
4. TPU 1268.50 1.50 7.14
5. CPU 4311.50 4.00 5.40
6. RAM 456.00 0.00 1.80
Overall 761.00 1.00 0.33

(V) Visualization

1. Data 714.50 1.00 0.16
2. Model 1817.00 2.00 0.15
3. Evaluation 1535.00 2.00 0.09
4. Layer 302.50 1.00 0.08
5. Progress 1277.50 1.00 0.02
6. Result 995.00 0.00 0.27
7. Tensorboard 1301.50 3.00 18.32
Overall 1047.00 1.00 0.14
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to filter data based on tags, which could be a threat to the validity of
our findings. Besides, we sampled the ‘‘how to’’ posts as study subjects.
This sampling method may introduce potential threats to the validity of
our findings. However, the threats would be minor, because these ‘‘how
to’’ questions are representative of implementation issues [38,39]. We
excluded the posts without accepted answers to support the analysis
of post difficulty. These posts can represent the frequently encountered
important implementation issues, as SO has a very active community in
which the questions posed receive an answer that is formally accepted
by the question-asker [53,54]. However, our constructed taxonomy
may not cover these unanswered implementation questions. In the near
future, we plan to extend our work on more implementation posts.

4.2.3. Subjectivity of manual inspection
To refine the dataset, we excluded irrelevant data with manual

inspections based on a pilot study with 100 randomly selected samples,
which could threaten the validity of this study. Also, we manually
labeled each post with an unified verb phrase and constructed the
taxonomy of implementation issues. The subjective bias of the manual
work could threaten the validity of empirical analysis. To mitigate
this threat, two authors conducted the data refinement. Meanwhile,
they also estimated and optimized the constructed taxonomy. Any
disagreement during these two manual works was resolved by open
discussion with another author as a tie-breaker. Besides, the inter-rater
agreements were relatively high, which implies the reliability of the
manual works.

5. Related work

In this section, we summarized the related work on empirical studies
of DL frameworks.

5.1. High-level topics

Many researchers focused on the high-level topics on DL frame-
works discussed in SO to understand existing issues [24,25,31,55].
Zhang et al. [24] manually inspected a sample of 715 questions in
SO and identified seven kinds of frequently asked questions, including
implementation, program crash, training anomaly, model deployment,
comprehension, installation, and performance. They found that imple-
mentation, program crash, and model migration are the top frequently
asked questions in SO. Later, Han et al. [25] leveraged a domain-
specific workflow and LDA technique to analyze the high-level topics
on three widely adopted DL frameworks (i.e., TensorFlow, PyTorch,
and Theano) using dataset collected from SO and GitHub. They ob-
served that model training and preliminary preparation are the most
frequently discussed. Afterwards, many researchers conducted an in-
depth analysis of one of these high-level topics. For example, Chen
et al. [31] performed an in-depth analysis on the DL deployment by
mining 3k relevant posts from SO. Besides, Yang et al. [55] investigated
the self-claimed major reasons behind the uncertainties during DL im-
plementations, such as vulnerabilities, failures, inconsistencies, misuse,
etc. Other in-depth empirical studies on DL are summarized as below.

5.2. Quality assurance

As program crash is the top frequently asked questions for DL
developers [24], many researchers performed an in-depth analysis on
the quality assurance of DL frameworks [23,26–28,39]. Zhang et al.
[26] studied the characteristics and root causes of defects in DL ap-
plications built on TensorFlow, and collected related program bugs
from SO and GitHub. Islam et al. [27] performed a comprehensive
study on DL bugs. They investigated the types of bugs, root causes
of bugs, impacts of bugs, and bug-prone stage of the DL pipeline
when using DL frameworks. Due to time pressure, market competition,
and cost reduction, DL developers commonly implemented the core
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components of DL projects only and left many technical debts to be
done in the near future. Liu et al. [23] investigated the technical debt
in DL implementation in GitHub. They found that many DL developers
recorded their incomplete design, requirement, and algorithm as to-
do tasks in the code comments. Liu et al. [28] explored how the
technical debts in seven DL frameworks were introduced and removed.
Furthermore, Chen et al. [39] presents a comprehensive study on the
deployment faults of mobile DL apps by mining discussions from SO
and GitHub.

5.3. Library dependency

DL frameworks depend on several libraries that come into a supply
chain of DL frameworks, and the features of the supply chain affect how
developers use them for DL implementation and deployment. Han et al.
[19] investigated the dependency networks of libraries in DL frame-
works. The study unveiled some commonalities among DL frameworks
in terms of purpose, application domain, and dependency degrees, and
discovered some discrepancies in the update behaviors, update reasons,
and version distributions. Zhang et al. [56] conducted a large-scale
and in-depth study on the API evolution in the DL framework Tensor-
Flow. They investigated the key reasons for API changes by mining
API documentation, commits and SO. Results showed that the APIs
were changed mainly due to performance optimization, ease of use,
functionality enhancement, etc. Tan et al. [57] presented an empirical
study on the supply chain within the DL framework in terms of their
structure, application domain, and evolutionary factors.

5.4. Computation capability

A DL model could be implemented and deployed using different DL
frameworks. The differences in computing performance and energy will
support the choice of DL framework. Bahrampour et al. [8] compared
the capability of different DL frameworks. They found that Theano and
Torch are easier to extend new DL components or models. Theano and
Torch showed the best running speed on GPU and CPU, respectively.
TensorFlow is very flexible to use. Shams et al. [58] analyzed the
performance of DL frameworks over different hardware environments
in terms of speed and scaling. They observed that the model perfor-
mance could be strongly affected by the choice of DL framework and
hardware. Liu et al. [59] observed that the DL performance could be
highly impacted by the default settings optimized for a specific dataset
in different DL frameworks. Guo et al. [1] compared the DL models
implemented by using different DL frameworks TensorFlow, PyTorch,
CNTK, and MXNET. Experimental results indicated that the prediction
accuracy could be affected by different frameworks. The migration
and quantization of DL models on different platforms suffered from
compatibility and reliability issues. Shanbhag et al. [60] investigated
the energy pattern for developing DL applications by mining 1361 posts
from Stack Overflow, and provided a general energy guideline for DL
developers.

5.5. Comparison between our study and related work

The related empirical studies on high-level topics (Section 5.1)
manually or automatically build general classification for SO posts.
Different from them, we focused on one of the important category
(i.e., the DL implementation) and conducted an in-depth empirical
study. Although there are many other in-depth studies described in
Sections 5.2–5.4, they did not cover the implementation issues. Besides,
many empirical studies (e.g., library dependency and computation
capability) are commonly based on code analysis or program running,
instead of analyzing the SO post as our study. In this study, we
summarized a wide spectrum of implementation issues when using
DL frameworks, indicating a requirement for more studies to help
developers improve their development productivity.
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6. Conclusion

In this paper, we have presented a comprehensive study of imple-
mentation issues for DL applications. By manual examination of 2401
real-world implementation posts extracted from SO, we have derived
a taxonomy of implementation issues with 7 categories and 63 subcat-
egories, indicating that the process of developing DL models stretches
over a wide spectrum of issues. Moreover, we investigated their pop-
ularity and difficulty under our constructed taxonomy, which helps to
facilitate understanding of frequently occurred issues and issues that
are difficult to address in a short time. Finally, we have discussed
insightful implications for developers and researchers based on our
findings, and suggested some directions to address the implementation
issues and improve the DL implementation productivity. In the near
future, we will investigate the tools to address the implementation
issues following our discussions.

CRediT authorship contribution statement

Chao Liu: Conceptualization, Methodology, Software, Writing –
original draft, Writing – review & editing. Runfeng Cai: Investigation,

esources, Data curation, Formal analysis. Yiqun Zhou: Investigation,
esources, Data curation. Xin Chen: Supervision, Project administra-

tion, Funding acquisition. Haibo Hu: Visualization, Validation. Meng
Yan: Validation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

I have shared a link to my data in the manuscript.

Acknowledgments

This research/project is supported by: the National Key R&D Plan of
Ministry of Science and Technology of China (2020YFC2007902); the
National Nature Science Foundation of China (62202074, 62372071);
China Postdoctoral Science Foundation (2022M710519); the Postdoc
Foundation of Chongqing, China (2021LY23); the Venture & Inno-
vation Support Program for Chongqing Overseas Returnees, China
(cx2019106); and Chongqing Technology Innovation and Application
Development Special Key Project, China (cstc2019jscx-fxydX0054).

References

[1] Q. Guo, S. Chen, X. Xie, L. Ma, Q. Hu, H. Liu, Y. Liu, J. Zhao, X. Li, An empirical
study towards characterizing deep learning development and deployment across
different frameworks and platforms, in: International Conference on Automated
Software Engineering (ASE), IEEE, 2019, pp. 810–822, http://dx.doi.org/10.
1109/ASE.2019.00080.

[2] B.J. Erickson, P. Korfiatis, Z. Akkus, T. Kline, K. Philbrick, Toolkits and libraries
for deep learning, J. Digit. Imaging (JDI) 30 (4) (2017) 400–405, http://dx.doi.
org/10.1007/s10278-017-9965-6.

[3] G. Giray, A software engineering perspective on engineering machine learning
systems: State of the art and challenges, J. Syst. Softw. (JSS) 180 (2021) 111031,
http://dx.doi.org/10.1016/j.jss.2021.111031.

[4] G.E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief
nets, Neural Comput. 18 (7) (2006) 1527–1554, http://dx.doi.org/10.1162/neco.
2006.18.7.1527.

[5] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep
convolutional neural networks, Commun. ACM 60 (6) (2017) 84–90, http://doi.
acm.org/10.1145/3065386.

[6] C. Liu, X. Xia, D. Lo, C. Gao, X. Yang, J. Grundy, Opportunities and challenges
in code search tools, ACM Comput. Surv. 54 (9) (2021) 1–40, http://dx.doi.org/
10.1145/3480027.

http://dx.doi.org/10.1109/ASE.2019.00080
http://dx.doi.org/10.1109/ASE.2019.00080
http://dx.doi.org/10.1109/ASE.2019.00080
http://dx.doi.org/10.1007/s10278-017-9965-6
http://dx.doi.org/10.1007/s10278-017-9965-6
http://dx.doi.org/10.1007/s10278-017-9965-6
http://dx.doi.org/10.1016/j.jss.2021.111031
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://doi.acm.org/10.1145/3065386
http://doi.acm.org/10.1145/3065386
http://doi.acm.org/10.1145/3065386
http://dx.doi.org/10.1145/3480027
http://dx.doi.org/10.1145/3480027
http://dx.doi.org/10.1145/3480027


Information and Software Technology 166 (2024) 107367C. Liu et al.
[7] Y. Yang, X. Xia, D. Lo, J. Grundy, A survey on deep learning for software
engineering, ACM Comput. Surv. 54 (10s) (2022) 1–73, http://dx.doi.org/10.
1145/3505243.

[8] S. Bahrampour, N. Ramakrishnan, L. Schott, M. Shah, Comparative study of
deep learning software frameworks, 2015, arXiv preprint arXiv:1511.06435.
https://arxiv.org/pdf/1511.06435.

[9] C. Liu, C. Gao, X. Xia, D. Lo, J. Grundy, X. Yang, On the reproducibility and
replicability of deep learning in software engineering, ACM Trans. Softw. Eng.
Methodol. (TOSEM) 31 (1) (2021) 1–46, http://dx.doi.org/10.1145/3477535.

[10] N. Zhang, C. Liu, X. Xia, C. Treude, Y. Zou, D. Lo, Z. Zheng, ShellFusion: Answer
generation for shell programming tasks via knowledge fusion, in: International
Conference on Software Engineering (ICSE), 2022, pp. 1970–1981, http://dx.doi.
org/10.1145/3510003.3510131.

[11] S.-R. Lee, M.-J. Heo, C.-G. Lee, M. Kim, G. Jeong, Applying deep learning
based automatic bug triager to industrial projects, in: Foundation of Software
Engineering (FSE), 2017, pp. 926–931, http://dx.doi.org/10.1145/3106237.
3117776.

[12] A. Voulodimos, N. Doulamis, A. Doulamis, E. Protopapadakis, Deep learning
for computer vision: A brief review, Comput. Intell. Neurosci. 2018 (2018)
http://dx.doi.org/10.1155/2018/7068349.

[13] J. Hirschberg, C.D. Manning, Advances in natural language processing, Science
349 (6245) (2015) 261–266, http://dx.doi.org/10.1126/science.aaa8685.

[14] A. Lopez, Statistical machine translation, ACM Comput. Surv. 40 (3) (2008) 1–49,
http://dx.doi.org/10.1145/1380584.1380586.

[15] G. Hinton, L. Deng, D. Yu, G.E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V.
Vanhoucke, P. Nguyen, T.N. Sainath, et al., Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups, IEEE
Signal Process. Mag. 29 (6) (2012) 82–97, http://dx.doi.org/10.1109/MSP.2012.
2205597.

[16] J. Petersen, P.F. Jäger, F. Isensee, S.A. Kohl, U. Neuberger, W. Wick, J. Debus,
S. Heiland, M. Bendszus, P. Kickingereder, et al., Deep probabilistic modeling of
glioma growth, in: International Conference on Medical Image Computing and
Computer-Assisted Intervention, Springer, 2019, pp. 806–814, http://dx.doi.org/
10.1007/978-3-030-32245-8_89.

[17] C. Chen, A. Seff, A. Kornhauser, J. Xiao, Deepdriving: Learning affordance
for direct perception in autonomous driving, in: Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 2722–2730, http://dx.
doi.org/10.1109/ICCV.2015.312.

[18] Z. Deng, L. Xu, C. Liu, M. Yan, Z. Xu, Y. Lei, Fine-grained co-attentive
representation learning for semantic code search, in: International Conference
on Software Analysis, Evolution and Reengineering, IEEE, 2022, pp. 396–407,
http://dx.doi.org/10.1109/SANER53432.2022.00055.

[19] J. Han, S. Deng, D. Lo, C. Zhi, J. Yin, X. Xia, An empirical study of the
dependency networks of deep learning libraries, in: International Conference
on Software Maintenance and Evolution (ICSME), IEEE, 2020, pp. 868–878,
http://dx.doi.org/10.1109/ICSME46990.2020.00116.

[20] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J.
Turian, D. Warde-Farley, Y. Bengio, Theano: A CPU and GPU math compiler in
Python, in: Proc. 9th Python in Science Conf, Vol. 1, 2010, pp. 3–10.

[21] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.
Ghemawat, G. Irving, M. Isard, et al., TensorFlow: a system for Large-Scale ma-
chine learning, in: Symposium on Operating Systems Design and Implementation
(OSDI), 2016, pp. 265–283, https://dl.acm.org/doi/10.5555/3026877.3026899.

[22] N. Ketkar, J. Moolayil, Introduction to pytorch, in: Deep Learning with Python,
Springer, 2021, pp. 27–91, http://dx.doi.org/10.1007/978-1-4842-5364-9_2.

[23] J. Liu, Q. Huang, X. Xia, E. Shihab, D. Lo, S. Li, Is using deep learning
frameworks free? characterizing technical debt in deep learning frameworks,
in: Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: Software Engineering in Society (ICSE-SEIP), 2020, pp. 1–10, http:
//dx.doi.org/10.1145/3377815.3381377.

[24] T. Zhang, C. Gao, L. Ma, M. Lyu, M. Kim, An empirical study of common
challenges in developing deep learning applications, in: International Symposium
on Software Reliability Engineering (ISSRE), IEEE, 2019, pp. 104–115, http:
//dx.doi.org/10.1109/ISSRE.2019.00020.

[25] J. Han, E. Shihab, Z. Wan, S. Deng, X. Xia, What do programmers discuss
about deep learning frameworks, Empir. Softw. Eng. 25 (4) (2020) 2694–2747,
http://dx.doi.org/10.1007/s10664-020-09819-6.

[26] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, L. Zhang, An empirical study
on TensorFlow program bugs, in: Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2018, pp. 129–140,
http://dx.doi.org/10.1145/3213846.3213866.

[27] M.J. Islam, G. Nguyen, R. Pan, H. Rajan, A comprehensive study on deep learning
bug characteristics, in: Foundation of Software Engineering (FSE), 2019, pp.
510–520, http://dx.doi.org/10.1145/3338906.3338955.

[28] J. Liu, Q. Huang, X. Xia, E. Shihab, D. Lo, S. Li, An exploratory study on the
introduction and removal of different types of technical debt in deep learning
frameworks, Empir. Softw. Eng. 26 (2) (2021) 1–36, http://dx.doi.org/10.1007/
s10664-020-09917-5.
15
[29] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, J.-L. Sun, What security questions do
developers ask? a large-scale study of stack overflow posts, J. Comput. Sci.
Technol. (JCST) 31 (5) (2016) 910–924, http://dx.doi.org/10.1007/s11390-016-
1672-0.

[30] M. Bagherzadeh, R. Khatchadourian, Going big: a large-scale study on what big
data developers ask, in: Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (FSE), 2019, pp. 432–442, http://dx.doi.org/10.1145/
3338906.3338939.

[31] Z. Chen, Y. Cao, Y. Liu, H. Wang, T. Xie, X. Liu, A comprehensive study
on challenges in deploying deep learning based software, in: Foundation of
Software Engineering (FSE), 2020, pp. 750–762, http://dx.doi.org/10.1145/
3368089.3409759.

[32] S. Ahmed, M. Bagherzadeh, What do concurrency developers ask about? a
large-scale study using stack overflow, in: Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement,
2018, pp. 1–10, http://dx.doi.org/10.1145/3239235.3239524.

[33] M. Alshangiti, H. Sapkota, P.K. Murukannaiah, X. Liu, Q. Yu, Why is developing
machine learning applications challenging? a study on stack overflow posts, in:
2019 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), IEEE, 2019, pp. 1–11, http://dx.doi.org/10.1109/
ESEM.2019.8870187.

[34] C. Liu, Replication package, 2022, https://github.com/liuchaoss/UnderstandDL.
[35] StackExchange, The archived dataset of Stack Overflow, 2021, https://archive.

org/download/stackexchange/stackoverflow.com-Posts.7z.
[36] MongoDB, MongoDB official website, 2022, https://www.mongodb.com/.
[37] StackExchange, Data structure for Stack Overflow post, 2022, https://archive.

org/download/stackexchange/readme.txt.
[38] C. Treude, O. Barzilay, M.-A. Storey, How do programmers ask and answer

questions on the web? in: Proceedings of the 33rd International Conference
on Software Engineering (ICSE), 2011, pp. 804–807, http://dx.doi.org/10.1145/
1985793.1985907.

[39] Z. Chen, H. Yao, Y. Lou, Y. Cao, Y. Liu, H. Wang, X. Liu, An empirical study on
deployment faults of deep learning based mobile applications, in: International
Conference on Software Engineering (ICSE), IEEE, 2021, pp. 674–685, http:
//dx.doi.org/10.1109/ICSE43902.2021.00068.

[40] StackOverflow, Meaning of the closed questions in Stack Overflow posts, 2022,
https://stackoverflow.com/help/closed-questions.

[41] J. Cohen, A coefficient of agreement for nominal scales, Educ. Psychol. Meas.
20 (1) (1960) 37–46, http://dx.doi.org/10.1177/001316446002000104.

[42] C. Liu, X. Xia, D. Lo, Z. Liu, A.E. Hassan, S. Li, Codematcher: Searching code
based on sequential semantics of important query words, ACM Trans. Softw. Eng.
Methodol. (TOSEM) 31 (1) (2021) 1–37.

[43] W. Xie, X. Peng, M. Liu, C. Treude, Z. Xing, X. Zhang, W. Zhao, API method
recommendation via explicit matching of functionality verb phrases, in: Pro-
ceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, 2020,
pp. 1015–1026.

[44] Y. Yang, X. Xia, D. Lo, J. Grundy, A survey on deep learning for software
engineering, ACM Comput. Surv. 54 (10s) (2022) 1–73.

[45] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M.P. Reyes, M.-L. Shyu, S.-
C. Chen, S.S. Iyengar, A survey on deep learning: Algorithms, techniques, and
applications, ACM Comput. Surv. 51 (5) (2018) 1–36.

[46] J.F. Dye, I.M. Schatz, B.A. Rosenberg, S.T. Coleman, Constant comparison
method: A kaleidoscope of data, Qual. Rep. 4 (1/2) (2000) 1–9.

[47] H. Jing, Sentence reduction for automatic text summarization, in: Sixth Applied
Natural Language Processing Conference, 2000, pp. 310–315.

[48] P. Sangaroonsilp, H.K. Dam, M. Choetkiertikul, C. Ragkhitwetsagul, A. Ghose, A
taxonomy for mining and classifying privacy requirements in issue reports, Inf.
Softw. Technol. 157 (2023) 107162.

[49] M. Kim, T. Zimmermann, R. DeLine, A. Begel, The emerging role of data
scientists on software development teams, in: 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), IEEE, 2016, pp. 96–107, http://dx.
doi.org/10.1145/2884781.2884783.

[50] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, nature 521 (7553) (2015)
436–444.

[51] B. Kou, Y. Di, M. Chen, T. Zhang, SOSum: a dataset of stack overflow post
summaries, in: Proceedings of the 19th International Conference on Mining
Software Repositories (MSR), 2022, pp. 247–251, http://dx.doi.org/10.1145/
3524842.3528487.

[52] X. Du, Y. Sui, Z. Liu, J. Ai, An empirical study of fault triggers in deep learning
frameworks, IEEE Trans. Dependable Secure Comput. (2022).

[53] W. Zhu, H. Zhang, A.E. Hassan, M.W. Godfrey, An empirical study of question
discussions on Stack Overflow, Empir. Softw. Eng. 27 (6) (2022) 148.

[54] A. Anderson, D. Huttenlocher, J. Kleinberg, J. Leskovec, Discovering value from
community activity on focused question answering sites: a case study of stack
overflow, in: Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2012, pp. 850–858.

http://dx.doi.org/10.1145/3505243
http://dx.doi.org/10.1145/3505243
http://dx.doi.org/10.1145/3505243
http://arxiv.org/abs/1511.06435
https://arxiv.org/pdf/1511.06435
http://dx.doi.org/10.1145/3477535
http://dx.doi.org/10.1145/3510003.3510131
http://dx.doi.org/10.1145/3510003.3510131
http://dx.doi.org/10.1145/3510003.3510131
http://dx.doi.org/10.1145/3106237.3117776
http://dx.doi.org/10.1145/3106237.3117776
http://dx.doi.org/10.1145/3106237.3117776
http://dx.doi.org/10.1155/2018/7068349
http://dx.doi.org/10.1126/science.aaa8685
http://dx.doi.org/10.1145/1380584.1380586
http://dx.doi.org/10.1109/MSP.2012.2205597
http://dx.doi.org/10.1109/MSP.2012.2205597
http://dx.doi.org/10.1109/MSP.2012.2205597
http://dx.doi.org/10.1007/978-3-030-32245-8_89
http://dx.doi.org/10.1007/978-3-030-32245-8_89
http://dx.doi.org/10.1007/978-3-030-32245-8_89
http://dx.doi.org/10.1109/ICCV.2015.312
http://dx.doi.org/10.1109/ICCV.2015.312
http://dx.doi.org/10.1109/ICCV.2015.312
http://dx.doi.org/10.1109/SANER53432.2022.00055
http://dx.doi.org/10.1109/ICSME46990.2020.00116
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb20
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb20
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb20
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb20
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb20
https://dl.acm.org/doi/10.5555/3026877.3026899
http://dx.doi.org/10.1007/978-1-4842-5364-9_2
http://dx.doi.org/10.1145/3377815.3381377
http://dx.doi.org/10.1145/3377815.3381377
http://dx.doi.org/10.1145/3377815.3381377
http://dx.doi.org/10.1109/ISSRE.2019.00020
http://dx.doi.org/10.1109/ISSRE.2019.00020
http://dx.doi.org/10.1109/ISSRE.2019.00020
http://dx.doi.org/10.1007/s10664-020-09819-6
http://dx.doi.org/10.1145/3213846.3213866
http://dx.doi.org/10.1145/3338906.3338955
http://dx.doi.org/10.1007/s10664-020-09917-5
http://dx.doi.org/10.1007/s10664-020-09917-5
http://dx.doi.org/10.1007/s10664-020-09917-5
http://dx.doi.org/10.1007/s11390-016-1672-0
http://dx.doi.org/10.1007/s11390-016-1672-0
http://dx.doi.org/10.1007/s11390-016-1672-0
http://dx.doi.org/10.1145/3338906.3338939
http://dx.doi.org/10.1145/3338906.3338939
http://dx.doi.org/10.1145/3338906.3338939
http://dx.doi.org/10.1145/3368089.3409759
http://dx.doi.org/10.1145/3368089.3409759
http://dx.doi.org/10.1145/3368089.3409759
http://dx.doi.org/10.1145/3239235.3239524
http://dx.doi.org/10.1109/ESEM.2019.8870187
http://dx.doi.org/10.1109/ESEM.2019.8870187
http://dx.doi.org/10.1109/ESEM.2019.8870187
https://github.com/liuchaoss/UnderstandDL
https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z
https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z
https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z
https://www.mongodb.com/
https://archive.org/download/stackexchange/readme.txt
https://archive.org/download/stackexchange/readme.txt
https://archive.org/download/stackexchange/readme.txt
http://dx.doi.org/10.1145/1985793.1985907
http://dx.doi.org/10.1145/1985793.1985907
http://dx.doi.org/10.1145/1985793.1985907
http://dx.doi.org/10.1109/ICSE43902.2021.00068
http://dx.doi.org/10.1109/ICSE43902.2021.00068
http://dx.doi.org/10.1109/ICSE43902.2021.00068
https://stackoverflow.com/help/closed-questions
http://dx.doi.org/10.1177/001316446002000104
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb42
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb42
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb42
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb42
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb42
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb43
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb43
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb43
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb43
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb43
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb43
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb43
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb43
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb43
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb44
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb44
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb44
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb45
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb45
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb45
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb45
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb45
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb46
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb46
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb46
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb47
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb47
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb47
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb48
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb48
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb48
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb48
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb48
http://dx.doi.org/10.1145/2884781.2884783
http://dx.doi.org/10.1145/2884781.2884783
http://dx.doi.org/10.1145/2884781.2884783
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb50
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb50
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb50
http://dx.doi.org/10.1145/3524842.3528487
http://dx.doi.org/10.1145/3524842.3528487
http://dx.doi.org/10.1145/3524842.3528487
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb52
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb52
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb52
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb53
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb53
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb53
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb54
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb54
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb54
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb54
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb54
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb54
http://refhub.elsevier.com/S0950-5849(23)00222-7/sb54


Information and Software Technology 166 (2024) 107367C. Liu et al.
[55] C. Yang, P. Liang, L. Fu, Z. Li, Self-claimed assumptions in deep learning
frameworks: An exploratory study, in: Evaluation and Assessment in Software
Engineering (EASE), 2021, pp. 139–148, http://dx.doi.org/10.1145/3463274.
3463333.

[56] Z. Zhang, Y. Yang, X. Xia, D. Lo, X. Ren, J. Grundy, Unveiling the mystery of
API evolution in Deep Learning frameworks: a case study of TensorFlow 2, in:
International Conference on Software Engineering (ICSE-SEIP), IEEE, 2021, pp.
238–247, http://dx.doi.org/10.1109/ICSE-SEIP52600.2021.00033.

[57] X. Tan, K. Gao, M. Zhou, L. Zhang, An exploratory study of deep learning supply
chain, in: International Conference on Software Engineering (ICSE), 2022, pp.
86–98, http://dx.doi.org/10.1145/3510003.3510199.
16
[58] S. Shams, R. Platania, K. Lee, S.-J. Park, Evaluation of deep learning frameworks
over different HPC architectures, in: International Conference on Distributed
Computing Systems, IEEE, 2017, pp. 1389–1396, http://dx.doi.org/10.1109/
ICDCS.2017.259.

[59] L. Liu, Y. Wu, W. Wei, W. Cao, S. Sahin, Q. Zhang, Benchmarking deep learning
frameworks: Design considerations, metrics and beyond, in: International Con-
ference on Distributed Computing Systems (ICDCS), IEEE, 2018, pp. 1258–1269,
http://dx.doi.org/10.1109/ICDCS.2018.00125.

[60] S. Shanbhag, S. Chimalakonda, V.S. Sharma, V. Kaulgud, Towards a catalog of
energy patterns in deep learning development, in: Proceedings of the Interna-
tional Conference on Evaluation and Assessment in Software Engineering 2022,
2022, pp. 150–159, http://dx.doi.org/10.1007/s10664-021-10099-x.

http://dx.doi.org/10.1145/3463274.3463333
http://dx.doi.org/10.1145/3463274.3463333
http://dx.doi.org/10.1145/3463274.3463333
http://dx.doi.org/10.1109/ICSE-SEIP52600.2021.00033
http://dx.doi.org/10.1145/3510003.3510199
http://dx.doi.org/10.1109/ICDCS.2017.259
http://dx.doi.org/10.1109/ICDCS.2017.259
http://dx.doi.org/10.1109/ICDCS.2017.259
http://dx.doi.org/10.1109/ICDCS.2018.00125
http://dx.doi.org/10.1007/s10664-021-10099-x

	Understanding the implementation issues when using deep learning frameworks
	Introduction
	Methodology
	Study Subject
	Overall Workflow
	Data Collection
	Raw Data Download
	Candidates Extraction
	Data Refinement
	Data Characteristics

	Procedures to Build Taxonomy
	Step-1: Grouping Questions into Implementation Issues
	Step-2: Assigning Questions with Implementation Phase (Level-I)
	Step-3: Summarizing the Objects for Implementation Issues (Level-II)
	Step-4: Optimizing the Two-Level Taxonomy

	Feature Measurement
	Popularity
	Difficulty


	Results
	Taxonomy of Implementation Issues
	Data Processing
	Model Setting
	Model Training
	Model Prediction
	Model Evaluation
	Runtime Environment
	Visualization
	Popularity Analysis
	Difficulty Analysis

	Discussion
	Implication
	Threats to Validity
	Selection of DL Frameworks
	Scope of Data Sampling
	Subjectivity of Manual Inspection


	Related Work
	High-Level Topics
	Quality Assurance
	Library Dependency
	Computation Capability
	Comparison between Our Study and Related Work

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


