
Information and Software Technology 131 (2021) 106452

Available online 15 October 2020
0950-5849/© 2020 Elsevier B.V. All rights reserved.

Feature selection and embedding based cross project framework for
identifying crashing fault residence

Zhou Xu a,b, Tao Zhang c, Jacky Keung d, Meng Yan *,a,b, Xiapu Luo *,e, Xiaohong Zhang a,b,
Ling Xu a,b, Yutian Tang f

a Key Laboratory of Dependable Service Computing in Cyber Physical Society (Chongqing University), Ministry of Education, China
b School of Big Data and Software Engineering, Chongqing University, Chongqing, China
c Faculty of Information Technology, Macau University of Science and Technology, Macao, China
d Department of Computer Science, City University of Hong Kong, Hong Kong, China
e Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China
f School of Information and Technology, ShanghaiTech University, Shanghai, China

A R T I C L E I N F O

Keywords:
Crashing fault
Stack trace
Feature selection
Feature embedding
Cross project framework

A B S T R A C T

Context: The automatically produced crash reports are able to analyze the root of fault causing the crash
(crashing fault for short) which is a critical activity for software quality assurance.

Objective: Correctly predicting the existence of crashing fault residence in stack traces of crash report can
speed up program debugging process and optimize debugging efforts. Existing work focused on the collected
label information from bug-fixing logs, and the extracted features of crash instances from stack traces and source
code for Identification of Crashing Fault Residence (ICFR) of newly-submitted crashes. This work develops a
novel cross project ICFR framework to address the data scarcity problem by using labeled crash data of other
project for the ICFR task of the project at hand. This framework removes irrelevant features, reduces distribution
differences, and eases the class imbalance issue of cross project data since these factors may negatively impact
the ICFR performance.

Method: The proposed framework, called FSE, combines Feature Selection and feature Embedding techniques.
The FSE framework first uses an information gain ratio based feature ranking method to select a relevant feature
subset for cross project data, and then employs a state-of-the-art Weighted Balanced Distribution Adaptation
(WBDA) method to map features of cross project data into a common space. WBDA considers both marginal and
conditional distributions as well as their weights to reduce data distribution discrepancies. Besides, WBDA
balances the class proportion of each project data to alleviate the class imbalance issue.

Results: We conduct experiments on 7 projects to evaluate the performance of our FSE framework. The results
show that FSE outperforms 25 methods under comparison.

Conclusion: This work proposes a cross project learning framework for ICFR, which uses feature selection and
embedding to remove irrelevant features and reduce distribution differences, respectively. The results illustrate
the performance superiority of our FSE framework.

1. Introduction

Software plays a non-substitutive role in the current society. Devel-
oping high-quality software without faults has always been the pursuit
of all software companies. Due to the increasing scale and complexity of
programs and some uncontrollable human mistakes in the software
development process, software products may contain faults (or bugs)
upon release [1,2]. The faults may lead to software crash. Once a crash is

triggered, the system will automatically generate a crash report (usually
the stack trace) to record the corresponding status information of the
program execution at that time. Fixing the fault causing the crash
(crashing fault for short) is a critical task for software quality assurance.
To achieve this purpose, developers need to effectively identify the po-
sition of the crashing fault in the source code. This process is called crash
localization (or fault localization) [3].

Generally, crash localization utilizes the information of the stack

* Corresponding authors.
E-mail addresses: mengy@cqu.edu.cn (M. Yan), csxluo@comp.polyu.edu.hk (X. Luo).

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

https://doi.org/10.1016/j.infsof.2020.106452
Received 8 January 2020; Received in revised form 20 September 2020; Accepted 9 October 2020

mailto:mengy@cqu.edu.cn
mailto:csxluo@comp.polyu.edu.hk
www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2020.106452
https://doi.org/10.1016/j.infsof.2020.106452
https://doi.org/10.1016/j.infsof.2020.106452
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2020.106452&domain=pdf

Information and Software Technology 131 (2021) 106452

2

trace and the source code to find the root cause of the crash for
debugging [4]. The stack trace is a set of frame objects that consists of a
runtime exception and a list of the function invocations collected at
runtime. If the crashing fault resides inside the stack trace, the de-
velopers only need to focus on the source code of the functions recorded
in the stack trace. When the crashing fault resides outside the stack
trace, the developers have to check the function invocation graphs,
spending huge efforts to extensively inspect source code [5]. This will
seriously hinder the efficiency demand of the crash localization.

To facilitate the crash localization, Gu et al. [5] proposed an auto-
matic method, called CraTer, to predict whether the crashing fault
residence is inside the stack trace or not. We call this task Identification
of Crashing Fault Residence (ICFR). According to their definition, if the
faulty code exactly matches the record information of one frame in the
stack trace, it is deemed that the crashing fault resides inside the stack
trace, otherwise, outside the stack trace. They extracted a set of features
from the stack trace and the source code to characterize the crashing
fault. However, their work only focused on ICFR under the
within-project scenario, where the performance highly relies on the
precondition that sufficient labeled training crash instances are avail-
able. As the collection process of software project data (especially for the
label information) is costly and may need a considerable amount of time
and workload [6], it is not always feasible to obtain abundant labeled
training data. An alternative solution to this dilemma is resorting the
advantage of the cross project model which utilizes the labeled data of
the external project (a.k.a. source project) to serve the task of unlabeled
data of the project at hand (a.k.a. target project). In this paper, we study
the ICFR problem in such scenario by proposing a cross project model
(or framework).

The typical usage scenario of our cross project ICFR model is to warn
developers about crashing faults that are likely to reside in the stack
trace in the absence of labeled crash data. As a result, the predicted
results can assist developer with the manual crash localization. For
example, suppose Alice is a developer in a large project team and her
team is developing a new project (e.g., system A) which has no historical
development information to collect the labeled crash data. But they have
collected some labeled crash data from an old system B they developed
before. One day the system A crashed, and Alice got the crash reports
which include the stack trace with t frames.

Without our model, Alice and other related developers have to
analyze all frames and the sequence of function calls that are recorded in
the stack trace. As a result, they need to review a great deal of lines of
codes that are from the functions in the call sequence. This would
involve in much human labor and increase the debugging efforts.

With our model, Alice can utilize the labeled crash data from system
B to predict whether the fault that crashes system A resides in the stack
trace or not. After extracting the crash features from the stack trace and
source code of system A, if the identification result shows that the
crashing fault locates in the stack trace (i.e., the fault code exactly
matches the recorded information in one frame), then Alice and other
related developers only need to carefully review the t lines of code in the
stack trace. As a result, they discover the root cause of the crash and fix
it. This can save human labor and promote the debugging process.

The data distribution discrepancy is the major barrier for cross
project models to achieve satisfactory performance. Transfer learning is
a commonly-used cross project model which aims to minimize the dis-
tribution discrepancy across different domains (one project represents
an unique domain). Balanced Distribution Adaptation (BDA) [7] is a
novel transfer learning method to embed the cross project data into a
common feature space for reducing the data distribution discrepancies.
The advantage of BDA is that it not only considers discrepancies of both
marginal and conditional probability distributions, but also allocates
different weights to them for effectively adapting to various cross project
pairs. This is motivated by the fact that, if the data distributions of two
projects are similar, the importance of the conditional probability dis-
tribution is dominant, whereas if the data distribution of two projects is

dissimilar, the marginal probability distribution has higher importance
[7]. Since the studied data are class imbalanced (i.e., there is a large
difference between the numbers of crash instances in distinct classes), it
will hinder the learning model to achieve promising performance. In this
work, we employ the Weighted BDA (WBDA) for feature embedding,
which supports adjusting the weight of each class during the process of
distribution adaptation [7]. This weighting strategy is helpful for elim-
inating the negative effect of the class imbalance issue to some extent.

In addition, the project data may consist of a large number of fea-
tures, which is called the curse of dimensionality. This phenomenon can
not only slow down the speed of the model training and occupy more
storage space, but also make the trained model complex and over-fitting
[8]. Besides, among the initial feature set, there may exist some irrele-
vant features which will deteriorate the performance of the learning
model if all features are used [9]. In this case, feature selection tech-
niques are used to reduce the feature dimension to solve the above
problems. More specifically, such techniques select a feature subset,
which is important to distinguish instances with different class labels, to
replace the original ones. This process can both reduce feature di-
mensions and retain relevant features. In this work, we use a typical
feature selection method which ranks the features according to their
importance degrees based on the information Gain Ratio(GR) values.
GR based feature ranking method is a variant version of Information
Gain (IG) based method. These two feature selection methods have been
successfully used in previous studies of software engineering domain
[10,11], and can achieve comparative performance among the ranking
based feature selection family [12].

As the sizes of different features vary even in the same project,
normalization techniques are essentially applied to rescale the cross
project data into a specific interval before being fed into a machine
learning model. This data preprocessing procedure is beneficial to the
following learning performance [13]. Previous study showed that the
choice of the normalization techniques and the distribution character-
istics of different domains can greatly impact the performance of certain
learning tasks [14]. To alleviate this issue, Nam et al. [15] proposed a
heuristic strategy to adaptively determine an appropriate normalization
technique based on the distribution characteristics of the cross project
data. However, the impact of normalization techniques on the ICFR
performance has not been explored yet. In this work, we make the first
attempt to find a better normalization strategy for the crash data, and
investigate whether or not the normalization adaption selection in [15]
also works well on our cross project ICFR model.

We conduct experiments on a benchmark dataset that consists of
crash data from 7 open-source software projects, and employ 6 in-
dicators to evaluate the ICFR performance of our proposed cross project
learning framework FSE. The experimental results show that our FSE
framework with the most commonly used normalization scheme is suf-
ficient to obtain good performance. By comparing with the best average
indicator values among 5 variant methods and 5 downgraded methods,
our FSE framework has small performance improvements on all in-
dicators except in terms of the best average AUC value among 5 variant
methods. By comparing with the best average indicator values among 15
cross project models from other domains, our FSE framework achieves
the average improvements of 41.4%, 28.1%, 27.4%, 119.4%, and 20.4%
in terms of F-measure for crash instances inside the stack trace, g-mean,
Balance, MCC, and AUC, respectively. But the average F-measure for
crash instances outside the stack trace by FSE is lower than 6 methods
under comparison.

This paper is an extended version towards our previous study [16]
which has been published as a conference paper. There are 5 main dif-
ferences among the two papers: (1) We address the class imbalance issue
in the process of the distribution adaptation which is not considered in
the conference version. This operation helps to reduce the negative
impact of the difference between the number of crash instances from two
categories on the performance of the learning model. (2) Before per-
forming the feature embedding stage, we employ a classic ranking based

Z. Xu et al.

Information and Software Technology 131 (2021) 106452

3

feature selection method to reduce the dimensionality of the cross
project data, which is not considered in the conference version. This
stage reserves the valuable features to mitigate the negative impact of
the unimportant features. (3) We add an indicator (i.e., AUC) indepen-
dent of the classifier threshold for performance evaluation. (4) We add
12 methods for comparison to investigate the effectiveness of our pro-
posed cross project ICFR framework. (5) We make more in-depth anal-
ysis towards the impacts of feature dimensions and parameter values on
the ICFR performance of the proposed framework (available at our on-
line materials1), which are omitted in the conference paper due to the
page limit.

In summary, we have the following contributions:

(1) In this work, we propose a novel cross project framework FSE to
address the ICFR problem in data scarcity scenario where the
labeled data are not always available for the project at hand.

(2) To remove the negative impacts of some useless features on the
ICFR performance, our proposed FSE framework first uses a
feature selection technique to select the important features by
reserving the relevant ones.

(3) To tackle the distribution discrepancy and class imbalance issue
of the cross project data, our FSE framework employs a state-of-
the-art WBDA based transfer learning method for feature
embedding. WBDA reduces the threat of data distribution
inconsistency by incorporating both marginal and conditional
distributions together with adaptive weights, and alleviates the
class imbalance issue by altering the weight of each class during
the process of the distribution adaptation.

(4) We comprehensively evaluate the proposed cross project model
on 7 open-source projects with 6 indicators. The experimental
results on 42 cross project pairs show the superiority of our
devised cross project ICFR framework over 25 baseline methods
under comparison.

2. Related work

2.1. Stack trace analysis

Once a crash occurs, an exception is thrown out and a crash report
will be automatically recorded by the crash reporting system. The main
context of the report is the stack trace of the crash which reports the
function invocation sequences during execution. The stack trace is
useful to reproduce the crash scenario and find the root cause of the
crash [17]. A stack trace can be treated as a set of frame objects. The
initial frame reports the exception of the crash and each other frame
represents a function invocation. The most recent frame is usually called
top frame and the last one is usually called bottom frame [5]. The main
elements of each frame (except for the initial one) consist of the class
name, function name, and the code line number, which denotes the
position of the execution point. Other optional elements include the
argument information that relates to the function.

Previous studies analyzed stack traces for different tasks, such as
crash report clustering, crash reproduction, and crash localization.

2.1.1. Crash report clustering
This kind of task aims to identify the duplicate crash reports which

are caused by the same faults. Dang et al. [18] proposed a crash report
clustering method, called ReBucket, based on the similarity of the stack
trace measured by the position dependent model. Dhaliwal et al. [19]
clustered the crash reports by measuring the similarity of stack traces
with the Levenshtein distance.

2.1.2. Crash reproduction
Reproducing the crash with well-designed test cases helps to fully

understand its root causes during software debugging. Chen et al. [20]
proposed the STAR method which used the collected stack traces by
combining a backward symbolic execution approach and a sequence
composition technique. Nayrolles et al. [21,22] analyzed the stack traces
with static program slices and directed model checking for crash
reproduction. Xuan et al. [17] proposed the MUCRASH method which
combined stack traces, source code, and existing test cases to generate
mutated test cases. Soltani et al. [23] proposed a post-failure method,
called EvoCrash, for automated crash reproducing. This method reduced
the search space by using stack traces to guide a genetic algorithm.

2.1.3. Crash localization
Studies on crash localization (or fault localization) are closely related

to our work. This kind of task recommends the developers a set of
candidate functions based on their suspicious scores by analyzing the
stack traces and source code. Wu et al. [24] proposed the CrashLocator
method employing 3 static analysis techniques to deduce the failing
execution stack traces, and a term weighting method to calculate the
suspicious scores for the functions. Wang et al. [25] proposed 3 crash
correlation rules to divide the crash types into different groups and a
new fault localization method based on the divided groups. Moreno
et al. [26] proposed the Lobster method based on the structural and
textual similarities. Wong et al. [27] developed a tool, called BRTracer,
by analyzing the segmentation of the source code and stack traces for
bug reports based fault localization.

Different from the above fault localization studies which returned
the potential faulty functions to the developers, Gu et al. [5] proposed
the CraTer method to determine whether the location of the faulty code
is consistent with the recorded information (including the class name,
function name, and code line number) of one frame in the stack trace.
From the point of view, the work of Gu et al. can be viewed as a
fine-grained identification at the code line level rather than the function
level. Since Gu et al. [5] only considered the ICFR task in the same
project setting, in this work, we extend their work to cross project setting
since the labeled crash data are usually scarce in single project case.

2.2. Cross project learning tasks

Though there are no studies for cross project ICFR yet, researchers
have applied cross project models to other software engineering tasks,
such as defect prediction, effort estimation, change prediction, and
logging prediction.

Cross project defect (or fault) prediction utilizes the fault data of the
external project (a.k.a. source project) to predict whether the software
entities (a function, class, or file) in the target project are fault-prone.
Prior studies have proposed different cross project models for this
task, such as instance filtering based methods [28–31], transfer learning
based methods[14,15,32,33], and classifier combination based methods
[34–37]. The studies of cross project fault prediction compose the most
active research branch in software engineering field [38,39].

Cross project effort estimation [40,41] estimates the efforts required
to develop a target project with the aid of the labeled data from other
projects. Cross project change prediction [42–44] determines whether a
class in a target project is likely to change in its next release with the help
of the labeled data from other projects. Cross project logging prediction
[45,46] employs the labeled data from other projects to automatically
predict the code constructs that need to be logged in the target project.

Different from the above studies, in this work, we make the first
attempt to develop a transfer learning based cross project model for the
ICFR task.

2.3. Fuzz testing based crash analysis

The crash instance data in our used benchmark dataset are generated 1 https://github.com/sepine/IST-2020

Z. Xu et al.

https://github.com/sepine/IST-2020

Information and Software Technology 131 (2021) 106452

4

by one single seeded fault using mutation testing. The similar work is the
fuzz testing based crash analysis study. Fuzz testing is also a software
testing technique that uses random data (called fuzz) as program inputs
in attempt to make the software system behave unexpectedly and crash
for revealing reliability issues [47]. Zhao et al. [48] used black-box fuzz
testing on multiple Linux programs to collect data which consisted of
4000 crashes. Shahriar et al. [49] found that fuzz testing can effectively
detect the crashes causing by the memory leak in Android applications.
Zalewski [50] pointed out that it was difficult to evaluate the exploit-
ability using some crashes generated by fuzz testing without many ef-
forts in debugging and code analysis. Pudas [51] investigated how to
improve the performance of uniqueness detection for the crashes in fuzz
testing. Chen et al. [52] proposed a method called HAWKEYE based on
greybox fuzz testing to reveal crashes. The experimental results showed
that their method was 7 times faster than an advance method at
exposing certain crashes. Liang et al. [53] conducted an empirical study
to investigate the effectiveness of fuzz testing on real industry projects
from Huawei company. The experimental results showed that they
revealed several unreported faults leading to the system crash. Zhang
et al. [54] proposed a hybrid method combining dynamic symbolic
execution and coverage-based fuzz testing for bugs discovery. The
experimental results on real-world programs showed that their method
can expose several previously unknown crashes.

3. Method

3.1. Framework overview

Fig. 1 provides an overview diagram of our proposed FSE framework
in this study. More specifically, we first employ normalization technique
to preprocess the original data of two projects. Then, we employ GR
based feature ranking method to select an important feature subset from
the source project data since their labels are known in advance, and keep
the same feature in the target project data to ensure the data across
projects with the same feature set. Next, we utilize the WBDA based
transfer learning technique to map the data of the two projects into a
common embedding feature space in which the distribution discrep-
ancies of the across project data are reduced. The mapped labeled crash
instances in the source project are used to train a classification model to
predict the residence labels of the mapped unlabeled crash instances in
the target project.

Below, we introduce the details of the used GR based feature selec-
tion method and WBDA based feature embedding method, respectively.

3.2. Gain ratio (GR) based feature selection method

For the original source and target project data, we assume that the
source project has plenty of labeled crash instances while the target
project only has unlabeled crash instances. We define the original source
project data as 𝒟′

S with d′

s crash instances and K (K = 2 in our work)
classes Ck (k = 1, 2, …, K) in which |Ck| denotes the number of crash
instances belonging to class Ck, that is

∑K
k=1|Ck| = d′

s. For a given feature

A with n different values, the original source project data 𝒟′

S is divided
into n subset 𝒟′

S1
,𝒟

′

S2
,…,𝒟

′

Sn
according to the values of feature A in

which |𝒟′

Si
| denotes the number of crash instances in 𝒟′

Si
, that is

∑n
i=1
⃒
⃒𝒟

′

Si

⃒
⃒ = d′

s. In addition, let 𝒟′

Sik
denote the set which consists of the

crash instances in subset 𝒟′

Si
with class Ck in which |𝒟S′

i
| denotes the

number of crash instances in 𝒟S′

i
. In order to calculate the GR value of

the given feature A, we need to calculate two entropy values first as
follows:

The entropy H(𝒟
′

S) of the original source project data 𝒟′

S is defined as

H
(
𝒟

′

S

)
= −

∑K

k=1

|Ck|

|𝒟
′

S|
log2

|Ck|

|𝒟
′

S|
(1)

Entropy H(𝒟
′

S) represents a measure of uncertainty for 𝒟′

S.
The conditional entropy H(𝒟

′

S
⃒
⃒A) of the original source project data

𝒟
′

S given feature A is defined as

H
(
𝒟

′

S

⃒
⃒A
)
=
∑n

i=1

|𝒟
′

Si
|

|𝒟
′

S|
H
(
𝒟

′

Si

)
= −

∑n

i=1

|𝒟
′

Si
|

|𝒟
′

S|

∑K

k=1

|𝒟
′

Sik
|

|𝒟
′

Si
|
log2

|𝒟
′

Sik
|

|𝒟
′

Si
|

(2)

The conditional entropy H(𝒟
′

S

⃒
⃒A) represents the uncertainty of 𝒟′

S

given the condition that feature A is known.
Then the IG value of feature A is calculated as

IG
(
𝒟

′

S,A
)
= H

(
𝒟

′

S

)
− H

(
𝒟

′

S

⃒
⃒A
)

(3)

The IG value IG(𝒟′

S,A) represents the reduction degree of uncer-
tainty for the information of 𝒟′

S when knowing the information of
feature A, i.e., the amount of information the feature can provide about
whether the crash instance is inside the stack trace (short for InTrance)
or outside the stack trace (short for OutTrace). However, the main
drawback of IG based feature selection method is that it tends to select
the features with a large range of values [11,12]. The alternative solu-
tion is to replace IG with GR which overcomes the bias by normalizing
the feature’s contribution to distinguish the data [11].

Let define HA(𝒟
′

S) as the entropy of 𝒟′

S in terms of feature A as
follows

HA
(
𝒟

′

S

)
= −

∑n

i=1

|𝒟
′

Si
|

|𝒟
′

S|
log2

|𝒟
′

Si
|

|𝒟
′

S|
(4)

Then the GR value of feature A is calculated as

GR
(
𝒟

′

S,A
)
=

IG
(
𝒟

′

S,A
)

HA
(
𝒟

′

S

) (5)

For each feature in the original source project data, we can calculate
its corresponding GR value. GR based feature selection method ranks
these methods according to their GR values and selects a specific number
or percentage features as the final subset. Let assume that ds is the
number of selected features from the original source project data and
define the final simplified source project data as 𝒟S. In order to ensure
that the features of the cross project data are one-to-one correspondence,

Fig. 1. An overview diagram of our proposed FSE framework.

Z. Xu et al.

Information and Software Technology 131 (2021) 106452

5

we also keep the same ds features for the original target project data and
define the final simplified target project data as 𝒟T.

3.3. Balanced distribution adaptation (BDA) model

After the GR based feature selection process in the first step, we
obtain the simplified source project and target project data with ds
features as 𝒟S and 𝒟T, respectively. Specifically, the source project 𝒟S

contains a feature matrix XS = xi
s|

ns
i=1 ∈ Rns×ds and a label matrix YS =

yi
s|

ns
i=1 ∈ Rns×1, where xi

s represents the ith crash instance in XS, yi
s rep-

resents the corresponding label, ns represent the number of crash in-
stances. yi

s is ‘InTrace’ if xi
s exactly matches one of the frame records in

the stack trace, otherwise ‘OutTrace’. Similarly, the target project 𝒟T

contains a feature matrix XT = xi
t |

nt
i=1 ∈ Rnt×ds , where xi

t represents the ith
crash instance in XT, nt represent the number of crash instances,
respectively. The corresponding label vector YT = yi

t |
nt
i=1 is what we are

seeking for. In addition, let assume that 𝒳 s (𝒳 t) and 𝒴s (𝒴t) represent the
feature space and label space of the source (target) project, respectively.

In the context of cross project ICFR, 𝒳 s = 𝒳 t and 𝒴s = 𝒴t , which
means that the two projects have the same feature space and label space
respectively, but ℘(xs) ∕= ℘(xt) and ℘(ys

⃒
⃒xs) ∕= ℘(yt

⃒
⃒xt), which means

that the two projects have different marginal distribution and condi-
tional distribution, respectively. The goal of BDA [7] is to learn a com-
mon feature space in which the two distribution discrepancies, i.e.,
d(℘(xs),℘(xt)) and d(℘(ys

⃒
⃒xs),℘(yt

⃒
⃒xt)), are minimal.

The simplest way to reduce the difference between 𝒟S and 𝒟T is to
optimize the two distribution discrepancies with the same weight as
follows:

d(𝒟S,𝒟T) = d(℘(xs),℘(xt)) + d(℘(ys|xs),℘(yt|xt)). (6)

For the data of the two projects, the margin distribution is more
important when they are dissimilar, otherwise the conditional distri-
bution should be emphasized [7]. Thus just combining the two terms
with the same weight in Eq. (6) could not well adapt to all cross project
data. BDA alleviates this issue by assigning adaptive weights to the two
terms for different cross project pairs. It is formulated as follows:

d(𝒟S,𝒟T) = (1 − μ)d(℘(xs),℘(xt)) + μd(℘(ys|xs),℘(yt|xt)), (7)

where μ ∈ [0, 1] measures the importance of the two terms. μ > 0.5 (μ <
0.5) means that the conditional (marginal) distribution is more
important.

However, the label set of the target project YT is unknown before-
hand, thus the term ℘(yt

⃒
⃒xt) could not be calculated. Long et al. [55]

suggested to use class conditional distribution ℘(xt
⃒
⃒yt) to replace con-

ditional distribution as long as that data samples are sufficient. The
alternative term can be calculated by training a classifier on 𝒟S and
predicting on 𝒟T. It is worth noting that, since the initial outputs may be
not reliable, these output labels are iteratively refined until they are
stabilized.

By using the Maximum Mean Discrepancy (MMD) method [56] to
calculate the two terms, i.e., d(℘(xs),℘(xt)) and d(℘(xs

⃒
⃒ys),℘(xt

⃒
⃒yt)),

Eq. (7) is rewritten as

d(𝒟S,𝒟T) = (1 − μ)|| 1
ns

∑ns

i=1
xi

s −
1
nt

∑nt

j=1
xj

t||
2
ℋ

+μ
∑C

c=1
||

1
nc

s

∑

xi
s∈𝒟

(c)
S

xi
s −

1
nc

t

∑

xj
t∈𝒟

(c)
T

xj
t||

2
ℋ,

(8)

where ℋ represents the reproducing kernel Hilbert space, C represent
the number of distinct labels, 𝒟(c)

S (𝒟(c)
T) represents the crash instances

with label c in source (target) project, nc
s (nc

t) represents the number of
crash instances in 𝒟(c)

S (𝒟(c)
T).

By using the matrix tricks and regularization, Eq. (8) is converted to

min
A

tr
(

A⊤X

(

(1 − μ)M0 + μ
∑C

c=1
Mc

)

X⊤A

)

+ λ‖ A ‖
2
F

s.t. A⊤XHX⊤A = I, 0 ≤ μ ≤ 1,

(9)

where the first term adapts the weights of the two distributions, and the
second term is a regularization term. The two constraint terms are used
to maintain the inner structure properties of the original data for the
transformed one A⊤X and control the μ value, respectively. In addition,
X represents the input feature matrix combining XS and XT, A represents
a transformation matrix, I represents identity matrix with size
(ns +nt) × (ns +nt), H = I − (1/n)1 represents a centering matrix, and
‖ A ‖

2
F represents the Frobenius norm of A. M0 and Mc represent MMD

matrices as follows:

(M0)ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n2

s
, xi, xj ∈ 𝒟S

1
n2

t
, xi, xj ∈ 𝒟T

−
1

nsnt
, otherwise,

(10)

(Mc)ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
nc

s
2, xi, xj ∈ 𝒟

(c)
S

1
nc

t
2, xi, xj ∈ 𝒟

(c)
T

−
1

nc
snc

t
,

⎧
⎨

⎩

xi ∈ 𝒟
(c)
S , xj ∈ 𝒟

(c)
T

xi ∈ 𝒟
(c)
T , xj ∈ 𝒟

(c)
S

0, otherwise.

(11)

By using the Lagrange multiplier method [57], the Lagrange function
of Eq. (9) is

L = tr
(

A⊤X

(

(1 − μ)M0 + μ
∑C

c=1
Mc

)

X⊤A

)

+λ ‖ A ‖
2
F + tr((I − A⊤XHX⊤A)Φ),

(12)

where Φ = (ϕ1,…,ϕd) represents the Lagrange multiplier. By setting the
first-order derivative of L towards A to 0, Eq. (12) is converted to a
generalized eigen-decomposition problem as
(

X

(

(1 − μ)M0 + μ
∑C

c=1
Mc

)

X⊤ + λI

)

A = XHX⊤AΦ. (13)

The result of Eq. (13) is the transformation matrix A, which is used to
convert the original data of the two projects.

We provide an example of simulated data to illustrate the feature
transformation effect of the BDA method. For the source project, we
generate 130 crash instances outside the stack trace (red circles) from a
mixture of Gaussian with means (2, 3.5), and 50 crash instances inside
the stack trace (blue circles) from a mixture of Gaussian with means (6.5,
2.5), as showed in Fig. 2(a). To reflect the distribution differences across
projects, for the target project, we generate 120 crash instances outside
the stack trace (red pentagrams) from a mixture of Gaussian with means
(4, 5.5), and 60 crash instances inside the stack trace (blue pentagrams)
from a mixture of Gaussian with means (6, 1), as showed in Fig. 2(b).
Fig. 2(c) depicts the mapped data of two projects by the BDA method
with the equal weight in the common feature space. From Fig. 2, we
observe that the new data of the two projects mainly locate in two re-
gions marked with black rectangles in the embedding feature space,
which reduces the data distribution discrepancies between the two
projects.

Z. Xu et al.

Information and Software Technology 131 (2021) 106452

6

3.4. Weighted BDA (WBDA) based feature embedding method

Although the BDA method considers the different importance de-
grees of the marginal and conditional distribution discrepancies to
reduce the distribution inconsistence across the project data, it supposes
that the class probability in each project data is similar when using the
class conditional distribution ℘(xt

⃒
⃒yt) to replace the conditional distri-

bution ℘(yt
⃒
⃒xt). It means that the BDA method does not take the class

imbalance issue into consideration. To address this issue, in this work,
we employ the weighted version of BDA, i.e., WBDA [7], to perform the
feature transformation by utilizing a more accuracy approximation to
calculate the conditional distribution difference as follows:

d(℘(xs|ys),℘(xt|yt)) = ||
P(ys)

P(xs)
P(xs|ys) −

P(yt)

P(xt)
P(xt|yt)||

2
ℋ

= ||αsP(xs|ys) − αtP(xt|yt)||
2
ℋ

(14)

where αs and αt are approximated to the class prior of the source and
target project data, respectively. From this point of view, WBDA con-
siders the class proportion differences of the cross project data.

To calculate this conditional difference, a weight matrix Wc for each
class is constructed as follows:

(Wc)ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
(
y(c)s

)

nc
s

2 , xi, xj ∈ 𝒟
(c)
S

P
(
y(c)t

)

nc
t

2 , xi, xj ∈ 𝒟
(c)
T

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

P
(
y(c)s

)
P
(
y(c)t

)√

nc
snc

t
,

⎧
⎨

⎩

xi ∈ 𝒟
(c)
S , xj ∈ 𝒟

(c)
T

xi ∈ 𝒟
(c)
T , xj ∈ 𝒟

(c)
S

0, otherwise.

(15)

where P(y(c)s) and P(y(c)t) are the class prior on class c in the source and
target project data, respectively.

Then, using the matrix tricks and regularization with Eqs. (15), (9) is
converted to the optimization problem of WBDA as follows:

min
A

tr
(

A⊤X

(

(1 − μ)M0 + μ
∑C

c=1
Wc

)

X⊤A

)

+ λ‖ A ‖
2
F

s.t. A⊤XHX⊤A = I, 0 ≤ μ ≤ 1,

(16)

The solving process of the optimal transformation matrix A is the
same as the one of the BDA method as described in Section 3.3. The only
difference between Eq. (9) for BDA and Eq. (16) for WBDA is that the
track Mc is replaced by Wc. In other words, in addition to considering the
number of crash instances in each class as Mc does, Wc also takes the

Fig. 2. An example of the feature transformation effect by BDA.

Z. Xu et al.

Information and Software Technology 131 (2021) 106452

7

class prior of each class into account.

4. Experimental setup

4.1. Benchmark dataset

In this work, we employ a publicly available benchmark dataset
provided by Gu et al. [5] to evaluate the performance of our proposed
cross project FSE framework for ICFR task. The benchmark dataset is
collected from 7 open source Java projects: Apache Commons Codec,
Apache Commons Collections, Apache Commons IO, Jsoup,
JSqlParser, Mango, and Ormlite-Core. Table 1 describes the basic
statistics of the 7 projects, including the version number, the total
number of generated mutants (# Mutants), the number of remained
crashes after removing useless mutants (# Crashes), the number of crash
instances inside (# InTrace) and outside (# OutTrace) the stack trace,
and the ratio of #OutTrace

#InTrace . The data collection consists of 3 main steps:
crash generation, feature (independent variable) extraction, and
crashing fault residence (dependent variable) labeling. We briefly
describe each step as follows:

4.1.1. Crash generation
(1) Fault Generation via Program Mutation
Since it is non-trivial to reproduce the real-world crashes, Gu et al.

[5] simulated the crashes by seeding faults into the real-world projects.
More specifically, they applied a state-of-the-art mutation testing tool,
the PIT system2, to generate single-point mutations. In other words, a
small change is made to the source code to form a program mutant in
each round. These mutations are derived from 7 default mutation op-
erators3 in the PIT system, including conditionals boundary mutator,
increments mutator, invert negatives mutator, math mutator, negate
conditionals mutator, return values mutator, and void method call
mutator.

(2) Removing Mutants Causing No Crash
After obtaining these program mutants, 4 rules were employed to

remove some program mutants which do not crash the program. The
rules include removing the mutants that pass all test cases, the mutants
whose stack traces only contain AssertionFailedError, ComparisonFailure,
or test cases.

4.1.2. Independent variable extraction
In order to characterize each crash instance (i.e., crashing fault), Gu

et al. [5] extracted 89 features from the stack traces and source code as
the independent variables in tota. The brief descriptions of these features
are available at our online materials.

4.1.3. Dependent variable labeling
The 3 main terms recorded in the frame (including class name,

function name and line number) are used to label each crash instance.
More specifically, if the information of the faulty code exactly matches
the 3 terms in one frame, then the residence of the crash instance is
deemed as inside the stack trace and labeled as ‘InTrace’, otherwise
labeled as ‘OutTrace’. The process of label collection is done automati-
cally by checking the bug-fixing logs which are generated when the
original authors in [5] wrote programs to produce the mutants.

4.2. Performance indicator

As the goal of ICFR is to determine the label of a crash instance as
‘InTrace’ or ‘OutTrace’, it is a typical binary classification problem. Note
that, in this work, we cannot simply say which type of crash instance is
the positive one, we calculate indicators towards the two kinds of in-
stances. There are 4 prediction outputs for the ICFR task:

• a crash with labeled t (t is ‘InTrace’ or ‘OutTrace’) is predicted as t,
• a crash with labeled t is predicted as t′ (t′ is the opposite of t),
• a crash with labeled t′ is predicted as t′,
• a crash with labeled t′ is predicted as t

The numbers of crash instances that with the above 4 outputs are
called True Positive (TP(t)), False Negative (FN(t)), True Negative (TN
(t)), and False Positive (FP(t)), respectively. First, we give the definitions
of 3 basic terms, i.e., Precision, Probability of Detection (PD or Recall),
and Probability of False alarm (PF) as follows:

Precision measures the ratio of crashes with label t that are correctly
predicted to the total number of crashed that are predicted as t, i.e.,
Precision(t) =

TP(t)
TP(t)+FP(t). PD or Recall measures the ratio of the crashes

with label t that are correctly predicted to the total number of crashes
with label t, i.e., PD(t) = Recall(t) =

TP(t)
TP(t)+FN(t). PF measures the ratio of

the crash with label t that are incorrectly predicted to the total number
of crash with label t, i.e., PF(t) =

FP(t)
FP(t)+TN(t).

F-measure (F) is the harmonic mean of Precision and Recall as

F(t) =
2 × Precision(t) × Recall(t)

Precision(t) + Recall(t)
(17)

g-mean is the geometric mean of PD and (1-PF) as

g-mean(t) =
̅̅
PD(t) × (1 − PF(t))

√
(18)

Balance is a trade-off between Recall and PF as

Balance(t) = 1 −

̅̅

(0 − PF(t))2
+ (1 − Recall(t))2

2

√

(19)

MCC (Matthews correlation coefficient) is a special case of Pearson
correlation coefficient considering TP, TN, FP, and FN, which is defined
as

MCC(t)=
TP(t)×TN(t) − FP(t)×FN(t)

̅̅̅
(TP(t)+FP(t))(TP(t)+FN(t))(TN(t)+FP(t))(TN(t)+FN(t))

√

(20)

AUC is the Area Under the ROC Curve whose horizontal axis repre-
sents PF and vertical axis represents PD. The calculation of this indicator
is independent of the specific classifier threshold.

In this study, we employ F, g-mean, Balance, MCC and AUC as per-
formance indicators. In ICFR scenario, for each indicator, we need to
calculate two performance values which correspond to the crash with
different labels (‘InTrace’ and ‘OutTrace’). It is worth noting that, except
for F, the other 4 indicator values on two labels are the same. This means
that the 4 indicators can be used to comprehensively quantify the overall
ability of the method to discriminate the two labels. Thus, we total have
6 indicators in which the two kinds of the F indicator are called F
(InTrace) and F(OutTrace).

Table 1
Statistic information of the 7 projects.

Project Version #
Mutants

Crashes

InTrace

OutTrace

Ratio

Codec 1.1 2901 610 177 433 2.45
Collections 4.1 6650 1350 273 1077 3.95
IO 2.5 3337 686 149 537 3.60
Jsoup 1.11.1 2657 601 120 481 4.01
JSqlParser 0.9.7 8757 647 61 586 9.61
Mango 1.5.4 5149 733 53 680 12.83
*Ormlite-

Core
5.1 3563 1303 326 977 3.00

2 http://pitest.org/
3 http://pitest.org/quickstart/mutators/#INCREMENTS

Z. Xu et al.

http://pitest.org/
http://pitest.org/quickstart/mutators/#INCREMENTS

Information and Software Technology 131 (2021) 106452

8

4.3. Statistic test

To statistically analyze the significant differences among our FSE
framework and the baseline methods, we employ Friedman test (sig-
nificant level at 95%) with an improved Nemenyi [38] to divide the
methods into completely nonoverlapping groups. The Friedman test is a
non-parametric test for testing the differences between several related
samples. In our work, there exists the one-to-one correspondence be-
tween each set of results of multiple methods since they are the results
on the same cross project pair. Thus, the multiple sets of experimental
results of the analyzed methods are related. The improved Nemenyi test
is employed in previous studies [58,59] of the software engineering
domain.

4.4. Classification model

After obtaining the mapped data of the two projects with the optimal
transformation matrix, we need to train a classifier with the mapped
labeled source project data. As the aim of this work is not to focus on the
impacts of different classifiers on the cross project ICFR performance,
thus, in this work, we just use logistic regression as the basic classifi-
cation model. It is a classic and simple classifier which solves the rela-
tionship between the features and labels of the crash instances, and is
proved to be effective in other software engineering task [60–62].

4.5. Parameter settings

In the feature selection phase of the FSE framework, we need to
select a certain number of relevant features from the data of source and
target projects. Without loss of generality, in this work, we just remain
half of features with higher GR values. For WBDA method in the feature
embedding phase of the FSE framework, the factor μ in Eq. (16) is a
project-specific parameter and relates to the similarity degree of the data
distributions across projects. However, no effective methods are avail-
able to specify it on distinct cross project pairs [7]. In this work, we set
11 μ values, from 0 to 1 with a step of 0.1 and search its optimum option.
For the regularization parameter λ in Eq. (16), we set it as 0.1 without
any guidance of experience. In addition, after the feature embedding
phase, we need to set the reserved feature dimension to obtain the final
mapped data which are the inputs of the classification model. In this
work, we set the dimension as 15% of the original feature number as
suggested in previous studies [10,11].

The experimental scripts, the benchmark dataset, and the discussion
of the impacts of different parameter λ values and feature dimension on
the performance of proposed FSE framework are available in our online
materials.

5. Performance evaluation

5.1. RQ1: How do different data normalization strategies impact the
performance of our proposed FSE framework?

Motivation: Nam et al. [15] have stated that different data
normalization methods can impact the performance of the cross project
model for the defect prediction task. They proposed an adaption selec-
tion strategy to select the appropriate normalization technique to
transform the data before performing the cross project model. The
behind rationale is based on the similarity of the data characteristics
(such as the mean, median, min and max values) between the source and
target project data. This question is designed to investigate whether or
not our cross project ICFR framework is sensitive to different data
normalization methods and to find the most suitable one for our data
preprocessing.

Method: We employ total 6 normalization techniques in [15] to
answer this question. These techniques are derived from 2 widely-used
data normalization techniques, i.e., min-max normalization and the

z-score normalization. For each feature vector x = {x1, x2,…, xm} in the
given data, in terms of min-max normalization, xi =

xi − min(x)
max(x)− min(x), where

min (x) and max (x) represent the minimum and maximum values of the
feature vector x respectively, xi and xi are the original and normalized
ith valued of the feature vector x respectively. In terms of z-score
normalization, xi =

xi − mean(x)
std(x) , where mean(x) and std(x) represent the

mean value and standard deviation of the feature vector x, respectively.
First, we describe the 6 normalization techniques as follows:

N0: Do not use any normalization on the original data.
N1: Applying min-max normalization to each project.
N2: Applying z-score normalization to each project.
N3: Applying z-score normalization to each project with the mean

value and standard deviation from the source project.
N4: Applying z-score normalization to each project with the mean

value and standard deviation from the target project.
NAS:Normalization Adaption Selection utilizes a heuristic strategy

to select the optimum normalization option from the above 5 tech-
niques. This heuristic strategy is based on the elements of a data char-
acteristic vector which measures the similarity of the data characteristic
between two projects.

Results: Fig. 3 shows the radar chart of the 6 average indicator
values across all cross project pairs for our proposed FSE framework
with 6 data normalization schemes. In the radar chart, each axis rep-
resents an indicator and the location of the point on the axis denotes the
average value of the indicator. The further away the point is from the
center, the greater the average indicator value is. The 6 average indi-
cator values (i.e., 6 points) of a method are connected into a polygon
marking with a specific color. The detailed experimental results are also
available in our online materials. From Fig. 3, we observe that our
proposed FSE framework with normalization schemes N0 and N1 ach-
ieves the worst average performance in terms of F(InTrace), g-mean,
Balance, MCC and AUC, but gets the best average F(OutTrace). It means
that FSE framework with these two normalization schemes identifies the
residences of nearly all the crash instances as label ‘OutTrace’. Thus,
they make no sense for ICFR task even although they obtain the best
average F(OutTrace). In addition, FSE framework with N2, N3, N4 and
NAS schemes achieve nearly the same average performance in terms of
all indicators.

Fig. 4 visualizes the statistic test results of Friedman test with
Nemenyi post-hoc test for our proposed FSE framework with the 6
schemes in terms of the 6 indicators. As the p-values of Friedman test are
all less than 0.05, it indicates that performance differences among the 6
schemes can be explained by statistical significance in terms of all 6
indicators. The CD diagrams of Nemenyi test illustrate that our FSE
framework with N2, N4, and NAS schemes belong to the top ranking
group on 5 indicators except in terms of F(OutTrace). Here, the top
ranking group means that the methods in this group have statistically

Fig. 3. The radar chart of average indicator values across all cross project pairs
for FSE framework with different normalization schemes.

Z. Xu et al.

Information and Software Technology 131 (2021) 106452

9

significant differences compared with those in other groups.
Analysis: Directly using the original data set (i.e., N0 option) as the

input of the FSE framework results in the worst performance which
demonstrates that data normalization is a necessary preprocessing step.
The experimental results show that the performance based on z-score
normalization is significantly better than that based on min-max
normalization, whereas different schemes based on z-score normaliza-
tion have no significant differences. Overall, normalization schemes N2,
N4, and NAS are the better options. This conclusion is somewhat
inconsistent with that in [15] which suggested that normalization
scheme NAS is the most suitable choice. The reasons are that our FSE
method achieves the similar average results on crash data preprocessed
by N2 and N4 schemes, and NAS selects the N2 and N4 normalization
schemes to preprocess the crash data on many cross project pairs. Thus,
there is not much difference between the experimental results on crash
data preprocessed by NAS, N2, and N4 schemes. While in [15],
normalization schemes selected by NAS may vary on different cross
project pairs, which leads to that NAS becomes the better choice to
preprocess the data.

Answer: Considering that (1) applying z-score technique to the cross
project data individually (i.e., the N2 option) is sufficient to achieve
better ICFR performance; (2) it is the most commonly used data pre-
processing scheme in previous studies [63,64] without utilizing intricate
rules to select the optimal normalization scheme (i.e., the NAS option)
for specific cross project pair, in this work, we normalize the cross
project data with the N2 option before conducting the FSE framework in
the following experiments.

5.2. RQ2:Are the feature selection process and the weighting scheme in
the FSE framework helpful to improve the cross project ICFR performance?

Motivation: As FSE is a combined framework of a GR based feature
selection process and a weighted feature embedding method, this
question is designed to explore whether the feature selection process and
the weighting scheme are beneficial for the performance improvement
of the proposed FSE framework.

Methods: To answer this question, we employ the methods with and

without the feature selection process, and the methods with and without
the weighting scheme for comparison. In this work, we call these
methods as variant methods of the FSE framework. More specifically, we
choose a total of 5 variant methods as follows:

NONE method does not involve any GR based feature selection and
transfer learning based feature embedding.

GR method only uses the GR based feature selection without transfer
learning based feature embedding.

BDA method only uses the BDA based feature embedding without GR
based feature selection.

WBDA method only uses the WBDA based feature embedding
without GR based feature selection.

GRBDA method uses the GR based feature selection with BDA based
feature embedding.

NONE is the most basic method to investigate the effectiveness of
both feature selection and feature embedding. By comparing FSE against
GR, we can investigate the effectiveness of feature embedding. By
comparing FSE against WBDA and GRBDA against BDA, we can inves-
tigate the effectiveness of feature selection. By comparing FSE against
GRBDA and WBDA against BDA, we can investigate the effectiveness of
the weighting scheme in the feature embedding.

Results: Fig. 5 shows the radar chart of the 6 average indicator
values for our proposed FSE framework and 5 variant methods. We draw
radar charts for the cross project pairs on each project and across all
projects. Thus, we obtain a total of 8 radar charts in which the last one
reports the average indicator values across all 42 cross project pairs.
More specifically, since we conduct one-to-one cross project experiment,
we have 6 sets of experimental results for each performance indicator
when one project is selected as the target project. Thus, Fig. 5(a)–(g)
present the radar charts of the 6 sets of experimental results for each
project which is selected as the target project. In addition, as we conduct
experiments on a total of 42 cross project pairs from the 7 projects, Fig. 5
(h) presents the radar charts of the 6 indicators across the 42 pairs. From
the figure, we have the following observation:

First, from Fig. 5(h), we find that our FSE framework achieves the
best average values on 5 indicators (except in terms of AUC) across 42
cross project pairs compared with the 5 variant methods. The 5 average

Fig. 4. Statistic test results for FSE framework with 6 normalization schemes in terms of 6 indicators.

Z. Xu et al.

Information and Software Technology 131 (2021) 106452

10

Fig. 5. The radar chart of average indicator values for FSE framework and 5 variant methods on each project and all projects.

Z. Xu et al.

Information and Software Technology 131 (2021) 106452

11

indicator values by our FSE framework are much higher than that by
NONE and GR, but a little higher than that by WBDA and GRBDA
methods. More specifically, compared with the best average indicator
values among the 5 variant methods, our FSE framework achieves the
average improvements of 1.5%, 1.3%, 1.3%, 1.3%, and 5% in terms of F
(InTrace), F(OutTrace), g-mean, Balance, and MCC, respectively. In
addition, the average AUC value by FSE is much higher than that by
NONE and GR methods, similar to that by BDA and GRBDA methods,
and only slightly lower than that by the WBDA method.

Second, from Fig. 5(b), (d), (f), and (g), the results show that average
F(InTrace) and Balance values by our FSE framework are better than
that by the 5 variant methods on project Collections, Jsoup, Mango, and
Ormlite-Core, respectively; from Fig. 5(a)–(d), and (g), the results show
that average F(OutTrace) value by our FSE framework is better than that
by the 5 variant methods on project Codec, Collections, IO, Jsoup, and
Ormlite-Core, respectively; from Fig. 5(b), (d), (f), and (g), the results
show that average g-mean value by our FSE framework is better than
that by the 5 variant methods on project Collections, Jsoup, Mango, and
Ormlite, respectively; from Fig. 5(a), (b), (d), (f), and (g), the results
show that average MCC value by our FSE framework is better than that
by the 5 variant methods on project Codesc, Collections, Jsoup, Mango,
and Ormlite, respectively.

Third, Fig. 6 visualizes the corresponding statistic test results for the
6 methods in terms of the 6 indicators. The p-values of Friedman test (all
less than 0.05) indicates that the performance differences among the 6
methods are statistically significant in terms of all indicators. The CD
diagrams show that our FSE framework belongs to the top ranking group
in terms of all indicators and achieves the best average ranking on 5
indicators except in terms of AUC. But our FSE framework has no sig-
nificant differences compared with 2 variant methods in terms of F
(OutTrace) and 3 variant methods in terms of other 5 indicators.

Analysis: Overall, the performance values of our FSE framework and
the WBDA method are better than that of GRBDA and BDA methods,
respectively. This indicates that the weighting scheme in the feature
embedding is useful for performance improvement. From the point of
the average ranking in the CD diagram, our FSE framework, GRBDA, and
GR methods perform better than WBDA, BDA, and NONE methods,
respectively. This indicates that the GR based feature selection process

can promote the ICFR performance. The obvious performance superi-
ority of our FSE frameowrk compared with the GR method manifests the
importance of the feature embedding process. In addition, although FSE,
WBDA, and GRBDA belong to the same top rank group in the 6 in-
dicators, the specific ranking values of the 3 methods show that our FSE
method ranks the first in terms of 5 performance indicators except in
terms of AUC. In addition, the detailed results in our online materials
show that our FSE method obtains the best average performance across
the 42 cross project pairs of the 7 projects in terms of 5 indicators except
in terms of AUC and obtains nearly the same average AUC value as
WBDA and GRBDA. Overall, FSE is still superior to the two baseline
methods, although the performance improvement is small and not
significant.

Answer: Both the feature selection process and weighting scheme in
the feature embedding can promote the performance of the FSE frame-
work for cross project ICFR task.

5.3. RQ3:Does FSE perform better than the downgraded methods in terms
of WBDA?

Motivation: As mentioned in Section 3.4, the WBDA method in our
proposed FSE framework incorporates both the marginal and condi-
tional distributions during the feature embedding process. Besides, it
assigns different weights to the two distributions for distinct cross
project pairs and considers the class imbalanced issue when calculating
the conditional distribution discrepancy. This question is designed to
study whether our FSE framework is superior to GR combining the
downgraded methods of the using transfer learning method WBDA.
These methods are the downgraded versions in terms of WBDA, such as
the ones that only consider one of the distribution distribution with and
without the weighting scheme.

Method: To answer this question, we employ a total of 5 down-
graded methods for comparison as follows:

GRTCA method combines GR based feature selection with the
feature embedding method TCA (Transfer Component Analysis) [56]
that only focuses on narrowing margin distribution discrepancy (i.e.,
μ = 0 in Eq. (7)).

GRCDT method combines GR based feature selection with the

Fig. 6. Statistic test results for FSE framework and 5 variant methods in terms of 6 indicators.

Z. Xu et al.

Information and Software Technology 131 (2021) 106452

12

Fig. 7. The radar chart of average indicator values for FSE framework and 5 downgraded methods on each project and all projects.

Z. Xu et al.

Information and Software Technology 131 (2021) 106452

13

feature embedding method CDT (Conditional Distribution based
Transfer learning) that only concerns about decreasing the conditional
distribution discrepancy (i.e., μ = 1 in Eq. (7)).

GRJDA method combines GR based feature selection with the
feature embedding method JDA (Joint Distribution Analysis) [55] that
considers simultaneously the two distributions with the same weight (i.
e., μ = 0.5 in Eq. (7)).

GRWCDT method combines GR based feature selection with the
Weighted CDT based feature embedding method that considers the class
imbalanced issue when calculating the conditional distribution
discrepancy for CDT.

GRWJDA method combines GR based feature selection with
Weighted JDA based feature embedding method that considers the class
imbalanced issue when calculating the conditional distribution
discrepancy for JDA.

Note that, the weighted TCA method has the same results as TCA
because the weighting scheme works only in the calculation process of
the conditional distribution discrepancy while TCA method only in-
volves in calculating marginal distribution discrepancy.

Results: Fig. 7 shows the radar chart of the 6 average indicator
values for our proposed FSE framework and the 5 downgraded methods.
From the figure, we have the following findings:

First, from Fig. 7(h), we find that our FSE framework achieves the
best average values on all indicators across 42 cross project pairs
compared with the 5 downgraded methods. More specifically, compared
with the best average indicator values among the 5 downgraded
methods, our FSE framework achieves the average improvements of
4.6%, 1.6%, 2.4%, 2.3%, 10.1%, and 1.2% in terms of F(InTrace), F
(OutTrace), g-mean, Balance, MCC, and AUC, respectively.

Second, from Fig. 7(a) to (g), the results show that 5 average indi-
cator values except in terms of AUC by our FSE framework are better
than that by the 5 downgraded methods on all projects; from Fig. 7(e)–
(g), the results show that average AUC value by our FSE framework is
only a bit lower than that by one downgraded method on project
JSqlParser, Mango, and Ormlite.

Third, Fig. 8 visualizes the corresponding statistic test results for the
6 methods in terms of the 6 indicators. The p-values show that there exist
statistically significant differences among the 6 methods in terms of all

indicators. The CD diagrams show that our FSE framework belongs to
the top ranking group in terms of all indicators and achieves the best
average ranking on all indicators. Our FSE framework has significant
performance differences compared with all downgraded methods in
terms of F(InTrace), g-mean, Balance, and MCC, whereas has no sig-
nificant differences compared with 1 and 2 downgraded methods in
terms of F(OutTrace) and AUC, respectively.

Analysis: Overall, the performance values of our FSE framework are
better than that of GRWJDA, GRWCDT and GRTCA methods. This in-
dicates that considering two distribution discrepancies and their
different importance degrees on distinct cross project pairs is effective to
achieve better ICFR performance. In other words, the similarity degrees
indeed vary towards different cross project pairs and the two probability
distributions of the cross project data should be treated differently. From
the point of the average ranking in the CD diagrams, GRWJDA and
GRWCDT methods perform better than GRJDA and GRCDT methods,
respectively. This indicates that the weighting scheme is necessary to
improve the cross project ICFR performance. In addition, GRWJDA and
GRJDA method perform better than GRWCDT and GRCDT methods
respectively, and GRWCDT and GRCDT methods perform better than
GRTCA method. This indicates that the method considering two distri-
bution discrepancies with equal weights is more effective than the one
considering the conditional distribution discrepancy, and the method
considering conditional distribution discrepancy is better than the one
considering the marginal distribution discrepancy.

Answer: Considering both marginal and conditional distribution
discrepancies with distinct weights is more effective to improve the cross
project ICFR performance than the methods with equal weights or only
considering one type of distribution discrepancy.

5.4. RQ4: Is our proposed FSE framework superior to the other cross
project models?

Motivation: To the best of our knowledge, this is the first work to
study the cross project ICFR task. Thus, we could not find the baseline
methods tailored for ICFR to evaluate the effectiveness of our cross
project ICFR framework. In this work, we select some cross project
models for other learning tasks as our baseline methods.

Fig. 8. Statistic test for FSE framework and 5 downgraded methods in terms of 6 indicators.

Z. Xu et al.

Information and Software Technology 131 (2021) 106452

14

Fig. 9. The radar chart of average indicator values for FSE framework and 4 instance filtering based models on each project and all projects.

Z. Xu et al.

Information and Software Technology 131 (2021) 106452

15

Fig. 10. The radar chart of average indicator values for FSE framework, 4 transfer learning based models, and one feature selection based model on each project and
all projects.

Z. Xu et al.

Information and Software Technology 131 (2021) 106452

16

Fig. 11. The radar chart of average indicator values for FSE framework and 6 classifier combination based models on each project and all projects.

Z. Xu et al.

Information and Software Technology 131 (2021) 106452

17

Method: We choose total 15 cross project models that are originally
designed for software fault prediction task as our baseline methods,
including 4 instance filtering based models (i.e., NN-Filter [28],
Peter-Filter [29], Yu-Filter [30], and HISNN [65]), 4 transfer learning
based models (i.e., TCA+ [15], TNB [32], IFS_5, and IFS_16 [66]), one
feature selection based model (i.e., FeSCH[67]), and 6 classifier com-
bination based models (i.e., Bagging_J48 [36], Max_Voting [36], Ave_-
Voting [36], Diversity [37], CODEP [34], and ASCI [35]).

Results: Fig. 9 shows the radar chart of the 6 average indicator
values for our FSE framework and 4 instance filtering based models.
Fig. 10 shows the radar chart of the 6 average indicator values for our
FSE framework, 4 transfer learning based models, and one feature se-
lection based model. Fig. 11 shows the radar chart of the 6 average in-
dicator values for our FSE framework and 6 classifier combination based
models. From these figures, we have the following observations:

First, from Subfigure 9(h), we see that our FSE framework achieves
the best average values on all indicators across 42 cross project pairs
compared with 4 instance filtering based models. From Figs. 10(h) and
11(h), we see that our FSE framework achieves the best average values
on 5 indicators except in terms of F(OutTrace). More specifically,
compared with the best average indicator values among the 15 cross
project models, our FSE framework achieves the average improvements
of 41.4%, 28.1%, 27.4%, 119.4%, and 20.4% in terms of F(InTrace), g-
mean, Balance, MCC, and AUC, respectively.

Second, from Fig. 9(a) to (g), the results show that all average in-
dicator values by our FSE framework are better than the 4 instance

filtering based models on all projects; from Figs. 10(a) to (g), and 11(a)
to (g), the results show that 5 average indicator values except in terms of
F(OutTrace) by our FSE framework are better than the 4 transfer
learning based models, one feature selection based model, and 6 clas-
sifier combination based models on all projects.

Third, Fig. 12 visualizes the corresponding statistic test results for the
16 methods in terms of the 6 indicators. The p-values show that the 16
methods exist statistically significant performance differences in terms
of all indicators. The CD diagrams show that our FSE framework belongs
to the top ranking group in terms of 5 indicators except in terms of F
(OutTrace) and achieves the best average ranking on the 5 indicators. In
addition, our FSE framework has significant performance differences
compared with all 15 cross project models in terms of 5 indicators except
in terms of F(OutTrace), whereas 5 cross project models perform
significantly better than our FSE framework in terms of F(OutTrace).

Analysis: The performance superior of our FSE framework is obvious
compared with the 15 cross project models except in terms of F(Out-
Trace), which indicates that our proposed FSE framework is more suit-
able for cross project ICFR task. In addition, Yu-Filter model achieves the
better overall performance among the 4 instance filtering based models;
TCA+ model achieves the better overall performance among the 4
transfer learning based models; Max_Voting, ASCI, and CODEP models
achieve the better overall performance among the 6 classifier combi-
nation based models; and feature selection FeSCH based model also
achieves better performance. In addition, the average F(OutTrace) value
by the FSE framework is lower than 2 transfer learning based models and

Fig. 12. Statistic test for FSE framework and 15 cross project models.

Z. Xu et al.

Information and Software Technology 131 (2021) 106452

18

4 classifier combination based models. The reason is that our proposed
FSE method uses a weighting strategy to deal with the class imbalance
issue which will lead to that the results tend to be biased towards F
(InTrace) and sacrifice some of the performance of F(OutTrace).

Answer: Our proposed FSE framework outperforms the comparative
models that are designed for other cross project learning task, but there
is still improvement room in terms of F(OutTrace) performance for our
FSE framework since it is not always the best.

6. Threats to validity

6.1. External validity

We conduct experiments on a benchmark dataset that has been
released recently. Since all the employed 7 projects are developed with
Java language, future studies are necessary to investigate whether our
results can be generalized to the projects developed with other lan-
guages. Although the used benchmark dataset is collected via imitating
the crashes caused by the seeded faults using program mutation oper-
ations, previous studies have stated that the faults by mutation can be
used as a replacement for the real-world faults as they share similar
properties due to the fact that mutation satisfies the major principles of
experimental design [68,69]. For the fault analysis task similar to our
work, previous studies have shown that the detection of faults by mu-
tation has a statistically significant correlation with the real-world fault
[70], and the fault localization performance on faults by mutation has
no statistical significance than that on real-world faults [71]. Thus, using
the simulated data by mutation test to study the ICFR problem is an
acceptable choice in the present case and the threat of using the simu-
lative crashes is minor for the generalization ability of our results. In
addition, in this work, we just use a simple feature selection method in
our proposed framework as we just aim to investigate whether the
feature selection process can promote the performance of cross project
ICFR task. Other state-of-the-art feature selection techniques can also be
considered in future studies.

6.2. Internal validity

The internal validity is threatened by the re-implementation of the
baseline methods. Since the source code of most cross project models
used in our experiment comparison is not provided by the authors, we
carefully implement them following their details described in the cor-
responding studies to minimize the potential faults. We make our source
code and benchmark dataset online, which allows further studies to
replicate our experiments and confirm our results.

6.3. Construct validity

As single performance evaluation could potentially threaten the
construct validity, in this work, we employ 6 indicators as performance
measurements, which enables us to have a more comprehensive evalu-
ation on the effectiveness of our method. In addition, we employ an
improved statistic test to analyze the results, which makes our evalua-
tion more convincing.

7. Conclusion

Due to the potential issues induced by the crash, the analysis and
handling of the crash cannot be ignored. Designing method to auto-
matically determine the localization of the crashing fault can assist de-
velopers for manual crash localization. The ICFR method has the
potential to tell us specifically the localization where the crash is
generated if the crash residence is predicted in the stack trace. For
example, if the faulty code of a crash exactly matches the recorded in-
formation of one frame in the stack trace, the ICFR method will predict
that the crashing fault is in the stack trace. In this case, the developers

only need to inspect the limited code lines record in all frames for
finding the faulty code. This will greatly reduce the search space for
crashing faults. Thus, the ICFR method serves as a lightweight method to
assist the fault localization task and help prioritize corresponding ef-
forts. The typical usage scenario of our cross project ICFR model is to
provide an early warning to developers about whether the crashing fault
resides in the stack trace or not once the software crashes even no pre-
vious labeled crash data available. Our model provides this kind of early
warning through the classification model built on the labeled data of
other projects. More specifically, for an ongoing project, historical
software development data may not be available to collect the residence
information of the crashing fault as a training set for the ICFR task on
forthcoming crashes. To resolve the dilemma of label shortage for ICFR
task, we propose a novel two-stage cross project ICRF framework, called
FSE, that consists of feature selection stage and feature embedding stage.
In the first stage, our FSE framework uses a simple GR based feature
ranking method to identify the relevant features and remove the irrel-
evant ones, then, it employs an advanced WBDA based feature embed-
ding method to transform the feature space. WBDA has the advantage of
reducing data distribution discrepancies of two projects and alleviating
the class imbalance issue simultaneously. Using our FSE framework, the
crashing fault of a new project that locates in the stack trace can be
detected in an early stage by transferring the knowledge of the labeled
crash data of other project. Then, only a few lines of code in the stack
trace are needed for carefully inspection to find the root cause of the
crash. This process can facilitate developers to fix the crash, accelerating
the development process and saving debugging cost. The experiments on
7 open-source Java projects show that our proposed FSE framework
achieves better prediction performance for the ICFR task than 25 base-
line methods on 6 indicators overall.

In future, we plan to explore a feasible way to automatically specify
the weights of two distribution differences for WBDA method and
integrate new feature selection methods into our framework.

CRediT authorship contribution statement

Zhou Xu: Writing - review & editing, Methodology, Software, Data
curation. Tao Zhang: Conceptualization, Visualization. Jacky Keung:
Conceptualization, Writing - review & editing. Meng Yan: Supervision.
Xiapu Luo: Supervision. Xiaohong Zhang: Project administration. Ling
Xu: Formal analysis. Yutian Tang: Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This work is supported by the National Key Research and Develop-
ment Project (No. 2018YFB2101200), the National Natural Science
Foundation of China (No. 62002034), China Postdoctoral Science
Foundation (No. 2020M673137, No. 2017M621247), the Natural Sci-
ence Foundation of Chongqing in China (No. cstc2020jcyj-bshX0114),
the Science and Technology Development Fund of Macau (No. 0047/
2020/A1), Faculty Research Grant Projects of MUST (No. FRG-20-008-
FI), Hong Kong Research Grant Council Project (No. 152239/18E), the
General Research Fund of the Research Grant Council of Hong Kong (No.
11208017), the Fundamental Research Funds for the Central Univer-
sities (No. 2020CDJQY-A021, No. 2019CDYGYB014).

References

[1] M. Hamill, K. Goseva-Popstojanova, Common trends in software fault and failure
data, Trans. Softw. Eng. (TSE) 35 (4) (2009) 484–496.

Z. Xu et al.

http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0001
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0001

Information and Software Technology 131 (2021) 106452

19

[2] D. Cotroneo, L. De Simone, P. Liguori, R. Natella, N. Bidokhti, How bad can a bug
get? An empirical analysis of software failures in the OpenStack cloud computing
platform. Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (FSE), ACM, 2019, pp. 200–211.

[3] W.E. Wong, R. Gao, Y. Li, R. Abreu, F. Wotawa, A survey on software fault
localization, Trans. Softw. Eng. (TSE) 42 (8) (2016) 707–740.

[4] T. Zhang, J. Chen, X. Luo, T. Li, Bug reports for desktop software and mobile apps
in GitHub: what’s the difference? IEEE Softw. 36 (1) (2017) 63–71.

[5] Y. Gu, J. Xuan, H. Zhang, L. Zhang, Q. Fan, X. Xie, T. Qian, Does the fault reside in
a stack trace? Assisting crash localization by predicting crashing fault residence,
J. Syst. Softw. (JSS) 148 (2019) 88–104.

[6] L. Song, L.L. Minku, X. Yao, A novel automated approach for software effort
estimation based on data augmentation. Proceedings of the 26th Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (FSE), 2018, pp. 468–479.

[7] J. Wang, Y. Chen, S. Hao, W. Feng, Z. Shen, Balanced distribution adaptation for
transfer learning. Proceedings of the 17th International Conference on Data Mining
(ICDM), 2017, pp. 1129–1134.

[8] M. Bilgic, Combining active learning and dynamic dimensionality reduction.
Proceedings of the 2012 SIAM International Conference on Data Mining, SIAM,
2012, pp. 696–707.

[9] Z. Xu, J. Xuan, J. Liu, X. Cui, MICHAC: Defect prediction via feature selection based
on maximal information coefficient with hierarchical agglomerative clustering.
2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER) vol. 1, IEEE, 2016, pp. 370–381.

[10] S. Shivaji, E.J. Whitehead Jr, R. Akella, S. Kim, Reducing features to improve bug
prediction. 2009 IEEE/ACM International Conference on Automated Software
Engineering (ASE), IEEE, 2009, pp. 600–604.

[11] S. Shivaji, E.J. Whitehead, R. Akella, S. Kim, Reducing features to improve code
change-based bug prediction, IEEE Trans. Softw. Eng. (TSE) 39 (4) (2012)
552–569.

[12] Z. Xu, J. Liu, Z. Yang, G. An, X. Jia, The impact of feature selection on defect
prediction performance: an empirical comparison. Proceedings of the 27th
International Symposium on Software Reliability Engineering (ISSRE), IEEE, 2016,
pp. 309–320.

[13] F. Zhang, I. Keivanloo, Y. Zou, Data transformation in cross-project defect
prediction, Empir. Softw. Eng. (EMSE) 22 (6) (2017) 3186–3218.

[14] C. Liu, D. Yang, X. Xia, M. Yan, X. Zhang, A two-phase transfer learning model for
cross-project defect prediction, Inf. Softw. Technol. (IST) (2018) 125–136.

[15] J. Nam, S.J. Pan, S. Kim, Transfer defect learning. Proceedings of the 35th
International Conference on Software Engineering (ICSE), 2013, pp. 382–391.

[16] Z. Xu, T. Zhang, Y. Zhang, Y. Tang, J. Liu, X. Luo, J. Keung, X. Cui, Identifying
crashing fault residence based on cross project model. Proceedings of the 30th
International Symposium on Software Reliability Engineering (ISSRE), IEEE, 2019.

[17] J. Xuan, X. Xie, M. Monperrus, Crash reproduction via test case mutation: let
existing test cases help. Proceedings of the 10th Joint Meeting on Foundations of
Software Engineering (FSE), 2015, pp. 910–913.

[18] Y. Dang, R. Wu, H. Zhang, D. Zhang, P. Nobel, ReBucket: a method for clustering
duplicate crash reports based on call stack similarity. Proceedings of the 34th
International Conference on Software Engineering (ICSE), 2012, pp. 1084–1093.

[19] T. Dhaliwal, F. Khomh, Y. Zou, Classifying field crash reports for fixing bugs: a case
study of Mozilla Firefox. Proceedings of the 27th International Conference on
Software Maintenance (ICSM), 2011, pp. 333–342.

[20] N. Chen, S. Kim, STAR: Stack trace based automatic crash reproduction via
symbolic execution, Trans. Softw. Eng. (TSE) 41 (2) (2015) 198–220.

[21] M. Nayrolles, A. Hamou-Lhadj, S. Tahar, A. Larsson, A bug reproduction approach
based on directed model checking and crash traces, J. Softw. 29 (3) (2017) e1789.

[22] M. Nayrolles, A. Hamou-Lhadj, S. Tahar, A. Larsson, JCHARMING: A bug
reproduction approach using crash traces and directed model checking.
Proceedings of the 22nd International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2015, pp. 101–110.

[23] M. Soltani, A. Panichella, A. Van Deursen, A guided genetic algorithm for
automated crash reproduction. Proceedings of the 39th International Conference
on Software Engineering, IEEE Press, 2017, pp. 209–220.

[24] R. Wu, H. Zhang, S.-C. Cheung, S. Kim, CrashLocator: locating crashing faults based
on crash stacks. Proceedings of the 23rd International Symposium on Software
Testing and Analysis (ISSTA), 2014, pp. 204–214.

[25] S. Wang, F. Khomh, Y. Zou, Improving bug localization using correlations in crash
reports. Proceedings of the 10th Working Conference on Mining Software
Repositories (MSR), 2013, pp. 247–256.

[26] L. Moreno, J.J. Treadway, A. Marcus, W. Shen, On the use of stack traces to
improve text retrieval-based bug localization. Proceedings of the 30th
International Conference on Software Maintenance and Evolution (ICSME), 2014,
pp. 151–160.

[27] C.-P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, H. Mei, Boosting bug-report-
oriented fault localization with segmentation and stack-trace analysis. Proceedings
of the 30th International Conference on Software Maintenance and Evolution
(ICSME), 2014, pp. 181–190.

[28] B. Turhan, T. Menzies, A.B. Bener, J. Di Stefano, On the relative value of cross-
company and within-company data for defect prediction, Empir. Softw. Eng.
(EMSE) 14 (5) (2009) 540–578.

[29] F. Peters, T. Menzies, A. Marcus, Better cross company defect prediction.
Proceedings of the 10th Working Conference on Mining Software Repositories
(MSR), 2013, pp. 409–418.

[30] X. Yu, J. Zhang, P. Zhou, J. Liu, A data filtering method based on agglomerative
clustering. Proceedings of the 29th International Conference on Software
Engineering and Knowledge Engineering (SEKE), 2017, pp. 392–397.

[31] K. Kawata, S. Amasaki, T. Yokogawa, Improving relevancy filter methods for cross-
project defect prediction. Proceedings of the 3rd International Conference on
Applied Computing and Information Technology/2nd International Conference on
Computational Science and Intelligence, 2015, pp. 2–7.

[32] Y. Ma, G. Luo, X. Zeng, A. Chen, Transfer learning for cross-company software
defect prediction, Inf. Softw. Technol. (IST) 54 (3) (2012) 248–256.

[33] L. Chen, B. Fang, Z. Shang, Y. Tang, Negative samples reduction in cross-company
software defects prediction, Inf. Softw. Technol. (IST) 62 (2015) 67–77.

[34] A. Panichella, R. Oliveto, A. De Lucia, Cross-project defect prediction models:
L’union fait la force. Proceedings of the 21st Software Evolution Week Conference
on Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE),
2014, pp. 164–173.

[35] D. Di Nucci, F. Palomba, A. De Lucia, Evaluating the adaptive selection of
classifiers for cross-project bug prediction. Proceedings of the 6th International
Workshop on Realizing Artificial Intelligence Synergies in Software Engineering,
IEEE, 2018, pp. 48–54.

[36] Y. Zhang, D. Lo, X. Xia, J. Sun, An empirical study of classifier combination for
cross-project defect prediction. Proceedings of the 39th Annual Computer Software
and Applications Conference (COMPSAC) vol. 2, 2015, pp. 264–269.

[37] J. Petrić, D. Bowes, T. Hall, B. Christianson, N. Baddoo, Building an ensemble for
software defect prediction based on diversity selection. Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), 2016, pp. 1–10.

[38] S. Herbold, A. Trautsch, J. Grabowski, A comparative study to benchmark cross-
project defect prediction approaches, IEEE Trans. Softw. Eng. (TSE) 44 (9) (2017)
811–833.

[39] Y. Zhou, Y. Yang, H. Lu, L. Chen, Y. Li, Y. Zhao, J. Qian, B. Xu, How far we have
progressed in the journey? an examination of cross-project defect prediction,
Trans. Softw. Eng.Methodol. (TOSEM) 27 (1) (2018) 1.

[40] E. Kocaguneli, G. Gay, T. Menzies, Y. Yang, J.W. Keung, When to use data from
other projects for effort estimation. Proceedings of the 25th International
Conference on Automated Software Engineering (ASE), 2010, pp. 321–324.

[41] L.L. Minku, X. Yao, How to make best use of cross-company data in software effort
estimation?. Proceedings of the 36th International Conference on Software
Engineering (ICSE), 2014, pp. 446–456.

[42] Y. Ge, M. Chen, C. Liu, F. Chen, S. Huang, H. Wang, Deep metric learning for
software change-proneness prediction. Proceedings of International Conference on
Intelligent Science and Big Data Engineering, 2018, pp. 287–300.

[43] A. Bansal, S. Jajoria, Cross-project change prediction using meta-heuristic
techniques, Int. J. Appl. Metaheuristic Comput. 10 (1) (2019) 43–61.

[44] L. Chao, Y. Dan, X. Xin, Y. Meng, X. Zhang, Cross-project change-proneness
prediction. Proceedings of the 42th Annual Computer Software and Applications
Conference (COMPSAC) vol. 1, 2018, pp. 64–73.

[45] S. Lal, N. Sardana, A. Sureka, Three-level learning for improving cross-project
logging prediction for if-blocks, J. King Saud Univ.-Comput.Inf. Sci. (2017) 1–16.

[46] S. Lal, N. Sardana, A. Sureka, ECLogger: cross-project catch-block logging
prediction using ensemble of classifiers, e-Inf. Softw. Eng. J. 11 (1) (2017).

[47] A. Takanen, J.D. Demott, C. Miller, A. Kettunen, Fuzzing for Software Security
Testing and Quality Assurance, Artech House, 2018.

[48] M. Zhao, P. Liu, Empirical analysis and modeling of black-box mutational fuzzing.
Proceedings of the 8th International Symposium on Engineering Secure Software
and Systems, 2016, pp. 173–189.

[49] H. Shahriar, S. North, E. Mawangi, Testing of memory leak in android applications.
Proceedings of the 15th International IEEE Symposium on High-Assurance Systems
Engineering (HASE), 2014, pp. 176–183.

[50] Z. Michal, American fuzzy lop, 2016, http://lcamtuf.coredump.cx/afl.
[51] M. Pudas, Improving crash uniqueness detection in fuzzy testing: case jyvsectec

(2017).
[52] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, Y. Liu, Hawkeye: towards a desired

directed grey-box fuzzer. Proceedings of the 25th ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2018, pp. 2095–2108.

[53] J. Liang, M. Wang, Y. Chen, Y. Jiang, R. Zhang, Fuzz testing in practice: obstacles
and solutions. Proceedings of the IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), IEEE, 2018, pp. 562–566.

[54] B. Zhang, C. Feng, A. Herrera, V. Chipounov, G. Candea, C. Tang, Discover deeper
bugs with dynamic symbolic execution and coverage-based fuzz testing, IET Softw.
12 (6) (2018) 507–519.

[55] M. Long, J. Wang, G. Ding, J. Sun, P.S. Yu, Transfer feature learning with joint
distribution adaptation. Proceedings of the 14th International Conference on
Computer Vision (ICCV), 2013, pp. 2200–2207.

[56] S.J. Pan, I.W. Tsang, J.T. Kwok, Q. Yang, Domain adaptation via transfer
component analysis, Trans. Neural Netw. (TNN) 22 (2) (2011) 199–210.

[57] Z. Lin, M. Chen, Y. Ma, The augmented lagrange multiplier method for exact
recovery of corrupted low-rank matrices, arXiv:1009.5055 (2010).

[58] Z. Xu, J. Liu, X. Luo, Z. Yang, Y. Zhang, P. Yuan, Y. Tang, T. Zhang, Software defect
prediction based on kernel PCA and weighted extreme learning machine, Inf.
Softw. Technol. (IST) 106 (2019) 182–200.

[59] Z. Xu, S. Li, X. Luo, J. Liu, T. Zhang, Y. Tang, J. Xu, P. Yuan, J. Keung, TSTSS: A
two-stage training subset selection framework for cross version defect prediction,
J. Syst. Softw. (JSS) 154 (2019) 59–78.

[60] Y. Yang, M. Harman, J. Krinke, S. Islam, D. Binkley, Y. Zhou, B. Xu, An empirical
study on dependence clusters for effort-aware fault-proneness prediction. 2016

Z. Xu et al.

http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0015
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0015
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0029
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0029
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0029
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0043
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0043
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0044
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0044
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0044
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0045
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0045
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0046
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0046
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0047
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0047
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0048
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0048
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0048
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0049
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0049
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0049
http://lcamtuf.coredump.cx/afl
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0052
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0052
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0052
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0053
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0053
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0053
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0054
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0054
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0054
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0055
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0055
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0055
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0056
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0056
http://arxiv.org/abs/1009.5055
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0058
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0058
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0058
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0059
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0059
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0059
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0060
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0060

Information and Software Technology 131 (2021) 106452

20

31st IEEE/ACM International Conference on Automated Software Engineering
(ASE), IEEE, 2016, pp. 296–307.

[61] J. Nam, W. Fu, S. Kim, T. Menzies, L. Tan, Heterogeneous defect prediction, IEEE
Trans. Softw. Eng. (TSE) 44 (9) (2017) 874–896.

[62] X. Xia, D. Lo, S.J. Pan, N. Nagappan, X. Wang, HYDRA: Massively compositional
model for cross-project defect prediction, IEEE Trans. Softw. Eng. (TSE) 42 (10)
(2016) 977–998.

[63] X. Jing, F. Wu, X. Dong, F. Qi, B. Xu, Heterogeneous cross-company defect
prediction by unified metric representation and CCA-based transfer learning.
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, 2015, pp. 496–507.

[64] Z. Xu, P. Yuan, T. Zhang, Y. Tang, S. Li, Z. Xia, HDA: Cross-project defect prediction
via heterogeneous domain adaptation with dictionary learning, IEEE Access 6
(2018) 57597–57613.

[65] D. Ryu, J.-I. Jang, J. Baik, A hybrid instance selection using nearest-neighbor for
cross-project defect prediction, J. Comput. Sci. Technol. (JCST) 30 (5) (2015)
969–980.

[66] P. He, B. Li, Y. Ma, Towards cross-project defect prediction with imbalanced
feature sets, arXiv:1411.4228 (2014).

[67] C. Ni, W.-S. Liu, X. Chen, Q. Gu, D.-X. Chen, Q.-G. Huang, A cluster based feature
selection method for cross-project software defect prediction, J. Comput. Sci.
Technol. (JCST) 32 (6) (2017) 1090–1107.

[68] J.H. Andrews, L.C. Briand, Y. Labiche, Is mutation an appropriate tool for testing
experiments. Proceedings of the 27th International Conference on Software
Engineering (ICSE), 2005, pp. 402–411.

[69] A.S. Namin, S. Kakarla, The use of mutation in testing experiments and its
sensitivity to external threats. Proceedings of the 20th International Symposium on
Software Testing and Analysis (ISSTA), 2011, pp. 342–352.

[70] R. Just, D. Jalali, L. Inozemtseva, M.D. Ernst, R. Holmes, G. Fraser, Are mutants a
valid substitute for real faults in software testing. Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering (FSE),
2014, pp. 654–665.

[71] S. Ali, J.H. Andrews, T. Dhandapani, W. Wang, Evaluating the accuracy of fault
localization techniques. Proceedings of the 24th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2009, pp. 76–87.

Z. Xu et al.

http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0060
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0060
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0061
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0061
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0062
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0062
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0062
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0063
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0063
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0063
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0063
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0064
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0064
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0064
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0065
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0065
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0065
http://arxiv.org/abs/1411.4228
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0067
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0067
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0067
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0068
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0068
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0068
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0069
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0069
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0069
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0070
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0070
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0070
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0070
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0071
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0071
http://refhub.elsevier.com/S0950-5849(20)30201-9/sbref0071

	Feature selection and embedding based cross project framework for identifying crashing fault residence
	1 Introduction
	2 Related work
	2.1 Stack trace analysis
	2.1.1 Crash report clustering
	2.1.2 Crash reproduction
	2.1.3 Crash localization

	2.2 Cross project learning tasks
	2.3 Fuzz testing based crash analysis

	3 Method
	3.1 Framework overview
	3.2 Gain ratio (GR) based feature selection method
	3.3 Balanced distribution adaptation (BDA) model
	3.4 Weighted BDA (WBDA) based feature embedding method

	4 Experimental setup
	4.1 Benchmark dataset
	4.1.1 Crash generation
	4.1.2 Independent variable extraction
	4.1.3 Dependent variable labeling

	4.2 Performance indicator
	4.3 Statistic test
	4.4 Classification model
	4.5 Parameter settings

	5 Performance evaluation
	5.1 RQ1: How do different data normalization strategies impact the performance of our proposed FSE framework?
	5.2 RQ2:Are the feature selection process and the weighting scheme in the FSE framework helpful to improve the cross projec ...
	5.3 RQ3:Does FSE perform better than the downgraded methods in terms of WBDA?
	5.4 RQ4: Is our proposed FSE framework superior to the other cross project models?

	6 Threats to validity
	6.1 External validity
	6.2 Internal validity
	6.3 Construct validity

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References

