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A B S T R A C T   

Context: The recent progress of deep learning has shown its promising learning ability in making sense of data, 
and many fields have utilized this learning ability to learn an effective model, successfully solving their problems. 
Fault localization has explored and used deep learning to server an aid in debugging, showing the promising 
results on fault localization. However, as far as we know, there is no detailed studies on evaluating the benefits of 
using deep learning for locating real faults present in programs. Objective: To understand the benefits of deep 
learning in locating real faults, this paper explores more about deep learning by studying the effectiveness of 
fault localization using deep learning for a set of real bugs reported in the widely used programs. Method: We 
use three representative deep learning architectures (i.e. convolutional neural network, recurrent neural network 
and multi-layer perceptron) for fault localization, and conduct large-scale experiments on 8 real-world programs 
equipped with all real faults to evaluate their effectiveness on fault localization. Results: We observe that the 
localization effectiveness varies considerably among three neural networks in the context of real faults. Spe-
cifically, convolutional neural network performs the best in locating real faults, showing an average of 38.97% 
and 26.22% saving over multi-layer perceptron and recurrent neural network respectively; recurrent neural 
network and multi-layer perceptron yield comparable effectiveness even if the effectiveness of recurrent neural 
network is marginally higher than multi-layer perceptron. Conclusion: In context of real faults, convolutional 
neural network is the most effective for fault localization among the investigated architectures, and we suggest 
potential factors of deep learning for improving fault localization.   

1. Introduction 

In the process of software development and maintenance, debugging 
is to locate and fix faults within a program. It is a painstaking task 
because it usually requires much manual involvement of debugging 
engineers (e.g. inserting print statements, and setting break points). In 
fact, debugging has been identified as one of the most expensive and 
time-consuming processes for software developers [1,2]. To reduce the 
cost, many fault localization techniques have been proposed to provide 
automated assistance in locating the faults that cause executions to 
produce incorrect outputs (i.e. failures) [3–7]. 

In recent years, deep learning has progressed rapidly and became 
increasingly popular in various applications (e.g. image classification, 
object detection, and segmentation) due to its promising ability of 
providing tremendous improvement in robustness and accuracy [8]. It 
implies that deep learning may open a new perspective for fault 

localization by using its learning ability of data to construct a localiza-
tion model, evaluating which statements being suspiciously faulty. In 
fact, some researchers have explored the use of deep learning to discuss 
and evaluate the potential of deep learning in fault localization [9,10]. 
They found that with the capability of estimating complicated functions 
by learning a deep nonlinear network structure and attaining distributed 
representation of input data, deep learning exhibits strong learning 
ability from sample data sets. This learning ability is beneficial for fault 
localization, showing better localization results over the state-of-the-art 
fault localization techniques (e.g. BP neural networks [11], PPDG [12], 
Tarantula [13], Dstar [14], Barinel [15], and Ochia [16]). 

Although deep learning has shown its promising results on fault 
localization, the existing analysis still needs much further study. For 
example, the existing analysis [9,10] mostly utilizes those subject pro-
grams with seeded faults. The recent research [2] has revealed that 
artificial faults including seeded ones are not adequate for evaluating 
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fault localization techniques, and recommends using real faults for 
evaluation. Furthermore, deep learning has different learning architec-
tures, which may demonstrate different abilities in terms of fault 
localization effectiveness. It is necessary to identify the varying degree 
of the representative deep learning architectures on fault localization 
and recommend promising learning architectures for debugging engi-
neers. It is also vital to investigate what factors are important for a deep 
learning architecture to take the advantage on improving fault 
localization. 

Therefore, this paper explores more about deep learning in 
improving fault localization, i.e., we aim at evaluating and under-
standing the benefits of using the representative deep learning archi-
tectures on fault localization in real faults. To achieve this goal, we face 
three fundamental problems. The first one is that what deep learning 
architectures are used as representative ones for the study. The solution 
to this problem is to use the basic and popular deep learning architec-
tures as the representative ones. In deep learning, convolutional neural 
network (CNN) [17] recurrent neural network (RNN) [18,19] and 
multi-layer perceptron (MLP) [20] are the three basic and popular 
learning architectures, and more importantly, the three learning archi-
tectures have different distinct features probably benefiting fault local-
ization. Among the three learning architectures, MLP has the simplest 
yet effective structure, and can be easily deployed by fault localization; 
CNN is capable of processing the rapid expansion of the number of pa-
rameters to be trained due to using local connections, parameter 
sharing, and down-sampling in pooling, and may be useful for 
enhancing the generation ability of the fault localization model; RNN is 
capable of learning long-term dependencies, and may be useful for 
analyzing how a fault depends on other statements to cause a program 
failure. Thus, we use the three representative and distinct learning ar-
chitectures for the study to understand what factors of a learning ar-
chitecture are important for effective fault localization. The second one 
is how to use the methodology of different deep learning architectures 
for fault localization. The solution is to utilize the methodology of deep 
learning from the problem domain of fault localization, that is, we 
should construct training samples and fix the labels for deep learning in 
the perspective of fault localization. In the literature of fault localiza-
tion, there is an effective and widely used information model [14], using 
coverage information and test results, reflects the execution information 
of a statement (involved or not involved) and the test results (i.e. failed 
or not failed). This information model has a well-define structure, 
including coverage information and test results, which can be poten-
tially used as training samples and the labels for deep learning in the 
perspective of fault localization. It means that we may utilize this 
effective information model to successfully apply the methodology of 
deep learning from the problem domain of fault localization to output a 
fault localization solution. The third one is how to identify a set of 
representative subject programs with all real faults for the study. The 
solution is to find those large-sized programs with all real faults widely 
used in the literature. 

Based on the above analysis, we use convolutional neural network 
(CNN) [17], recurrent neural network (RNN) [18,19], and multi-layer 
perceptron (MLP) [20] for studying the benefits of using deep learning 
on fault localization. With the effective and widely used information 
model [14], we leverage its structure of coverage information and test 
results to construct training samples and fix the labels, for successfully 
applying the methodology of deep learning from problem domain of 
fault localization. Therefore, with the above solution, we study three 
fault localization approaches based on deep learning, namely CNN-FL, 
RNN-FL, and MLP-FL representing fault localization using convolu-
tional neural network, recurrent neural network and multi-layer per-
ceptron respectively. Among the three approaches, we propose CNN-FL 
and RNN-FL while Zheng et al. [9] proposes MLP-FL which complies 
with the structure of the other two approaches. The three approaches 
using deep learning train their networks with test cases, and finally 
evaluate the suspiciousness of a statement being faulty by testing the 

trained model with a virtual test suite. 
Based on our earlier work [10], we collect 8 programs from the 

widely used benchmarks in the field of software debugging. Thus, we 
conduct a large-scale empirical study on the 8 real-life programs with all 
real faults to investigate the varying levels among different learning 
architectures, pinpoint the advantage of which architecture over other 
ones, and discuss the factors behind this advantage. The results show 
that CNN-FL performs best among the representative deep learning ar-
chitectures, and reducing the number of parameters implies a key factor 
of a deep learning architecture in taking advantage over other archi-
tectures for improving fault localization. 

The main contributions of this paper can be summarized as:  

• We present a methodology for using deep learning to locate faults, 
and based on the methodology we propose CNN-FL and RNN-FL. 

• We conduct a large-scale empirical study to evaluate the effective-
ness of three deep learning approaches across various representative 
programs in the context of locating real faults, identifying the 
varying localization levels of the representative learning architec-
tures and showing CNN-FL is the most effective one among the three 
deep learning approaches.  

• We further demonstrate the potential of using deep learning as a new 
perspective and discuss the key factors of deep learning for effective 
fault localization. 

The structure of the rest paper is organized as follows. Section 2 
provides the necessary background. Section 3 describes the three fault 
localization approach based on deep learning. Section 4 presents results 
of our empirical study including experiment subjects, experiment 
design, data analysis, discussion, and threats to validity. Section 5 in-
troduces related work and Section 6 concludes. 

2. Background 

In this section, we will briefly introduce the three basic and popular 
deep learning architectures, namely multi-Layer perceptron (MLP), 
convolutional neural network (CNN), and recurrent neural network 
(RNN). Hinton et al. [20] proposed multi-layer perceptron (MLP), which 
is an artificial deep neural network with multiple hidden layers, and 
each node at the same hidden layer uses the same nonlinear function to 
map the feature input from the layer below. The structure of an MLP is 
flexible and demonstrates promising capacity to fit the highly complex 
nonlinear relationship between inputs and outputs. It is one of the deep 
learning models and has been successfully applied in many areas of 
software engineering [8]. And also it has already been rapidly evolved 
into making sense of data such as images, text, and sound [8,21]. MLPs 
have the capability of estimating complicated functions by learning a 
deep nonlinear network structure and further obtaining distributed 
representation of input data. It exhibits strong capability in learning 
representation from sample data. 

A convolutional neural network (CNN) [17] is a specialized kind of 
neural network for processing data that has a known, grid-like tech-
nology. It could learn rich highly abstract data features to represent 
complex objects effectively [17,22–26]. CNNs have continued to grow in 
popularity and are originally designed to solve problems such as com-
puter vision related tasks, but are not limited to images. They can also be 
used for audio data, and text data. A CNN consists of five main com-
ponents: input layer, convolution layers, pooling layers, fully connected 
layers, and output layer. These five components help match complex 
patterns by highlighting important information while ignoring noise. In 
practice, the first layer is the input layer with input data sets and the 
second layer is the convolution layer. Technically, A CNN has at least 
one layer that does a convolution with its configurable kernels, meaning 
that the goal of a convolution operation is to utilize a filter (also known 
as convolution kernel), and slide the filter over an input tensor’s each 
area that has the same size as the filter. Activation functions such as 
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rectified linear unit are utilized to support convolution layer and are the 
source of non-linearity of the mapping function represented by the CNN. 
Usually, followed by a convolution layer, it is a pooling layer. The 
pooling layer reduces the size of the input, and thus boosts training 
speed and reduces the possibility of over-fitting. It keeps important in-
formation for the next layer while scaling down input. Pooling layers 
execute much faster than convolution layers, though the latter could 
also reduce the size of input. After several groups of convolution layer 
and pooling layer, there are several fully connected layers. These layers 
are often in the format of multiplying layer input with weight, and then 
adding bias where layer input, weight and bias are all tensors. These 
short-hand layers will do the same thing while taking care of the in-
tricacies involved in managing the weight and bias tensors. With their 
flexible structure and multiple hidden layers, CNNs have the capacity to 
fit highly complex nonlinear relationship between inputs and outputs. 
The last layer is the output layer that outputs the results. By utilizing the 
difference between the output and the actual target output to construct a 
cost function, we can then train the CNN by back propagation (BP) al-
gorithm. The Back propagation algorithm is for updating the model 
parameters, by minimizing the loss between network’s output and target 
output through a number of training steps. With that goal, applying 
gradient descent to find the minimum of the loss function will result in 
the model learning from the input data set. Generally speaking, CNNs 
are useful network architectures in multiple industries from audio to 
media and so on. 

A recurrent neural network (RNN), another important branch of 
deep neural networks family, is a family of networks that are good at 
solving sequential tasks in many domains such as speech recognition, 
speech synthesis, connected handwriting recognition, time-series fore-
casting, image caption generation, and end-to-end machine translation. 
RNNs build on the same neurons summing up weighted inputs from 
other neurons. The neurons of an RNN are allowed to connect both 
forward to higher layers and backward to lower layers. Various variants 
of RNNs were not widely used until recently since insufficient compu-
tation power and difficulties in training. We have seen powerful appli-
cations of RNNs since the invention of architectures like LSTM [18,19]. 
LSTM, proposed by Hochreiter and Schmidhuber [18], is a special form 
of RNNs which is designed to overcome vanishing and exploding gra-
dients problem. It performs significantly better for long-term de-
pendencies problems and becomes a representative for RNNs. In LSTM 
architecture, normal neurons in an RNN are replaced by so-called LSTM 
cells that have a little memory inside to cope with the problem of van-
ishing and exploding gradients. These cells are wired together as they 
are in a usual RNN but they own internal states that help to remember 
errors over many time steps. The trick of these internal states lies in the 
fact that they have a self-connection with a fixed weight of one and a 
linear activation function, so that its local derivatives is always one. 
During back propagation, this so called error carousel can carry errors 
over many time steps without having the gradient vanish or explode. 
LSTM is directional, and only uses past contexts. However, in many 
tasks, information from both directions are useful and complementary to 
each other. Therefore, bidirectional LSTM [27] was proposed by 
combining two LSTMs, one forward and one backward. This architecture 
allows higher level of abstractions and has achieved significant perfor-
mance improvements in the task of speech recognition. Considering the 
popularity and the performance, we use bidirectional LSTM in the study. 

3. Deep-learning-based fault localization 

This section will present the methodology of deep-learning-based 
fault localization using three deep learning architectures in detail. 
Furthermore, we will provide a concrete example for a demonstration of 
how to apply deep learning for localizing faults. 

3.1. Methodology 

We will depict the overview methodology for using different neural 
networks to locate faults. Deep learning learns rich highly abstract data 
features from the input data set and its learning power should be useful 
to evaluate which statements exhibiting more relevance with failures. 
Thus, the basic idea of deep-learning-based fault localization is to adopt 
a specific neural network to build a model for learning and estimating 
the association of a statement with failures. We use the estimation of the 
association as the suspiciousness of the statements of being faulty. For 
leveraging the learning power of a specific neural network, we should 
first initiate the neural network for fault localization, i.e. , we should first 
construct training samples and fix their labels in context of fault local-
ization. The process of fault localization starts from a failure, and focuses 
on which statement to be the fault causing a failure. It means that we 
should initiate the neural network with training samples and their la-
bels, which can reflect the association of the execution information of a 
statement with failures. 

For realizing such initiation, we adopt an effective and widely-used 
information model [14] in the fault localization literature by using 
coverage information and test results. Specifically, given a program P 
with N statements, it is executed by a test suite T with M test cases, which 
contain at least one failed test case (see Fig. 1). The element xij=1 means 
that the statement j is executed by the test case i, and xij=0 otherwise. 
The M×N matrix records the execution information of each statement in 
the test cases T. The error vector e represents the test results. The 
element ei equals to 1 if the test case i failed, and 0 otherwise. The error 
vector shows the test results of each test case (i.e. failures or 
non-failures). Since they can associate the execution information of a 
statement (i.e. the matrix) with failures or non-failures (i.e. the error 
vector), the matrix and the error vector are the training samples and 
their corresponding labels respectively, where each training sample is an 
N-dimensional vector. Based on the training samples and their labels, we 
use mini-batch stochastic gradient descent to update network parame-
ters with the batch size settled to h, namely, each time we feed a h×N 
matrix as input to the network and use its corresponding error vector as 
labels. The network is trained iteratively. 

The training process will learn a trained model, reflecting the com-
plex nonlinear relationship between the statement coverage and test 
results. Finally, we construct a set of virtual test cases (see Fig. 2) as the 
testing input to measure the association of each statement with test re-
sults. Concretely, each time we choose one virtual test case and input it 
to the network, the output is the estimation of the probability of causing 
a failure by executing the virtual test case. Furthermore, suppose that if 
the virtual test case only covers one statement, the output is also the 
estimation of the probability of causing a failure by executing the 
statement. The estimation can show the suspiciousness of a statement of 
being faulty. 

Thus, as shown in Fig. 2, we construct N virtual test cases, equaling to 
the number of the statements, where each virtual test case only covers 
one statement. Specifically, the element xi =1 means that the statement i 
is only covered by the virtual test case ti, and xi =0 in the other virtual 
test cases. When the coverage vector of a virtual test case is inputted to 
the trained neural network, the output of the network is the estimation 
of the virtual test case’s execution result of being a failure by covering 
only one statement. The value of the result is between 0 and 1. The larger 
the value is, the more likely it is that the statement only covered by the 

Fig. 1. The coverage and results of M executions.  

Z. Zhang et al.                                                                                                                                                                                                                                   



Information and Software Technology 131 (2021) 106486

4

coverage vector is the buggy statement. For example, the statement i is 
likely to be the buggy statement. Then we input ti to the trained neural 
network, and the output of virtual test case ti represents the probability 
of test case execution result of being a failure by only covering the 
statement i. The value of the result is the suspiciousness of the statement 
i. In this way, we can evaluate the suspiciousness of each statement 
being faulty. 

Although different neural networks use the same overview meth-
odology, their specific learning processes are different due to their 
different structures. The following subsections will depict how each of 
the three neural networks apply the overview methodology for fault 
localization. 

3.2. CNN-FL 

Architecture    Based on the overview methodology at Section 3.1, 
CNN-FL uses CNN to learn a fault localization model evaluating the 
suspiciousness of each statement being faulty. As shown in Fig. 3, the 
architecture of CNN-FL consists of one input layer, two convolution 
layers, two rectified linear units, two pooling layers, several fully con-
nected layers, and one output layer. 

In the input layer, based on the matrix M×N and the error vector (see 
Fig. 1), h rows of the M×N matrix and the error vector are used as an 
input, which are the coverage information of h test cases and their 
execution results starting from the ith row, where i ∈

{1,1+h,1+2h,...,1+(⌊M/h⌋-1)× h}. As a reminder, if M/h is not an 
integer, we will also input the execution information of the remainder 
(M − ⌊M/h⌋.*h) test cases and their execution results starting from the 
(⌊M/h⌋.*h+ 1)th row. When the size of the program is large, the ele-
ments of each row are numerous, leading to a large number of param-
eters related to the input data vector. Thus, it is dispensable to reduce 
the number of parameters while preserving the significant features. That 
is the function of convolution layers. 

The convolution layer often has several convolution kernels (filters), 
leveraging certain patterns to highlight the features in the input data, 
and thus recognizing the important attributes of the input. The convo-
lution operations enable CNNs to accurately match diverse patterns. 
When an operation is sliding the kernel over each point in the input, it is 
utilizing the strides parameter to change how it walks over the input. 
The strides parameter configures the operation to skip less important 
elements and obviously reduces the dimensionality of the output, while 
the kernel allows the operation to use all the input values. The input 
becomes a smaller tensor after the convolution operation and conse-
quently the dimensionality is reduced. This makes less processing power 
be required and will keep from creating receptive fields that completely 
overlap. CNNs generally consist of multiple convolution layers, where 
each convolution layer can have multiple different convolution kernels, 
and furthermore each convolution kernel corresponds to new values 
after filtering. In our model, there are two convolution layers, where 
each one has several convolution kernels, i.e. , convolution layer 1 has k1 
kernels while convolution layer 2 has k2 kernels. In our model, we set k1 
and k2 to be 32 and 64 respectively. Every kernel Wk is a vector, 
whereWk∈R10 (i.e. the size of kernel Wk is 10 in our experiment.), which 
is used to slide over each element of the input coverage data vector and 
recognize the important attributes. Our model uses strides parameters to 
reduce the dimensionality of the output and skip less important ele-
ments. For example, we reduce those elements are all 0 in all the 
coverage data vectors, which means that those statements are not 
executed in all the test cases. 

Fig. 2. Virtual test cases.  

Fig. 3. The workflow of CNN-FL.  
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After each convolution layer, there is a rectified linear unit (ReLU) 
which is an activation function for supporting convolution layers. There 
are three types of activation functions often used [8]: ReLU function, 
sigmoid function, and hyperbolic tangent function (tanh). ReLU function 
empirically works well although it sacrifices information. It keeps the 
same input values for any positive numbers while setting all negative 
numbers to be 0. As shown in Fig. 4 and Eq. (1), x is a variable, ReLU has 
a range of [0, + ∞], and it has a benefit that it does not suffer from the 
gradient vanishing problem. The sigmoid function keeps a value between 
0 and 1, which is useful in networks that train on probabilities in the 
range of [0, 1]. Larger values sent into a sigmoid function will trend 
closer to 1 just as illustrated in Fig. 4 and Eq. (2). The drawback of 
sigmoid is that when there is an input becoming saturated and the 
changes in the input become exaggerated, the reduced range of output 
values could cause gradient vanishing. As shown in Fig. 4 and Eq. (3), 
tanh function, also called hyperbolic tangent function, is a close relative 
to sigmoid function with the same benefits and drawbacks. Tanh func-
tion keeps a value between − 1 and 1. It is used in the range of [ − 1, 1], 
which is the main difference between sigmoid and tanh. And tanh can 
output negative values useful in certain networks. In our model, we use 
ReLU function as an activation function because it works well and does 
not suffer from gradient vanishing problem. 

ReLU(x) = max(0, x) (1)  

sigmoid(x) =
1

1 + e− x (2)  

tanh(x) =
ex − e− x

ex + e− x (3) 

After rectified linear unit, it is the pooling layer. There are two main 
pooling methods. One is Max pool and the other is Avg pool. Max pool 
picks the maximum value within a certain window size (kernel size) 
with striding over a tensor. The goal of Max pool is to keep the largest 
value in the tensor. Just as shown in Fig. 5, the largest value of the tensor 
is 2.0. Hence, Max pool will choose the largest value in each kernel size 
as it strides over the input from the last layer. Different from Max pool, 
Avg pool strides over the tensor and averages all the values found in a 
window size. The advantage of Avg pool is that it could be useful when 
reducing values where the entire kernel is important such as an input 
tensor with a large width and height but small depth. In Fig. 5, Avg pool 
returns the value of 0.67, which is the average of all the values within 
the tensor ((1.0+0.2+2.0+0.3+0.5+0.7+1.0+0.1+0.2)/9). In our 
model, we choose Max pool because the empirical results show that the 
largest value in the tensor is beneficial for fault localization 
effectiveness. 

The next are fully connected layers. CNN architecture arranges fully 
connected layers in a chain structure, with each layer being a function of 
the layer that preceded it. The relationship between the fully connected 
layers in a CNN model can be interpreted as follows: 

x = output of pooling layer 2
h1 = f (w1x + b1)

h2 = f (w2h1 + b2)

⋮
hn = f (wnhn− 1 + bn)

(4) 

Where, x is the output of pooling layer 2, and wi, (bi) and hi denote 
the weight parameter, bias parameter and the output of each layer, 
respectively. According to the formulas in Eq. (4), we can see that the 
architecture of a CNN arranges these layers in a chain structure, with 
each layer being a function of the layer that preceded it. Though one 
hidden layer could also be sufficient to fit the training set, deeper 
network architectures with more layers are required to get better results. 
Nevertheless, those deeper network architectures have a drawback that 
they are often harder to optimize. Experimentation guided by moni-
toring the validation set error ought to be found to get an ideal network 
architecture. By utilizing the difference between the output by the 
network (yi) and the actual target output (ei) to construct a cost function, 
we can then train the layers by using back propagation (BP) algorithm. 
During the training process, the weight (wi) and bias (bi) parameter are 
determined to choose the width of the hidden layers and the depth of the 
network. In our model, there are 3 fully connected layers with the 
number of nodes in each one to be 1024. 

The last layer is output layer. The output function in the output layer 
is sigmoid function (see Eq. (3)) We use sigmoid function to output the 
result in our model because values sent into a sigmoid function will be 
0 to 1 as illustrated in Fig. 4. Each element in the result vector of the 
sigmoid function has difference with the corresponding element of the 
target vector. The difference is the loss between the output layer and 
target. 

We use back propagation algorithm [8] to fine-tune the parameters 
of the model because it is commonly used to adjust the weight of neurons 
by calculating the gradient of the loss function in the context of deep 
learning. The goal is to minimize the loss between training result y and 
errors-vector e. The algorithm goes forward from the input layer 
calculating the outputs of each layer up to the output layer. Then it starts 
calculating derivatives going backwards through the layers and propa-
gating the results in order to do less calculation by reusing all of the 
elements already calculated. The learning rate impacts the speed of 
convergence. Our model adopts dynamic adjusting learning rate for its 
two merits. One is that it can make large changes at the beginning of the 
training procedure when larger learning rate values are used. The other 
one is that it can decrease the learning rate with a smaller training up-
dates for computing weights later, resulting in accurate weights more 
quickly. The experiment results conform to the effectiveness of dynamic 
adjusting learning rate. In the following equation (Eq. (5)), one Epoch 
means completing all training data once, LR represents learning rate, 
DropRate is the amount that learning rate is modified each time while 
EpochDrop is how often to change the learning rate. We set the initial 
learning rate to be 0.01 and DropRate to be 0.98. EpochDrop is set ac-
cording to the number of the test cases. 

LR = LR*DropRate(Epoch+1)/EpochDrop (5)  

Summary of steps    Finally, we summarize the steps of CNN-FL as 
follows:  

(1) Construct a CNN that consists of one input layer according to the 
number of statements, two convolution layers, two pooling 
layers, two rectified linear units, several fully connected layers 
with the number of nodes in each one estimated by the program 
size and one output layer with the number of nodes to be 1. We 
choose ReLU function to be the activation function due to its good 
performance and the advantage of not suffering from gradient 
vanishing. 

Fig. 4. ReLU, sigmoid and tanh function.  
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(2) Train the network using the coverage data and execution result of 
the test case according to Fig. 1as training sample set. CNN-FL 
inputs each coverage data matrix one by one into the CNN 
model to obtain the complex nonlinear mapping relationship 
between the coverage data and the execution result. In each 
coverage data matrix, there are h rows and N columns, we set 
batch size h to be 10 and N is the number of statements.  

(3) Input each coverage data vector of virtual test cases according to 
Fig. 2 into the trained CNN and obtain the outputs. The output of 
ti reflects the probability that xi contains a bug, showing the 
suspiciousness of the statement i of being faulty. The larger the 
value of output of ti is, the more likely it is that the statement i 
contains the bug.  

(4) Rank the statements in descending order of the suspiciousness 
calculated by the previous step. This step outputs localization 
results in a text form. The text form contains the statements in 

descending order of suspiciousness given by our model. This form 
provides potentially suspicious statements (e.g. suspiciousness, 
and line number), which can assist developers or automated 
program repair tools in locating and fixing faults. 

3.3. RNN-FL 

Architecture    RNN-FL utilizes RNN to conduct the training and learn 
a localization model via the overview methodology. Fig. 6 shows the 
architecture of RNN-FL. As shown in Fig. 6, the architecture of RNN-FL 
consists of one input layer, two recurrent layers, and one output layer. 
Each recurrent layer contains one forward (left to right) LSTM and one 
backward (right to left) LSTM, Specifically, given a program P with N 
statements, it is executed by M test cases which contains at least one 
failed test case (see Fig. 1). Based on the matrix M× Nand its errors- 
vector, we use mini-batch stochastic gradient descent to update 

Fig. 5. Example of Max pool and Avg pool.  
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network parameters with the batch size settled to h. Thus, similar to 
CNN-FL, h rows of the matrix M× Nand its errors-vector are used as an 
input, which are the coverage information of h test cases and their 
execution results starting from the ith row, (i ∈ {1,1+h,1+2h,...,1+(⌊M/ 
h⌋-1)× h}). In each row, there are N statements. For the specific feature 
of RNN in capturing long-range dependencies, RNN requires cut the N 
statements into different groups. Specifically, if N/L is an integer, these 
N statements are cut into N/L groups, where each group has L state-
ments; otherwise, the N statements are categorized into ⌊N/L⌋+1 
groups, where each group in the first ⌊N/L⌋ groups has L statements 
while the last group has N-⌊N/L⌋×L statements. As a reminder, ⌊N/L⌋ 
means the integer part of N/L. 

The next are recurrent layers, which consist of several LSTM units. 
Fig. 7 illustrates the architecture of an LSTM Unit. An LSTM unit consists 
of a memory cell and three multiplicative gates, namely input gate, 
forget gate and output gate. Conceptually, the memory cell stores the 
past information. The input gate and the output gate allow the cell to 
store information for a long period of time. At the same time, the 
memory in the cell could be cleared by the forget gate. This architecture 
of LSTM allows it to capture long-range dependencies, which often occur 
in fault localization tasks. Each time one unit receives the information of 
one group that has L statements or N-⌊N/L⌋×L statements as input, and 
it updates its internal state with both input and past state, which could 
capture past contexts and make prediction. LSTM is directional, it only 
uses past information. However, in the statements sequences of a pro-
gram, information from both directions are useful. Therefore, we 
combine two LSTMs, one forward and one backward, into a bidirectional 
LSTM. Furthermore, multiple directional LSTMs can be stacked, result-
ing in a deep structure as illustrated in Fig. 6. We utilize bidirectional 
LSTM for its ability of higher level of abstractions and the achievement 
of significant performance improvement. The complex nonlinear rela-
tionship between the coverage information of the statements and the 
results of test cases can be reflected after training the network 

iteratively. At last, a set of virtual test cases (see Fig. 2) that is an N- 
dimensional unit matrix is constructed. Each virtual test case is used as a 
testing input, and their outputs are the suspiciousness of the corre-
sponding statements. Our RNN model adopts dynamic adjusting 

Fig. 6. The architecture of RNN-based fault localization.  

Fig. 7. The architecture of an LSTM unit.  
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learning rate as depicted in Eq. 5.Summary of steps    Finally, we 
summarize the steps of RNN-FL as follows:  

(1) Construct a RNN consists of one input layer according to the 
number of statements and cut the statements into N/Lor ⌊N/L⌋+1 
groups, two recurrent layers and one output layer with the 
number of nodes according to the number of test cases. In 
recurrent layers, we combine two LSTMs, one forward and one 
backward, into a bidirectional LSTM. We stack two bidirectional 
LSTMs, resulting in a deep structure to get higher level of ab-
stractions and achieve significant performance.  

(2) Train the network using the coverage data and execution result of 
the test cases according to Fig. 1as the training sample set. The 
model inputs each coverage data matrix one by one into the RNN 
network to obtain the complex nonlinear mapping relationship 
between the coverage data and the execution result.  

(3) Input each coverage data vector of virtual test cases according to 
Fig. 2 into the trained RNN and obtain the outputs. The output of 
ti reflects the probability that xi contains a bug, showing the 
suspiciousness of the statement i being faulty. The larger the 
value of output of ti is, the more likely it is that the statement i 
contains the bug.  

(4) Rank the statements in descending order of the suspiciousness 
calculated by the previous step. This step outputs localization 
results in a text form. The text form contains the statements in 
descending order of suspiciousness evaluated by the RNN model. 

3.4. MLP-FL 

MLP-FL, proposed by Zheng et al. [9], adopts MLP to evaluate the 
suspiciousness of a statement being faulty, and complies with the 
overview methodology. MLP-FL first constructs a MLP with three parts: 
an input layer, hidden layers and an output layer. Then, it trains this 
model by utilizing statement coverage and test results as the input. 
Finally, MLP-FL tests the trained model using virtual test suite to eval-
uate the suspiciousness of each statement being faulty. 

Specifically, based on the matrix M×N and its errors-vector as input 
(see Fig. 1), MLP-FL uses mini-batch stochastic gradient descent to up-
date network parameters with the batch size settled to h, the network is 
trained by feeding a h × N matrix as input iteratively. Then, a set of 
virtual test cases (see Fig. 2), an N-dimensional unit matrix, is con-
structed and each virtual test case is used as a testing input. Finally, the 
output of each testing input is the suspiciousness of their corresponding 
statements. 

Fig. 8 shows the architecture of MLP-FL. In MLP-FL, there are one 
input layer with the number of nodes according to the number of the 
statements, one output layer with the number of nodes according to the 
size of the test cases, appropriate number of hidden layers with the 
number of nodes in each one estimating by the following formula: 

number = round
( n

30
+ 1

)
*10 (6) 

Where, n represents the number of executable statements. The hid-
den layers extract features from the input layer. Transfer function re-
flects the complex relationship between input and output. MLP-FL uses 
ReLU function (see Fig. 4 and Eq. (1)) in the hidden layer as transfer 
function and sigmoid function (see Fig. 4 and Eq. (2)) to output the result. 
MLP-FL adopts dynamic adjusting learning rate as illustrated in Eq. (5), 
and adjusts impulse factor according to the size of the sample. It further 
uses back propagation algorithm to fine-tune the parameters (weight 
and bias) of the model, and the goal is to minimize the difference be-
tween the error vector e (see Fig. 1) and the training result y. 

3.5. An illustrative example 

Fig. 9 illustrates a faulty program P with 16 statements that contains 
a faulty statement s3 to show just how the three fault localization ap-
proaches are to be applied. In Fig. 9, the table is the input matrix of fault 
localization (see Fig. 1). Specifically, for the table,the cells below each 
statement indicate whether the statement is covered by the execution of 
a test case or not (1 for executed and 0 for not executed) and the 
rightmost cells represent whether the execution of a test case is failed or 
not (0 for pass and 1 for fail). There are 6 test cases, in which two of them 
failed (i.e. t1 and t6). 

The first step of the three fault localization approaches is to construct 
a neural network. CNN-FL constructs a CNN model with one input layer 
with the number of nodes being 16 (i.e. the number of the statements), 
two convolution layers, two pooling layers with rectified linear units, 
two fully connected layers with the number of nodes in each layer 
simply set to be 8, and one output layer with the number of nodes being 
1, outputting the result with sigmoid function. RNN-FL builds up an RNN 
model with one input layer with the 16 statements cut into 4 groups (i.e. 
each group with 4 statements), two recurrent layers and one output 
layer with the number of nodes being 1. MLP-FL constructs a MLP model 
with the number of input layer nodes being 16, 3 hidden layers with the 
number of nodes in each layer being 10 according to Eq. (6) and the 
number of output layer nodes being 1. 

The second step is to train the networks with the coverage data, and 
input the error vector into the target vector. The batch size h is 3 in this 
example. Therefore, in CNN-FL, the first input matrix with a size of 3 is 
((1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0), (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 
1, 1, 0, 0), (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1)) and target output 
vector is (1, 0, 0); we secondly input the matrix ((1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 
0, 1, 1, 0, 1, 1), (1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0), (1, 1, 1, 0, 0, 0, 
1, 1, 1, 0, 1, 1, 1, 1, 0, 0)) and its execution result vector (0, 0, 1). In MLP- 
FL, the first input vector is (1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0) and 
target output is 1. We secondly input the vector (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 
0, 0, 1, 1, 0, 0) and its execution result 0, and repeat this process. In 
RNN-FL, the first input vector is cut into 4 groups, they are (1, 1, 1, 0), 
(0, 0, 1, 1), (1, 1, 0, 1), (1, 1, 0, 0) and target output is 1. The second 
input is (1, 1, 1, 1), (1, 1, 0, 0), (0, 0, 0, 0), (1, 1, 0, 0) and its execution 
result 0, and repeat this process. These approaches will repeat training 
the networks using these data until the loss is small enough to reach the 

Fig. 8. The architecture of MLP-based fault localization.  
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condition of convergence. After training, the three models reveal the 
complex nonlinear relationship between the statement coverage and test 
results. 

The third step is to construct a virtual test set defined in Fig. 2, whose 
size equals to the number of the statements. Thus, the virtual test set 
contains 16 test cases, where each test case covering only one statement 
out of 16 statements. We input the virtual test set into the trained net-
works and output the suspiciousness vector, where an element of the 
vector denotes the suspiciousness of a statement being faulty. This step 
finally organizes the localization result as a ranking list of all statements 
in descending order of suspiciousness. As shown in Fig. 9, the ranking 
list of CNN-FL is {s3, s9, s8, s16, s7, s11, s14, s10, s1, s15, s5, s12, s13, s4, s6, s2}; 
the ranking list of RNN-FL is {s16, s1, s3, s5, s2, s15, s6, s9, s10, s4, s12, s8,

s13, s14, s11, s7}; the ranking list of MLP-FL is {s11, s10, s8, s3, s4, s7, s12, s13,

s15, s6, s9, s16, s5, s2, s14, s1}. We can see that the faulty statement s3 is 
ranked 1st by CNN-FL, ranked 3rd by RNN-FL and ranked 4th by MLP- 
FL. 

4. Experimental study 

4.1. Experimental setup 

To evaluate the effectiveness of deep learning in locating real faults, 
we conduct a large-scale empirical study. Specifically, we adopt three 
deep-learning-based fault localization approaches (i.e. CNN-FL, RNN-FL, 
and MLP-FL), where three representative deep learning architectures (i. 
e. CNN, RNN, and MLP) are used. To obtain reliable experimental re-
sults, we collect 8 real-world programs from the widely used bench-
marks in the field of software debugging (i.e. Defects4J1, ManyBugs2, 
and SIR3). These subject programs are equipped with all real faults from 
the development of large-sized programs varying from 6.1 KLOC to 491 
KLOC. 

Table 1 summarizes the characteristics of these subject programs. For 
each program, it provides a brief functional description (column 

‘Description’), the number of faulty versions (column ‘Versions’), the 
number of thousand lines of statements (column ‘KLOC’), the number of 
test cases (column ‘Test’), and the type of the faults (column ‘Type’). The 
first four programs are from Defect4J, which is a database and extensible 
framework providing real bugs to enable reproducible studies in soft-
ware testing and debugging research [28]. The other four programs are 
also real-world subjects. Specifically, python, gzip and libtiff are collected 
from ManyBugs, and space is acquired from the SIR. 

The physical environment on which our experiments were carried 
out was on a computer containing a CPU of Intel I5-2640 with 128G 
physical memory and two 12G GPUs of NVIDIA TITAN X Pascal. The 
operating systems were Ubantu 16.04.3. We conducted experiments on 
the MATLAB R2016b. 

4.2. Evaluation metrics 

To evaluate the effectiveness of deep-learning-based fault localiza-
tion, we adopt two widely used metrics, namely Exam [29], and relative 
improvement (referred as RImp) [30]. Exam is defined as the percentage 
of executable statements to be examined before finding the actual faulty 
statement. A lower value of Exam indicates better performance. RImp is a 
metric of comparing two fault localization approaches to see the 
improvement of one approach over the other one. Given two approaches 
FL1 and FL2, FL2 is the baseline approach. RImp is to compare the total 
number of statements that need to be examined to find all faults using 
FL1 versus the number that need to be examined by using FL2. A lower 

Fig. 9. The Example illustrating three deep learning-based fault localization approaches.  

Table 1 
The summary of subject programs.  

Program Description Versions KLOC Test Type 

chart JFreeChart 26 96 2205 Real 
math Apache Commons Math 106 85 3602 Real 
mockito Framework for unit tests 38 6 1075 Real 
time Joda-Time 27 53 4130 Real 
python General-purpose language 8 407 355 Real 
gzip Data compression 5 491 12 Real 
libtiff Image processing 12 77 78 Real 
space ADL interpreter 38 6.1 13585 Real  

1 Defects4J, https://github.com/rjust/defects4j  
2 ManyBugs, https://repairbenchmarks.cs.umass.edu/  
3 SIR, https://sir.csc.ncsu.edu/portal/index.php 
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value of RImp shows better improvement of FL1 over FL2. 

4.3. Data analysis 

In this subsection, we will present the results using Exam, and RImp, 
and the statistical results among the three localization approaches using 
deep learning. Furthermore, we compare deep-learning-based fault 
localization with three state-of-the-art localization approaches.Exam 
distribution.    Fig. 10 illustrates the Exam distribution of three deep 
learning approaches in each subject program. For each curve, x-axis 
represents the percentage of executable statements examined while y- 
axis denotes the percentage of faults already located in all faulty ver-
sions. A point in Fig. 10 means when a percentage of executable state-
ments is examined in each faulty version, the percentage of faulty 
versions has located their faults. From the three curves of the nine fig-
ures, we can observe that the curve of CNN-FL is always above the other 
two curves (i.e. RNN-FL and MLP-FL). It means that CNN-FL performs 
the best among the three localization approaches. We can further 
observe that the curves of RNN-FL and MLP-FL interweave, i.e. , RNN-FL 
locates more faults than MLP-FL in some percentages of executable 
exammined while MLP-FL locates more faults than RNN-FL in other 
percentages of executable statements examined. Thus, we cannot obtain 
a conclusive result on the effectiveness relationship between RNN-FL 

and MLP-FL. 
Table 2 illustrates different types of Exam scores in MLP-FL, CNN-FL 

and RNN-FL. For each approach, it provides three types of Exam scores: 
best, average, and variance. The best score means the minimum Exam 
score of all faulty versions of a program, showing the best effectiveness 
of an approach can reach. The average score means the average Exam 
score of all faulty versions of a program, showing the average effec-
tiveness of a approach can achieve. and the variance score means the 
variance of Exam scores of all faulty versions of a program, showing 
whether the effectiveness of an approach is stable or not. From Table 2, 
we observe that among the 8 programs, CNN-FL mostly obtains the best 
cases (marked in bold font) in the three types of Exam scores, i.e. CNN-FL 
obtains 5 firsts in best Exam scores, 7 firsts in average Exam scores and 4 
firsts in variance Exam scores. The results show that CNN-FL is more 
effective and more stable than MLP-FL and RNN-FL. However, for MLP- 
FL and RNN-FL, we can still see that their three types of Exam scores do 
not show an apparent advantage over each other.RImp distribution. 
For a detailed improvement, we use RImp to evaluate the three deep- 
learning-based localization approaches. Specifically, Figs. 11–13show 
the RImp in three cases: CNN-FL versus MLP-FL, CNN-FL versus RNN-FL, 
and RNN-FL versus MLP-FL, where x-axis represents the program and y- 
axis denotes the RImp obtained in the program. Fig. 11 shows the RImp 
score of CNN-FL approach versus MLP-FL approach in each program. 

Fig. 10. Exam distribution of CNN-FL, RNN-FL and MLP-FL in each program.  
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With CNN architecture, the statements that need to be examined are cut 
down ranging from 21.87% such as time to 97.85% such as mockito. This 
means that CNN-FL needs to examine 21.87% to 97.85% of executed 
statements that MLP-FL needs to examine of. In other words, the 
maximum saving is 78.13% (100% - 21.87% = 78.13%) on timewhile the 
minimum saving is 2.15% (100% - 97.85% = 2.15%) on mockito. It 

means that the checking number of statements could be reduced from 
2.15% to 78.13% when using CNN architecture versus MLP architecture 
for fault localization. Furthermore, the average saving is 38.97%, which 
also shows a significant improvement of CNN-FL over MLP-FL. 

Fig. 12 shows the RImp score of CNN-FL approach versus RNN-FL 
approach. With CNN architecture, except for chat, the statements that 

Table 2 
Three types of Exam scores among CNN-FL, MLP-FL and RNN-FL.    

python gzip libtiff space chart math mockito time 

MLP-FL best 0.133016 0.006329 0.195170 0.111660 0.145078 0.119571 0.008208 0.34484  
average 0.322419 0.244269 0.412189 0.402564 0.3565063 0.3493785 0.1856458 0.3416445  
variance 0.159671 0.174213 0.214892 0.167041 0.186936 0.324996 0.14786809 0.45191 

CNN-FL best 0.033764 0.006329 0.110802 0.100686 0.041451 0.031021 0.167024 0.054494  
average 0.276977 0.104460 0.302835 0.339422 0.2208333 0.2146055 0.2329684 0.0721665  
variance 0.208231 0.088525 0.107424 0.139387 0.155409 0.259628 0.053328 0.24993 

RNN-FL best 0.173271 0.118297 0.046811 0.0738 0.236184 0.168077 0.110992 0.159963  
average 0.357227 0.2675652 0.356843571 0.4122877 0.3172153 0.2424095 0.2617824 0.3071585  
variance 0.145296 0.137333 0.25899 0.199216 0.087361 0.105122 0.136977 0.208166  

Fig. 11. RImp of CNN-FL versus MLP-FL.  

Fig. 12. RImp of CNN-FL versus RNN-FL.  
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need to be examined are cut down ranging from 26.04% on time to 
84.75% on python. The maximum saving is 73.96% on time, and the 
average saving is 26.22%. Except for chart, the minimum saving is 
19.25% on python. Therefore, CNN-FL significantly outperform RNN-FL. 

Fig. 13 shows the RImp score of RNN-FL versus MLP-FL. With RNN 
architecture, the statements that need to be examined are cut down in 
chart, time and libtiff, the values of RImp are 55.07%, 84% and 90.85% 
respectively. But in other programs, the values of RImp are larger than 
100%, meaning that MLP-FL performs better than RNN-FL.Statistical 
comparison.    Although RImp can show a detailed improvement, the 
analysis using RImp evaluates effectiveness from the overview of the 
results, and may miss other detailed view of the results. For example, as 
shown in Fig. 11, the RImp score of mockitois very close to 100%, which 
means that CNN-FL performs closely to MLP-FL in this program. How-
ever, a case may happen. Suppose that CNN-FL has higher but not quite 
higher effectiveness than MLP in each faulty version of a program, the 
RImp score will show that CNN performs closely to MLP. Nevertheless, in 
this case, it is difficult to conclude CNN-FL performs closely to MLP-FL 
because CNN-FL performs better than MLP-FL in each faulty version of 
the program. For another example, suppose that CNN-FL just has very 
higher effectiveness than MLP-FL in several faulty versions of a program. 
However, MLP-FL has moderately higher effectiveness in most faulty 
versions of the programs. The sheer high effectiveness of CNN-FL in the 
several faulty versions may make its RImp score lower than MLP, 
showing that CNN-FL performs better than MLP-FL. In such case, we 
cannot conclude that CNN-FL performs better than MLP-FL. 

Thus, we need a more rigourous method to obtain a detailed result 
and adopt Wilcoxon-Signed-Rank Test [31] to achieve this goal. 
Wilcoxon-Signed-Rank Test is a non-parametric statistical hypothesis 
test for testing the differences between pairs of measurements F(x) and G 
(y). At the given significant level σ, we can use both 2-tailed and 1-tailed 
p-value to obtain a conclusion. For the 2-tailed p-value, if p ≥ σ, the null 
hypothesis H0 that F(x) and G(y) are not significantly different is 
accepted; otherwise, the alternative hypothesis H1 that F(x) and G(y) are 
significantly different is accepted. For 1-tailed p-value, there are two 
cases: the right-tailed case and the left-tailed case. In the right-tailed 
case, if p ≥ σ, H0 that F(x) does not significantly tend to be greater 
than the G(y) is accepted; otherwise, H1 that F(x) significantly tends to 
be greater than the G(y) is accepted. And in the left-tailed case, if p ≥ σ, 
H0 that F(x) does not significantly tend to be less than the G(y) is 
accepted; otherwise, H1 that F(x) significantly tends to be less than the G 
(y) is accepted. 

The experiments performed one paired Wilcoxon-Signed-Rank test 
between each two localization models by using Eaxm as the pairs of 
measurements F(x) and G(y). Specifically, each test uses both the 2- 
tailed and 1-tailed checking at the σ level of 0.05. Given two Localiza-
tion models (M1 and M2), we use the list of Exam of one localization 
model M1 in all faulty versions of all programs as the list of measure-
ments of F(x), while the list of measurements of G(y) is the list of Exam of 
the other localization model M2 in all faulty versions of all programs. 
Hence, in the 2-tailed test, M1 has SIMILAR effectiveness as M2 when H0 
is accepted at the significant level of 0.05. In the 1-tailed test (right), M1 
has WORSE effectiveness than M2 when H1 is accepted at the significant 
level of 0.05. Finally, in the 1-tailed test (left), M1 has BETTER effec-
tiveness than M2 when H1 is accepted at the significant level of 0.05. 

Table 3, 4 and 5 show the statistical results using Wilcoxon-Signed- 
Rank test. Each row shows the p values and the conclusion for each 
program. The ‘Total’ row illustrates the statistical results of Wilcoxon- 
Signed-Rank test on all programs. Table 3 shows the statistical results 
of Wilcoxon-Signed-Rank test on CNN-FL versus MLP-FL. Take chart as 
an example. The p values of 2-tailed, 1-tailed(right) and 1-tailed(left) are 
0.011, 0.969 and 0.009 respectively. It means that the EXAM of CNN-FL 
is significantly less than that of MLP-FL. Therefore, we obtain a BETTER 
conclusion, that is, CNN-FL performs better than MLP-FL in the program 
chart. Based on the results in Table 3, we could see that CNN-FL obtain 
all BETTER results except for mokito, and thus conclude that CNN-FL 
significantly outperforms than MLP-FL. 

Table 4 shows the statistical results on CNN-FL versus RNN-FL. We 
can observe that CNN-FL obtain BETTER results over RNN-FL in each 
subject program and in total comparison, that is, the Exam of CNN-FL is 
significantly less than that of RNN-FL in all subject programs. Therefore, 

Fig. 13. RImp of RNN-FL versus MLP-FL.  

Table 3 
Statistical results (CNN-FL versus MLP-FL).  

Program Wilcoxon-Signed-Rank test A-Test  

2-tailed 1-tailed(right) 1-tailed(left) Conclusion  

chart 0.011 0.969 0.009 BETTER 0.78 
gzip 0.028 0.989 0.018 BETTER 0.72 
libtiff 0.018 0.993 0.011 BETTER 0.63 
math 0.012 0.971 0.010 BETTER 0.78 
mokito 0.686 0.394 0.705 SIMILAR 0.36 
python 0.011 0.995 0.007 BETTER 0.69 
space 0.029 0.986 0.015 BETTER 0.61 
time 0.018 0.963 0.019 BETTER 1.00 
Total 2.26E-03 0.999 1.14E-03 BETTER 0.62  
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we obtain a BETTER conclusion: CNN-FL significantly performs better 
than RNN-FL. 

Table 5 shows the statistical results on RNN-FL versus MLP-FL. We 
can see that RNN-FL obtain three BETTER results over MLP-FL in chart, 
libtiff and time, four SIMILAR results in gzip, mth, python and space, one 
WORSE result in mokito. It seems that RNN-FL is more effective than 
MLP-FL due to more BETTER and SIMILAR results over MLP-FL. How-
ever, in total, RNN-FL has a SIMILAR result over MLP-FL. Thus, we 
conclude that the effectiveness of RNN-FL is comparable to that of MLP- 
FL even if the effectiveness of RNN-FL is marinally higher than MLP-FL. 

To further assess the difference quantitatively, we leverage the 
nonparametric Vargha-Delaney A-test, which is recommended in [32], 
to evaluate the magnitude of the difference by measuring effect size 
(scientific significance). For A-test, the bigger deviation of A-statistic is 
from the value of 0.5, the greater difference is between the two studied 
groups. Vargha and Delaney [33] suggest that A-test of greater than 0.64 
(or less than 0.36) is indicative of “medium” effect size, and of greater 
than 0.71 (or less than 0.29) can be indicative of a promising “large” 
effect size. The ‘A-test’ column of Tables 3–5 show the effect size of the 
A-test on the three scenarios (i.e. CNN-FL versus MLP-FL, CNN-FL versus 
RNN-FL and RNN-FL versus MLP-FL). Tables 3 and 4 show that CNN-FL 
often arriving at the promising “large” effect size, i.e. CNN-FL both ob-
tains 4 “large” effect size results on MLP-FL and RNN-FL respectively. 
Table 5 shows that the effectiveness of RNN-FL is comparable to that of 
MLP-FL. 

In summary, we have the conclusion on the effectiveness of using 
three deep learning architectures in locating real faults, i.e. , CNN shows 
the highest localization effectiveness while RNN and MLP have the 
comparable effectiveness in locating real faults. 

Comparison on state-of-the-art approaches.    The recent study [2] 
empirically summarized the state-of-the-art fault localization ap-
proaches, and we use the top three techniques (i.e. Dstar [14], Barinel 
[15] and Ochia [16]) for our study. The three techniques are 
spectrum-based fault localization (SFL) [1]. Since CNN-FL shows the 
highest localization effectiveness, we compare CNN-FL with the three 
state-of-art fault localization techniques to evaluate the improvement. 

The benchmark Defects4J (i.e. chart, math, mockito and time) used by 
our study is over-fitting for SFL including the three state-of-the-art 

techniques [34,35], i.e. SFL shows inconsistencies between the bench-
mark Defects4J and other benchmarks in terms of fault localization 
effectiveness. For example, 44% and 43% of bugs in Defects4J are 
localized at top 10 using Ochiai and Dstar while none of the bugs in 
other benchmarks can be localized even in top 100 [34,35] with these 
techniques. Due to the over-fitting problem, it is extremely difficult for 
other localization approaches to outperform SFL on Defects4J (see  
Tables 6–8). To alleviate the over-fitting problem, we further add the 
recommended benchmark BEARS [36] (i.e. apache/incubator-dubb, 
INRIA/spoon, FasterXML/jackson-databind and apache/jackrabbit-oak) 
for the comparison between CNN-FL and the three localization tech-
niques. The benchmark BEARS has 251 real faults and each faulty 
version has an average 212 KLOC (i.e. the number of thousands of lines 
of statements). 

Tables 6 –8 show the statistical results of CNN-FL versus the three 
localization techniques using Wilcoxon-Signed-Rank test and Vargha- 
Delaney A-test. Except for the WORSE results in Defects4J caused by 
the benchmark over-fitting problem, CNN-FL obtains BETTER and 
“large” effect size results in almost all programs. Thus, CNN-FL signifi-
cantly outperforms the three localization techniques. 

4.4. Discussion 

The experimental results show that CNN is the most effective one in 
locating real faults among the 3 representative deep learning architec-
tures. Although deep learning is a black box technology, we still try to 
understand what factors lead to the advantage of CNN over the other 
two deep learning architectures. It is natural to seek the factors from the 
characteristics of CNN over the other architectures. CNN has the three 
characteristics distinct from the others, i.e. local connections, parameter 
sharing and down-sampling in pooling. Local connections in CNN are 
accomplished by making a kernel much smaller than the input. The 
kernel could catch sight of small but meaningful features. That can 
improve learning efficiency for reducing the memory requirements by 
leveraging fewer parameters and computing the output with fewer op-
erations. Parameter sharing uses the same parameters for more than one 
function in a model. It also means that the model only learns one set of 
parameters rather than learning multiple-sets of parameters. Parameter 
sharing makes the learning more efficient than dense matrix multipli-
cation. Down-sampling in pooling further reduces the amount of output 
parameters. It also gives the tolerance of the model’s slight deformation 
and enhances the generation ability of the model. 

We can observe that the three unique characteristics of CNN focuses 
on reducing the size of parameters while preserving the learning quality 
without loss of features. In fault localization practice, the program 
statements are always existing in great numbers and the input data sets 

Table 4 
Statistical results (CNN-FL versus RNN-FL).  

Program Wilcoxon-Signed-Rank test A-Test  

2-tailed 1-tailed(right) 1-tailed(left) Conclusion  
chart 0.029 0.909 0.021 BETTER 0.78 
gzip 0.014 0.947 0.009 BETTER 0.84 
libtiff 0.036 0.863 0.041 BETTER 0.57 
math 0.045 0.814 0.043 BETTER 0.75 
mokito 0.047 0.791 0.030 BETTER 0.60 
python 0.032 0.808 0.043 BETTER 0.56 
space 0.008 0.962 0.020 BETTER 0.60 
time 0.018 0.963 0.019 BETTER 1.00 
Total 0.016 0.991 9.03E-03 BETTER 0.61  

Table 5 
Statistical results (RNN-FL versus MLP-FL).  

Program Wilcoxon-Signed-Rank test A-Test  

2-tailed 1-tailed(right) 1-tailed(left) Conclusion  

chart 0.039 0.789 0.040 BETTER 0.78 
gzip 0.686 0.394 0.705 SIMILAR 0.50 
libtiff 0.044 0.764 0.042 BETTER 0.63 
math 0.655 0.510 0.814 SIMILAR 0.78 
mokito 0.023 0.014 0.911 WORSE 0.36 
python 1.00 0.572 0.572 SIMILAR 0.69 
space 0.782 0.394 0.613 SIMILAR 0.60 
time 0.045 0.814 0.041 BETTER 1.00 
Total 0.842 0.422 0.580 SIMILAR 0.60  

Table 6 
Statistical results (CNN-FL versus Dstar).  

Program Wilcoxon-Signed-Rank test A- 
Test  

2- 
tailed 

1-tailed 
(right) 

1-tailed 
(left) 

Conclusion  

Defects4J 0.010 0.009 0.972 WORSE 0.09 
gzip 0.018 0.876 0.011 BETTER 0.73 
libtiff 0.003 0.914 0.002 BETTER 0.78 
python 0.002 0.945 0.004 BETTER 0.76 
space 8.11E- 

04 
0.999 4.34E-04 BETTER 0.83 

apache/incubator- 
dubbo 

0.032 0.859 0.039 BETTER 0.72 

INRIA/spoon 0.996 0.605 0.605 SIMILAR 0.50 
FasterXML/ 

jackson-databind 
0.015 0.899 0.014 BETTER 0.73 

apache/jackrabbit- 
oak 

0.001 0.969 0.002 BETTER 0.80 

Total 9.46E- 
05 

1.00E+00 4.79E-05 BETTER 0.74  
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of the network are accordingly tremendous. The three unique charac-
teristics of CNN will not cause a rapid expansion of the number of pa-
rameters to be trained. However, without the characteristics of reducing 
the size of parameters, it causes the number of hidden layers to be very 
large for RNN and MLP, accompanying with the rapid expansion of the 
number of parameters to be trained, and potentially leading to the 
disadvantage in fault localization. 

For example, let us consider an input whose dimension is 100,000, 
connecting a hidden layer of the same size. There will be 100,000 * 
100,000 = 10 billion connections. Due to the larger number of con-
nections, there will be 10 billion parameters to be calculated and 
trained. However, the computing power and training data cannot satisfy 
this requirement. Therefore, it is necessary to reduce the number of 
parameters to be trained, to reduce the computational complexity, and 
to prevent over-fitting. After using the network structure of the CNN, the 
fully connected mode is changed into local connections. Assuming that 
the size of the local receptive field is 100, each dimension only needs to 
be connected with 100 instead of 100,000. Hence, the network only 
requires 100,000*100 = 10,000,000 connections, reduced by 100 times. 
When the number of layers is increased, the number of parameters is 
reduced even more. Therefore, we conjecture that it is the reason why 
CNN has the advantage over the other two architectures in fault local-
ization. We suggest that reducing the number of parameters may be a 
key factor of deep learning for improving fault localization. Our future 
work will seek the optimization on the reduction of parameters (e.g. the 
optimization on the input model and the learning process). 

To verify the above discussion, we use the Kendall rank correlation 

coefficient [37] (denoted by r) to measure the correlation between 
localization effectiveness and the size of the parameters in all the three 
fault localization approaches using deep learning. The Kendall rank 
correlation coefficient is a statistic used to measure the correlation be-
tween two measured variables. The value of the correlation coefficient r 
is in the range of [ − 1,+ 1]. When r lies around +1 or -1, then it means a 
perfect degree of correlation between the two variables. As the corre-
lation coefficient value goes towards 0, the correlation between the two 
variables will be weaker. Based on the absolute value of the correlation 
coefficient r, five cases are usually used: 

1. r ∈ [0.8, 1.0], very strong correlation; 
2. r ∈ [0.6, 0.8), strong correlation; 
3. r ∈ [0.4, 0.6), medium correlation; 
4. r ∈ [0.2, 0.4), weak correlation; 
5. r ∈ [0.0, 0.2), very weak correlation or independence; 
Table 9 shows the Kendall rank correlation coefficient between the 

localization effectiveness and the size of parameters on all the three 
deep-learning-based fault localization techniques in each program. 
Except one medium correlation in libtiff, all the results at least show 
strong correlation. This means that there is statistically significant cor-
relation between the localization effectiveness and the size of parame-
ters used by deep-learning-based fault localization approaches. Thus, 
reducing the number of parameters may be a key factor of deep learning 
for improving fault localization. 

4.5. Threats to validity 

There are some threats to the validity of our experiments. We 
adopted deep neural networks, meaning the fault localization results are 
not the same through different training times. It is the characteristic of 
neural network technologies. To make the results more reliable, we 
followed the convention by repeating the fault localization process, i.e. , 
we computed ten times and used the average score as the results for the 
experimental study. 

Another threat to external validity is the subject programs used for 
our experiments. We use those large-sized programs equipped with all 
real faults from the real-world development, commonly used in the field 
of software debugging. However, the experimental results may not apply 
to all programs because there are still many unknown and complicated 
factors in realistic debugging that could affect the experimented results. 
Thus, it is worthwhile to conduct experiments on more subject programs 
to further strengthen the experimental results. 

We adopt the widely used metrics, Exam and RImp, to evaluate the 
effectiveness of deep-learning-based fault localization. According to the 
extensive use of the measurements, so the threat is acceptably mitigated. 

5. Related work 

This section surveys closely fault localization studies, especially 
coverage-based fault localization and fault localization using machine 
learning. More work on fault localization can refer to a survey [38] by 
Wong et al. 

Coverage-based fault localization techniques convert program spec-
trum data from test executions to suspiciousness score of program en-
tities and rank them in descending order [1]. When using these 
techniques, we do not need to know the details of a program and just run 
the program with passed and failed test cases. Among existing 

Table 7 
Statistical results (CNN-FL versus Barinel).  

Program Wilcoxon-Signed-Rank test A- 
Test  

2- 
tailed 

1-tailed 
(right) 

1-tailed 
(left) 

Conclusion  

Defects4J 0.014 0.015 0.969 WORSE 0.17 
gzip 0.034 0.860 0.021 BETTER 0.74 
libtiff 0.041 0.723 0.034 BETTER 0.69 
python 0.027 0.899 0.018 BETTER 0.72 
space 0.001 0.999 5.34E-04 BETTER 0.81 
apache/incubator- 

dubbo 
0.039 0.789 0.040 BETTER 0.71 

INRIA/spoon 0.002 0.909 0.011 BETTER 0.81 
FasterXML/ 

jackson-databind 
0.029 0.824 0.022 BETTER 0.72 

apache/jackrabbit- 
oak 

0.008 0.985 0.003 BETTER 0.76 

Total 1.94E- 
05 

1.00E+00 9.82E-06 BETTER 0.77  

Table 8 
Statistical results (CNN-FL versus Ochiai).  

Program Wilcoxon-Signed-Rank test A- 
Test  

2- 
tailed 

1-tailed 
(right) 

1-tailed 
(left) 

Conclusion  

Defects4J 0.017 0.012 0.974 WORSE 0.12 
gzip 0.002 0.961 0.005 BETTER 0.81 
libtiff 0.012 0.823 0.036 BETTER 0.74 
python 0.026 0.916 0.015 BETTER 0.76 
space 0.001 0.999 5.19E-4 BETTER 0.79 
apache/incubator- 

dubbo 
0.033 0.817 0.035 BETTER 0.72 

INRIA/spoon 0.013 0.936 0.009 BETTER 0.78 
FasterXML/ 

jackson-databind 
0.038 0.817 0.023 BETTER 0.71 

apache/jackrabbit- 
oak 

0.002 0.969 0.009 BETTER 0.80 

Total 3.95E- 
05 

1.00E+00 2.00E-05 BETTER 0.75  

Table 9 
Kendall rank correlation coefficient results.  

Program Coefficient r Program Coefficient r 

chart 0.73 mokito 0.61 
gzip 0.67 python 0.65 
libtiff 0.54 space 0.62 
math 0.73 time 0.87  
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coverage-based localization methods, spectrum-based fault localization 
(SBFL) is the most popular one by using spectrum-based suspiciousness 
formulas to assign suspiciousness values of being faulty on program 
statements. Chen et al. [39] proposed the Jaccard technique. Jones et al. 
[40] proposed the tarantula technique that is a widely used and 
compared technique in the subsequent studies. Abreu et al. [41] applied 
the Ochiai for locating single-fault programs. Wong et al. [42] used data 
and control flow and presented several metrics such as Wong1-3, 
Wong3’. Wong et al. [14,43] also proposed an approach named DStar 
(D*) based on crosstab with utilization of statements’ coverage and 
execution information. Xie et al. [44,45] theoretically summarized the 
maximal formulas from many existing SBFL formulas. Furthermore, 
Pearson et al. [2] empirically summarized the SBFL formulas, showing 
different localization effects between artificial faults and real faults. 
SBFL is also adopted and evaluated in different applications, software 
product lines [46]. 

Besides, Papadakis et al. [47] first proposed mutation-based fault 
localization techniques, where the use of mutation analysis for locating 
faults was advocated. Then Papadakis et al. [48] proposed another 
mutation-based fault localization technique named Metallaxis-FL, which 
did not require finding a mutant that makes all the test cases pass and 
always suggested a possible suspiciousness ranking. Moon et al. [49] 
presented MUSE, which utilized two groups of mutants, one mutated a 
faulty statement and the other mutated a correct statement. They also 
proposed a new evaluation metric called Locality Information Loss. 
Different from those aforementioned studies, our study focuses on the 
localization effectiveness of using deep learning in locating real faults. 

Machine learning techniques are used in the context of fault locali-
zation based on statement coverage and execution results of test cases. 
Wong et al. [11] proposed a fault localization approach based on 
back-propagation (BP) neural network, which has a simple structure to 
implement. Due to the drawbacks of BP networks (e.g. paralysis), Wong 
et al. [50] proposed another approach based on radial basis function 
(RBF) networks. Recently, deep learning methods have witnessed a 
rapid development to tackle the limitations of traditional machine 
learning techniques and is utilized in many disciplines such as computer 
vision and natural language processing. Based on the methods proposed 
by Wong and the advantage of deep learning methods, Zheng et al. [9] 
presented a fault localization method based on Multi-Layer Perceptrons 
(MLPs). Zhang et al. [51] enhanced fault localization efficiency based on 
deep neural network with dynamic slice technology. Briand et al. [52] 
proposed a fault localization method based on decision tree algorithm 
constructing rules that classify test cases into various partitions. Li et al. 
[53] furthermore propose DeepFL using various feature dimensions to 
locate method-level faults while our study focuses on locating 
statement-level ones. Deep-learning-based fault localization has shown 
its promising results over a wide spectrum of the state-of-the-art local-
ization techniques [10,51] (e.g. BP neural networks [11], PPDG [12], 
Tarantula [13], Dstar [14], Barinel [15], and Ochia [16]). Thus, we use 
more basic and representative deep learning architectures to conduct a 
large-scale study on effectiveness of using deep learning in locating real 
faults. 

6. Conclusion 

Recently, deep-learning-based fault localization has shown its 
promising results in fault localization. Thus, this paper explores more on 
using deep learning for fault localization in the context of real faults. We 
use three representative and popular deep learning architectures (i.e. 
CNN, RNN and MLP) for fault localization, where we propose CNN-FL 
and RNN-FL. Furthermore, we collect 8 real-world programs with all 
real faults from the widely used benchmarks (i.e. Defects4J, ManyBugs 
and SIR). We conduct a large-scale study on the 8 large-sized programs 
by using the three deep-learning-based fault localization approaches. 
The experimental results show that CNN performs the best among the 
three deep learning architectures while RNN and MLP have the similar 

effectiveness in locating real faults. We analyze the underlying advan-
tage of CNN over the other two architectures, and suggest that reducing 
the number of parameters may be a key factor of deep learning for 
improving fault localization. 

Slightly further in the future, we plan to study more on deep- 
learning-based fault localization, trying to improve the effectiveness. 
Moreover, seeking way to extend deep learning to multiple-bugs cases is 
of great interest to our research. 
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