
Information and Software Technology 131 (2021) 106486

Available online 15 November 2020
0950-5849/© 2020 Elsevier B.V. All rights reserved.

A study of effectiveness of deep learning in locating real faults

Zhuo Zhang a,c, Yan Lei *,b, Xiaoguang Mao c, Meng Yan b, Ling Xu b, Xiaohong Zhang b

a Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin 541000, China
b School of Big Data & Software Engineering, Chongqing University, Chongqing 400044, China
c College of Computer, National University of Defense Technology, Changsha 410073, China

A R T I C L E I N F O

Keywords:
Fault localization
Debugging
Neural networks
Deep learning
Suspiciousness

A B S T R A C T

Context: The recent progress of deep learning has shown its promising learning ability in making sense of data,
and many fields have utilized this learning ability to learn an effective model, successfully solving their problems.
Fault localization has explored and used deep learning to server an aid in debugging, showing the promising
results on fault localization. However, as far as we know, there is no detailed studies on evaluating the benefits of
using deep learning for locating real faults present in programs. Objective: To understand the benefits of deep
learning in locating real faults, this paper explores more about deep learning by studying the effectiveness of
fault localization using deep learning for a set of real bugs reported in the widely used programs. Method: We
use three representative deep learning architectures (i.e. convolutional neural network, recurrent neural network
and multi-layer perceptron) for fault localization, and conduct large-scale experiments on 8 real-world programs
equipped with all real faults to evaluate their effectiveness on fault localization. Results: We observe that the
localization effectiveness varies considerably among three neural networks in the context of real faults. Spe-
cifically, convolutional neural network performs the best in locating real faults, showing an average of 38.97%
and 26.22% saving over multi-layer perceptron and recurrent neural network respectively; recurrent neural
network and multi-layer perceptron yield comparable effectiveness even if the effectiveness of recurrent neural
network is marginally higher than multi-layer perceptron. Conclusion: In context of real faults, convolutional
neural network is the most effective for fault localization among the investigated architectures, and we suggest
potential factors of deep learning for improving fault localization.

1. Introduction

In the process of software development and maintenance, debugging
is to locate and fix faults within a program. It is a painstaking task
because it usually requires much manual involvement of debugging
engineers (e.g. inserting print statements, and setting break points). In
fact, debugging has been identified as one of the most expensive and
time-consuming processes for software developers [1,2]. To reduce the
cost, many fault localization techniques have been proposed to provide
automated assistance in locating the faults that cause executions to
produce incorrect outputs (i.e. failures) [3–7].

In recent years, deep learning has progressed rapidly and became
increasingly popular in various applications (e.g. image classification,
object detection, and segmentation) due to its promising ability of
providing tremendous improvement in robustness and accuracy [8]. It
implies that deep learning may open a new perspective for fault

localization by using its learning ability of data to construct a localiza-
tion model, evaluating which statements being suspiciously faulty. In
fact, some researchers have explored the use of deep learning to discuss
and evaluate the potential of deep learning in fault localization [9,10].
They found that with the capability of estimating complicated functions
by learning a deep nonlinear network structure and attaining distributed
representation of input data, deep learning exhibits strong learning
ability from sample data sets. This learning ability is beneficial for fault
localization, showing better localization results over the state-of-the-art
fault localization techniques (e.g. BP neural networks [11], PPDG [12],
Tarantula [13], Dstar [14], Barinel [15], and Ochia [16]).

Although deep learning has shown its promising results on fault
localization, the existing analysis still needs much further study. For
example, the existing analysis [9,10] mostly utilizes those subject pro-
grams with seeded faults. The recent research [2] has revealed that
artificial faults including seeded ones are not adequate for evaluating

* Corresponding author.
E-mail addresses: zz8477@126.com (Z. Zhang), yanlei@cqu.edu.cn (Y. Lei), xgmao@nudt.edu.cn (X. Mao), mengy@cqu.edu.cn (M. Yan), xuling@cqu.edu.cn

(L. Xu), xhongz@cqu.edu.cn (X. Zhang).

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

https://doi.org/10.1016/j.infsof.2020.106486
Received 29 October 2019; Received in revised form 11 September 2020; Accepted 5 November 2020

mailto:zz8477@126.com
mailto:yanlei@cqu.edu.cn
mailto:xgmao@nudt.edu.cn
mailto:mengy@cqu.edu.cn
mailto:xuling@cqu.edu.cn
mailto:xhongz@cqu.edu.cn
www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2020.106486
https://doi.org/10.1016/j.infsof.2020.106486
https://doi.org/10.1016/j.infsof.2020.106486
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2020.106486&domain=pdf

Information and Software Technology 131 (2021) 106486

2

fault localization techniques, and recommends using real faults for
evaluation. Furthermore, deep learning has different learning architec-
tures, which may demonstrate different abilities in terms of fault
localization effectiveness. It is necessary to identify the varying degree
of the representative deep learning architectures on fault localization
and recommend promising learning architectures for debugging engi-
neers. It is also vital to investigate what factors are important for a deep
learning architecture to take the advantage on improving fault
localization.

Therefore, this paper explores more about deep learning in
improving fault localization, i.e., we aim at evaluating and under-
standing the benefits of using the representative deep learning archi-
tectures on fault localization in real faults. To achieve this goal, we face
three fundamental problems. The first one is that what deep learning
architectures are used as representative ones for the study. The solution
to this problem is to use the basic and popular deep learning architec-
tures as the representative ones. In deep learning, convolutional neural
network (CNN) [17] recurrent neural network (RNN) [18,19] and
multi-layer perceptron (MLP) [20] are the three basic and popular
learning architectures, and more importantly, the three learning archi-
tectures have different distinct features probably benefiting fault local-
ization. Among the three learning architectures, MLP has the simplest
yet effective structure, and can be easily deployed by fault localization;
CNN is capable of processing the rapid expansion of the number of pa-
rameters to be trained due to using local connections, parameter
sharing, and down-sampling in pooling, and may be useful for
enhancing the generation ability of the fault localization model; RNN is
capable of learning long-term dependencies, and may be useful for
analyzing how a fault depends on other statements to cause a program
failure. Thus, we use the three representative and distinct learning ar-
chitectures for the study to understand what factors of a learning ar-
chitecture are important for effective fault localization. The second one
is how to use the methodology of different deep learning architectures
for fault localization. The solution is to utilize the methodology of deep
learning from the problem domain of fault localization, that is, we
should construct training samples and fix the labels for deep learning in
the perspective of fault localization. In the literature of fault localiza-
tion, there is an effective and widely used information model [14], using
coverage information and test results, reflects the execution information
of a statement (involved or not involved) and the test results (i.e. failed
or not failed). This information model has a well-define structure,
including coverage information and test results, which can be poten-
tially used as training samples and the labels for deep learning in the
perspective of fault localization. It means that we may utilize this
effective information model to successfully apply the methodology of
deep learning from the problem domain of fault localization to output a
fault localization solution. The third one is how to identify a set of
representative subject programs with all real faults for the study. The
solution is to find those large-sized programs with all real faults widely
used in the literature.

Based on the above analysis, we use convolutional neural network
(CNN) [17], recurrent neural network (RNN) [18,19], and multi-layer
perceptron (MLP) [20] for studying the benefits of using deep learning
on fault localization. With the effective and widely used information
model [14], we leverage its structure of coverage information and test
results to construct training samples and fix the labels, for successfully
applying the methodology of deep learning from problem domain of
fault localization. Therefore, with the above solution, we study three
fault localization approaches based on deep learning, namely CNN-FL,
RNN-FL, and MLP-FL representing fault localization using convolu-
tional neural network, recurrent neural network and multi-layer per-
ceptron respectively. Among the three approaches, we propose CNN-FL
and RNN-FL while Zheng et al. [9] proposes MLP-FL which complies
with the structure of the other two approaches. The three approaches
using deep learning train their networks with test cases, and finally
evaluate the suspiciousness of a statement being faulty by testing the

trained model with a virtual test suite.
Based on our earlier work [10], we collect 8 programs from the

widely used benchmarks in the field of software debugging. Thus, we
conduct a large-scale empirical study on the 8 real-life programs with all
real faults to investigate the varying levels among different learning
architectures, pinpoint the advantage of which architecture over other
ones, and discuss the factors behind this advantage. The results show
that CNN-FL performs best among the representative deep learning ar-
chitectures, and reducing the number of parameters implies a key factor
of a deep learning architecture in taking advantage over other archi-
tectures for improving fault localization.

The main contributions of this paper can be summarized as:

• We present a methodology for using deep learning to locate faults,
and based on the methodology we propose CNN-FL and RNN-FL.

• We conduct a large-scale empirical study to evaluate the effective-
ness of three deep learning approaches across various representative
programs in the context of locating real faults, identifying the
varying localization levels of the representative learning architec-
tures and showing CNN-FL is the most effective one among the three
deep learning approaches.

• We further demonstrate the potential of using deep learning as a new
perspective and discuss the key factors of deep learning for effective
fault localization.

The structure of the rest paper is organized as follows. Section 2
provides the necessary background. Section 3 describes the three fault
localization approach based on deep learning. Section 4 presents results
of our empirical study including experiment subjects, experiment
design, data analysis, discussion, and threats to validity. Section 5 in-
troduces related work and Section 6 concludes.

2. Background

In this section, we will briefly introduce the three basic and popular
deep learning architectures, namely multi-Layer perceptron (MLP),
convolutional neural network (CNN), and recurrent neural network
(RNN). Hinton et al. [20] proposed multi-layer perceptron (MLP), which
is an artificial deep neural network with multiple hidden layers, and
each node at the same hidden layer uses the same nonlinear function to
map the feature input from the layer below. The structure of an MLP is
flexible and demonstrates promising capacity to fit the highly complex
nonlinear relationship between inputs and outputs. It is one of the deep
learning models and has been successfully applied in many areas of
software engineering [8]. And also it has already been rapidly evolved
into making sense of data such as images, text, and sound [8,21]. MLPs
have the capability of estimating complicated functions by learning a
deep nonlinear network structure and further obtaining distributed
representation of input data. It exhibits strong capability in learning
representation from sample data.

A convolutional neural network (CNN) [17] is a specialized kind of
neural network for processing data that has a known, grid-like tech-
nology. It could learn rich highly abstract data features to represent
complex objects effectively [17,22–26]. CNNs have continued to grow in
popularity and are originally designed to solve problems such as com-
puter vision related tasks, but are not limited to images. They can also be
used for audio data, and text data. A CNN consists of five main com-
ponents: input layer, convolution layers, pooling layers, fully connected
layers, and output layer. These five components help match complex
patterns by highlighting important information while ignoring noise. In
practice, the first layer is the input layer with input data sets and the
second layer is the convolution layer. Technically, A CNN has at least
one layer that does a convolution with its configurable kernels, meaning
that the goal of a convolution operation is to utilize a filter (also known
as convolution kernel), and slide the filter over an input tensor’s each
area that has the same size as the filter. Activation functions such as

Z. Zhang et al.

Information and Software Technology 131 (2021) 106486

3

rectified linear unit are utilized to support convolution layer and are the
source of non-linearity of the mapping function represented by the CNN.
Usually, followed by a convolution layer, it is a pooling layer. The
pooling layer reduces the size of the input, and thus boosts training
speed and reduces the possibility of over-fitting. It keeps important in-
formation for the next layer while scaling down input. Pooling layers
execute much faster than convolution layers, though the latter could
also reduce the size of input. After several groups of convolution layer
and pooling layer, there are several fully connected layers. These layers
are often in the format of multiplying layer input with weight, and then
adding bias where layer input, weight and bias are all tensors. These
short-hand layers will do the same thing while taking care of the in-
tricacies involved in managing the weight and bias tensors. With their
flexible structure and multiple hidden layers, CNNs have the capacity to
fit highly complex nonlinear relationship between inputs and outputs.
The last layer is the output layer that outputs the results. By utilizing the
difference between the output and the actual target output to construct a
cost function, we can then train the CNN by back propagation (BP) al-
gorithm. The Back propagation algorithm is for updating the model
parameters, by minimizing the loss between network’s output and target
output through a number of training steps. With that goal, applying
gradient descent to find the minimum of the loss function will result in
the model learning from the input data set. Generally speaking, CNNs
are useful network architectures in multiple industries from audio to
media and so on.

A recurrent neural network (RNN), another important branch of
deep neural networks family, is a family of networks that are good at
solving sequential tasks in many domains such as speech recognition,
speech synthesis, connected handwriting recognition, time-series fore-
casting, image caption generation, and end-to-end machine translation.
RNNs build on the same neurons summing up weighted inputs from
other neurons. The neurons of an RNN are allowed to connect both
forward to higher layers and backward to lower layers. Various variants
of RNNs were not widely used until recently since insufficient compu-
tation power and difficulties in training. We have seen powerful appli-
cations of RNNs since the invention of architectures like LSTM [18,19].
LSTM, proposed by Hochreiter and Schmidhuber [18], is a special form
of RNNs which is designed to overcome vanishing and exploding gra-
dients problem. It performs significantly better for long-term de-
pendencies problems and becomes a representative for RNNs. In LSTM
architecture, normal neurons in an RNN are replaced by so-called LSTM
cells that have a little memory inside to cope with the problem of van-
ishing and exploding gradients. These cells are wired together as they
are in a usual RNN but they own internal states that help to remember
errors over many time steps. The trick of these internal states lies in the
fact that they have a self-connection with a fixed weight of one and a
linear activation function, so that its local derivatives is always one.
During back propagation, this so called error carousel can carry errors
over many time steps without having the gradient vanish or explode.
LSTM is directional, and only uses past contexts. However, in many
tasks, information from both directions are useful and complementary to
each other. Therefore, bidirectional LSTM [27] was proposed by
combining two LSTMs, one forward and one backward. This architecture
allows higher level of abstractions and has achieved significant perfor-
mance improvements in the task of speech recognition. Considering the
popularity and the performance, we use bidirectional LSTM in the study.

3. Deep-learning-based fault localization

This section will present the methodology of deep-learning-based
fault localization using three deep learning architectures in detail.
Furthermore, we will provide a concrete example for a demonstration of
how to apply deep learning for localizing faults.

3.1. Methodology

We will depict the overview methodology for using different neural
networks to locate faults. Deep learning learns rich highly abstract data
features from the input data set and its learning power should be useful
to evaluate which statements exhibiting more relevance with failures.
Thus, the basic idea of deep-learning-based fault localization is to adopt
a specific neural network to build a model for learning and estimating
the association of a statement with failures. We use the estimation of the
association as the suspiciousness of the statements of being faulty. For
leveraging the learning power of a specific neural network, we should
first initiate the neural network for fault localization, i.e. , we should first
construct training samples and fix their labels in context of fault local-
ization. The process of fault localization starts from a failure, and focuses
on which statement to be the fault causing a failure. It means that we
should initiate the neural network with training samples and their la-
bels, which can reflect the association of the execution information of a
statement with failures.

For realizing such initiation, we adopt an effective and widely-used
information model [14] in the fault localization literature by using
coverage information and test results. Specifically, given a program P
with N statements, it is executed by a test suite T with M test cases, which
contain at least one failed test case (see Fig. 1). The element xij=1 means
that the statement j is executed by the test case i, and xij=0 otherwise.
The M×N matrix records the execution information of each statement in
the test cases T. The error vector e represents the test results. The
element ei equals to 1 if the test case i failed, and 0 otherwise. The error
vector shows the test results of each test case (i.e. failures or
non-failures). Since they can associate the execution information of a
statement (i.e. the matrix) with failures or non-failures (i.e. the error
vector), the matrix and the error vector are the training samples and
their corresponding labels respectively, where each training sample is an
N-dimensional vector. Based on the training samples and their labels, we
use mini-batch stochastic gradient descent to update network parame-
ters with the batch size settled to h, namely, each time we feed a h×N
matrix as input to the network and use its corresponding error vector as
labels. The network is trained iteratively.

The training process will learn a trained model, reflecting the com-
plex nonlinear relationship between the statement coverage and test
results. Finally, we construct a set of virtual test cases (see Fig. 2) as the
testing input to measure the association of each statement with test re-
sults. Concretely, each time we choose one virtual test case and input it
to the network, the output is the estimation of the probability of causing
a failure by executing the virtual test case. Furthermore, suppose that if
the virtual test case only covers one statement, the output is also the
estimation of the probability of causing a failure by executing the
statement. The estimation can show the suspiciousness of a statement of
being faulty.

Thus, as shown in Fig. 2, we construct N virtual test cases, equaling to
the number of the statements, where each virtual test case only covers
one statement. Specifically, the element xi =1 means that the statement i
is only covered by the virtual test case ti, and xi =0 in the other virtual
test cases. When the coverage vector of a virtual test case is inputted to
the trained neural network, the output of the network is the estimation
of the virtual test case’s execution result of being a failure by covering
only one statement. The value of the result is between 0 and 1. The larger
the value is, the more likely it is that the statement only covered by the

Fig. 1. The coverage and results of M executions.

Z. Zhang et al.

Information and Software Technology 131 (2021) 106486

4

coverage vector is the buggy statement. For example, the statement i is
likely to be the buggy statement. Then we input ti to the trained neural
network, and the output of virtual test case ti represents the probability
of test case execution result of being a failure by only covering the
statement i. The value of the result is the suspiciousness of the statement
i. In this way, we can evaluate the suspiciousness of each statement
being faulty.

Although different neural networks use the same overview meth-
odology, their specific learning processes are different due to their
different structures. The following subsections will depict how each of
the three neural networks apply the overview methodology for fault
localization.

3.2. CNN-FL

Architecture Based on the overview methodology at Section 3.1,
CNN-FL uses CNN to learn a fault localization model evaluating the
suspiciousness of each statement being faulty. As shown in Fig. 3, the
architecture of CNN-FL consists of one input layer, two convolution
layers, two rectified linear units, two pooling layers, several fully con-
nected layers, and one output layer.

In the input layer, based on the matrix M×N and the error vector (see
Fig. 1), h rows of the M×N matrix and the error vector are used as an
input, which are the coverage information of h test cases and their
execution results starting from the ith row, where i ∈

{1,1+h,1+2h,...,1+(⌊M/h⌋-1)× h}. As a reminder, if M/h is not an
integer, we will also input the execution information of the remainder
(M − ⌊M/h⌋.*h) test cases and their execution results starting from the
(⌊M/h⌋.*h+ 1)th row. When the size of the program is large, the ele-
ments of each row are numerous, leading to a large number of param-
eters related to the input data vector. Thus, it is dispensable to reduce
the number of parameters while preserving the significant features. That
is the function of convolution layers.

The convolution layer often has several convolution kernels (filters),
leveraging certain patterns to highlight the features in the input data,
and thus recognizing the important attributes of the input. The convo-
lution operations enable CNNs to accurately match diverse patterns.
When an operation is sliding the kernel over each point in the input, it is
utilizing the strides parameter to change how it walks over the input.
The strides parameter configures the operation to skip less important
elements and obviously reduces the dimensionality of the output, while
the kernel allows the operation to use all the input values. The input
becomes a smaller tensor after the convolution operation and conse-
quently the dimensionality is reduced. This makes less processing power
be required and will keep from creating receptive fields that completely
overlap. CNNs generally consist of multiple convolution layers, where
each convolution layer can have multiple different convolution kernels,
and furthermore each convolution kernel corresponds to new values
after filtering. In our model, there are two convolution layers, where
each one has several convolution kernels, i.e. , convolution layer 1 has k1
kernels while convolution layer 2 has k2 kernels. In our model, we set k1
and k2 to be 32 and 64 respectively. Every kernel Wk is a vector,
whereWk∈R10 (i.e. the size of kernel Wk is 10 in our experiment.), which
is used to slide over each element of the input coverage data vector and
recognize the important attributes. Our model uses strides parameters to
reduce the dimensionality of the output and skip less important ele-
ments. For example, we reduce those elements are all 0 in all the
coverage data vectors, which means that those statements are not
executed in all the test cases.

Fig. 2. Virtual test cases.

Fig. 3. The workflow of CNN-FL.

Z. Zhang et al.

Information and Software Technology 131 (2021) 106486

5

After each convolution layer, there is a rectified linear unit (ReLU)
which is an activation function for supporting convolution layers. There
are three types of activation functions often used [8]: ReLU function,
sigmoid function, and hyperbolic tangent function (tanh). ReLU function
empirically works well although it sacrifices information. It keeps the
same input values for any positive numbers while setting all negative
numbers to be 0. As shown in Fig. 4 and Eq. (1), x is a variable, ReLU has
a range of [0, + ∞], and it has a benefit that it does not suffer from the
gradient vanishing problem. The sigmoid function keeps a value between
0 and 1, which is useful in networks that train on probabilities in the
range of [0, 1]. Larger values sent into a sigmoid function will trend
closer to 1 just as illustrated in Fig. 4 and Eq. (2). The drawback of
sigmoid is that when there is an input becoming saturated and the
changes in the input become exaggerated, the reduced range of output
values could cause gradient vanishing. As shown in Fig. 4 and Eq. (3),
tanh function, also called hyperbolic tangent function, is a close relative
to sigmoid function with the same benefits and drawbacks. Tanh func-
tion keeps a value between − 1 and 1. It is used in the range of [− 1, 1],
which is the main difference between sigmoid and tanh. And tanh can
output negative values useful in certain networks. In our model, we use
ReLU function as an activation function because it works well and does
not suffer from gradient vanishing problem.

ReLU(x) = max(0, x) (1)

sigmoid(x) =
1

1 + e− x (2)

tanh(x) =
ex − e− x

ex + e− x (3)

After rectified linear unit, it is the pooling layer. There are two main
pooling methods. One is Max pool and the other is Avg pool. Max pool
picks the maximum value within a certain window size (kernel size)
with striding over a tensor. The goal of Max pool is to keep the largest
value in the tensor. Just as shown in Fig. 5, the largest value of the tensor
is 2.0. Hence, Max pool will choose the largest value in each kernel size
as it strides over the input from the last layer. Different from Max pool,
Avg pool strides over the tensor and averages all the values found in a
window size. The advantage of Avg pool is that it could be useful when
reducing values where the entire kernel is important such as an input
tensor with a large width and height but small depth. In Fig. 5, Avg pool
returns the value of 0.67, which is the average of all the values within
the tensor ((1.0+0.2+2.0+0.3+0.5+0.7+1.0+0.1+0.2)/9). In our
model, we choose Max pool because the empirical results show that the
largest value in the tensor is beneficial for fault localization
effectiveness.

The next are fully connected layers. CNN architecture arranges fully
connected layers in a chain structure, with each layer being a function of
the layer that preceded it. The relationship between the fully connected
layers in a CNN model can be interpreted as follows:

x = output of pooling layer 2
h1 = f (w1x + b1)

h2 = f (w2h1 + b2)

⋮
hn = f (wnhn− 1 + bn)

(4)

Where, x is the output of pooling layer 2, and wi, (bi) and hi denote
the weight parameter, bias parameter and the output of each layer,
respectively. According to the formulas in Eq. (4), we can see that the
architecture of a CNN arranges these layers in a chain structure, with
each layer being a function of the layer that preceded it. Though one
hidden layer could also be sufficient to fit the training set, deeper
network architectures with more layers are required to get better results.
Nevertheless, those deeper network architectures have a drawback that
they are often harder to optimize. Experimentation guided by moni-
toring the validation set error ought to be found to get an ideal network
architecture. By utilizing the difference between the output by the
network (yi) and the actual target output (ei) to construct a cost function,
we can then train the layers by using back propagation (BP) algorithm.
During the training process, the weight (wi) and bias (bi) parameter are
determined to choose the width of the hidden layers and the depth of the
network. In our model, there are 3 fully connected layers with the
number of nodes in each one to be 1024.

The last layer is output layer. The output function in the output layer
is sigmoid function (see Eq. (3)) We use sigmoid function to output the
result in our model because values sent into a sigmoid function will be
0 to 1 as illustrated in Fig. 4. Each element in the result vector of the
sigmoid function has difference with the corresponding element of the
target vector. The difference is the loss between the output layer and
target.

We use back propagation algorithm [8] to fine-tune the parameters
of the model because it is commonly used to adjust the weight of neurons
by calculating the gradient of the loss function in the context of deep
learning. The goal is to minimize the loss between training result y and
errors-vector e. The algorithm goes forward from the input layer
calculating the outputs of each layer up to the output layer. Then it starts
calculating derivatives going backwards through the layers and propa-
gating the results in order to do less calculation by reusing all of the
elements already calculated. The learning rate impacts the speed of
convergence. Our model adopts dynamic adjusting learning rate for its
two merits. One is that it can make large changes at the beginning of the
training procedure when larger learning rate values are used. The other
one is that it can decrease the learning rate with a smaller training up-
dates for computing weights later, resulting in accurate weights more
quickly. The experiment results conform to the effectiveness of dynamic
adjusting learning rate. In the following equation (Eq. (5)), one Epoch
means completing all training data once, LR represents learning rate,
DropRate is the amount that learning rate is modified each time while
EpochDrop is how often to change the learning rate. We set the initial
learning rate to be 0.01 and DropRate to be 0.98. EpochDrop is set ac-
cording to the number of the test cases.

LR = LR*DropRate(Epoch+1)/EpochDrop (5)

Summary of steps Finally, we summarize the steps of CNN-FL as
follows:

(1) Construct a CNN that consists of one input layer according to the
number of statements, two convolution layers, two pooling
layers, two rectified linear units, several fully connected layers
with the number of nodes in each one estimated by the program
size and one output layer with the number of nodes to be 1. We
choose ReLU function to be the activation function due to its good
performance and the advantage of not suffering from gradient
vanishing.

Fig. 4. ReLU, sigmoid and tanh function.

Z. Zhang et al.

Information and Software Technology 131 (2021) 106486

6

(2) Train the network using the coverage data and execution result of
the test case according to Fig. 1as training sample set. CNN-FL
inputs each coverage data matrix one by one into the CNN
model to obtain the complex nonlinear mapping relationship
between the coverage data and the execution result. In each
coverage data matrix, there are h rows and N columns, we set
batch size h to be 10 and N is the number of statements.

(3) Input each coverage data vector of virtual test cases according to
Fig. 2 into the trained CNN and obtain the outputs. The output of
ti reflects the probability that xi contains a bug, showing the
suspiciousness of the statement i of being faulty. The larger the
value of output of ti is, the more likely it is that the statement i
contains the bug.

(4) Rank the statements in descending order of the suspiciousness
calculated by the previous step. This step outputs localization
results in a text form. The text form contains the statements in

descending order of suspiciousness given by our model. This form
provides potentially suspicious statements (e.g. suspiciousness,
and line number), which can assist developers or automated
program repair tools in locating and fixing faults.

3.3. RNN-FL

Architecture RNN-FL utilizes RNN to conduct the training and learn
a localization model via the overview methodology. Fig. 6 shows the
architecture of RNN-FL. As shown in Fig. 6, the architecture of RNN-FL
consists of one input layer, two recurrent layers, and one output layer.
Each recurrent layer contains one forward (left to right) LSTM and one
backward (right to left) LSTM, Specifically, given a program P with N
statements, it is executed by M test cases which contains at least one
failed test case (see Fig. 1). Based on the matrix M× Nand its errors-
vector, we use mini-batch stochastic gradient descent to update

Fig. 5. Example of Max pool and Avg pool.

Z. Zhang et al.

Information and Software Technology 131 (2021) 106486

7

network parameters with the batch size settled to h. Thus, similar to
CNN-FL, h rows of the matrix M× Nand its errors-vector are used as an
input, which are the coverage information of h test cases and their
execution results starting from the ith row, (i ∈ {1,1+h,1+2h,...,1+(⌊M/
h⌋-1)× h}). In each row, there are N statements. For the specific feature
of RNN in capturing long-range dependencies, RNN requires cut the N
statements into different groups. Specifically, if N/L is an integer, these
N statements are cut into N/L groups, where each group has L state-
ments; otherwise, the N statements are categorized into ⌊N/L⌋+1
groups, where each group in the first ⌊N/L⌋ groups has L statements
while the last group has N-⌊N/L⌋×L statements. As a reminder, ⌊N/L⌋
means the integer part of N/L.

The next are recurrent layers, which consist of several LSTM units.
Fig. 7 illustrates the architecture of an LSTM Unit. An LSTM unit consists
of a memory cell and three multiplicative gates, namely input gate,
forget gate and output gate. Conceptually, the memory cell stores the
past information. The input gate and the output gate allow the cell to
store information for a long period of time. At the same time, the
memory in the cell could be cleared by the forget gate. This architecture
of LSTM allows it to capture long-range dependencies, which often occur
in fault localization tasks. Each time one unit receives the information of
one group that has L statements or N-⌊N/L⌋×L statements as input, and
it updates its internal state with both input and past state, which could
capture past contexts and make prediction. LSTM is directional, it only
uses past information. However, in the statements sequences of a pro-
gram, information from both directions are useful. Therefore, we
combine two LSTMs, one forward and one backward, into a bidirectional
LSTM. Furthermore, multiple directional LSTMs can be stacked, result-
ing in a deep structure as illustrated in Fig. 6. We utilize bidirectional
LSTM for its ability of higher level of abstractions and the achievement
of significant performance improvement. The complex nonlinear rela-
tionship between the coverage information of the statements and the
results of test cases can be reflected after training the network

iteratively. At last, a set of virtual test cases (see Fig. 2) that is an N-
dimensional unit matrix is constructed. Each virtual test case is used as a
testing input, and their outputs are the suspiciousness of the corre-
sponding statements. Our RNN model adopts dynamic adjusting

Fig. 6. The architecture of RNN-based fault localization.

Fig. 7. The architecture of an LSTM unit.

Z. Zhang et al.

Information and Software Technology 131 (2021) 106486

8

learning rate as depicted in Eq. 5.Summary of steps Finally, we
summarize the steps of RNN-FL as follows:

(1) Construct a RNN consists of one input layer according to the
number of statements and cut the statements into N/Lor ⌊N/L⌋+1
groups, two recurrent layers and one output layer with the
number of nodes according to the number of test cases. In
recurrent layers, we combine two LSTMs, one forward and one
backward, into a bidirectional LSTM. We stack two bidirectional
LSTMs, resulting in a deep structure to get higher level of ab-
stractions and achieve significant performance.

(2) Train the network using the coverage data and execution result of
the test cases according to Fig. 1as the training sample set. The
model inputs each coverage data matrix one by one into the RNN
network to obtain the complex nonlinear mapping relationship
between the coverage data and the execution result.

(3) Input each coverage data vector of virtual test cases according to
Fig. 2 into the trained RNN and obtain the outputs. The output of
ti reflects the probability that xi contains a bug, showing the
suspiciousness of the statement i being faulty. The larger the
value of output of ti is, the more likely it is that the statement i
contains the bug.

(4) Rank the statements in descending order of the suspiciousness
calculated by the previous step. This step outputs localization
results in a text form. The text form contains the statements in
descending order of suspiciousness evaluated by the RNN model.

3.4. MLP-FL

MLP-FL, proposed by Zheng et al. [9], adopts MLP to evaluate the
suspiciousness of a statement being faulty, and complies with the
overview methodology. MLP-FL first constructs a MLP with three parts:
an input layer, hidden layers and an output layer. Then, it trains this
model by utilizing statement coverage and test results as the input.
Finally, MLP-FL tests the trained model using virtual test suite to eval-
uate the suspiciousness of each statement being faulty.

Specifically, based on the matrix M×N and its errors-vector as input
(see Fig. 1), MLP-FL uses mini-batch stochastic gradient descent to up-
date network parameters with the batch size settled to h, the network is
trained by feeding a h × N matrix as input iteratively. Then, a set of
virtual test cases (see Fig. 2), an N-dimensional unit matrix, is con-
structed and each virtual test case is used as a testing input. Finally, the
output of each testing input is the suspiciousness of their corresponding
statements.

Fig. 8 shows the architecture of MLP-FL. In MLP-FL, there are one
input layer with the number of nodes according to the number of the
statements, one output layer with the number of nodes according to the
size of the test cases, appropriate number of hidden layers with the
number of nodes in each one estimating by the following formula:

number = round
(n

30
+ 1

)
*10 (6)

Where, n represents the number of executable statements. The hid-
den layers extract features from the input layer. Transfer function re-
flects the complex relationship between input and output. MLP-FL uses
ReLU function (see Fig. 4 and Eq. (1)) in the hidden layer as transfer
function and sigmoid function (see Fig. 4 and Eq. (2)) to output the result.
MLP-FL adopts dynamic adjusting learning rate as illustrated in Eq. (5),
and adjusts impulse factor according to the size of the sample. It further
uses back propagation algorithm to fine-tune the parameters (weight
and bias) of the model, and the goal is to minimize the difference be-
tween the error vector e (see Fig. 1) and the training result y.

3.5. An illustrative example

Fig. 9 illustrates a faulty program P with 16 statements that contains
a faulty statement s3 to show just how the three fault localization ap-
proaches are to be applied. In Fig. 9, the table is the input matrix of fault
localization (see Fig. 1). Specifically, for the table,the cells below each
statement indicate whether the statement is covered by the execution of
a test case or not (1 for executed and 0 for not executed) and the
rightmost cells represent whether the execution of a test case is failed or
not (0 for pass and 1 for fail). There are 6 test cases, in which two of them
failed (i.e. t1 and t6).

The first step of the three fault localization approaches is to construct
a neural network. CNN-FL constructs a CNN model with one input layer
with the number of nodes being 16 (i.e. the number of the statements),
two convolution layers, two pooling layers with rectified linear units,
two fully connected layers with the number of nodes in each layer
simply set to be 8, and one output layer with the number of nodes being
1, outputting the result with sigmoid function. RNN-FL builds up an RNN
model with one input layer with the 16 statements cut into 4 groups (i.e.
each group with 4 statements), two recurrent layers and one output
layer with the number of nodes being 1. MLP-FL constructs a MLP model
with the number of input layer nodes being 16, 3 hidden layers with the
number of nodes in each layer being 10 according to Eq. (6) and the
number of output layer nodes being 1.

The second step is to train the networks with the coverage data, and
input the error vector into the target vector. The batch size h is 3 in this
example. Therefore, in CNN-FL, the first input matrix with a size of 3 is
((1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0), (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
1, 1, 0, 0), (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1)) and target output
vector is (1, 0, 0); we secondly input the matrix ((1, 1, 1, 0, 0, 0, 1, 1, 1, 1,
0, 1, 1, 0, 1, 1), (1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0), (1, 1, 1, 0, 0, 0,
1, 1, 1, 0, 1, 1, 1, 1, 0, 0)) and its execution result vector (0, 0, 1). In MLP-
FL, the first input vector is (1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0) and
target output is 1. We secondly input the vector (1, 1, 1, 1, 1, 1, 0, 0, 0, 0,
0, 0, 1, 1, 0, 0) and its execution result 0, and repeat this process. In
RNN-FL, the first input vector is cut into 4 groups, they are (1, 1, 1, 0),
(0, 0, 1, 1), (1, 1, 0, 1), (1, 1, 0, 0) and target output is 1. The second
input is (1, 1, 1, 1), (1, 1, 0, 0), (0, 0, 0, 0), (1, 1, 0, 0) and its execution
result 0, and repeat this process. These approaches will repeat training
the networks using these data until the loss is small enough to reach the

Fig. 8. The architecture of MLP-based fault localization.

Z. Zhang et al.

Information and Software Technology 131 (2021) 106486

9

condition of convergence. After training, the three models reveal the
complex nonlinear relationship between the statement coverage and test
results.

The third step is to construct a virtual test set defined in Fig. 2, whose
size equals to the number of the statements. Thus, the virtual test set
contains 16 test cases, where each test case covering only one statement
out of 16 statements. We input the virtual test set into the trained net-
works and output the suspiciousness vector, where an element of the
vector denotes the suspiciousness of a statement being faulty. This step
finally organizes the localization result as a ranking list of all statements
in descending order of suspiciousness. As shown in Fig. 9, the ranking
list of CNN-FL is {s3, s9, s8, s16, s7, s11, s14, s10, s1, s15, s5, s12, s13, s4, s6, s2};
the ranking list of RNN-FL is {s16, s1, s3, s5, s2, s15, s6, s9, s10, s4, s12, s8,

s13, s14, s11, s7}; the ranking list of MLP-FL is {s11, s10, s8, s3, s4, s7, s12, s13,

s15, s6, s9, s16, s5, s2, s14, s1}. We can see that the faulty statement s3 is
ranked 1st by CNN-FL, ranked 3rd by RNN-FL and ranked 4th by MLP-
FL.

4. Experimental study

4.1. Experimental setup

To evaluate the effectiveness of deep learning in locating real faults,
we conduct a large-scale empirical study. Specifically, we adopt three
deep-learning-based fault localization approaches (i.e. CNN-FL, RNN-FL,
and MLP-FL), where three representative deep learning architectures (i.
e. CNN, RNN, and MLP) are used. To obtain reliable experimental re-
sults, we collect 8 real-world programs from the widely used bench-
marks in the field of software debugging (i.e. Defects4J1, ManyBugs2,
and SIR3). These subject programs are equipped with all real faults from
the development of large-sized programs varying from 6.1 KLOC to 491
KLOC.

Table 1 summarizes the characteristics of these subject programs. For
each program, it provides a brief functional description (column

‘Description’), the number of faulty versions (column ‘Versions’), the
number of thousand lines of statements (column ‘KLOC’), the number of
test cases (column ‘Test’), and the type of the faults (column ‘Type’). The
first four programs are from Defect4J, which is a database and extensible
framework providing real bugs to enable reproducible studies in soft-
ware testing and debugging research [28]. The other four programs are
also real-world subjects. Specifically, python, gzip and libtiff are collected
from ManyBugs, and space is acquired from the SIR.

The physical environment on which our experiments were carried
out was on a computer containing a CPU of Intel I5-2640 with 128G
physical memory and two 12G GPUs of NVIDIA TITAN X Pascal. The
operating systems were Ubantu 16.04.3. We conducted experiments on
the MATLAB R2016b.

4.2. Evaluation metrics

To evaluate the effectiveness of deep-learning-based fault localiza-
tion, we adopt two widely used metrics, namely Exam [29], and relative
improvement (referred as RImp) [30]. Exam is defined as the percentage
of executable statements to be examined before finding the actual faulty
statement. A lower value of Exam indicates better performance. RImp is a
metric of comparing two fault localization approaches to see the
improvement of one approach over the other one. Given two approaches
FL1 and FL2, FL2 is the baseline approach. RImp is to compare the total
number of statements that need to be examined to find all faults using
FL1 versus the number that need to be examined by using FL2. A lower

Fig. 9. The Example illustrating three deep learning-based fault localization approaches.

Table 1
The summary of subject programs.

Program Description Versions KLOC Test Type

chart JFreeChart 26 96 2205 Real
math Apache Commons Math 106 85 3602 Real
mockito Framework for unit tests 38 6 1075 Real
time Joda-Time 27 53 4130 Real
python General-purpose language 8 407 355 Real
gzip Data compression 5 491 12 Real
libtiff Image processing 12 77 78 Real
space ADL interpreter 38 6.1 13585 Real

1 Defects4J, https://github.com/rjust/defects4j
2 ManyBugs, https://repairbenchmarks.cs.umass.edu/
3 SIR, https://sir.csc.ncsu.edu/portal/index.php

Z. Zhang et al.

https://github.com/rjust/defects4j
https://repairbenchmarks.cs.umass.edu/
https://sir.csc.ncsu.edu/portal/index.php

Information and Software Technology 131 (2021) 106486

10

value of RImp shows better improvement of FL1 over FL2.

4.3. Data analysis

In this subsection, we will present the results using Exam, and RImp,
and the statistical results among the three localization approaches using
deep learning. Furthermore, we compare deep-learning-based fault
localization with three state-of-the-art localization approaches.Exam
distribution. Fig. 10 illustrates the Exam distribution of three deep
learning approaches in each subject program. For each curve, x-axis
represents the percentage of executable statements examined while y-
axis denotes the percentage of faults already located in all faulty ver-
sions. A point in Fig. 10 means when a percentage of executable state-
ments is examined in each faulty version, the percentage of faulty
versions has located their faults. From the three curves of the nine fig-
ures, we can observe that the curve of CNN-FL is always above the other
two curves (i.e. RNN-FL and MLP-FL). It means that CNN-FL performs
the best among the three localization approaches. We can further
observe that the curves of RNN-FL and MLP-FL interweave, i.e. , RNN-FL
locates more faults than MLP-FL in some percentages of executable
exammined while MLP-FL locates more faults than RNN-FL in other
percentages of executable statements examined. Thus, we cannot obtain
a conclusive result on the effectiveness relationship between RNN-FL

and MLP-FL.
Table 2 illustrates different types of Exam scores in MLP-FL, CNN-FL

and RNN-FL. For each approach, it provides three types of Exam scores:
best, average, and variance. The best score means the minimum Exam
score of all faulty versions of a program, showing the best effectiveness
of an approach can reach. The average score means the average Exam
score of all faulty versions of a program, showing the average effec-
tiveness of a approach can achieve. and the variance score means the
variance of Exam scores of all faulty versions of a program, showing
whether the effectiveness of an approach is stable or not. From Table 2,
we observe that among the 8 programs, CNN-FL mostly obtains the best
cases (marked in bold font) in the three types of Exam scores, i.e. CNN-FL
obtains 5 firsts in best Exam scores, 7 firsts in average Exam scores and 4
firsts in variance Exam scores. The results show that CNN-FL is more
effective and more stable than MLP-FL and RNN-FL. However, for MLP-
FL and RNN-FL, we can still see that their three types of Exam scores do
not show an apparent advantage over each other.RImp distribution.
For a detailed improvement, we use RImp to evaluate the three deep-
learning-based localization approaches. Specifically, Figs. 11–13show
the RImp in three cases: CNN-FL versus MLP-FL, CNN-FL versus RNN-FL,
and RNN-FL versus MLP-FL, where x-axis represents the program and y-
axis denotes the RImp obtained in the program. Fig. 11 shows the RImp
score of CNN-FL approach versus MLP-FL approach in each program.

Fig. 10. Exam distribution of CNN-FL, RNN-FL and MLP-FL in each program.

Z. Zhang et al.

Information and Software Technology 131 (2021) 106486

11

With CNN architecture, the statements that need to be examined are cut
down ranging from 21.87% such as time to 97.85% such as mockito. This
means that CNN-FL needs to examine 21.87% to 97.85% of executed
statements that MLP-FL needs to examine of. In other words, the
maximum saving is 78.13% (100% - 21.87% = 78.13%) on timewhile the
minimum saving is 2.15% (100% - 97.85% = 2.15%) on mockito. It

means that the checking number of statements could be reduced from
2.15% to 78.13% when using CNN architecture versus MLP architecture
for fault localization. Furthermore, the average saving is 38.97%, which
also shows a significant improvement of CNN-FL over MLP-FL.

Fig. 12 shows the RImp score of CNN-FL approach versus RNN-FL
approach. With CNN architecture, except for chat, the statements that

Table 2
Three types of Exam scores among CNN-FL, MLP-FL and RNN-FL.

python gzip libtiff space chart math mockito time

MLP-FL best 0.133016 0.006329 0.195170 0.111660 0.145078 0.119571 0.008208 0.34484
average 0.322419 0.244269 0.412189 0.402564 0.3565063 0.3493785 0.1856458 0.3416445
variance 0.159671 0.174213 0.214892 0.167041 0.186936 0.324996 0.14786809 0.45191

CNN-FL best 0.033764 0.006329 0.110802 0.100686 0.041451 0.031021 0.167024 0.054494
average 0.276977 0.104460 0.302835 0.339422 0.2208333 0.2146055 0.2329684 0.0721665
variance 0.208231 0.088525 0.107424 0.139387 0.155409 0.259628 0.053328 0.24993

RNN-FL best 0.173271 0.118297 0.046811 0.0738 0.236184 0.168077 0.110992 0.159963
average 0.357227 0.2675652 0.356843571 0.4122877 0.3172153 0.2424095 0.2617824 0.3071585
variance 0.145296 0.137333 0.25899 0.199216 0.087361 0.105122 0.136977 0.208166

Fig. 11. RImp of CNN-FL versus MLP-FL.

Fig. 12. RImp of CNN-FL versus RNN-FL.

Z. Zhang et al.

Information and Software Technology 131 (2021) 106486

12

need to be examined are cut down ranging from 26.04% on time to
84.75% on python. The maximum saving is 73.96% on time, and the
average saving is 26.22%. Except for chart, the minimum saving is
19.25% on python. Therefore, CNN-FL significantly outperform RNN-FL.

Fig. 13 shows the RImp score of RNN-FL versus MLP-FL. With RNN
architecture, the statements that need to be examined are cut down in
chart, time and libtiff, the values of RImp are 55.07%, 84% and 90.85%
respectively. But in other programs, the values of RImp are larger than
100%, meaning that MLP-FL performs better than RNN-FL.Statistical
comparison. Although RImp can show a detailed improvement, the
analysis using RImp evaluates effectiveness from the overview of the
results, and may miss other detailed view of the results. For example, as
shown in Fig. 11, the RImp score of mockitois very close to 100%, which
means that CNN-FL performs closely to MLP-FL in this program. How-
ever, a case may happen. Suppose that CNN-FL has higher but not quite
higher effectiveness than MLP in each faulty version of a program, the
RImp score will show that CNN performs closely to MLP. Nevertheless, in
this case, it is difficult to conclude CNN-FL performs closely to MLP-FL
because CNN-FL performs better than MLP-FL in each faulty version of
the program. For another example, suppose that CNN-FL just has very
higher effectiveness than MLP-FL in several faulty versions of a program.
However, MLP-FL has moderately higher effectiveness in most faulty
versions of the programs. The sheer high effectiveness of CNN-FL in the
several faulty versions may make its RImp score lower than MLP,
showing that CNN-FL performs better than MLP-FL. In such case, we
cannot conclude that CNN-FL performs better than MLP-FL.

Thus, we need a more rigourous method to obtain a detailed result
and adopt Wilcoxon-Signed-Rank Test [31] to achieve this goal.
Wilcoxon-Signed-Rank Test is a non-parametric statistical hypothesis
test for testing the differences between pairs of measurements F(x) and G
(y). At the given significant level σ, we can use both 2-tailed and 1-tailed
p-value to obtain a conclusion. For the 2-tailed p-value, if p ≥ σ, the null
hypothesis H0 that F(x) and G(y) are not significantly different is
accepted; otherwise, the alternative hypothesis H1 that F(x) and G(y) are
significantly different is accepted. For 1-tailed p-value, there are two
cases: the right-tailed case and the left-tailed case. In the right-tailed
case, if p ≥ σ, H0 that F(x) does not significantly tend to be greater
than the G(y) is accepted; otherwise, H1 that F(x) significantly tends to
be greater than the G(y) is accepted. And in the left-tailed case, if p ≥ σ,
H0 that F(x) does not significantly tend to be less than the G(y) is
accepted; otherwise, H1 that F(x) significantly tends to be less than the G
(y) is accepted.

The experiments performed one paired Wilcoxon-Signed-Rank test
between each two localization models by using Eaxm as the pairs of
measurements F(x) and G(y). Specifically, each test uses both the 2-
tailed and 1-tailed checking at the σ level of 0.05. Given two Localiza-
tion models (M1 and M2), we use the list of Exam of one localization
model M1 in all faulty versions of all programs as the list of measure-
ments of F(x), while the list of measurements of G(y) is the list of Exam of
the other localization model M2 in all faulty versions of all programs.
Hence, in the 2-tailed test, M1 has SIMILAR effectiveness as M2 when H0
is accepted at the significant level of 0.05. In the 1-tailed test (right), M1
has WORSE effectiveness than M2 when H1 is accepted at the significant
level of 0.05. Finally, in the 1-tailed test (left), M1 has BETTER effec-
tiveness than M2 when H1 is accepted at the significant level of 0.05.

Table 3, 4 and 5 show the statistical results using Wilcoxon-Signed-
Rank test. Each row shows the p values and the conclusion for each
program. The ‘Total’ row illustrates the statistical results of Wilcoxon-
Signed-Rank test on all programs. Table 3 shows the statistical results
of Wilcoxon-Signed-Rank test on CNN-FL versus MLP-FL. Take chart as
an example. The p values of 2-tailed, 1-tailed(right) and 1-tailed(left) are
0.011, 0.969 and 0.009 respectively. It means that the EXAM of CNN-FL
is significantly less than that of MLP-FL. Therefore, we obtain a BETTER
conclusion, that is, CNN-FL performs better than MLP-FL in the program
chart. Based on the results in Table 3, we could see that CNN-FL obtain
all BETTER results except for mokito, and thus conclude that CNN-FL
significantly outperforms than MLP-FL.

Table 4 shows the statistical results on CNN-FL versus RNN-FL. We
can observe that CNN-FL obtain BETTER results over RNN-FL in each
subject program and in total comparison, that is, the Exam of CNN-FL is
significantly less than that of RNN-FL in all subject programs. Therefore,

Fig. 13. RImp of RNN-FL versus MLP-FL.

Table 3
Statistical results (CNN-FL versus MLP-FL).

Program Wilcoxon-Signed-Rank test A-Test

2-tailed 1-tailed(right) 1-tailed(left) Conclusion

chart 0.011 0.969 0.009 BETTER 0.78
gzip 0.028 0.989 0.018 BETTER 0.72
libtiff 0.018 0.993 0.011 BETTER 0.63
math 0.012 0.971 0.010 BETTER 0.78
mokito 0.686 0.394 0.705 SIMILAR 0.36
python 0.011 0.995 0.007 BETTER 0.69
space 0.029 0.986 0.015 BETTER 0.61
time 0.018 0.963 0.019 BETTER 1.00
Total 2.26E-03 0.999 1.14E-03 BETTER 0.62

Z. Zhang et al.

Information and Software Technology 131 (2021) 106486

13

we obtain a BETTER conclusion: CNN-FL significantly performs better
than RNN-FL.

Table 5 shows the statistical results on RNN-FL versus MLP-FL. We
can see that RNN-FL obtain three BETTER results over MLP-FL in chart,
libtiff and time, four SIMILAR results in gzip, mth, python and space, one
WORSE result in mokito. It seems that RNN-FL is more effective than
MLP-FL due to more BETTER and SIMILAR results over MLP-FL. How-
ever, in total, RNN-FL has a SIMILAR result over MLP-FL. Thus, we
conclude that the effectiveness of RNN-FL is comparable to that of MLP-
FL even if the effectiveness of RNN-FL is marinally higher than MLP-FL.

To further assess the difference quantitatively, we leverage the
nonparametric Vargha-Delaney A-test, which is recommended in [32],
to evaluate the magnitude of the difference by measuring effect size
(scientific significance). For A-test, the bigger deviation of A-statistic is
from the value of 0.5, the greater difference is between the two studied
groups. Vargha and Delaney [33] suggest that A-test of greater than 0.64
(or less than 0.36) is indicative of “medium” effect size, and of greater
than 0.71 (or less than 0.29) can be indicative of a promising “large”
effect size. The ‘A-test’ column of Tables 3–5 show the effect size of the
A-test on the three scenarios (i.e. CNN-FL versus MLP-FL, CNN-FL versus
RNN-FL and RNN-FL versus MLP-FL). Tables 3 and 4 show that CNN-FL
often arriving at the promising “large” effect size, i.e. CNN-FL both ob-
tains 4 “large” effect size results on MLP-FL and RNN-FL respectively.
Table 5 shows that the effectiveness of RNN-FL is comparable to that of
MLP-FL.

In summary, we have the conclusion on the effectiveness of using
three deep learning architectures in locating real faults, i.e. , CNN shows
the highest localization effectiveness while RNN and MLP have the
comparable effectiveness in locating real faults.

Comparison on state-of-the-art approaches. The recent study [2]
empirically summarized the state-of-the-art fault localization ap-
proaches, and we use the top three techniques (i.e. Dstar [14], Barinel
[15] and Ochia [16]) for our study. The three techniques are
spectrum-based fault localization (SFL) [1]. Since CNN-FL shows the
highest localization effectiveness, we compare CNN-FL with the three
state-of-art fault localization techniques to evaluate the improvement.

The benchmark Defects4J (i.e. chart, math, mockito and time) used by
our study is over-fitting for SFL including the three state-of-the-art

techniques [34,35], i.e. SFL shows inconsistencies between the bench-
mark Defects4J and other benchmarks in terms of fault localization
effectiveness. For example, 44% and 43% of bugs in Defects4J are
localized at top 10 using Ochiai and Dstar while none of the bugs in
other benchmarks can be localized even in top 100 [34,35] with these
techniques. Due to the over-fitting problem, it is extremely difficult for
other localization approaches to outperform SFL on Defects4J (see
Tables 6–8). To alleviate the over-fitting problem, we further add the
recommended benchmark BEARS [36] (i.e. apache/incubator-dubb,
INRIA/spoon, FasterXML/jackson-databind and apache/jackrabbit-oak)
for the comparison between CNN-FL and the three localization tech-
niques. The benchmark BEARS has 251 real faults and each faulty
version has an average 212 KLOC (i.e. the number of thousands of lines
of statements).

Tables 6 –8 show the statistical results of CNN-FL versus the three
localization techniques using Wilcoxon-Signed-Rank test and Vargha-
Delaney A-test. Except for the WORSE results in Defects4J caused by
the benchmark over-fitting problem, CNN-FL obtains BETTER and
“large” effect size results in almost all programs. Thus, CNN-FL signifi-
cantly outperforms the three localization techniques.

4.4. Discussion

The experimental results show that CNN is the most effective one in
locating real faults among the 3 representative deep learning architec-
tures. Although deep learning is a black box technology, we still try to
understand what factors lead to the advantage of CNN over the other
two deep learning architectures. It is natural to seek the factors from the
characteristics of CNN over the other architectures. CNN has the three
characteristics distinct from the others, i.e. local connections, parameter
sharing and down-sampling in pooling. Local connections in CNN are
accomplished by making a kernel much smaller than the input. The
kernel could catch sight of small but meaningful features. That can
improve learning efficiency for reducing the memory requirements by
leveraging fewer parameters and computing the output with fewer op-
erations. Parameter sharing uses the same parameters for more than one
function in a model. It also means that the model only learns one set of
parameters rather than learning multiple-sets of parameters. Parameter
sharing makes the learning more efficient than dense matrix multipli-
cation. Down-sampling in pooling further reduces the amount of output
parameters. It also gives the tolerance of the model’s slight deformation
and enhances the generation ability of the model.

We can observe that the three unique characteristics of CNN focuses
on reducing the size of parameters while preserving the learning quality
without loss of features. In fault localization practice, the program
statements are always existing in great numbers and the input data sets

Table 4
Statistical results (CNN-FL versus RNN-FL).

Program Wilcoxon-Signed-Rank test A-Test

2-tailed 1-tailed(right) 1-tailed(left) Conclusion
chart 0.029 0.909 0.021 BETTER 0.78
gzip 0.014 0.947 0.009 BETTER 0.84
libtiff 0.036 0.863 0.041 BETTER 0.57
math 0.045 0.814 0.043 BETTER 0.75
mokito 0.047 0.791 0.030 BETTER 0.60
python 0.032 0.808 0.043 BETTER 0.56
space 0.008 0.962 0.020 BETTER 0.60
time 0.018 0.963 0.019 BETTER 1.00
Total 0.016 0.991 9.03E-03 BETTER 0.61

Table 5
Statistical results (RNN-FL versus MLP-FL).

Program Wilcoxon-Signed-Rank test A-Test

2-tailed 1-tailed(right) 1-tailed(left) Conclusion

chart 0.039 0.789 0.040 BETTER 0.78
gzip 0.686 0.394 0.705 SIMILAR 0.50
libtiff 0.044 0.764 0.042 BETTER 0.63
math 0.655 0.510 0.814 SIMILAR 0.78
mokito 0.023 0.014 0.911 WORSE 0.36
python 1.00 0.572 0.572 SIMILAR 0.69
space 0.782 0.394 0.613 SIMILAR 0.60
time 0.045 0.814 0.041 BETTER 1.00
Total 0.842 0.422 0.580 SIMILAR 0.60

Table 6
Statistical results (CNN-FL versus Dstar).

Program Wilcoxon-Signed-Rank test A-
Test

2-
tailed

1-tailed
(right)

1-tailed
(left)

Conclusion

Defects4J 0.010 0.009 0.972 WORSE 0.09
gzip 0.018 0.876 0.011 BETTER 0.73
libtiff 0.003 0.914 0.002 BETTER 0.78
python 0.002 0.945 0.004 BETTER 0.76
space 8.11E-

04
0.999 4.34E-04 BETTER 0.83

apache/incubator-
dubbo

0.032 0.859 0.039 BETTER 0.72

INRIA/spoon 0.996 0.605 0.605 SIMILAR 0.50
FasterXML/

jackson-databind
0.015 0.899 0.014 BETTER 0.73

apache/jackrabbit-
oak

0.001 0.969 0.002 BETTER 0.80

Total 9.46E-
05

1.00E+00 4.79E-05 BETTER 0.74

Z. Zhang et al.

Information and Software Technology 131 (2021) 106486

14

of the network are accordingly tremendous. The three unique charac-
teristics of CNN will not cause a rapid expansion of the number of pa-
rameters to be trained. However, without the characteristics of reducing
the size of parameters, it causes the number of hidden layers to be very
large for RNN and MLP, accompanying with the rapid expansion of the
number of parameters to be trained, and potentially leading to the
disadvantage in fault localization.

For example, let us consider an input whose dimension is 100,000,
connecting a hidden layer of the same size. There will be 100,000 *
100,000 = 10 billion connections. Due to the larger number of con-
nections, there will be 10 billion parameters to be calculated and
trained. However, the computing power and training data cannot satisfy
this requirement. Therefore, it is necessary to reduce the number of
parameters to be trained, to reduce the computational complexity, and
to prevent over-fitting. After using the network structure of the CNN, the
fully connected mode is changed into local connections. Assuming that
the size of the local receptive field is 100, each dimension only needs to
be connected with 100 instead of 100,000. Hence, the network only
requires 100,000*100 = 10,000,000 connections, reduced by 100 times.
When the number of layers is increased, the number of parameters is
reduced even more. Therefore, we conjecture that it is the reason why
CNN has the advantage over the other two architectures in fault local-
ization. We suggest that reducing the number of parameters may be a
key factor of deep learning for improving fault localization. Our future
work will seek the optimization on the reduction of parameters (e.g. the
optimization on the input model and the learning process).

To verify the above discussion, we use the Kendall rank correlation

coefficient [37] (denoted by r) to measure the correlation between
localization effectiveness and the size of the parameters in all the three
fault localization approaches using deep learning. The Kendall rank
correlation coefficient is a statistic used to measure the correlation be-
tween two measured variables. The value of the correlation coefficient r
is in the range of [− 1,+ 1]. When r lies around +1 or -1, then it means a
perfect degree of correlation between the two variables. As the corre-
lation coefficient value goes towards 0, the correlation between the two
variables will be weaker. Based on the absolute value of the correlation
coefficient r, five cases are usually used:

1. r ∈ [0.8, 1.0], very strong correlation;
2. r ∈ [0.6, 0.8), strong correlation;
3. r ∈ [0.4, 0.6), medium correlation;
4. r ∈ [0.2, 0.4), weak correlation;
5. r ∈ [0.0, 0.2), very weak correlation or independence;
Table 9 shows the Kendall rank correlation coefficient between the

localization effectiveness and the size of parameters on all the three
deep-learning-based fault localization techniques in each program.
Except one medium correlation in libtiff, all the results at least show
strong correlation. This means that there is statistically significant cor-
relation between the localization effectiveness and the size of parame-
ters used by deep-learning-based fault localization approaches. Thus,
reducing the number of parameters may be a key factor of deep learning
for improving fault localization.

4.5. Threats to validity

There are some threats to the validity of our experiments. We
adopted deep neural networks, meaning the fault localization results are
not the same through different training times. It is the characteristic of
neural network technologies. To make the results more reliable, we
followed the convention by repeating the fault localization process, i.e. ,
we computed ten times and used the average score as the results for the
experimental study.

Another threat to external validity is the subject programs used for
our experiments. We use those large-sized programs equipped with all
real faults from the real-world development, commonly used in the field
of software debugging. However, the experimental results may not apply
to all programs because there are still many unknown and complicated
factors in realistic debugging that could affect the experimented results.
Thus, it is worthwhile to conduct experiments on more subject programs
to further strengthen the experimental results.

We adopt the widely used metrics, Exam and RImp, to evaluate the
effectiveness of deep-learning-based fault localization. According to the
extensive use of the measurements, so the threat is acceptably mitigated.

5. Related work

This section surveys closely fault localization studies, especially
coverage-based fault localization and fault localization using machine
learning. More work on fault localization can refer to a survey [38] by
Wong et al.

Coverage-based fault localization techniques convert program spec-
trum data from test executions to suspiciousness score of program en-
tities and rank them in descending order [1]. When using these
techniques, we do not need to know the details of a program and just run
the program with passed and failed test cases. Among existing

Table 7
Statistical results (CNN-FL versus Barinel).

Program Wilcoxon-Signed-Rank test A-
Test

2-
tailed

1-tailed
(right)

1-tailed
(left)

Conclusion

Defects4J 0.014 0.015 0.969 WORSE 0.17
gzip 0.034 0.860 0.021 BETTER 0.74
libtiff 0.041 0.723 0.034 BETTER 0.69
python 0.027 0.899 0.018 BETTER 0.72
space 0.001 0.999 5.34E-04 BETTER 0.81
apache/incubator-

dubbo
0.039 0.789 0.040 BETTER 0.71

INRIA/spoon 0.002 0.909 0.011 BETTER 0.81
FasterXML/

jackson-databind
0.029 0.824 0.022 BETTER 0.72

apache/jackrabbit-
oak

0.008 0.985 0.003 BETTER 0.76

Total 1.94E-
05

1.00E+00 9.82E-06 BETTER 0.77

Table 8
Statistical results (CNN-FL versus Ochiai).

Program Wilcoxon-Signed-Rank test A-
Test

2-
tailed

1-tailed
(right)

1-tailed
(left)

Conclusion

Defects4J 0.017 0.012 0.974 WORSE 0.12
gzip 0.002 0.961 0.005 BETTER 0.81
libtiff 0.012 0.823 0.036 BETTER 0.74
python 0.026 0.916 0.015 BETTER 0.76
space 0.001 0.999 5.19E-4 BETTER 0.79
apache/incubator-

dubbo
0.033 0.817 0.035 BETTER 0.72

INRIA/spoon 0.013 0.936 0.009 BETTER 0.78
FasterXML/

jackson-databind
0.038 0.817 0.023 BETTER 0.71

apache/jackrabbit-
oak

0.002 0.969 0.009 BETTER 0.80

Total 3.95E-
05

1.00E+00 2.00E-05 BETTER 0.75

Table 9
Kendall rank correlation coefficient results.

Program Coefficient r Program Coefficient r

chart 0.73 mokito 0.61
gzip 0.67 python 0.65
libtiff 0.54 space 0.62
math 0.73 time 0.87

Z. Zhang et al.

Information and Software Technology 131 (2021) 106486

15

coverage-based localization methods, spectrum-based fault localization
(SBFL) is the most popular one by using spectrum-based suspiciousness
formulas to assign suspiciousness values of being faulty on program
statements. Chen et al. [39] proposed the Jaccard technique. Jones et al.
[40] proposed the tarantula technique that is a widely used and
compared technique in the subsequent studies. Abreu et al. [41] applied
the Ochiai for locating single-fault programs. Wong et al. [42] used data
and control flow and presented several metrics such as Wong1-3,
Wong3’. Wong et al. [14,43] also proposed an approach named DStar
(D*) based on crosstab with utilization of statements’ coverage and
execution information. Xie et al. [44,45] theoretically summarized the
maximal formulas from many existing SBFL formulas. Furthermore,
Pearson et al. [2] empirically summarized the SBFL formulas, showing
different localization effects between artificial faults and real faults.
SBFL is also adopted and evaluated in different applications, software
product lines [46].

Besides, Papadakis et al. [47] first proposed mutation-based fault
localization techniques, where the use of mutation analysis for locating
faults was advocated. Then Papadakis et al. [48] proposed another
mutation-based fault localization technique named Metallaxis-FL, which
did not require finding a mutant that makes all the test cases pass and
always suggested a possible suspiciousness ranking. Moon et al. [49]
presented MUSE, which utilized two groups of mutants, one mutated a
faulty statement and the other mutated a correct statement. They also
proposed a new evaluation metric called Locality Information Loss.
Different from those aforementioned studies, our study focuses on the
localization effectiveness of using deep learning in locating real faults.

Machine learning techniques are used in the context of fault locali-
zation based on statement coverage and execution results of test cases.
Wong et al. [11] proposed a fault localization approach based on
back-propagation (BP) neural network, which has a simple structure to
implement. Due to the drawbacks of BP networks (e.g. paralysis), Wong
et al. [50] proposed another approach based on radial basis function
(RBF) networks. Recently, deep learning methods have witnessed a
rapid development to tackle the limitations of traditional machine
learning techniques and is utilized in many disciplines such as computer
vision and natural language processing. Based on the methods proposed
by Wong and the advantage of deep learning methods, Zheng et al. [9]
presented a fault localization method based on Multi-Layer Perceptrons
(MLPs). Zhang et al. [51] enhanced fault localization efficiency based on
deep neural network with dynamic slice technology. Briand et al. [52]
proposed a fault localization method based on decision tree algorithm
constructing rules that classify test cases into various partitions. Li et al.
[53] furthermore propose DeepFL using various feature dimensions to
locate method-level faults while our study focuses on locating
statement-level ones. Deep-learning-based fault localization has shown
its promising results over a wide spectrum of the state-of-the-art local-
ization techniques [10,51] (e.g. BP neural networks [11], PPDG [12],
Tarantula [13], Dstar [14], Barinel [15], and Ochia [16]). Thus, we use
more basic and representative deep learning architectures to conduct a
large-scale study on effectiveness of using deep learning in locating real
faults.

6. Conclusion

Recently, deep-learning-based fault localization has shown its
promising results in fault localization. Thus, this paper explores more on
using deep learning for fault localization in the context of real faults. We
use three representative and popular deep learning architectures (i.e.
CNN, RNN and MLP) for fault localization, where we propose CNN-FL
and RNN-FL. Furthermore, we collect 8 real-world programs with all
real faults from the widely used benchmarks (i.e. Defects4J, ManyBugs
and SIR). We conduct a large-scale study on the 8 large-sized programs
by using the three deep-learning-based fault localization approaches.
The experimental results show that CNN performs the best among the
three deep learning architectures while RNN and MLP have the similar

effectiveness in locating real faults. We analyze the underlying advan-
tage of CNN over the other two architectures, and suggest that reducing
the number of parameters may be a key factor of deep learning for
improving fault localization.

Slightly further in the future, we plan to study more on deep-
learning-based fault localization, trying to improve the effectiveness.
Moreover, seeking way to extend deep learning to multiple-bugs cases is
of great interest to our research.

CRediT authorship contribution statement

Zhuo Zhang: Conceptualization, Methodology, Software, Data
curation, Writing - original draft. Yan Lei: Conceptualization, Method-
ology, Writing - review & editing, Supervision. Xiaoguang Mao:
Methodology, Resources, Writing - review & editing, Supervision. Meng
Yan: Writing - review & editing. Ling Xu: Writing - review & editing.
Xiaohong Zhang: Writing - review & editing.

Declaration of Competing Interest

None.

Acknowledgments

This work is partially supported by Guangxi Key Laboratory of
Trusted Software (No. kx202008), the National Defense Basic Scientific
Research Project (No. WDZC20205500308), the National Natural Sci-
ence Foundation of China (Nos. 62002034, 61602504), and the
Fundamental Research Funds for the Central Universities (Nos.
2019CDXYRJ0011, 2020CDCGRJ037, 2020CDCGRJ072).

References

[1] L. Naish, Hua, A model for spectra-based software diagnosis, ACM Trans. Softw.
Eng.Methodol. (TOSEM) 20 (3) (2011) 1–32.

[2] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M.D. Ernst, D. Pang, B. Keller,
Evaluating and improving fault localization. Proceedings of the International
Conference on Software Engineering (ICSE 2017), 2017, pp. 609–620.

[3] C. Parnin, A. Orso, Are automated debugging techniques actually helping
programmers?. Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA 2011), 2011, pp. 199–209.

[4] C. Sun, S.C. Khoo, Mining succinct predicated bug signatures. Proceedings of the
Joint Meeting on Foundations of Software Engineering (FSE 2013), 2013,
pp. 576–586.

[5] T.D.B. Le, R.J. Oentaryo, D. Lo, Information retrieval and spectrum based bug
localization: better together. Proceedings of the Joint Meeting on Foundations of
Software Engineering (FSE 2015), 2015, pp. 579–590.

[6] J. Bo, Z. Zhang, W.K. Chan, T.H. Tse, T.Y. Chen, How well does test case
prioritization integrate with statistical fault localization? Inf. Softw. Technol. 54
(7) (2012) 739–758.

[7] Y. Lei, C. Sun, X. Mao, Z. Su, How test suites impact fault localisation starting from
the size, IET Softw. 12 (3) (2018) 190–205.

[8] Y. Lecun, Y. Bengio, G.e. Hinton, Deep learning, Nature 521 (7553) (2015) 436.
[9] W. Zheng, D. Hu, J. Wang, Fault localization analysis based on deep neural

network, Math. Prob.Eng. 2016 (2016) 1–11.
[10] Z. Zhang, Y. Lei, X. Mao, P. Li, CNN-FL: An effective approach for localizing faults

using convolutional neural networks. Proceedings of the 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER 2019),
IEEE, 2019, pp. 445–455.

[11] W.E. WONG, Y. QI, Bp neural network-based effective fault localization, Int. J.
Softw. Eng. Knowl. Eng. 19 (04) (2009) 573–597.

[12] G.K. Baah, A. Podgurski, M.J. Harrold, The probabilistic program dependence
graph and its application to fault diagnosis. International Symposium on Software
Testing and Analysis, 2008, pp. 189–200.

[13] J.A. Jones, Empirical evaluation of the tarantula automatic fault-localization
technique. Proceedings of the International Conference on Automated Software
Engineering (ICSE 2005), 2005, pp. 273–282.

[14] W.E. Wong, V. Debroy, Y. Li, R. Gao, Software fault localization using dstar (d*).
Proceedings of the 6th International Conference on Software Security and
Reliability, 2012, pp. 21–30.

[15] A. Rui, P. Zoeteweij, A.J.C.V. Gemund, Spectrum-based multiple fault localization.
Proceedings of the International Conference on Automated Software Engineering
(ASE 2009), 2009, pp. 88–99.

[16] A. Rui, P. Zoeteweij, R. Golsteijn, A.J.C.V. Gemund, A practical evaluation of
spectrum-based fault localization, J. Syst. Softw. 82 (11) (2009) 1780–1792.

Z. Zhang et al.

http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0001
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0001
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0015
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0015
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0015
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0016

Information and Software Technology 131 (2021) 106486

16

[17] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang,
J. Cai, et al., Recent advances in convolutional neural networks, Pattern Recognit.
77 (2018) 354–377.

[18] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8)
(1997) 1735–1780.

[19] F.A. Gers, N.N. Schmidhuber, J. Schmidhuber, Learning precise timing with LSTM
recurrent networks, J. Mach. Learn. Res. 3 (2002).

[20] S.O. G. E. Hinton, Y.-W. Teh, A fast learning algorithm for deep belief nets. Neural
Computation, 2006, pp. 1527–1554.

[21] D. Yu, F. Seide, G. Li, Conversational speech transcription using context-dependent
deep neural networks. Proceedings of the International Conference on
International Conference on Machine Learning (ICML 2012), 2012, pp. 1–2.

[22] K. Jarrett, K. Kavukcuoglu, M. Ranzato, Y. Lecun, What is the best multi-stage
architecture for object recognition?. Proceedings of the IEEE International
Conference on Computer Vision, 2010, pp. 2146–2153.

[23] Y. Lecun, F.J. Huang, L. Bottou, Learning methods for generic object recognition
with invariance to pose and lighting. Computer Vision and Pattern Recognition,
2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on,
2004.

[24] H. Lee, R. Grosse, R. Ranganath, A.Y. Ng, Convolutional deep belief networks for
scalable unsupervised learning of hierarchical representations. Proceedings of the
26th Annual International Conference on Machine Learning (ICML 2009), 2009,
pp. 609–616.

[25] J.D. N. Pinto D. Doukhan, D. Cox, A high-throughput screening approach to
discovering good forms of biologically inspired visual representation. PLoS
Computational Biology vol. 5, 2009, p. e1000579.

[26] S.C. Turaga, J.F. Murray, V. Jain, F. Roth, M. Helmstaedter, K. Briggman, W. Denk,
H.S. Seung, Convolutional networks can learn to generate affinity graphs for image
segmentation, Neural Comput. 22 (2) (2010) 511–538.

[27] A. Graves, A.-r. Mohamed, G. Hinton, Speech recognition with deep recurrent
neural networks. Proceedings of the 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, IEEE, 2013, pp. 6645–6649.

[28] D. Jalali, M.D. Ernst, Defects4J: a database of existing faults to enable controlled
testing studies for java programs. Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA 2014), 2014, pp. 437–440.

[29] X. Mao, Y. Lei, Z. Dai, Y. Qi, C. Wang, Slice-based statistical fault localization,
Journal of Systems and Software 89 (1) (2014) 51–62.

[30] V. Debroy, W.E. Wong, X. Xu, B. Choi, A grouping-based strategy to improve the
effectiveness of fault localization techniques. Proceedings of the International
Conference on Quality Software (QSIC 2010), 2010, pp. 13–22.

[31] G.W. Corder, D.I. Foreman, Nonparametric statistics for non-statisticians: a step-
by-step approach vol. 78, International Statistical Review, 2010.

[32] A. Arcuri, L. Briand, A practical guide for using statistical tests to assess
randomized algorithms in software engineering. 2011 33rd International
Conference on Software Engineering (ICSE), IEEE, 2011, pp. 1–10.

[33] A. Vargha, H.D. Delaney, A critique and improvement of the CL common language
effect size statistics of McGraw and Wong, J. Educ. Behav. Stat. 25 (2) (2000)
101–132.

[34] D. Zou, J. Liang, Y. Xiong, M.D. Ernst, L. Zhang, An empirical study of fault
localization families and their combinations, IEEE Trans. Softw. Eng. (2019).

[35] S. Heiden, L. Grunske, T. Kehrer, F. Keller, A. Van Hoorn, A. Filieri, D. Lo, An
evaluation of pure spectrum-based fault localization techniques for large-scale
software systems, Software: Practice and Experience 49 (8) (2019) 1197–1224.

[36] F. Madeiral, S. Urli, M. Maia, M. Monperrus, Bears: an extensible java bug
benchmark for automatic program repair studies. 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER), IEEE,
2019, pp. 468–478.

[37] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering, Springer Science & Business Media,
2012.

[38] W.E. Wong, R. Gao, Y. Li, A. Rui, F. Wotawa, A survey on software fault
localization, IEEE Trans. Softw. Eng. (TSE) 42 (8) (2016) 707–740.

[39] M.Y. Chen, E. Kiciman, E. Fratkin, A. Fox, E. Brewer, Pinpoint: problem
determination in large, dynamic internet services. Proceedings of International
Conference on Dependable Systems and Networks (DSN 2002), 2002, pp. 595–604.

[40] J.A. Jones, Fault localization using visualization of test information. Proceedings of
the International Conference on Software Engineering (ICSE 2004), 2004,
pp. 54–56.

[41] R. Abreu, P. Zoeteweij, A.J.C. van Gemund, An evaluation of similarity coefficients
for software fault localization. Proceedings of the 12th Pacific Rim International
Symposium on Dependable Computing, 2006, pp. 39–46.

[42] W.E. Wong, Y. Qi, L. Zhao, K.Y. Cai, Effective fault localization using code
coverage. Proceedings of International Computer Software and Applications
Conference (COMPSAC 2007), 2007, pp. 449–456.

[43] W.E. Wong, V. Debroy, B. Choi, A family of code coverage-based heuristics for
effective fault localization, J. Syst. Softw. 83 (2) (2010) 188–208.

[44] X. Xie, T.Y. Chen, F.C. Kuo, B. Xu, A theoretical analysis of the risk evaluation
formulas for spectrum-based fault localization, ACM Trans. Softw. Eng.Methodol.
(TOSEM) 22 (4) (2013) 31.

[45] X. Xie, F.-C. Kuo, T.Y. Chen, S. Yoo, M. Harman, Provably optimal and human-
competitive results in SBSE for spectrum based fault localisation. International
Symposium on Search Based Software Engineering, Springer, 2013, pp. 224–238.

[46] A. Arrieta, S. Segura, U. Markiegi, G. Sagardui, L. Etxeberria, Spectrum-based fault
localization in software product lines, Inf. Softw. Technol. (2018) 18–31.

[47] M. Papadakis, Y.L. Traon, Using mutants to locate “unknown” faults. Proceedings
of the 5th International Conference on Software Testing, Verification and
Validation (ICST 2012), 2012, pp. 691–700.

[48] M. Papadakis, Y. Le Traon, Metallaxis-FL: Mutation-based fault localization, Softw.
Test. Verif. Reliab. 25 (5–7) (2015) 605–628.

[49] S. Moon, Y. Kim, M. Kim, S. Yoo, Ask the mutants: mutating faulty programs for
fault localization. Proceedings of the 7th International Conference on Software
Testing, Verification and Validation (ICST 2014), 2014, pp. 153–162.

[50] W.E. Wong, V. Debroy, R. Golden, X. Xu, B. Thuraisingham, Effective software fault
localization using an RBF neural network, IEEE Trans. Reliab. 61 (1) (2012)
149–169.

[51] Z. Zhang, Y. Lei, Q. Tan, X. Mao, P. Zeng, X. Chang, Deep learning-based fault
localization with contextual information, IEICE Trans. Inf. Syst. E100.D (12)
(2017) 3027–3031.

[52] L.C. Briand, Y. Labiche, X. Liu, Using machine learning to support debugging with
tarantula. Proceedings of the IEEE International Symposium on Software
Reliability, 2007, pp. 137–146.

[53] X. Li, W. Li, Y. Zhang, L. Zhang, DeepFL: integrating multiple fault diagnosis
dimensions for deep fault localization. Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019, pp. 169–180.

Z. Zhang et al.

http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0029
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0029
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0043
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0043
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0044
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0044
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0044
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0045
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0045
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0045
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0046
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0046
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0047
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0047
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0047
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0048
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0048
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0049
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0049
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0049
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0050
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0050
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0050
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0051
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0051
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0051
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0052
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0052
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0052
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0053
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0053
http://refhub.elsevier.com/S0950-5849(20)30228-7/sbref0053

	A study of effectiveness of deep learning in locating real faults
	1 Introduction
	2 Background
	3 Deep-learning-based fault localization
	3.1 Methodology
	3.2 CNN-FL
	3.3 RNN-FL
	3.4 MLP-FL
	3.5 An illustrative example

	4 Experimental study
	4.1 Experimental setup
	4.2 Evaluation metrics
	4.3 Data analysis
	4.4 Discussion
	4.5 Threats to validity

	5 Related work
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References

