
Information and Software Technology 139 (2021) 106652

A
0

A
o
K
a

b

c

d

e

f

A

K
C
S
F
E

1

c
u
a
i
a
a
i
t
i

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

comprehensive investigation of the impact of feature selection techniques
n crashing fault residence prediction models
unsong Zhao a,b, Zhou Xu c,a,∗, Meng Yan c,a, Tao Zhang d, Dan Yang a, Wei Li e,f

School of Big Data and Software Engineering, Chongqing University, Chongqing, China
School of Computer Science, Wuhan University, Wuhan, China
Key Laboratory of Dependable Service Computing in Cyber Physical Society (Chongqing University), Ministry of Education, China
Faculty of Information Technology, Macau University of Science and Technology, Macao, China
School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
Jiangsu Key Laboratory of Media Design and Software Technology, Wuxi, China

R T I C L E I N F O

eywords:
rash localization
tack trace
eature selection
mpirical study

A B S T R A C T

Context: Software crash is a serious form of the software failure, which often occurs during the software
development and maintenance process. As the stack trace reported when the software crashes contains a wealth
of information about crashes, recent work utilized classification models with the collected features from stack
traces and source code to predict whether the fault causing the crash resides in the stack trace. This could
speed-up the crash localization task.
Objective: As the quality of features can affect the performance of the constructed classification models,
researchers proposed to use feature selection methods to select a representative feature subset to build models
by replacing the original features. However, only limited feature selection methods and classification models
were taken into consideration for this issue in previous work. In this work, we look into this topic deeply and
find out the best feature selection method for crash fault residence prediction task.
Method: We study the performance of 24 feature selection techniques with 21 classification models on a
benchmark dataset containing crash instances from 7 real-world software projects. We use 4 indicators to
evaluate the performance of these feature selection methods which are applied to the classification models.
Results: The experimental results show that, overall, a probability-based feature selection, called Symmetrical
Uncertainty, performs well across the studied classification models and projects. Thus, we recommend such a
feature selection method to preprocess the crash instances before constructing classification models to predict
the crash fault residence.
Conclusion: This work conducts a large-scale empirical study to investigate the impact of feature selection
methods on the performance of classification models for the crashing fault residence prediction task. The
results clearly demonstrate that there exist significant performance differences among these feature selection
techniques across different classification models and projects.
. Introduction

As the software functions are continuous abundant, the scale and
omplexity of the program increases. This leads to that software prod-
cts inescapably suffer from faults. The fault puts the program into
n abnormal state and even terminates the program running status,
.e., program crash. When the crash occurs, the crash reporting system
utomatically collects the crash reports, such as the stack trace, to
nalyze the root cause of the crash. Identifying the residence of faults
nducing the crash (short for crashing faults) can prompt programmers
o inspect the corresponding source code and fix them efficiently, which
s a crucial activity for software quality assurance [1].

∗ Correspondence to: Sha-Ping-Ba District, School of Big Data and Software Engineering, Chongqing University, Chongqing 401331, China.
E-mail address: zhouxullx@cqu.edu.cn (Z. Xu).

To facilitate the process of predicting the crashing fault residence,
researchers utilized the information of stack trace and source code to
find the residence of the crashing faults. A stack trace contains the
exception information thrown and a series of the function invocations
collected at run-time. The objective of crashing fault residence predic-
tion task is to determine whether the crashing fault resides in the stack
trace or not, aiming to save the debugging efforts for programmers [2].
If the crashing fault resides inside the stack trace, programmers only
need to focus on the corresponding code position recorded in the
stack trace. But if the crashing fault resides outside the stack trace,
vailable online 1 June 2021
950-5849/© 2021 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.infsof.2021.106652
eceived 20 December 2020; Received in revised form 5 May 2021; Accepted 24 M
ay 2021

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:zhouxullx@cqu.edu.cn
https://doi.org/10.1016/j.infsof.2021.106652
https://doi.org/10.1016/j.infsof.2021.106652
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106652&domain=pdf

Information and Software Technology 139 (2021) 106652K. Zhao et al.
Fig. 1. The components of a stack trace.
programmers have to inspect the whole function invocation sequence.
This process involves in inspecting a mass of source code with many ex-
pensive debugging efforts, which deteriorates the software maintenance
efficiency.

Gu et al. [2] collected a benchmark dataset for the crashing fault
residence prediction task. More specifically, they proposed a method
CraTer, which generated crashes with the program mutation tool and
extracted 89 features from the stack trace and faulty code to character-
ize the crash instances. If the crashing fault information exactly matches
one of the recorded information in the stack trace, it is regarded as
inside the stack trace, otherwise, it is treated as outside the stack trace.
These labeled crash data are used to build classification models to
predict whether a new emerged crashing fault resides in the stack trace
or not. In this case, the model performance for predicting the crashing
fault residence relies on the quality of the crash instance features [3,4].
The useless features from raw crash data negatively impact the perfor-
mance of the classification models. The feature engineering techniques,
such as feature selection, can filter out such features and select a
simplified and optimal feature subset. This selected feature subset can
facilitate to improve the performance of classification models and save
computational cost compared with using all the original features.

However, there is no current research focusing on this topic. To
narrow this gap, in this work, we conduct a large-scale empirical
study to investigate the impact on 24 feature selection techniques on
the performance of 21 classification models for crashing fault resi-
dence prediction task. The studied feature selection techniques derive
from 4 groups: filter-based feature ranking, filter-based feature subset
selection, wrapper-based feature subset selection, and without fea-
ture preprocessing. The used classification models belong to seven
groups: statistic-based, neural network based, decision tree based, rule-
based, nearest neighbor based, support vector machine based, and
ensemble-based methods.

We conduct experiments on a publicly available dataset including 7
open-source projects shared by a recent work [2]. We employ 4 indi-
cators to evaluate the performance of these feature selection methods
which combine with the classification models for crashing fault resi-
dence prediction task. The experimental results indicate that, overall,
a probability based feature ranking technique, i.e., the Symmetrical
Uncertainty (SU) method, obtains the best performance across the 21
classification models in terms of 4 indicators, whereas the Clustering
Variation (CV) obtains the worst performance. In addition, 4 feature
ranking techniques, i.e., Chi-Square (CS), Probabilistic Significance
(PS), Gain Ratio (GR), and SU, perform better than other feature
selection methods across the 7 projects in terms of 4 indicators.

The main contributions of this paper are highlighted as follows:

• We are the first to conduct such a large-scale empirical study to
analyze the performance of 24 feature selection methods with 21
classification models for crashing fault residence prediction task.

• We employ 4 indicators to comprehensively evaluate the perfor-
mance of these methods on 7 open-source projects, and use a
statistic test method to analyze the experimental results from both
2

the classification model level and project level.
The rest of this paper is organized as follows. Section 2 provides
the related work of our study. Section 3 describes the preliminaries,
i.e., the studied feature selection techniques. The experimental setup is
detailed in Section 4, including datasets, performance indicators, the
data partition, the used classification models, the experimental design,
and the statistic test. We present the experimental results and threats to
validity in Section 5 and Section 6, respectively. Finally, we conclude
this work in Section 7.

2. Related work

2.1. Stack trace analysis

The stack trace provides the fault information recorded by the
system when software crashes, which contains the exception type,
the location where the exception occurs, and a list of method calls
connected with the corresponding runtime status. As shown in Fig. 1,
the stack trace contains multiple frames, in which the first frame
(i.e., Frame 0) records the exception type of the crash while other
frames record the list of method calls at that time. The second frame
(i.e., Frame 1, also named the top frame), is the position where the
exception is thrown. The last frame (i.e., Frame f, also named the
bottom frame), is the initial position of the function invocation. All
frames except for Frame 0 consist of 3 main terms, i.e., the class name,
function name, and code line number.

Some previous studies utilized the stack trace information for crash
reproduction task which reproduces the crash scenario to assist the
software debugging. Chen et al. [5] developed an automatic framework
that utilized the collected stack traces and applied a sequence compo-
sition approach for crash reproduction. They conducted experiments
on 3 open-source projects and the results showed that their method
reproduced 22 out of 52 crashes that were useful to reveal the original
ones. Xuan et al. [6] proposed an automatic method MuCrash that
executed the test case on the given stack traces and selected the
ones covered classes in the stack trace for crash reproduction. They
conducted experiments on a project with 12 crashes and the prelim-
inary results showed that 7 out of 12 crashes were reproduced by the
MuCrash. Nayrolles et al. [7] developed a novel method JCHARMING
that used the exception recorded by the stack trace and program slicing
to guide the model checking for crash reproduction. They conducted
experiments on 7 open-source projects and the results showed that
JCHARMING reproduced 85% of bugs. Soltani et al. [8] employed a
guided genetic algorithm which utilized the stack trace to guide the
research for reducing the search space. They conducted experiments
on 3 open-source projects and the results showed that their method
could replicate 41 out of 52 crashes in which 32 crashes were useful
reproductions.

In addition, some previous studies also utilized the stack trace
information for crashing fault localization task which finds out the
root cause of the crashing faults to assist the developers fix them. Wu
et al. [9] proposed a method CrashLocator that generated approximate

crash traces based on the stack information and the static analysis for

Information and Software Technology 139 (2021) 106652K. Zhao et al.
crashing fault localization. They conducted experiments on 3 software
projects and the results demonstrated that CrashLocator was superior
to the stack-only method. Wong et al. [10] proposed to use the seg-
mentation and the stack trace analysis for locating the fault files. They
conducted experiments on 3 projects and the results showed that the
two analysis methods were complementary to each other for perfor-
mance improvement of crashing fault localization. Moreno et al. [11]
proposed a method Lobster that combined the similarity between code
elements and source code from the collected stack trace and the textual
similarity for bug localization. They conducted experiments on 14
projects and the results showed that Lobster was effective in 82% of
the cases compared with the Lucene-based method. Wu et al. [12]
first conducted an empirical study on the characteristics of the crash-
inducing changes and then proposed a method ChangeLocator. This
method utilized the features collected from the crash reports and the
historical fixed crashes for locating the crash-inducing changes. They
conducted experiments on 6 versions of the NetBeans project and the
results illustrated that ChangeLocator significantly outperformed the
information retrieval based method.

Different from the above studies, Gu et al. [2] proposed a method,
called CraTer, to detect whether the crashing fault resided inside the
stack trace or not with the collected features of stack traces for assisting
the crash localization. Following their study, in this work, we explore
how different feature selection methods impact the performance of
classification models for crashing fault residence prediction task.

2.2. Empirical studies of feature selection techniques and classification
models

Feature selection methods are commonly used in software engineer-
ing domain to remove irrelevant or redundant features for performance
improvement. Classification models are also widely used to address
some learning tasks (such as the software defect prediction task) in
software engineering domain. In this subsection, we discuss some previ-
ous empirical studies about feature selection methods and classification
models for software engineering tasks.

Gao et al. [13] explored 4 filter-based feature selection techniques
to eliminate the irrelevant and redundant features for improving the
accuracy of software quality classification task. They conducted ex-
periments on one software system with 5 classifiers and the results
showed that Kolmogorov–Smirnov obtained the better prediction per-
formance. Muthukumaran et al. [14] investigated 7 feature ranking,
2 feature subset selection, and one wrapper-based techniques with 3
classifiers on 2 software defect datasets to determine whether feature
selection techniques could improve the accuracy of bug prediction
models. Their results showed that wrapper-based methods obtained the
best performance but with higher costs. Gao et al. [15] investigated
7 different feature ranking and 4 feature subset selection techniques
with 5 classifiers for defect prediction. They conducted experiments
on a large software system and the results showed that the predic-
tion performance will be promoted when over 85% of the features
were removed. Wang et al. [16] conducted an empirical study on 17
ensembles of feature ranking techniques. Their experimental results
on 16 projects showed that ensembles with very few feature ranking
techniques obtained better performance. Wang et al. [17] proposed
an ensemble method combining 6 filter-based feature ranking tech-
niques for the defect prediction task. They conducted experiments on
3 software projects and the results demonstrated that their methods
performed better than individual filter-based techniques. Xu et al. [18]
conducted an empirically study on 14 feature ranking, 2 feature sub-
set selection, 12 wrapper-based, 3 clustering-based, and one feature
extraction methods with random forest classifier for the defect pre-
diction task. Their experimental results on 2 datasets showed that
feature subset based and wrapper-based methods generally obtained
better performance. Stuckman et al. [19] investigated the impact of
3

5 dimensionality reduction techniques for the software vulnerability
prediction task. They conducted experiments on 3 open-source ap-
plications and the results demonstrated that dimensionality reduction
techniques did not consistently promote the performance in the within-
project scenario but could obviously promote the performance in the
cross-project scenario. Ghotra et al. [20] investigated the impact of
11 feature ranking, six feature subset selection, 12 wrapper-based
techniques, and one method without feature preprocess with 21 clas-
sifiers for the defect prediction task. Their experimental results on
2 datasets showed that the correlation-based feature subset selection
method with the Best First search strategy was superior to other feature
selection techniques. Kondo et al. [21] explored the impact of 8 feature
selection techniques on 10 defect prediction models. They conducted
experiments on 3 datasets and the results showed that models built on
the selected features obtained the better performance than that built
on the whole features. Jiarpakdee et al. [22] explored the impact of
12 feature selection techniques on the interpretation of defect models.
They conducted experiments on 14 projects and the results demon-
strated that most of the selected features were inconsistent among these
techniques. Balogun et al. [23] investigated the impact of 4 filter-
based feature ranking and 14 feature subset selection techniques with 4
classifiers for the defect prediction task. Their experimental results on 5
datasets showed that the performance of feature selection techniques is
discrepant across the studied datasets and used classifiers. Yu et al. [24]
employed 3 feature ranking and one feature subset selection techniques
to explore the effectiveness of feature selection for the cross-project
defect prediction task. They conducted experiments on 2 datasets and
the results demonstrated that these studied techniques could improve
the prediction performance.

Some researchers explored the impact of classification models on
different software engineering tasks. Lessmann et al. [25] investigated
the impact of 22 classification models for the defect prediction task.
They conducted experiments on 10 projects and the results demon-
strated that simple classifiers were sufficient to establish the corre-
lation between static code and software defects. Seiffert et al. [26]
explored the impact of class noise and imbalance on 11 classifiers
for identifying defective software modules. They conducted experi-
ments on a real-world dataset and the results showed that class noise
had more impact on the classification performance than class im-
balance. Ghotra et al. [27] explored the impact of 31 classification
models for the software defect prediction task. They conducted ex-
periments on 2 datasets and the results showed that there existed
significantly performance difference among studied classification mod-
els. Tantithamthavorn et al. [28] explored the impact of automated
parameter optimization on defect prediction models. Their experimen-
tal results on 18 projects showed that random forest and support vector
machine were not sensitive to parameters. Chen et al. [29] explored
the impact of 48 different models including 36 supervised and 12
unsupervised models on the performance of the security vulnerability
prediction models. They conducted experiments on 3 open-source ap-
plications and the results demonstrated that some simple unsupervised
methods could obtain the competitive performance on both within-
project and cross-project scenarios. Aniche et al. [30] investigated the
impact of 6 classification models on the performance of software refac-
toring prediction models. Their experimental results on three datasets
showed that random forest classifier obtained the best prediction per-
formance. Chen et al. [31] analyzed the impact of 9 supervised models
and a set of unsupervised models on the performance of software defect
number prediction task. The experimental results on 7 projects with
24 version showed that two unsupervised models achieved the best
performance.

Different from the above studies which mainly focused on the
defect or vulnerability prediction tasks, in this work, we investigate
the impact of 24 feature selection techniques on the performance of 21
classification models for the crashing fault residence prediction task.
To our best knowledge, we are the first to conduct such a large-scale

empirical study to explore this topic.

Information and Software Technology 139 (2021) 106652K. Zhao et al.

w
T
o
T

3

s
i
c

3

3

Table 1
The overview of 24 feature selection techniques.
Family Methods Abbreviation

Filter-based feature ranking

Statistics-based Techniques
Chi-Square CS
Correlation CR
Clustering Variation CV

Probability-based Techniques

Probabilistic Significance PS
Information Gain IG
Gain Ratio GR
Symmetrical Uncertainty SU

Instance-based Techniques ReliefF ReF
ReliefF-Weight RW

Classifier-based Techniques One Rule based selection ORF
SVM based Selection SVMF

Filter-based feature subset selection

Correlation-based Feature Subset
Selection

Best First CorBF
GreedyStepwise CorGS

Consistency-based Feature
Subset Selection

Best First ConBF
GreedyStepwise ConGS

Wrapper-based feature subset selection

Nearest Neighbor Best First NNBF
GreedyStepwise NNGS

Logistic Regression Best First LRBF
GreedyStepwise LRGS

Naive Bayes Best First NBBF
GreedyStepwise NBGS

Repeated Incremental Pruning to
Produce Error Reduction

Best First RIPBF
GreedyStepwise RIPGS

Without feature selection operation NONE NONE
3

3

3

f
e

3. Preliminaries

In this section, we briefly describe the used feature selection tech-
niques that consist of 11 filter-based feature ranking techniques, 4
filter-based feature subset selection techniques, and 8 wrapper-based
feature subset selection techniques. The main difference between filter-
based and wrapper-based feature selection techniques is that the former
just uses statistics to measure the importance of each feature towards
the class labels while the latter uses a predetermined classification
model and a performance indicator to measure the importance of
a feature subset [32]. In addition, we treat the NONE method that

ithout any feature selection operation as the most basic technique.
hus, we have a total of 24 feature selection techniques as the objects
f our study. The overview of these techniques are demonstrated in
able 1.

.1. Filter-based feature ranking

Filter-based feature ranking techniques first calculate the important
core for each feature, and then sort features based on their correspond-
ng scores. The higher score means the stronger correlation between the
orresponding feature and class labels.

.1.1. Statistic-based techniques
• Chi-Square (CS) [33] estimates the worth of features with the

chi-squared statistic value between each feature and class labels.
• CorRelation (CR) [34] evaluates the worth of features with the

Pearson correlation coefficient value between each feature and
class labels.

• Clustering Variation (CV) [35] measures the worth of features
with their variation coefficient value between each feature and
class labels.

.1.2. Probability-based techniques
• Probabilistic Significance (PS) [36] assigns a significance score to

each feature with its capacity to distinguish the difference of class
4

labels.
• Information Gain (IG) [37] evaluates the reduction of uncertainty
with class labels when given a specific feature. The drawback of
IG is that a multivalued feature tends to obtain a higher IG value.

• Gain Ratio (GR) [38] alleviates the weakness of IG by penalizing
the feature with more values.

• Symmetrical Uncertainty (SU) [39] alleviates the weakness of IG
by evaluating the symmetrical uncertainty between features and
class labels.

.1.3. Instance-based techniques
• ReliefF (ReF) [40] randomly selects an instance and its multi-

ple nearest neighbors from its same and different class labels
respectively in the training set, and then updates the correlation
score of each feature with the comparison of this instance and its
neighbors.

• ReliefF-Weight (RW) is a parameter tuning of the ReF, which
weights nearest neighbors with their distance to the selected
instance.

.1.4. Classifier-based techniques
• One Rule based Feature selection (ORF) [41] gets a set of candi-

date rules by generating one rule for each feature and then select
the rule with the least error ratio.

• Support Vector Machine based Feature selection (SVMF) [42]
ranks the features according to the square of the weight assigned
by the SVM classifier.

.2. Filter-based feature subset selection

Filter-based feature subset selection techniques aim to evaluate the
eature subset selected from the original feature set rather than evaluate
ach feature individually.

• Correlation-based feature subset selection (Cor) [43] uses the
correlation measure to select a feature subset in which features
have the low relevance among each other but high relevance to

class labels.

Information and Software Technology 139 (2021) 106652K. Zhao et al.

c
i

a
(
f

e
l
e
t
t
b

t
c

4

F
t
u
t
p

m
(
p
t

R
f
t

F

Table 2
The statistic information of the used 7 Projects.

Project # LOC # Crashes # InTrace # OutTrace Ratio

Codec 14,480 610 177 433 0.41
Collections 61,283 1,350 273 1,077 0.25
IO 26,018 686 149 537 0.28
Jsoup 15,460 601 120 481 0.25
JSqlParser 32,868 647 61 586 0.10
Mango 30,208 733 53 680 0.08
Ormlite 20,024 1,303 326 977 0.33

• Consistency-based feature subset selection (Con) [44] introduces
the consistency measure to select a minimal feature subset whose
consistency equals to the original feature set.

To generate the feature subset with the correlation-based and
onsistency-based methods, we employ two kinds of search strategies
n this work, which are described as follows.

• Best First (BF) is a heuristic search algorithm, which obtains a
feature subset with the hillclimbing and backtracking greedily. BF
has three types of strategies including forward search began with
a set without features, backword search began with a set contains
all features, and bidirectional search began with any one position
in the feature set.

• Greedy Stepwise (GS) generates a feature subset with a greedy
forward or backward search and stops until a feature is added or
deleted that causes the performance deterioration.

Combining the above two filter-based feature subset selection tech-
niques and the two search strategies, we have the following four
techniques, including Cor with BF, Con with BF, Cor with GS, and
Con with GS, which are short for CorBF, ConBF, CorGS, and ConGS,
individually.

3.3. Wrapper-based feature subset selection

Wrapper-based feature subset selection techniques generate a fea-
ture subset based on predetermined classification models and evalu-
ation indicators, aiming to select a feature subset that achieves the
best performance. In this work, we apply four classification mod-
els including Nearest Neighbor (NN), Logistic Regression (LR), Naive
Bayes (NB), and Repeated Incremental Pruning to produce error reduc-
tion (RIP) following the previous study [18,20]. The 4 classification
models are briefly described in Section 4.4. In addition, we employ
the Area Under the receiver operating characteristic Curve (AUC) as
the evaluation indicator which is described in Section 4.2. We also
use the aforementioned 2 search strategies for the selection process.
Combining the four classifiers and 2 search strategies, we have a total
of 8 techniques, including NN with BF, NN with GS, LR with BF, LR with
GS, NB with BF, NB with GS, RIP with BF, and RIP with GS, which are
short for NNBF, NNGS, LRBF, LRGS, NBBF, NBGS, RIPBF, and RIPGS,
individually.

4. Experiment setup

4.1. Studied corpora

In this work, we conduct experiments on a publicly available bench-
mark dataset [2] consisting of 7 Java projects, i.e., Codec, Apache Com-
mons Collections (Collections), Apache Commons IO (IO), Jsoup,
JSqlParser, Mango, and Ormlite-Core (Ormlite). Table 2 demon-
strates the statistic information of these projects including the Lines
of Code (# LOC), the number of the crash instances (# Crashes),
the number of crash instances inside the stack trace (# InTrace) and
outside the stack trace (# OutTrace), and the ratio of # InTrace to
5

OutTrace (Ratio). The main steps for collecting the data are briefly
described as follows:

Step 1: Crash generation. The testing tool PIT is applied to mimic
the real-world crashes in which 7 mutators are selected for mutation
generation. The mutators include conditionals boundary, increments,
invert negatives, math, negate conditionals, return values, and void
method calls. Then, 4 rules (i.e., the mutation passes all test cases
and the exception stack traces only contains the AssertionFailedError,
ComparisonFailure, or test cases) are utilized to filter the mutations that
do not induce the crashes. The remaining ones are the crashes used in
this work.

Step 2: Feature extraction. After generating crashes, 89 features are
extracted to characterize each crash with a static program analyzer
Spoon [45]. These features come from 5 categories: features Related
to the Stack Trace (RST), features Related to the Top Frame (RTF)
nd Bottom Frame (RBF), and features Normalized by LOC from RTF
NRTF) and RBF (NRBF). Table 3 presents the brief description of these
eatures.
Step 3: Crash labeling. As mentioned in Section 2, there are 3 main

lements in one frame, i.e., the class name, function name, and code
ine number. If the information of a crashing fault exactly matches the 3
lements of one frame in the stack trace, this crash is regarded as inside
he stack trace and the crash instance is labeled as ‘InTrace’, otherwise,
he crash instance is labeled as ‘OutTrace’. The label information can
e collected from the bug-fixing logs [2].

The corpora can be easy to extend to other projects as long as
he features of the crash instances and the corresponding labels are
ollected.

.2. Evaluation indicators

In this work, we follow the previous related studies [1,3] to employ
-measure, Matthews Correlation Coefficient (MCC), and Area Under
he receiver operating characteristic Curve (AUC) as indicators to eval-
ate the performance of the combination methods of feature selec-
ion techniques with classification models for crashing fault residence
rediction task. We introduce these indictors respectively.

There are four basic components for the outputs of the classification
odels, i.e., True Positive (TP), False Positive (FP), False Negative
FN), and True Negative(TN). The definitions of these components are
resented in Table 4 where ‘#’ denotes the specific number. Note that
he four items are for the crash instances with label ‘InTrace’.

F-measure is the weighted harmonic average between Precision and
ecall where Precision = TP/(TP+FP) and Recall =TP/(TP+FN). The

irst indicator used is F-measure for crash instances inside the stack
race (short for FIT) which is formulized as follows:

IT = 2 × Precision × Recall
Precision + Recall

(1)

Similarly, for the crash instances with label ‘OutTrace’, there also
has four components, i.e., TP′, FP′, FN′, and TN′ which are equal to
TN, FN, FP, and TP, respectively. The second indicator, i.e., F-measure
for crash instances outside the stack trace (short for FOT), is formulized
as follows:

FOT = 2 × Precision′ × Recall′

Precision′ + Recall′
(2)

where Precision′ = TP′∕(TP′ + FP′) and Recall′ = TP′∕(TP′ + FN′).
The third indicator used is MCC, a Pearson correlation coefficient

based comprehensive evaluation. MCC for crash instances with label
‘InTrace’ (MCCIT) is formulized as follows:

MCCIT = TP × TN − FP × FN
√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(3)

Due to the relationship between the four components for the crash
instances with label ‘InTrace’ and ‘OutTrace’, MCC is equal to MCC .
IT OT

Information and Software Technology 139 (2021) 106652K. Zhao et al.

o
t
s
t
h
‘

a
i
l
i
i
i
t

4

s
o
s
t
k
p
f
s
t
s
r

Table 3
The brief description of 89 features.

Feature Description Feature Description

RST Features related to the stack trace RTF (and RBF) Features related to the top frame and the bottom frame

RST01 Type of the exception in the crash RTF01 (RBF01) Number of local variables in the top/bottom class
RST02 Number of frames of the stack trace RTF02 (RBF02) Number of fields in the top/bottom class
RST03 Number of classes in the stack trace RTF03 (RBF03) Number of functions (except constructor functions) in the

top/bottom class
RST04 Number of functions in the stack trace RTF04 (RBF04) Number of imported packages in the top/bottom class
RST05 Whether an overloaded function exists in the stack trace RTF05 (RBF05) Whether the top/bottom class is inherited from others
RST06 Length of the name in the top class RTF06 (RBF06) LOC of comments in the top/bottom class
RST07 Length of the name in the top function RTF07 (RBF07) LOC of the top/bottom function
RST08 Length of the name in the bottom class RTF08 (RBF08) Number of parameters in the top/bottom function
RST09 Length of the name in the bottom function RTF09 (RBF09) Number of local variables in the top/bottom function
RST10 Number of Java files in the project RTF10 (RBF10) Number of if-statements in the top/bottom function
RST11 Number of classes in the project RTF11 (RBF11) Number of loops in the top/bottom function

NRTF (and NRBF) Features normalized by LOC from RTF and RBF RTF12 (RBF12) Number of for statements in the top/bottom function

NRTF01 (NRBF01) RTF08/RTF07 (RBF08/RBF07) RTF13 (RBF13) Number of for-each statements in the top/bottom function
NRTF02 (NRBF02) RTF09/RTF07 (RBF09/RBF07) RTF14 (RBF14) Number of while statements in the top/bottom function
NRTF03 (NRBF03) RTF10/RTF07 (RBF10/RBF07) RTF15 (RBF15) Number of do-while statements in the top/bottom function
NRTF04 (NRBF04) RTF11/RTF07 (RBF11/RBF07) RTF16 (RBF16) Number of try blocks in the top/bottom function
NRTF05 (NRBF05) RTF12/RTF07 (RBF12/RBF07) RTF17 (RBF17) Number of catch blocks in the top/bottom function
NRTF06 (NRBF06) RTF13/RTF07 (RBF13/RBF07) RTF18 (RBF18) Number of finally blocks in the top/bottom function
NRTF07 (NRBF07) RTF14/RTF07 (RBF14/RBF07) RTF19 (RBF19) Number of assignment statements in the top/bottom

function
NRTF08 (NRBF08) RTF15/RTF07 (RBF15/RBF07) RTF20 (RBF20) Number of function calls in the top/bottom function
⋯ ⋯ RTF21 (RBF21) Number of return statements in the top/bottom function
NRTF15 (NRBF15) RTF22/RTF07 (RBF22/RBF07) RTF22 (RBF22) Number of unary operators in the top/bottom function
NRTF16 (NRBF16) RTF23/RTF07 (RBF23/RBF07) RTF23 (RBF23) Number of binary operators in the top/bottom function
Table 4
The definition of four basic components.
Component Definition

True Positive (TP) # crash instances with label InTrace that are predicted as InTrace
False Positive (FP) # crash instances with label OutTrace but are predicted as InTrace
False Negative (FN) # crash instances with label InTrace but are predicted as OutTrace
True Negative (TN) # crash instances with label OutTrace that are predicted as OutTrace
The last indicator is AUC which is the area under the receiver
perating characteristic curve. The 𝑥-axis and 𝑦-axis of the curve for
he crash instances with label ‘InTrace’ are 𝐹𝑃

𝐹𝑃+𝑇𝑁 and 𝑇𝑃
𝑇𝑃+𝐹𝑁 , re-

pectively. As the horizontal and vertical coordinates of the curve for
he crash instances with label ‘InTrace’ correspond to the vertical and
orizontal coordinates of the curve for the crash instances with label

OutTrace’, respectively. Thus, AUCIT is equal to AUCOT.
Among the 4 indicators, FIT, FOT, and AUC range from 0 to 1,

nd MCC ranges from −1 to 1. F-measure=0, MCC=-1, and AUC=0
mply that all the focused crash instances are predicted as the incorrect
abels, while F-measure=1, MCC=1, and AUC=1 mean that all crash
nstances are predicted as the correct labels. The model with larger
ndicator value indicates that it obtains the better performance. These
ndicators are widely used in previous studies for software engineering
asks [1,2,27,46–48].

.3. Data partition

In this work, the stratified sampling technique is applied to con-
truct the training set and test set. More specifically, we select half
f the crash instances with label ‘InTrace’ and ‘OutTrace’ as training
et and the remainder as the test set. This partition technique ensures
hat both the training set and test set have the same ratio of the two
inds of crash instances as the original set. We repeat this segmentation
rocess 100 times to mitigate the random biases. In this work, we
irst divide the data into training set and test set with the stratified
ampling and use the z-score based normalization method to preprocess
he two sets separately, and then individually apply the 24 feature
election techniques to the training set to find out the indexes of the
epresentative features.
6

4.4. Classification models

To evaluate the performance of the investigative feature selection
techniques for predicting crashing faults residence, in this work, we
employ a total of 21 classifiers to construct our classification models.
These models derive from 7 families including 3 statistic-based, 2
neural network based, 7 decision tree based, 5 rule-based, 2 nearest
neighbor based, one support vector machine based, and one ensemble-
based classifiers. Table 5 demonstrates the overview of these classifiers.
The detailed introduction of these models can be found in [49,50].
Here, we briefly describe these classification models as follows:

4.4.1. Statistic-based classification models
Statistic-based method has an explicit underlying probability model

that can calculate the probability an instance belonging to each class
[51].

• Naive Bayes (NB) holds the assumption that all features are
independent among each other when given a specific class.

• Bayesian Network (BN) characterizes the dependencies between
features based on a directed acyclic graph and depicts the joint
probability between features with a conditional probability table,
which can express the conditional independence among features
effectively.

• Logistic Regression (LR) is a generalized linear model which
introduces the logistic function for classification.

4.4.2. Neural network based classification models
Neural network based method consists of a set of units belonging to

different types of layers that are connected with distinct weights. The
network adjusts the weights to make the label prediction of the input
instances correct during the learning process [52].

Information and Software Technology 139 (2021) 106652K. Zhao et al.

4

n
v
T
v

4

s
c

Table 5
The overview of 21 classifiers.
Family Classifiers Abbreviation

Statistic-based classification models
Naive Bayes NB
Bayesian Network BN
Logistic Regression LR

Neural network based classification models Radial Basis Function RBF
Multi-Layer Perceptron MLP

Decision tree based classification models

Logistic Model Tree LMT
Classification and Regression Tree CART
J48 J48
Alternating Decision Tree ADT
Decision Stump DS
Naive Bayes/Decision-Tree NDT
Random Tree RT

Rule-based classification models

Repeated Incremental Pruning to
Produce Error Reduction

RIP

One Rule based Classifier ORC
Decision Table DT
Partial Decision Tree PDT
Ripple Down Rule RDR

Nearest neighbor based classification models Nearest Neighbor NN
KStar KS

Support vector machine based classification models Voted Perceptron VP

Ensemble-based classification models Random Forest RF
4

r
c
o
i
c

4

o
s
d

4

b
i
t

• Radial Basis Function (RBF) is a feedforward network with one
hidden layer and then outputs the linear combination of hidden
units.

• Multi-Layer Perceptron (MLP) trains models with forward and
backward propagation algorithms, which contains three types of
layers, i.e., the input layer, hidden layer, and output layer.

.4.3. Decision tree based classification models
Decision tree based method is a tree structure in which each internal

ode denotes a feature to be classified, each branch denotes possible
alue for an internal node, and each leaf node denotes a class label.
he classification of an instances is determined based on its feature
alues [53].

• Logistic Model Tree (LMT) uses LR to select relevant features to
construct a decision tree.

• Classification And Regression Tree (CART) applies the gini index
to split features for decision tree construction.

• J48 applies the information gain ratio to split features for decision
tree construction.

• Alternating Decision Tree (ADT) consists of two types of nodes,
i.e., prediction node and decision node. ADT repeats the following
rule for constructing the tree: a prediction node generates multi-
ple decision nodes and a decision node generates two prediction
nodes until all the nodes follow this rule.

• Decision Stump (DS) generates a one-level decision tree for clas-
sification.

• Naive Bayes/Decision-Tree (NDT) [54] generates a classification
model by combining the NB and decision tree, which is cost
insensitive.

• Random Tree (RT) generates the decision tree by randomly se-
lecting features.

.4.4. Rule-based classification models
Rule-based method makes the class decision by using various rules,

uch as ‘IF-THEN’ rules [55]. The merit of this type of model is its
omprehensibility.

• Repeated Incremental Pruning to produce error reduction (RIP)
constructs a rule set based classification model, which ranks the
classes with their frequencies and applies the IG for adding rules.

• One Rule based Classifier (ORC) generates a classification rule
7

with the values from a specific feature. l
• Decision Table (DT) produces a table in which each row cor-
responds to each input combination (i.e., the rule) while each
column represents each feature. DT comprehensively considers
the feature combinations.

• Partial Decision Tree (PDT) applies the separate-and-conquer
technique to generate a decision tree list where each decision tree
is built by partial C4.5.

• Ripple Down Rule (RDR) uses a two-decision tree for classifica-
tion and the final class is determined by the majority class in leaf
nodes.

.4.5. Nearest neighbor based classification models
Nearest neighbor based method is a family of lazy learner which

equires less computation time during the training phase but more
omputation time during the test phase. The learning process is based
n the neighbors of the test instance. More specifically, for a test
nstance, this kind of method makes a decision of its class label by
alculating the distance or similarity between it and its neighbors [56].

• Nearest Neighbour (NN) determines the class to which a specific
instance belongs by the majority class of its multiple nearest
neighbors.

• KStar (KS) is a variant of NN that introduces an entropic measure
for computing the distance between instances.

.4.6. Support vector machine based classification models
Support Vector Machine (SVM) based method applies a nonlinear

peration to map the original data into a higher-dimensional feature
pace, and then uses a hyperplane to separate the instances with
ifferent labels in the new space [57].

• Voted Perceptron (VP) makes full use of the classification vectors
for performance improvement. A vector producing more correct
predictions means that it has a higher weight.

.4.7. Ensemble-based classification models
Ensemble-based method is a family of composite model that com-

ines the results of multiple base learners to determine the label of an
nstance, such as using the majority voting mechanism [58]. In general,
his kind of method tends to be more effective than the individual

earner.

Information and Software Technology 139 (2021) 106652K. Zhao et al.

a
r
e
t
i
i
v
w
t
m
f

f
t
4
w
o
a
F
m
e
t
t
(
U
c
i
m

c
t
o
a
(
a
e
m
t
h
a
P
U
c
i
m

c
t
4
w
o
a
F
t

• Random Forest (RF) generates an ensemble model with the deci-
sion tree as the basic model. Each instance is sampled randomly
for training different decision trees.

4.5. Parameter configuration

For the feature selection techniques that need to specify the number
of selected features, as previous studies [59,60] which suggested that
the model built on 15% of the original features can obtain the same
even better performance than on the original ones, we set the number
of remaining features to 89 × 15% = 14. Note that the test set reserves
the same features as the simplified training set. After obtaining the
processed data, we build the classification model on the simplified
training set and evaluate the performance on the simplified test set.
Fig. 2 demonstrates the overview of our experiment process in this
work.

4.6. Statistic test

Some previous studies [18,27,61,62] applied the Scott–Knott test to
conduct significance analysis for performance results, which generates
the discrepant ranking results with the hierarchical clustering tech-
nique [63]. However, the Scott–Knott test contains some restrictions:
the analyzed data needs to follow the normal distribution and this
test is insensitive to the groups with the negligible effect size. To
overcome the above drawbacks, Tantithamthavorn et al. [61] pro-
posed an extended version of the Scott–Knott test, i.e., Scott-Knott
Effect Size Difference (SKESD), which disposes the inputs with the
log-transforming and amends the groups with the negligible Cohens
delta effect size. In this work, we employ a two-phase SKESD test
to analyze the significant differences of the results for these explored
methods that combine the feature selection techniques with classifica-
tion models. The process of the SKESD test is demonstrated in Fig. 3.
In the first phase, SKESD receives the 100 indicator values of each
feature selection method on each project or classification model and
outputs their ranking results individually. In the second phase, SKESD
receives the ranking results produced by previous phase and outputs
the final ranking. The two-phase SKESD test considers the overall
ranking value for each feature selection technique among all projects
or classification models, aiming to obtain an appropriate global ranking
value. The lower ranking value of a feature selection technique means
that it achieves better performance. SKESD incorporates the effect size
analysis, which merges the statistically different groups that have a
negligible effect size into one group [61].

In this work, we mainly use WEKA 3.8.4 to implement these feature
selection techniques and classification models, and conduct all experi-
ments on Windows 10 (Memory: 16 GB, Processor: Intel(R) Core(TM)
i7-4790 CPU @ 3.60 GHz × 4). We have released the code scripts and
benchmark dataset on the GitHub at https://github.com/sepine/IST-
2021 for reproducing our experiments.

5. Experiment results

As we apply these studied feature selection techniques on 7 projects
with 21 classification models, in this section, we analyze the results
from two perspectives: the first one is to investigate the impact the
feature selection techniques on each classification model, and the sec-
ond one is to investigate the impact of feature selection techniques on
each project, i.e., from the classification model level and project level,
respectively.
8

e

5.1. RQ1: How different feature selection techniques impact the perfor-
mance of each classification model across all 7 projects?

Methods: Since this question investigates the performance impact
of different feature selection techniques on each classification model, to
answer this question, we analyze the obtained results at the classifier
level. More specifically, in terms of each indicator, we report its average
values of each feature selection technique on each classification model
across all 7 projects. In addition, we conduct SKESD test on these results
and report the ranking values with each indicator individually.

Results: We have a total of 24 × 21 × 100 × 7 = 352,800 values
nd 24 × 21 = 504 average values in terms of each indicator for this
esearch question. In this work, we use the heat map to report the av-
rage results. Fig. 4 depicts the average value of each feature selection
echnique for each classifier across all projects in terms of 4 indicators
ndividually. The cell with darker color means that it obtains the better
ndicator value. Fig. 5 demonstrates the corresponding SKESD ranking
alue of each feature selection technique on each classifier. The cell
ith darker color means that it obtains the worse ranking value. From

he two figures, we can observe that the SU (Symmetrical Uncertainty)
ethod performs best on the used indicators overall. More detailed

indings are as follows:
First, in terms of FIT, from Fig. 4(a), we can observe that, 6 classi-

ication models (including CART, ADT, NDT, DT, KS, and RF) achieve
he better performance on most of feature selection techniques, while

classification models (including NB, RBF, DS, and VP) achieve the
orse performance on most of feature selection techniques. In addition,
ne feature selection technique (i.e., CV (Clustering Variation)) always
chieves the worse performance on nearly all classification models.
rom Fig. 5(a), the number of SKESD ranking for 9 classification
odels (including BN, LR, RBF, MLP, ADT, RT, DT, VP, and RF) is

qual to or more than 10. This means that the performance results on
hese 9 classifiers have large differences across these feature selection
echniques. In addition, 3 feature selection techniques (including PS
Probabilistic Significance), GR (Gain Ratio), and SU (Symmetrical
ncertainty)) belong to the top-3 SKESD ranking across most of the
lassification models in which SU (Symmetrical Uncertainty) appears
n the top-3 SKESD ranking for nearly 86% of the studied classification
odels.

Second, in terms of FOT, from Fig. 4(b), we can observe that, 5
lassification models (including CART, ADT, NDT, DT, and RF) achieve
he better performance on most of feature selection techniques, while
ne classification model (i.e., NB) achieves the worse performance on
ll feature selection techniques. In addition, 2 feature selection methods
including CV (Clustering Variation) and SVMF (SVM based Selection))
lways achieves the worse performance on nearly all classification mod-
ls. From Fig. 5(b), the number of SKESD ranking for 7 classification
odels (including NB, BN, LR, NN, KS, VP, and RF) is equal to or more

han 10. This means that the performance results on these 7 classifiers
ave large differences across these feature selection techniques. In
ddition, 4 feature selection techniques (including CS (Chi-Square),
S (Probabilistic Significance), GR (Gain Ratio), and SU (Symmetrical
ncertainty)) belong to the top-3 SKESD ranking across most of the
lassification models in which SU (Symmetrical Uncertainty) appears
n the top-3 SKESD ranking for nearly 81% of the studied classification
odels.

Third, in terms of MCC, from Fig. 4(c), we can observe that, 5
lassification models (including CART, ADT, NDT, DT, and RF) achieve
he better performance on most of feature selection techniques, while

classification models (including NB, RBF, DS, and VP) achieve the
orse performance on most of feature selection techniques. In addition,
ne feature selection method (i.e., CV (Clustering Variation)) always
chieves the worse performance on nearly all classification models.
rom Fig. 5(c), the number of SKESD ranking for most of classifica-
ion models (except for LMT, CART, J48, DS, NDT, PDT, and RF) is

qual to or more than 10. This means that the performance results on

https://github.com/sepine/IST-2021
https://github.com/sepine/IST-2021
https://github.com/sepine/IST-2021

Information and Software Technology 139 (2021) 106652K. Zhao et al.
Fig. 2. The overview of our experimentation.
Fig. 3. The framework of SKESD test.
most of classifiers have large differences across these feature selection
techniques. In addition, 3 feature selection techniques (including PS
(Probabilistic Significance), GR (Gain Ratio), and SU (Symmetrical
Uncertainty)) belong to the top-3 SKESD ranking across most of the
classification models in which GR appears in the top-3 SKESD ranking
for nearly 62% of the studied classification models.

Fourth, in terms of AUC, from Fig. 4(d), we can observe that, one
classification model (i.e., RF) always achieves the better performance
on nearly all feature selection techniques, while one classification
model (i.e., DS) always achieves the worse performance on nearly all
feature selection techniques. In addition, one feature selection tech-
nique (i.e., CV (Clustering Variation)) achieves the worse performance
on all classification models. From Fig. 5(d), the number of SKESD rank-
ing for most of classification models (except for LR, RBF, CART, J48,
ADT, DS, RIP, ORC, PDT, and RDR) is equal to or more than 10. This
means that the performance results on most of classifiers have large
differences across these feature selection techniques. In addition, 3
feature selection techniques (including PS (Probabilistic Significance),
GR (Gain Ratio), and SU (Symmetrical Uncertainty)) belong to the top-
9

3 SKESD ranking across most of the classification models in which
SU (Symmetrical Uncertainty) appears in the top-3 SKESD ranking for
nearly 81% of the studied classification models.

Fifth, from Fig. 4(a)–(d), we observe that most feature selection
techniques, except for several methods such as CR (Correlation), CV
(Clustering Variation), ReF (ReliefF), and RW (ReliefF-Weight), can
achieve similar or even better overall performance across all projects
compared with the NONE method that using the original features with-
out any feature selection process on most classification models. This
implies that the crash data simplified by most feature selection tech-
niques can maintain and improve the performance of most classification
models with fewer features.

Answer: To sum up, probability-based feature ranking technique
SU (Symmetrical Uncertainty) outperforms other feature selection tech-
niques, appearing in the top-3 SKESD ranking for 86%, 81%, and 81%
of the studied models in terms of FIT, FOT, and AUC, respectively. GR
(Gain Ratio) outperforms other feature selection methods, appearing in
the top-3 SKESD ranking for 62% of the studied classification models
in terms of MCC. Meanwhile, statistic-based feature ranking technique
CV (Clustering Variation) obtains the worst rank across all classification

models in terms of all 4 indicators.

Information and Software Technology 139 (2021) 106652K. Zhao et al.
Fig. 4. Mean value of each feature selection technique for each classifier across all projects in terms of the 4 indicators.
5.2. RQ2: What are the impacts of different feature selection techniques on
the performance of each project across all 21 classification models?

Methods: Since this question investigates the performance impact
of different feature selection techniques on each project, to answer
this question, we analyze the obtained results at the project level.
More specifically, in terms of each indicator, we report its average
values of each feature selection technique on each project across all
21 classification models. In addition, we conduct SKESD test on these
results and report the ranking values with each indicator individually.

Results: We have a total of 24 × 7 = 168 average results in
terms of each indicator for this research question. Fig. 6 depicts the
average value of each feature selection technique for each project
across all classification models in terms of 4 indicators individually.
Fig. 7 demonstrates the corresponding SKESD ranking value of each
feature selection technique on each project. From the two figures, we
can observe that the methods CS (Chi-Square), PS (Probabilistic Signif-
icance), GR (Gain Ratio), and SU (Symmetrical Uncertainty) perform
the best on the used indicators overall. More detailed findings are as
follows:

First, in terms of FIT, from Fig. 6(a), we can observe that, most
of feature selection techniques achieve the better performance on 2
10
projects (including JSqlParser and Ormlite), while most of feature se-
lection techniques achieve worse performance on 3 projects (including
Codec, Jsoup, and Mango). In addition, one feature selection method
(i.e., CV (Clustering Variation)) achieves the worse performance on
all projects. From Fig. 7(a), the number of SKESD ranking for one
project (i.e., Mango) is equal to or more than 10. This means that the
performance results on this project have big differences across these
feature selection techniques. In addition, 6 feature selection techniques
(including CS (Chi-Square), PS (Probabilistic Significance), IG (Informa-
tion Gain), GR (Gain Ratio), SU (Symmetrical Uncertainty), and SVMF
(SVM based Selection)) belong to the top-3 SKESD ranking across more
than half of projects in which PS (Probabilistic Significance) appears in
the top-3 SKESD ranking on all studied projects.

Second, in terms of FOT, from Fig. 6(b), we can observe that,
most of feature selection techniques achieve the better performance
on 2 projects (including JSqlParser and Mango), while most of feature
selection techniques achieve worse performance on another 2 projects
(including Codec and Jsoup). In addition, one feature selection tech-
nique (i.e., CV (Clustering Variation)) achieves the worse performance
on all projects. From Fig. 7(b), the number of SKESD ranking for 3
projects (including Collections, Mango, and Ormlite) is equal to or more
than 10. This means that the performance results on the 3 projects have

Information and Software Technology 139 (2021) 106652K. Zhao et al.

b
7
b
C
C
w
B
p
o

o
p
s
(
n
o
o
t
h
d
(

Fig. 5. SKESD ranking of each feature selection technique on each classifier across all projects in terms of the 4 indicators.
ig differences across these feature selection techniques. In addition,
feature selection techniques (including CS (Chi-Square), PS (Proba-

ilistic Significance), GR (Gain Ratio), SU (Symmetrical Uncertainty),
orBF (Correlation-based Feature Subset Selection with Best First),
orGS (Correlation-based Feature Subset Selection with GreedyStep-
ise), and ConBF (Consistency-based Feature Subset Selection with
est First)) belong to the top-3 SKESD ranking across more than half of
rojects, in which all the techniques appear in the top-3 SKESD ranking
n nearly 71% of all studied projects.

Third, in terms of MCC, from Fig. 6(c), we can observe that, most
f feature selection techniques achieve the better performance on 2
rojects (including JSqlParser and Ormlite), while most of feature
election techniques achieve worse performance on another 2 projects
including Codec and Jsoup). In addition, one feature selection tech-
ique (i.e., CV (Clustering Variation)) achieves the worse performance
n all projects. From Fig. 7(c), the number of SKESD ranking for most
f projects (except for Codec and JSqlParser) is equal to or more
han 10. This means that the performance results on these projects
ave big differences across these feature selection techniques. In ad-
ition, 6 feature selection techniques (including CS (Chi-Square), PS
11

Probabilistic Significance), IG (Information Gain), GR (Gain Ratio), SU
(Symmetrical Uncertainty), and SVMF (SVM based Selection)) belong
to the top-3 SKESD ranking across more than half of projects in which
SU (Symmetrical Uncertainty) appears in the top-3 SKESD ranking on
all studied projects.

Fourth, in terms of AUC, from Fig. 6(d), we can observe that,
most of feature selection techniques achieve the better performance on
2 projects (including JSqlParser and Ormlite), while most of feature
selection techniques achieve worse performance on another 2 projects
(including Codec and Jsoup). In addition, one feature selection tech-
nique (i.e., CV (Clustering Variation)) achieves the worse performance
on all projects. From Fig. 7(d), the number of SKESD ranking for 2
projects (including Collections and JSqlParser) is equal to or more than
10. This means that the performance results on the 2 projects have
big differences across these feature selection techniques. In addition, 6
feature selection methods (including CS (Chi-Square), PS (Probabilistic
Significance), IG (Information Gain), GR (Gain Ratio), SU (Symmetrical
Uncertainty), and ReF (ReliefF)) belong to the top-3 SKESD ranking
across more than half of projects in which CS (Chi-Square) and SU
(Symmetrical Uncertainty) appear in the top-3 SKESD ranking on nearly
86% of all studied projects.

Fifth, from Fig. 6(a)–(d), we observe that most feature selection

techniques, except for several methods such as CR (Correlation) and

Information and Software Technology 139 (2021) 106652K. Zhao et al.

C
p
m
p
s
m

Fig. 6. Mean value of each feature selection technique on each project across all classification models in terms of the 4 indicators.
V (Clustering Variation), can achieve similar or even better overall
erformance across all classification models compared with the NONE
ethod that using the original features without any feature selection
rocess on most projects. This implies the effectiveness of most feature
election techniques across all classification models when applied to
ost projects for the crashing fault residence prediction task.
12
Answer: In summary, 4 feature ranking techniques, i.e., CS (Chi-
Square), PS (Probabilistic Significance), GR (Gain Ratio), and SU (Sym-
metrical Uncertainty), obtain the outstanding performance, in which CS
(Chi-Square) appears in the top-3 SKESD ranking on 86%, 71%, 71%,
and 86% of all studied projects in terms of 4 indicators, respectively.
PS (Probabilistic Significance) appears in the top-3 SKESD ranking

Information and Software Technology 139 (2021) 106652K. Zhao et al.
Fig. 7. SKESD ranking of each feature selection technique on each project across all classification models in terms of the 4 indicators.
on 100%, 71%, 71%, and 71% of all studied projects in terms of 4
indicators respectively. GR (Gain Ratio) appears in the top-3 SKESD
ranking on 71%, 71%, 71%, and 71% of all studied projects in terms
of 4 indicators respectively. SU (Symmetrical Uncertainty) appears in
13
the top-3 SKESD ranking on 86%, 71%, 100%, and 86% of all studied
projects in terms of 4 indicators respectively. Meanwhile, statistic-based
feature ranking technique CV (Clustering Variation) nearly obtains the
worse ranking across all studied projects in terms of all 4 indicators.

Information and Software Technology 139 (2021) 106652K. Zhao et al.
6. Threats to validity

6.1. Internal validity

Threats to internal validity come from the implementation mistakes
during our experiments. To relieve these threats, in this work, we take
full use of the off-the-shelf implementation provided by third-party
libraries to implement the studied 24 feature selection techniques and
21 classification models to avoid the potential mistakes.

6.2. External validity

Threats to external validity lie in the generalization of our study
results. In this work, we conduct experiments on a benchmark dataset
including 7 open-source projects. Since the crash data in these projects
generated by the program mutation tool to mimic the real-world ones,
which cannot completely substitute the actual crashes. We will collect
real crash data and conduct experiments on them to enhance the
generalization of our work. In addition, the applied feature selection
techniques come from 4 families and the classification models come
from 7 families, which enables the diversity and representativeness of
the research objects. This helps to improve the generalization ability of
the results. Another threat to external validity is that, in this work, we
do not consider the class imbalance issue of the data which may affect
our experimental results. We plan to do a special study that focuses on
the impact of different class imbalance methods on the performance of
crashing fault residence prediction model.

6.3. Construct validity

Threats to construct validity focus on the reasonability of the used
performance indicators and the statistic test method. In this work,
we apply 4 indicators to comprehensively evaluate the performance
for crashing fault residence prediction, including FIT, FOT, MCC, and
AUC. We also employ the state-of-the-art SKESD test to analyze the
significant differences of these feature selection techniques. These can
make the analysis of our experimental results more rigorous.

7. Conclusion

Predicting whether the crashing fault resides in the stack trace can
assist the crash localization process by reducing the corresponding
search space and prioritizing the testing efforts. In this work, we
conduct a large-scale empirical study to explore how the 24 feature
selection techniques impact on the performance of 21 classification
models for the crashing fault residence prediction task with 4 eval-
uation indicators on a benchmark dataset including 7 open-source
software projects. In addition, we analyze the experimental results with
SKESD test on both the classification model level and project level. Our
findings are that

• On classification model level, a probability-based feature selec-
tion method (i.e., SU (Symmetrical Uncertainty)) performs better
than other feature selection methods, appearing in the top-3
SKESD ranking for more than 80% of the studied classification
models in terms of 3 indicators (i.e., FIT, FOT, and AUC).

• On project level, one statistic-based feature selection method
(i.e., CS (Chi-Square)) and three probability-based feature se-
lection methods (i.e., PS (Probabilistic Significance), GR (Gain
Ratio), and SU (Symmetrical Uncertainty)) achieve better per-
formance than other feature selection methods, appearing in the
top-3 SKESD ranking for more than 70% of the studied project in
terms of all 4 indicators.

• CV (Clustering Variation, a statistic-based feature selection
method) is not sensitive to the studied classification models and
projects as it always achieves the worse performance at both the
14

classification model level and the project level.
• Two decision tree based classification models (i.e., ADT and DT)
and one ensemble-based classification models (i.e., RF) present
the superiority compared with other models across all 4 indica-
tors. This finding is consistent with Gu et al.’s [2] which also
showed that a decision tree based classifier performs the best.

• The impact of feature selection techniques varies across classi-
fication models and projects. These feature selection techniques
are divided into several groups with significant differences on
some studied classification models or projects, whereas there is
a clear significant differences with many groups among these
methods when applied to some other studied classification models
or projects.

• Not all feature selection methods help improve the performance
for the crashing fault residence prediction task. For example,
the NONE method outperforms the CV method in most case
on both classification model level and project level. Thus, re-
searchers and practitioners should carefully select the appropriate
feature selection methods to preprocess the crash instance data
for performance improvements.

This work is just a preliminary exploration to find out the most
appropriate feature selection techniques for the crashing fault residence
prediction task. In the future, we plan to expand the experiments to
other feature selection techniques, such as hybrid based methods and
feature extraction methods, on the data of real crashes.

CRediT authorship contribution statement

Kunsong Zhao: Writing - original draft, Methodology, Software,
Data curation. Zhou Xu: Supervision, Project administration. Meng
Yan: Formal analysis, Visualization. Tao Zhang: Conceptualization,
Writing - review & editing. Dan Yang: Funding acquisition. Wei Li:
Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported in part by the National Natural Science
Foundation of China (No. 62002034), the Fundamental Research Funds
for the Central Universities, China (Nos.2020CDCGRJ072, 2020CDJQY-
A021, and JUSRP121073), China Postdoctoral Science Foundation (No.
2020M673137), the Natural Science Foundation of Chongqing in China
(No.cstc2020jcyj-bshX0114), the Science and Technology Development
Fund of Macau (No.0047/2020/A1), Faculty Research Grant Projects of
MUST (No.FRG-20-008-FI).

References

[1] Z. Xu, K. Zhao, M. Yan, P. Yuan, L. Xu, Y. Lei, X. Zhang, Imbalanced metric
learning for crashing fault residence prediction, J. Syst. Softw. (JSS) (2020)
110763.

[2] Y. Gu, J. Xuan, H. Zhang, L. Zhang, Q. Fan, X. Xie, T. Qian, Does the fault
reside in a stack trace? Assisting crash localization by predicting crashing fault
residence, J. Syst. Softw. (JSS) 148 (2019) 88–104.

[3] Z. Xu, T. Zhang, J. Keung, M. Yan, X. Luo, X. Zhang, L. Xu, Y. Tang, Feature
selection and embedding based cross project framework for identifying crashing
fault residence, Inf. Softw. Technol. (IST) (2020) 106452.

[4] Z. Xu, T. Zhang, Y. Zhang, Y. Tang, J. Liu, X. Luo, J. Keung, X. Cui, Identifying
crashing fault residence based on cross project model, in: 2019 IEEE 30th
International Symposium on Software Reliability Engineering (ISSRE), IEEE,
2019, pp. 183–194.

[5] N. Chen, S. Kim, Star: Stack trace based automatic crash reproduction via

symbolic execution, IEEE Trans. Softw. Eng. (TSE) 41 (2) (2014) 198–220.

http://refhub.elsevier.com/S0950-5849(21)00115-4/sb1
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb1
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb1
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb1
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb1
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb2
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb2
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb2
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb2
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb2
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb3
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb3
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb3
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb3
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb3
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb4
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb4
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb4
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb4
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb4
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb4
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb4
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb5
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb5
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb5

Information and Software Technology 139 (2021) 106652K. Zhao et al.
[6] J. Xuan, X. Xie, M. Monperrus, Crash reproduction via test case mutation: let
existing test cases help, in: Proceedings of the 10th Joint Meeting on Foundations
of Software Engineering, 2015, pp. 910–913.

[7] M. Nayrolles, A. Hamou-Lhadj, S. Tahar, A. Larsson, JCHARMING: A bug
reproduction approach using crash traces and directed model checking, in:
Proceedings of the 22nd IEEE International Conference on Software Analysis,
Evolution, and Reengineering (SANER), IEEE, 2015, pp. 101–110.

[8] M. Soltani, A. Panichella, A. Van Deursen, A guided genetic algorithm for auto-
mated crash reproduction, in: Proceedings of the 39th IEEE/ACM International
Conference on Software Engineering (ICSE), IEEE, 2017, pp. 209–220.

[9] R. Wu, H. Zhang, S.-C. Cheung, S. Kim, CrashLocator: locating crashing faults
based on crash stacks, in: Proceedings of the 23rd International Symposium on
Software Testing and Analysis (ISSTA), 2014, pp. 204–214.

[10] C.-P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, H. Mei, Boosting bug-
report-oriented fault localization with segmentation and stack-trace analysis, in:
Proceedings of the 30th IEEE International Conference on Software Maintenance
and Evolution (ICSME), IEEE, 2014, pp. 181–190.

[11] L. Moreno, J.J. Treadway, A. Marcus, W. Shen, On the use of stack traces to
improve text retrieval-based bug localization, in: Proceedings of the 30th IEEE
International Conference on Software Maintenance and Evolution (ICSME), IEEE,
2014, pp. 151–160.

[12] R. Wu, M. Wen, S.-C. Cheung, H. Zhang, Changelocator: locate crash-inducing
changes based on crash reports, Empir. Softw. Eng. (EMSE) 23 (5) (2018)
2866–2900.

[13] K. Gao, T.M. Khoshgoftaar, H. Wang, An empirical investigation of filter
attribute selection techniques for software quality classification, in: 2009 IEEE
International Conference on Information Reuse & Integration, IEEE, 2009, pp.
272–277.

[14] K. Muthukumaran, A. Rallapalli, N.B. Murthy, Impact of feature selection
techniques on bug prediction models, in: Proceedings of the 8th India Software
Engineering Conference, 2015, pp. 120–129.

[15] K. Gao, T.M. Khoshgoftaar, H. Wang, N. Seliya, Choosing software metrics for
defect prediction: an investigation on feature selection techniques, Softw. - Pract.
Exp. 41 (5) (2011) 579–606.

[16] H. Wang, T.M. Khoshgoftaar, A. Napolitano, A comparative study of ensemble
feature selection techniques for software defect prediction, in: 2010 Ninth
International Conference on Machine Learning and Applications, IEEE, 2010, pp.
135–140.

[17] H. Wang, T.M. Khoshgoftaar, J. Van Hulse, K. Gao, Metric selection for software
defect prediction, Int. J. Softw. Eng. Knowl. Eng. (IJSEKE) 21 (02) (2011)
237–257.

[18] Z. Xu, J. Liu, Z. Yang, G. An, X. Jia, The impact of feature selection on defect
prediction performance: An empirical comparison, in: Proceedings of the 27th
IEEE International Symposium on Software Reliability Engineering (ISSRE), IEEE,
2016, pp. 309–320.

[19] J. Stuckman, J. Walden, R. Scandariato, The effect of dimensionality reduction
on software vulnerability prediction models, IEEE Trans. Reliab. 66 (1) (2017)
17–37.

[20] B. Ghotra, S. McIntosh, A.E. Hassan, A large-scale study of the impact of feature
selection techniques on defect classification models, in: Proceedings of the 14th
IEEE/ACM International Conference on Mining Software Repositories (MSR),
IEEE, 2017, pp. 146–157.

[21] M. Kondo, C.-P. Bezemer, Y. Kamei, A.E. Hassan, O. Mizuno, The impact of
feature reduction techniques on defect prediction models, Empir. Softw. Eng.
(EMSE) 24 (4) (2019) 1925–1963.

[22] J. Jiarpakdee, C. Tantithamthavorn, C. Treude, The impact of automated feature
selection techniques on the interpretation of defect models, Empir. Softw. Eng.
(EMSE) 25 (5) (2020) 3590–3638.

[23] A.O. Balogun, S. Basri, S.J. Abdulkadir, A.S. Hashim, Performance analysis
of feature selection methods in software defect prediction: a search method
approach, Appl. Sci. 9 (13) (2019) 2764.

[24] Q. Yu, J. Qian, S. Jiang, Z. Wu, G. Zhang, An empirical study on the effectiveness
of feature selection for cross-project defect prediction, IEEE Access 7 (2019)
35710–35718.

[25] S. Lessmann, B. Baesens, C. Mues, S. Pietsch, Benchmarking classification models
for software defect prediction: A proposed framework and novel findings, IEEE
Trans. Softw. Eng. (TSE) 34 (4) (2008) 485–496.

[26] C. Seiffert, T.M. Khoshgoftaar, J. Van Hulse, A. Folleco, An empirical study of the
classification performance of learners on imbalanced and noisy software quality
data, Inform. Sci. 259 (2014) 571–595.

[27] B. Ghotra, S. McIntosh, A.E. Hassan, Revisiting the impact of classification
techniques on the performance of defect prediction models, in: Proceedings of
the 37th IEEE/ACM International Conference on Software Engineering (ICSE), 1,
IEEE, 2015, pp. 789–800.
15
[28] C. Tantithamthavorn, S. McIntosh, A.E. Hassan, K. Matsumoto, The impact of
automated parameter optimization on defect prediction models, IEEE Trans.
Softw. Eng. (TSE) 45 (7) (2018) 683–711.

[29] X. Chen, Y. Zhao, Z. Cui, G. Meng, Y. Liu, Z. Wang, Large-scale empirical studies
on effort-aware security vulnerability prediction methods, IEEE Trans. Reliab. 69
(1) (2019) 70–87.

[30] M. Aniche, E. Maziero, R. Durelli, V. Durelli, The effectiveness of supervised
machine learning algorithms in predicting software refactoring, 2020, arXiv
Preprint arXiv:2001.03338.

[31] X. Chen, D. Zhang, Y. Zhao, Z. Cui, C. Ni, Software defect number prediction:
Unsupervised vs supervised methods, Inf. Softw. Technol. (IST) 106 (2019)
161–181.

[32] X. Chen, Z. Yuan, Z. Cui, D. Zhang, X. Ju, Empirical studies on the impact of
filter-based ranking feature selection on security vulnerability prediction, IET
Softw. 15 (1) (2021) 75–89.

[33] H. Liu, R. Setiono, Chi2: Feature selection and discretization of numeric at-
tributes, in: Proceedings of 7th IEEE International Conference on Tools with
Artificial Intelligence, IEEE, 1995, pp. 388–391.

[34] I. Guyon, A. Elisseeff, An introduction to variable and feature selection, J. Mach.
Learn. Res. 3 (Mar) (2003) 1157–1182.

[35] S. Fong, J. Liang, R. Wong, M. Ghanavati, A novel feature selection by clustering
coefficients of variations, in: Proceedings of the 9th International Conference on
Digital Information Management, IEEE, 2014, pp. 205–213.

[36] A. Ahmad, L. Dey, A feature selection technique for classificatory analysis,
Pattern Recognit. Lett. 26 (1) (2005) 43–56.

[37] T.M. Cover, Elements of Information Theory, John Wiley & Sons, 1999.
[38] J.R. Quinlan, C4. 5: Programs for Machine Learning, Elsevier, 2014.
[39] S.S. Kannan, N. Ramaraj, A novel hybrid feature selection via symmetrical

uncertainty ranking based local memetic search algorithm, Knowl.-Based Syst.
23 (6) (2010) 580–585.

[40] I. Kononenko, Estimating attributes: analysis and extensions of RELIEF, in:
European Conference on Machine Learning, Springer, 1994, pp. 171–182.

[41] R.C. Holte, Very simple classification rules perform well on most commonly used
datasets, Mach. Learn. 11 (1) (1993) 63–90.

[42] I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene selection for cancer
classification using support vector machines, Mach. Learn. 46 (1–3) (2002)
389–422.

[43] M.A. Hall, Correlation-Based Feature Selection of Discrete and Numeric Class
Machine Learning, University of Waikato, Department of Computer Science,
2000.

[44] M. Dash, H. Liu, H. Motoda, Consistency based feature selection, in: Pacific-
Asia Conference on Knowledge Discovery and Data Mining, Springer, 2000, pp.
98–109.

[45] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, L. Seinturier, Spoon: A
library for implementing analyses and transformations of java source code, Softw.
- Pract. Exp. 46 (9) (2016) 1155–1179.

[46] Y. Fan, X. Xia, D. Lo, A.E. Hassan, Chaff from the wheat: Characterizing and
determining valid bug reports, IEEE Trans. Softw. Eng. (TSE) (2018).

[47] Q. Song, Y. Guo, M. Shepperd, A comprehensive investigation of the role of
imbalanced learning for software defect prediction, IEEE Trans. Softw. Eng. (TSE)
45 (12) (2018) 1253–1269.

[48] C. Fang, Z. Liu, Y. Shi, J. Huang, Q. Shi, Functional code clone detection with
syntax and semantics fusion learning, in: Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA), 2020, pp.
516–527.

[49] J. Han, J. Pei, M. Kamber, Data Mining: Concepts and Techniques, Elsevier,
2011.

[50] X. Wu, V. Kumar, The Top Ten Algorithms in Data Mining, CRC press, 2009.
[51] S.B. Kotsiantis, I. Zaharakis, P. Pintelas, Supervised machine learning: A review

of classification techniques, Emerg. Artif. Intell. Appl. Comput. Eng. 160 (1)
(2007) 3–24.

[52] Y. Singh, A.S. Chauhan, Neural networks in data mining, J. Theor. Appl. Inf.
Technol. 5 (1) (2009).

[53] A.J. Myles, R.N. Feudale, Y. Liu, N.A. Woody, S.D. Brown, An introduction to
decision tree modeling, J. Chemom. J. Chemom. Soc. 18 (6) (2004) 275–285.

[54] M. Shepperd, Q. Song, Z. Sun, C. Mair, Data quality: Some comments on the nasa
software defect datasets, IEEE Trans. Softw. Eng. (TSE) 39 (9) (2013) 1208–1215.

[55] J. Fürnkranz, Separate-and-conquer rule learning, Artif. Intell. Rev. 13 (1) (1999)
3–54.

[56] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE Trans. Inform.
Theory 13 (1) (1967) 21–27.

[57] N. Cristianini, J. Shawe-Taylor, et al., An Introduction To Support Vector
Machines and Other Kernel-Based Learning Methods, Cambridge university press,
2000.

[58] Z.-H. Zhou, Ensemble learning, Encycl. Biom. 1 (2009) 270–273.

http://refhub.elsevier.com/S0950-5849(21)00115-4/sb7
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb7
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb7
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb7
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb7
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb7
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb7
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb8
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb8
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb8
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb8
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb8
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb10
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb10
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb10
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb10
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb10
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb10
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb10
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb11
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb11
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb11
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb11
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb11
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb11
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb11
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb12
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb12
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb12
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb12
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb12
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb13
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb13
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb13
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb13
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb13
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb13
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb13
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb15
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb15
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb15
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb15
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb15
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb16
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb16
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb16
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb16
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb16
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb16
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb16
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb17
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb17
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb17
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb17
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb17
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb18
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb18
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb18
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb18
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb18
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb18
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb18
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb19
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb19
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb19
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb19
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb19
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb20
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb20
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb20
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb20
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb20
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb20
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb20
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb21
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb21
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb21
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb21
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb21
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb22
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb22
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb22
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb22
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb22
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb23
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb23
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb23
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb23
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb23
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb24
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb24
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb24
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb24
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb24
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb25
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb25
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb25
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb25
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb25
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb26
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb26
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb26
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb26
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb26
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb27
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb27
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb27
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb27
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb27
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb27
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb27
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb28
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb28
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb28
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb28
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb28
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb29
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb29
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb29
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb29
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb29
http://arxiv.org/abs/2001.03338
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb31
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb31
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb31
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb31
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb31
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb32
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb32
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb32
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb32
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb32
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb33
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb33
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb33
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb33
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb33
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb34
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb34
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb34
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb35
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb35
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb35
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb35
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb35
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb36
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb36
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb36
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb37
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb38
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb39
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb39
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb39
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb39
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb39
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb40
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb40
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb40
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb41
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb41
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb41
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb42
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb42
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb42
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb42
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb42
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb43
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb43
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb43
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb43
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb43
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb44
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb44
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb44
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb44
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb44
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb45
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb45
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb45
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb45
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb45
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb46
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb46
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb46
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb47
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb47
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb47
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb47
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb47
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb49
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb49
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb49
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb50
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb51
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb51
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb51
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb51
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb51
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb52
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb52
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb52
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb53
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb53
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb53
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb54
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb54
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb54
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb55
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb55
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb55
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb56
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb56
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb56
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb57
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb57
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb57
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb57
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb57
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb58

Information and Software Technology 139 (2021) 106652K. Zhao et al.
[59] S. Shivaji, E.J. Whitehead Jr, R. Akella, S. Kim, Reducing features to improve
bug prediction, in: Proceedings of the 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), IEEE, 2009, pp. 600–604.

[60] S. Shivaji, E.J. Whitehead, R. Akella, S. Kim, Reducing features to improve
code change-based bug prediction, IEEE Trans. Softw. Eng. (TSE) 39 (4) (2012)
552–569.

[61] C. Tantithamthavorn, S. McIntosh, A.E. Hassan, K. Matsumoto, An empirical
comparison of model validation techniques for defect prediction models, IEEE
Trans. Softw. Eng. (TSE) 43 (1) (2016) 1–18.
16
[62] F. Zhang, Q. Zheng, Y. Zou, A.E. Hassan, Cross-project defect prediction
using a connectivity-based unsupervised classifier, in: Proceedings of the 38th
IEEE/ACM International Conference on Software Engineering (ICSE), IEEE, 2016,
pp. 309–320.

[63] E.G. Jelihovschi, J.C. Faria, I.B. Allaman, ScottKnott: a package for performing
the Scott-Knott clustering algorithm in R, TEMA (SãO Carlos) 15 (1) (2014) 3–17.

http://refhub.elsevier.com/S0950-5849(21)00115-4/sb59
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb59
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb59
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb59
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb59
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb60
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb60
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb60
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb60
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb60
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb61
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb61
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb61
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb61
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb61
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb62
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb62
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb62
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb62
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb62
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb62
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb62
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb63
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb63
http://refhub.elsevier.com/S0950-5849(21)00115-4/sb63

	A comprehensive investigation of the impact of feature selection techniques on crashing fault residence prediction models
	Introduction
	Related work
	Stack trace analysis
	Empirical studies of feature selection techniques and classification models

	Preliminaries
	Filter-based feature ranking
	Statistic-based techniques
	Probability-based techniques
	Instance-based techniques
	Classifier-based techniques

	Filter-based feature subset selection
	Wrapper-based feature subset selection

	Experiment setup
	Studied corpora
	Evaluation indicators
	Data partition
	Classification models
	Statistic-based classification models
	Neural network based classification models
	Decision tree based classification models
	Rule-based classification models
	Nearest neighbor based classification models
	Support vector machine based classification models
	Ensemble-based classification models

	Parameter configuration
	Statistic test

	Experiment results
	RQ1: How different feature selection techniques impact the performance of each classification model across all 7 projects?
	RQ2: What are the impacts of different feature selection techniques on the performance of each project across all 21 classification models?

	Threats to validity
	Internal validity
	External validity
	Construct validity

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

