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A B S T R A C T   

Context: The automatically produced crash reports are able to analyze the root of fault causing the crash 
(crashing fault for short) which is a critical activity for software quality assurance. 

Objective: Correctly predicting the existence of crashing fault residence in stack traces of crash report can 
speed up program debugging process and optimize debugging efforts. Existing work focused on the collected 
label information from bug-fixing logs, and the extracted features of crash instances from stack traces and source 
code for Identification of Crashing Fault Residence (ICFR) of newly-submitted crashes. This work develops a 
novel cross project ICFR framework to address the data scarcity problem by using labeled crash data of other 
project for the ICFR task of the project at hand. This framework removes irrelevant features, reduces distribution 
differences, and eases the class imbalance issue of cross project data since these factors may negatively impact 
the ICFR performance. 

Method: The proposed framework, called FSE, combines Feature Selection and feature Embedding techniques. 
The FSE framework first uses an information gain ratio based feature ranking method to select a relevant feature 
subset for cross project data, and then employs a state-of-the-art Weighted Balanced Distribution Adaptation 
(WBDA) method to map features of cross project data into a common space. WBDA considers both marginal and 
conditional distributions as well as their weights to reduce data distribution discrepancies. Besides, WBDA 
balances the class proportion of each project data to alleviate the class imbalance issue. 

Results: We conduct experiments on 7 projects to evaluate the performance of our FSE framework. The results 
show that FSE outperforms 25 methods under comparison. 

Conclusion: This work proposes a cross project learning framework for ICFR, which uses feature selection and 
embedding to remove irrelevant features and reduce distribution differences, respectively. The results illustrate 
the performance superiority of our FSE framework.   

1. Introduction 

Software plays a non-substitutive role in the current society. Devel-
oping high-quality software without faults has always been the pursuit 
of all software companies. Due to the increasing scale and complexity of 
programs and some uncontrollable human mistakes in the software 
development process, software products may contain faults (or bugs) 
upon release [1,2]. The faults may lead to software crash. Once a crash is 

triggered, the system will automatically generate a crash report (usually 
the stack trace) to record the corresponding status information of the 
program execution at that time. Fixing the fault causing the crash 
(crashing fault for short) is a critical task for software quality assurance. 
To achieve this purpose, developers need to effectively identify the po-
sition of the crashing fault in the source code. This process is called crash 
localization (or fault localization) [3]. 

Generally, crash localization utilizes the information of the stack 
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trace and the source code to find the root cause of the crash for 
debugging [4]. The stack trace is a set of frame objects that consists of a 
runtime exception and a list of the function invocations collected at 
runtime. If the crashing fault resides inside the stack trace, the de-
velopers only need to focus on the source code of the functions recorded 
in the stack trace. When the crashing fault resides outside the stack 
trace, the developers have to check the function invocation graphs, 
spending huge efforts to extensively inspect source code [5]. This will 
seriously hinder the efficiency demand of the crash localization. 

To facilitate the crash localization, Gu et al. [5] proposed an auto-
matic method, called CraTer, to predict whether the crashing fault 
residence is inside the stack trace or not. We call this task Identification 
of Crashing Fault Residence (ICFR). According to their definition, if the 
faulty code exactly matches the record information of one frame in the 
stack trace, it is deemed that the crashing fault resides inside the stack 
trace, otherwise, outside the stack trace. They extracted a set of features 
from the stack trace and the source code to characterize the crashing 
fault. However, their work only focused on ICFR under the 
within-project scenario, where the performance highly relies on the 
precondition that sufficient labeled training crash instances are avail-
able. As the collection process of software project data (especially for the 
label information) is costly and may need a considerable amount of time 
and workload [6], it is not always feasible to obtain abundant labeled 
training data. An alternative solution to this dilemma is resorting the 
advantage of the cross project model which utilizes the labeled data of 
the external project (a.k.a. source project) to serve the task of unlabeled 
data of the project at hand (a.k.a. target project). In this paper, we study 
the ICFR problem in such scenario by proposing a cross project model 
(or framework). 

The typical usage scenario of our cross project ICFR model is to warn 
developers about crashing faults that are likely to reside in the stack 
trace in the absence of labeled crash data. As a result, the predicted 
results can assist developer with the manual crash localization. For 
example, suppose Alice is a developer in a large project team and her 
team is developing a new project (e.g., system A) which has no historical 
development information to collect the labeled crash data. But they have 
collected some labeled crash data from an old system B they developed 
before. One day the system A crashed, and Alice got the crash reports 
which include the stack trace with t frames. 

Without our model, Alice and other related developers have to 
analyze all frames and the sequence of function calls that are recorded in 
the stack trace. As a result, they need to review a great deal of lines of 
codes that are from the functions in the call sequence. This would 
involve in much human labor and increase the debugging efforts. 

With our model, Alice can utilize the labeled crash data from system 
B to predict whether the fault that crashes system A resides in the stack 
trace or not. After extracting the crash features from the stack trace and 
source code of system A, if the identification result shows that the 
crashing fault locates in the stack trace (i.e., the fault code exactly 
matches the recorded information in one frame), then Alice and other 
related developers only need to carefully review the t lines of code in the 
stack trace. As a result, they discover the root cause of the crash and fix 
it. This can save human labor and promote the debugging process. 

The data distribution discrepancy is the major barrier for cross 
project models to achieve satisfactory performance. Transfer learning is 
a commonly-used cross project model which aims to minimize the dis-
tribution discrepancy across different domains (one project represents 
an unique domain). Balanced Distribution Adaptation (BDA) [7] is a 
novel transfer learning method to embed the cross project data into a 
common feature space for reducing the data distribution discrepancies. 
The advantage of BDA is that it not only considers discrepancies of both 
marginal and conditional probability distributions, but also allocates 
different weights to them for effectively adapting to various cross project 
pairs. This is motivated by the fact that, if the data distributions of two 
projects are similar, the importance of the conditional probability dis-
tribution is dominant, whereas if the data distribution of two projects is 

dissimilar, the marginal probability distribution has higher importance 
[7]. Since the studied data are class imbalanced (i.e., there is a large 
difference between the numbers of crash instances in distinct classes), it 
will hinder the learning model to achieve promising performance. In this 
work, we employ the Weighted BDA (WBDA) for feature embedding, 
which supports adjusting the weight of each class during the process of 
distribution adaptation [7]. This weighting strategy is helpful for elim-
inating the negative effect of the class imbalance issue to some extent. 

In addition, the project data may consist of a large number of fea-
tures, which is called the curse of dimensionality. This phenomenon can 
not only slow down the speed of the model training and occupy more 
storage space, but also make the trained model complex and over-fitting 
[8]. Besides, among the initial feature set, there may exist some irrele-
vant features which will deteriorate the performance of the learning 
model if all features are used [9]. In this case, feature selection tech-
niques are used to reduce the feature dimension to solve the above 
problems. More specifically, such techniques select a feature subset, 
which is important to distinguish instances with different class labels, to 
replace the original ones. This process can both reduce feature di-
mensions and retain relevant features. In this work, we use a typical 
feature selection method which ranks the features according to their 
importance degrees based on the information Gain Ratio(GR) values. 
GR based feature ranking method is a variant version of Information 
Gain (IG) based method. These two feature selection methods have been 
successfully used in previous studies of software engineering domain 
[10,11], and can achieve comparative performance among the ranking 
based feature selection family [12]. 

As the sizes of different features vary even in the same project, 
normalization techniques are essentially applied to rescale the cross 
project data into a specific interval before being fed into a machine 
learning model. This data preprocessing procedure is beneficial to the 
following learning performance [13]. Previous study showed that the 
choice of the normalization techniques and the distribution character-
istics of different domains can greatly impact the performance of certain 
learning tasks [14]. To alleviate this issue, Nam et al. [15] proposed a 
heuristic strategy to adaptively determine an appropriate normalization 
technique based on the distribution characteristics of the cross project 
data. However, the impact of normalization techniques on the ICFR 
performance has not been explored yet. In this work, we make the first 
attempt to find a better normalization strategy for the crash data, and 
investigate whether or not the normalization adaption selection in [15] 
also works well on our cross project ICFR model. 

We conduct experiments on a benchmark dataset that consists of 
crash data from 7 open-source software projects, and employ 6 in-
dicators to evaluate the ICFR performance of our proposed cross project 
learning framework FSE. The experimental results show that our FSE 
framework with the most commonly used normalization scheme is suf-
ficient to obtain good performance. By comparing with the best average 
indicator values among 5 variant methods and 5 downgraded methods, 
our FSE framework has small performance improvements on all in-
dicators except in terms of the best average AUC value among 5 variant 
methods. By comparing with the best average indicator values among 15 
cross project models from other domains, our FSE framework achieves 
the average improvements of 41.4%, 28.1%, 27.4%, 119.4%, and 20.4% 
in terms of F-measure for crash instances inside the stack trace, g-mean, 
Balance, MCC, and AUC, respectively. But the average F-measure for 
crash instances outside the stack trace by FSE is lower than 6 methods 
under comparison. 

This paper is an extended version towards our previous study [16] 
which has been published as a conference paper. There are 5 main dif-
ferences among the two papers: (1) We address the class imbalance issue 
in the process of the distribution adaptation which is not considered in 
the conference version. This operation helps to reduce the negative 
impact of the difference between the number of crash instances from two 
categories on the performance of the learning model. (2) Before per-
forming the feature embedding stage, we employ a classic ranking based 
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feature selection method to reduce the dimensionality of the cross 
project data, which is not considered in the conference version. This 
stage reserves the valuable features to mitigate the negative impact of 
the unimportant features. (3) We add an indicator (i.e., AUC) indepen-
dent of the classifier threshold for performance evaluation. (4) We add 
12 methods for comparison to investigate the effectiveness of our pro-
posed cross project ICFR framework. (5) We make more in-depth anal-
ysis towards the impacts of feature dimensions and parameter values on 
the ICFR performance of the proposed framework (available at our on-
line materials1), which are omitted in the conference paper due to the 
page limit. 

In summary, we have the following contributions:  

(1) In this work, we propose a novel cross project framework FSE to 
address the ICFR problem in data scarcity scenario where the 
labeled data are not always available for the project at hand.  

(2) To remove the negative impacts of some useless features on the 
ICFR performance, our proposed FSE framework first uses a 
feature selection technique to select the important features by 
reserving the relevant ones.  

(3) To tackle the distribution discrepancy and class imbalance issue 
of the cross project data, our FSE framework employs a state-of- 
the-art WBDA based transfer learning method for feature 
embedding. WBDA reduces the threat of data distribution 
inconsistency by incorporating both marginal and conditional 
distributions together with adaptive weights, and alleviates the 
class imbalance issue by altering the weight of each class during 
the process of the distribution adaptation.  

(4) We comprehensively evaluate the proposed cross project model 
on 7 open-source projects with 6 indicators. The experimental 
results on 42 cross project pairs show the superiority of our 
devised cross project ICFR framework over 25 baseline methods 
under comparison. 

2. Related work 

2.1. Stack trace analysis 

Once a crash occurs, an exception is thrown out and a crash report 
will be automatically recorded by the crash reporting system. The main 
context of the report is the stack trace of the crash which reports the 
function invocation sequences during execution. The stack trace is 
useful to reproduce the crash scenario and find the root cause of the 
crash [17]. A stack trace can be treated as a set of frame objects. The 
initial frame reports the exception of the crash and each other frame 
represents a function invocation. The most recent frame is usually called 
top frame and the last one is usually called bottom frame [5]. The main 
elements of each frame (except for the initial one) consist of the class 
name, function name, and the code line number, which denotes the 
position of the execution point. Other optional elements include the 
argument information that relates to the function. 

Previous studies analyzed stack traces for different tasks, such as 
crash report clustering, crash reproduction, and crash localization. 

2.1.1. Crash report clustering 
This kind of task aims to identify the duplicate crash reports which 

are caused by the same faults. Dang et al. [18] proposed a crash report 
clustering method, called ReBucket, based on the similarity of the stack 
trace measured by the position dependent model. Dhaliwal et al. [19] 
clustered the crash reports by measuring the similarity of stack traces 
with the Levenshtein distance. 

2.1.2. Crash reproduction 
Reproducing the crash with well-designed test cases helps to fully 

understand its root causes during software debugging. Chen et al. [20] 
proposed the STAR method which used the collected stack traces by 
combining a backward symbolic execution approach and a sequence 
composition technique. Nayrolles et al. [21,22] analyzed the stack traces 
with static program slices and directed model checking for crash 
reproduction. Xuan et al. [17] proposed the MUCRASH method which 
combined stack traces, source code, and existing test cases to generate 
mutated test cases. Soltani et al. [23] proposed a post-failure method, 
called EvoCrash, for automated crash reproducing. This method reduced 
the search space by using stack traces to guide a genetic algorithm. 

2.1.3. Crash localization 
Studies on crash localization (or fault localization) are closely related 

to our work. This kind of task recommends the developers a set of 
candidate functions based on their suspicious scores by analyzing the 
stack traces and source code. Wu et al. [24] proposed the CrashLocator 
method employing 3 static analysis techniques to deduce the failing 
execution stack traces, and a term weighting method to calculate the 
suspicious scores for the functions. Wang et al. [25] proposed 3 crash 
correlation rules to divide the crash types into different groups and a 
new fault localization method based on the divided groups. Moreno 
et al. [26] proposed the Lobster method based on the structural and 
textual similarities. Wong et al. [27] developed a tool, called BRTracer, 
by analyzing the segmentation of the source code and stack traces for 
bug reports based fault localization. 

Different from the above fault localization studies which returned 
the potential faulty functions to the developers, Gu et al. [5] proposed 
the CraTer method to determine whether the location of the faulty code 
is consistent with the recorded information (including the class name, 
function name, and code line number) of one frame in the stack trace. 
From the point of view, the work of Gu et al. can be viewed as a 
fine-grained identification at the code line level rather than the function 
level. Since Gu et al. [5] only considered the ICFR task in the same 
project setting, in this work, we extend their work to cross project setting 
since the labeled crash data are usually scarce in single project case. 

2.2. Cross project learning tasks 

Though there are no studies for cross project ICFR yet, researchers 
have applied cross project models to other software engineering tasks, 
such as defect prediction, effort estimation, change prediction, and 
logging prediction. 

Cross project defect (or fault) prediction utilizes the fault data of the 
external project (a.k.a. source project) to predict whether the software 
entities (a function, class, or file) in the target project are fault-prone. 
Prior studies have proposed different cross project models for this 
task, such as instance filtering based methods [28–31], transfer learning 
based methods[14,15,32,33], and classifier combination based methods 
[34–37]. The studies of cross project fault prediction compose the most 
active research branch in software engineering field [38,39]. 

Cross project effort estimation [40,41] estimates the efforts required 
to develop a target project with the aid of the labeled data from other 
projects. Cross project change prediction [42–44] determines whether a 
class in a target project is likely to change in its next release with the help 
of the labeled data from other projects. Cross project logging prediction 
[45,46] employs the labeled data from other projects to automatically 
predict the code constructs that need to be logged in the target project. 

Different from the above studies, in this work, we make the first 
attempt to develop a transfer learning based cross project model for the 
ICFR task. 

2.3. Fuzz testing based crash analysis 

The crash instance data in our used benchmark dataset are generated 1 https://github.com/sepine/IST-2020 
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by one single seeded fault using mutation testing. The similar work is the 
fuzz testing based crash analysis study. Fuzz testing is also a software 
testing technique that uses random data (called fuzz) as program inputs 
in attempt to make the software system behave unexpectedly and crash 
for revealing reliability issues [47]. Zhao et al. [48] used black-box fuzz 
testing on multiple Linux programs to collect data which consisted of 
4000 crashes. Shahriar et al. [49] found that fuzz testing can effectively 
detect the crashes causing by the memory leak in Android applications. 
Zalewski [50] pointed out that it was difficult to evaluate the exploit-
ability using some crashes generated by fuzz testing without many ef-
forts in debugging and code analysis. Pudas [51] investigated how to 
improve the performance of uniqueness detection for the crashes in fuzz 
testing. Chen et al. [52] proposed a method called HAWKEYE based on 
greybox fuzz testing to reveal crashes. The experimental results showed 
that their method was 7 times faster than an advance method at 
exposing certain crashes. Liang et al. [53] conducted an empirical study 
to investigate the effectiveness of fuzz testing on real industry projects 
from Huawei company. The experimental results showed that they 
revealed several unreported faults leading to the system crash. Zhang 
et al. [54] proposed a hybrid method combining dynamic symbolic 
execution and coverage-based fuzz testing for bugs discovery. The 
experimental results on real-world programs showed that their method 
can expose several previously unknown crashes. 

3. Method 

3.1. Framework overview 

Fig. 1 provides an overview diagram of our proposed FSE framework 
in this study. More specifically, we first employ normalization technique 
to preprocess the original data of two projects. Then, we employ GR 
based feature ranking method to select an important feature subset from 
the source project data since their labels are known in advance, and keep 
the same feature in the target project data to ensure the data across 
projects with the same feature set. Next, we utilize the WBDA based 
transfer learning technique to map the data of the two projects into a 
common embedding feature space in which the distribution discrep-
ancies of the across project data are reduced. The mapped labeled crash 
instances in the source project are used to train a classification model to 
predict the residence labels of the mapped unlabeled crash instances in 
the target project. 

Below, we introduce the details of the used GR based feature selec-
tion method and WBDA based feature embedding method, respectively. 

3.2. Gain ratio (GR) based feature selection method 

For the original source and target project data, we assume that the 
source project has plenty of labeled crash instances while the target 
project only has unlabeled crash instances. We define the original source 
project data as 𝒟′

S with d′

s crash instances and K (K = 2 in our work) 
classes Ck (k = 1, 2, …, K) in which |Ck| denotes the number of crash 
instances belonging to class Ck, that is 

∑K
k=1|Ck| = d′

s. For a given feature 

A with n different values, the original source project data 𝒟′

S is divided 
into n subset 𝒟′

S1
,𝒟

′

S2
,…,𝒟

′

Sn 
according to the values of feature A in 

which |𝒟′

Si
| denotes the number of crash instances in 𝒟′

Si
, that is 

∑n
i=1
⃒
⃒𝒟

′

Si

⃒
⃒ = d′

s. In addition, let 𝒟′

Sik 
denote the set which consists of the 

crash instances in subset 𝒟′

Si 
with class Ck in which |𝒟S′

i
| denotes the 

number of crash instances in 𝒟S′

i
. In order to calculate the GR value of 

the given feature A, we need to calculate two entropy values first as 
follows: 

The entropy H(𝒟
′

S) of the original source project data 𝒟′

S is defined as 

H
(
𝒟

′

S

)
= −

∑K

k=1

|Ck|

|𝒟
′

S|
log2

|Ck|

|𝒟
′

S|
(1) 

Entropy H(𝒟
′

S) represents a measure of uncertainty for 𝒟′

S. 
The conditional entropy H(𝒟

′

S
⃒
⃒A) of the original source project data 

𝒟
′

S given feature A is defined as 

H
(
𝒟

′

S

⃒
⃒A
)
=
∑n

i=1

|𝒟
′

Si
|

|𝒟
′

S|
H
(
𝒟

′

Si

)
= −

∑n

i=1

|𝒟
′

Si
|

|𝒟
′

S|

∑K

k=1

|𝒟
′

Sik
|

|𝒟
′

Si
|
log2

|𝒟
′

Sik
|

|𝒟
′

Si
|

(2) 

The conditional entropy H(𝒟
′

S

⃒
⃒A) represents the uncertainty of 𝒟′

S 

given the condition that feature A is known. 
Then the IG value of feature A is calculated as 

IG
(
𝒟

′

S,A
)
= H

(
𝒟

′

S

)
− H

(
𝒟

′

S

⃒
⃒A
)

(3) 

The IG value IG(𝒟′

S,A) represents the reduction degree of uncer-
tainty for the information of 𝒟′

S when knowing the information of 
feature A, i.e., the amount of information the feature can provide about 
whether the crash instance is inside the stack trace (short for InTrance) 
or outside the stack trace (short for OutTrace). However, the main 
drawback of IG based feature selection method is that it tends to select 
the features with a large range of values [11,12]. The alternative solu-
tion is to replace IG with GR which overcomes the bias by normalizing 
the feature’s contribution to distinguish the data [11]. 

Let define HA(𝒟
′

S) as the entropy of 𝒟′

S in terms of feature A as 
follows 

HA
(
𝒟

′

S

)
= −

∑n

i=1

|𝒟
′

Si
|

|𝒟
′

S|
log2

|𝒟
′

Si
|

|𝒟
′

S|
(4) 

Then the GR value of feature A is calculated as 

GR
(
𝒟

′

S,A
)
=

IG
(
𝒟

′

S,A
)

HA
(
𝒟

′

S

) (5) 

For each feature in the original source project data, we can calculate 
its corresponding GR value. GR based feature selection method ranks 
these methods according to their GR values and selects a specific number 
or percentage features as the final subset. Let assume that ds is the 
number of selected features from the original source project data and 
define the final simplified source project data as 𝒟S. In order to ensure 
that the features of the cross project data are one-to-one correspondence, 

Fig. 1. An overview diagram of our proposed FSE framework.  
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we also keep the same ds features for the original target project data and 
define the final simplified target project data as 𝒟T. 

3.3. Balanced distribution adaptation (BDA) model 

After the GR based feature selection process in the first step, we 
obtain the simplified source project and target project data with ds 
features as 𝒟S and 𝒟T, respectively. Specifically, the source project 𝒟S 

contains a feature matrix XS = xi
s|

ns
i=1 ∈ Rns×ds and a label matrix YS =

yi
s|

ns
i=1 ∈ Rns×1, where xi

s represents the ith crash instance in XS, yi
s rep-

resents the corresponding label, ns represent the number of crash in-
stances. yi

s is ‘InTrace’ if xi
s exactly matches one of the frame records in 

the stack trace, otherwise ‘OutTrace’. Similarly, the target project 𝒟T 

contains a feature matrix XT = xi
t |

nt
i=1 ∈ Rnt×ds , where xi

t represents the ith 
crash instance in XT, nt represent the number of crash instances, 
respectively. The corresponding label vector YT = yi

t |
nt
i=1 is what we are 

seeking for. In addition, let assume that 𝒳 s (𝒳 t) and 𝒴s (𝒴t) represent the 
feature space and label space of the source (target) project, respectively. 

In the context of cross project ICFR, 𝒳 s = 𝒳 t and 𝒴s = 𝒴t , which 
means that the two projects have the same feature space and label space 
respectively, but ℘(xs) ∕= ℘(xt) and ℘(ys

⃒
⃒xs) ∕= ℘(yt

⃒
⃒xt), which means 

that the two projects have different marginal distribution and condi-
tional distribution, respectively. The goal of BDA [7] is to learn a com-
mon feature space in which the two distribution discrepancies, i.e., 
d(℘(xs),℘(xt)) and d(℘(ys

⃒
⃒xs),℘(yt

⃒
⃒xt)), are minimal. 

The simplest way to reduce the difference between 𝒟S and 𝒟T is to 
optimize the two distribution discrepancies with the same weight as 
follows: 

d(𝒟S,𝒟T) = d(℘(xs),℘(xt)) + d(℘(ys|xs),℘(yt|xt)). (6) 

For the data of the two projects, the margin distribution is more 
important when they are dissimilar, otherwise the conditional distri-
bution should be emphasized [7]. Thus just combining the two terms 
with the same weight in Eq. (6) could not well adapt to all cross project 
data. BDA alleviates this issue by assigning adaptive weights to the two 
terms for different cross project pairs. It is formulated as follows: 

d(𝒟S,𝒟T) = (1 − μ)d(℘(xs),℘(xt)) + μd(℘(ys|xs),℘(yt|xt)), (7)  

where μ ∈ [0, 1] measures the importance of the two terms. μ > 0.5 (μ <
0.5) means that the conditional (marginal) distribution is more 
important. 

However, the label set of the target project YT is unknown before-
hand, thus the term ℘(yt

⃒
⃒xt) could not be calculated. Long et al. [55] 

suggested to use class conditional distribution ℘(xt
⃒
⃒yt) to replace con-

ditional distribution as long as that data samples are sufficient. The 
alternative term can be calculated by training a classifier on 𝒟S and 
predicting on 𝒟T. It is worth noting that, since the initial outputs may be 
not reliable, these output labels are iteratively refined until they are 
stabilized. 

By using the Maximum Mean Discrepancy (MMD) method [56] to 
calculate the two terms, i.e., d(℘(xs),℘(xt)) and d(℘(xs

⃒
⃒ys),℘(xt

⃒
⃒yt)),

Eq. (7) is rewritten as 

d(𝒟S,𝒟T) = (1 − μ)|| 1
ns

∑ns

i=1
xi

s −
1
nt

∑nt

j=1
xj

t||
2
ℋ

+μ
∑C

c=1
||

1
nc

s

∑

xi
s∈𝒟

(c)
S

xi
s −

1
nc

t

∑

xj
t∈𝒟

(c)
T

xj
t||

2
ℋ,

(8)  

where ℋ represents the reproducing kernel Hilbert space, C represent 
the number of distinct labels, 𝒟(c)

S (𝒟(c)
T ) represents the crash instances 

with label c in source (target) project, nc
s (nc

t ) represents the number of 
crash instances in 𝒟(c)

S (𝒟(c)
T ). 

By using the matrix tricks and regularization, Eq. (8) is converted to 

min
A

tr
(

A⊤X

(

(1 − μ)M0 + μ
∑C

c=1
Mc

)

X⊤A

)

+ λ‖ A ‖
2
F

s.t. A⊤XHX⊤A = I, 0 ≤ μ ≤ 1,

(9)  

where the first term adapts the weights of the two distributions, and the 
second term is a regularization term. The two constraint terms are used 
to maintain the inner structure properties of the original data for the 
transformed one A⊤X and control the μ value, respectively. In addition, 
X represents the input feature matrix combining XS and XT, A represents 
a transformation matrix, I represents identity matrix with size 
(ns +nt) × (ns +nt), H = I − (1/n)1 represents a centering matrix, and 
‖ A ‖

2
F represents the Frobenius norm of A. M0 and Mc represent MMD 

matrices as follows: 

(M0)ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n2

s
, xi, xj ∈ 𝒟S

1
n2

t
, xi, xj ∈ 𝒟T

−
1

nsnt
, otherwise,

(10)  

(Mc)ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
nc

s
2, xi, xj ∈ 𝒟

(c)
S

1
nc

t
2, xi, xj ∈ 𝒟

(c)
T

−
1

nc
snc

t
,

⎧
⎨

⎩

xi ∈ 𝒟
(c)
S , xj ∈ 𝒟

(c)
T

xi ∈ 𝒟
(c)
T , xj ∈ 𝒟

(c)
S

0, otherwise.

(11) 

By using the Lagrange multiplier method [57], the Lagrange function 
of Eq. (9) is 

L = tr
(

A⊤X

(

(1 − μ)M0 + μ
∑C

c=1
Mc

)

X⊤A

)

+λ ‖ A ‖
2
F + tr((I − A⊤XHX⊤A)Φ),

(12)  

where Φ = (ϕ1,…,ϕd) represents the Lagrange multiplier. By setting the 
first-order derivative of L towards A to 0, Eq. (12) is converted to a 
generalized eigen-decomposition problem as 
(

X

(

(1 − μ)M0 + μ
∑C

c=1
Mc

)

X⊤ + λI

)

A = XHX⊤AΦ. (13) 

The result of Eq. (13) is the transformation matrix A, which is used to 
convert the original data of the two projects. 

We provide an example of simulated data to illustrate the feature 
transformation effect of the BDA method. For the source project, we 
generate 130 crash instances outside the stack trace (red circles) from a 
mixture of Gaussian with means (2, 3.5), and 50 crash instances inside 
the stack trace (blue circles) from a mixture of Gaussian with means (6.5, 
2.5), as showed in Fig. 2(a). To reflect the distribution differences across 
projects, for the target project, we generate 120 crash instances outside 
the stack trace (red pentagrams) from a mixture of Gaussian with means 
(4, 5.5), and 60 crash instances inside the stack trace (blue pentagrams) 
from a mixture of Gaussian with means (6, 1), as showed in Fig. 2(b). 
Fig. 2(c) depicts the mapped data of two projects by the BDA method 
with the equal weight in the common feature space. From Fig. 2, we 
observe that the new data of the two projects mainly locate in two re-
gions marked with black rectangles in the embedding feature space, 
which reduces the data distribution discrepancies between the two 
projects. 
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3.4. Weighted BDA (WBDA) based feature embedding method 

Although the BDA method considers the different importance de-
grees of the marginal and conditional distribution discrepancies to 
reduce the distribution inconsistence across the project data, it supposes 
that the class probability in each project data is similar when using the 
class conditional distribution ℘(xt

⃒
⃒yt) to replace the conditional distri-

bution ℘(yt
⃒
⃒xt). It means that the BDA method does not take the class 

imbalance issue into consideration. To address this issue, in this work, 
we employ the weighted version of BDA, i.e., WBDA [7], to perform the 
feature transformation by utilizing a more accuracy approximation to 
calculate the conditional distribution difference as follows: 

d(℘(xs|ys),℘(xt|yt)) = ||
P(ys)

P(xs)
P(xs|ys) −

P(yt)

P(xt)
P(xt|yt)||

2
ℋ

= ||αsP(xs|ys) − αtP(xt|yt)||
2
ℋ

(14)  

where αs and αt are approximated to the class prior of the source and 
target project data, respectively. From this point of view, WBDA con-
siders the class proportion differences of the cross project data. 

To calculate this conditional difference, a weight matrix Wc for each 
class is constructed as follows: 

(Wc)ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
(
y(c)s

)

nc
s

2 , xi, xj ∈ 𝒟
(c)
S

P
(
y(c)t

)

nc
t

2 , xi, xj ∈ 𝒟
(c)
T

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

P
(
y(c)s

)
P
(
y(c)t

)√

nc
snc

t
,

⎧
⎨

⎩

xi ∈ 𝒟
(c)
S , xj ∈ 𝒟

(c)
T

xi ∈ 𝒟
(c)
T , xj ∈ 𝒟

(c)
S

0, otherwise.

(15)  

where P(y(c)s ) and P(y(c)t ) are the class prior on class c in the source and 
target project data, respectively. 

Then, using the matrix tricks and regularization with Eqs. (15), (9) is 
converted to the optimization problem of WBDA as follows: 

min
A

tr
(

A⊤X

(

(1 − μ)M0 + μ
∑C

c=1
Wc

)

X⊤A

)

+ λ‖ A ‖
2
F

s.t. A⊤XHX⊤A = I, 0 ≤ μ ≤ 1,

(16) 

The solving process of the optimal transformation matrix A is the 
same as the one of the BDA method as described in Section 3.3. The only 
difference between Eq. (9) for BDA and Eq. (16) for WBDA is that the 
track Mc is replaced by Wc. In other words, in addition to considering the 
number of crash instances in each class as Mc does, Wc also takes the 

Fig. 2. An example of the feature transformation effect by BDA.  
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class prior of each class into account. 

4. Experimental setup 

4.1. Benchmark dataset 

In this work, we employ a publicly available benchmark dataset 
provided by Gu et al. [5] to evaluate the performance of our proposed 
cross project FSE framework for ICFR task. The benchmark dataset is 
collected from 7 open source Java projects: Apache Commons Codec, 
Apache Commons Collections, Apache Commons IO, Jsoup, 
JSqlParser, Mango, and Ormlite-Core. Table 1 describes the basic 
statistics of the 7 projects, including the version number, the total 
number of generated mutants (# Mutants), the number of remained 
crashes after removing useless mutants (# Crashes), the number of crash 
instances inside (# InTrace) and outside (# OutTrace) the stack trace, 
and the ratio of #OutTrace

#InTrace . The data collection consists of 3 main steps: 
crash generation, feature (independent variable) extraction, and 
crashing fault residence (dependent variable) labeling. We briefly 
describe each step as follows: 

4.1.1. Crash generation 
(1) Fault Generation via Program Mutation 
Since it is non-trivial to reproduce the real-world crashes, Gu et al. 

[5] simulated the crashes by seeding faults into the real-world projects. 
More specifically, they applied a state-of-the-art mutation testing tool, 
the PIT system2, to generate single-point mutations. In other words, a 
small change is made to the source code to form a program mutant in 
each round. These mutations are derived from 7 default mutation op-
erators3 in the PIT system, including conditionals boundary mutator, 
increments mutator, invert negatives mutator, math mutator, negate 
conditionals mutator, return values mutator, and void method call 
mutator. 

(2) Removing Mutants Causing No Crash 
After obtaining these program mutants, 4 rules were employed to 

remove some program mutants which do not crash the program. The 
rules include removing the mutants that pass all test cases, the mutants 
whose stack traces only contain AssertionFailedError, ComparisonFailure, 
or test cases. 

4.1.2. Independent variable extraction 
In order to characterize each crash instance (i.e., crashing fault), Gu 

et al. [5] extracted 89 features from the stack traces and source code as 
the independent variables in tota. The brief descriptions of these features 
are available at our online materials. 

4.1.3. Dependent variable labeling 
The 3 main terms recorded in the frame (including class name, 

function name and line number) are used to label each crash instance. 
More specifically, if the information of the faulty code exactly matches 
the 3 terms in one frame, then the residence of the crash instance is 
deemed as inside the stack trace and labeled as ‘InTrace’, otherwise 
labeled as ‘OutTrace’. The process of label collection is done automati-
cally by checking the bug-fixing logs which are generated when the 
original authors in [5] wrote programs to produce the mutants. 

4.2. Performance indicator 

As the goal of ICFR is to determine the label of a crash instance as 
‘InTrace’ or ‘OutTrace’, it is a typical binary classification problem. Note 
that, in this work, we cannot simply say which type of crash instance is 
the positive one, we calculate indicators towards the two kinds of in-
stances. There are 4 prediction outputs for the ICFR task:  

• a crash with labeled t (t is ‘InTrace’ or ‘OutTrace’) is predicted as t,  
• a crash with labeled t is predicted as t′ (t′ is the opposite of t),  
• a crash with labeled t′ is predicted as t′,  
• a crash with labeled t′ is predicted as t 

The numbers of crash instances that with the above 4 outputs are 
called True Positive (TP(t)), False Negative (FN(t)), True Negative (TN 
(t)), and False Positive (FP(t)), respectively. First, we give the definitions 
of 3 basic terms, i.e., Precision, Probability of Detection (PD or Recall), 
and Probability of False alarm (PF) as follows: 

Precision measures the ratio of crashes with label t that are correctly 
predicted to the total number of crashed that are predicted as t, i.e., 
Precision(t) =

TP(t)
TP(t)+FP(t). PD or Recall measures the ratio of the crashes 

with label t that are correctly predicted to the total number of crashes 
with label t, i.e., PD(t) = Recall(t) =

TP(t)
TP(t)+FN(t). PF measures the ratio of 

the crash with label t that are incorrectly predicted to the total number 
of crash with label t, i.e., PF(t) =

FP(t)
FP(t)+TN(t). 

F-measure (F) is the harmonic mean of Precision and Recall as 

F(t) =
2 × Precision(t) × Recall(t)

Precision(t) + Recall(t)
(17)  

g-mean is the geometric mean of PD and (1-PF) as 

g-mean(t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
PD(t) × (1 − PF(t))

√
(18) 

Balance is a trade-off between Recall and PF as 

Balance(t) = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(0 − PF(t))2
+ (1 − Recall(t))2

2

√

(19) 

MCC (Matthews correlation coefficient) is a special case of Pearson 
correlation coefficient considering TP, TN, FP, and FN, which is defined 
as 

MCC(t)=
TP(t)×TN(t) − FP(t)×FN(t)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP(t)+FP(t))(TP(t)+FN(t))(TN(t)+FP(t))(TN(t)+FN(t))

√

(20) 

AUC is the Area Under the ROC Curve whose horizontal axis repre-
sents PF and vertical axis represents PD. The calculation of this indicator 
is independent of the specific classifier threshold. 

In this study, we employ F, g-mean, Balance, MCC and AUC as per-
formance indicators. In ICFR scenario, for each indicator, we need to 
calculate two performance values which correspond to the crash with 
different labels (‘InTrace’ and ‘OutTrace’). It is worth noting that, except 
for F, the other 4 indicator values on two labels are the same. This means 
that the 4 indicators can be used to comprehensively quantify the overall 
ability of the method to discriminate the two labels. Thus, we total have 
6 indicators in which the two kinds of the F indicator are called F 
(InTrace) and F(OutTrace). 

Table 1 
Statistic information of the 7 projects.  

Project Version # 
Mutants 

# 
Crashes 

# 
InTrace 

# 
OutTrace 

Ratio 

Codec 1.1 2901 610 177 433 2.45 
Collections 4.1 6650 1350 273 1077 3.95 
IO 2.5 3337 686 149 537 3.60 
Jsoup 1.11.1 2657 601 120 481 4.01 
JSqlParser 0.9.7 8757 647 61 586 9.61 
Mango 1.5.4 5149 733 53 680 12.83 
*Ormlite- 

Core 
5.1 3563 1303 326 977 3.00  

2 http://pitest.org/  
3 http://pitest.org/quickstart/mutators/#INCREMENTS 
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4.3. Statistic test 

To statistically analyze the significant differences among our FSE 
framework and the baseline methods, we employ Friedman test (sig-
nificant level at 95%) with an improved Nemenyi [38] to divide the 
methods into completely nonoverlapping groups. The Friedman test is a 
non-parametric test for testing the differences between several related 
samples. In our work, there exists the one-to-one correspondence be-
tween each set of results of multiple methods since they are the results 
on the same cross project pair. Thus, the multiple sets of experimental 
results of the analyzed methods are related. The improved Nemenyi test 
is employed in previous studies [58,59] of the software engineering 
domain. 

4.4. Classification model 

After obtaining the mapped data of the two projects with the optimal 
transformation matrix, we need to train a classifier with the mapped 
labeled source project data. As the aim of this work is not to focus on the 
impacts of different classifiers on the cross project ICFR performance, 
thus, in this work, we just use logistic regression as the basic classifi-
cation model. It is a classic and simple classifier which solves the rela-
tionship between the features and labels of the crash instances, and is 
proved to be effective in other software engineering task [60–62]. 

4.5. Parameter settings 

In the feature selection phase of the FSE framework, we need to 
select a certain number of relevant features from the data of source and 
target projects. Without loss of generality, in this work, we just remain 
half of features with higher GR values. For WBDA method in the feature 
embedding phase of the FSE framework, the factor μ in Eq. (16) is a 
project-specific parameter and relates to the similarity degree of the data 
distributions across projects. However, no effective methods are avail-
able to specify it on distinct cross project pairs [7]. In this work, we set 
11 μ values, from 0 to 1 with a step of 0.1 and search its optimum option. 
For the regularization parameter λ in Eq. (16), we set it as 0.1 without 
any guidance of experience. In addition, after the feature embedding 
phase, we need to set the reserved feature dimension to obtain the final 
mapped data which are the inputs of the classification model. In this 
work, we set the dimension as 15% of the original feature number as 
suggested in previous studies [10,11]. 

The experimental scripts, the benchmark dataset, and the discussion 
of the impacts of different parameter λ values and feature dimension on 
the performance of proposed FSE framework are available in our online 
materials. 

5. Performance evaluation 

5.1. RQ1: How do different data normalization strategies impact the 
performance of our proposed FSE framework? 

Motivation: Nam et al. [15] have stated that different data 
normalization methods can impact the performance of the cross project 
model for the defect prediction task. They proposed an adaption selec-
tion strategy to select the appropriate normalization technique to 
transform the data before performing the cross project model. The 
behind rationale is based on the similarity of the data characteristics 
(such as the mean, median, min and max values) between the source and 
target project data. This question is designed to investigate whether or 
not our cross project ICFR framework is sensitive to different data 
normalization methods and to find the most suitable one for our data 
preprocessing. 

Method: We employ total 6 normalization techniques in [15] to 
answer this question. These techniques are derived from 2 widely-used 
data normalization techniques, i.e., min-max normalization and the 

z-score normalization. For each feature vector x = {x1, x2,…, xm} in the 
given data, in terms of min-max normalization, xi =

xi − min(x)
max(x)− min(x), where 

min (x) and max (x) represent the minimum and maximum values of the 
feature vector x respectively, xi and xi are the original and normalized 
ith valued of the feature vector x respectively. In terms of z-score 
normalization, xi =

xi − mean(x)
std(x) , where mean(x) and std(x) represent the 

mean value and standard deviation of the feature vector x, respectively. 
First, we describe the 6 normalization techniques as follows: 

N0: Do not use any normalization on the original data. 
N1: Applying min-max normalization to each project. 
N2: Applying z-score normalization to each project. 
N3: Applying z-score normalization to each project with the mean 

value and standard deviation from the source project. 
N4: Applying z-score normalization to each project with the mean 

value and standard deviation from the target project. 
NAS:Normalization Adaption Selection utilizes a heuristic strategy 

to select the optimum normalization option from the above 5 tech-
niques. This heuristic strategy is based on the elements of a data char-
acteristic vector which measures the similarity of the data characteristic 
between two projects. 

Results: Fig. 3 shows the radar chart of the 6 average indicator 
values across all cross project pairs for our proposed FSE framework 
with 6 data normalization schemes. In the radar chart, each axis rep-
resents an indicator and the location of the point on the axis denotes the 
average value of the indicator. The further away the point is from the 
center, the greater the average indicator value is. The 6 average indi-
cator values (i.e., 6 points) of a method are connected into a polygon 
marking with a specific color. The detailed experimental results are also 
available in our online materials. From Fig. 3, we observe that our 
proposed FSE framework with normalization schemes N0 and N1 ach-
ieves the worst average performance in terms of F(InTrace), g-mean, 
Balance, MCC and AUC, but gets the best average F(OutTrace). It means 
that FSE framework with these two normalization schemes identifies the 
residences of nearly all the crash instances as label ‘OutTrace’. Thus, 
they make no sense for ICFR task even although they obtain the best 
average F(OutTrace). In addition, FSE framework with N2, N3, N4 and 
NAS schemes achieve nearly the same average performance in terms of 
all indicators. 

Fig. 4 visualizes the statistic test results of Friedman test with 
Nemenyi post-hoc test for our proposed FSE framework with the 6 
schemes in terms of the 6 indicators. As the p-values of Friedman test are 
all less than 0.05, it indicates that performance differences among the 6 
schemes can be explained by statistical significance in terms of all 6 
indicators. The CD diagrams of Nemenyi test illustrate that our FSE 
framework with N2, N4, and NAS schemes belong to the top ranking 
group on 5 indicators except in terms of F(OutTrace). Here, the top 
ranking group means that the methods in this group have statistically 

Fig. 3. The radar chart of average indicator values across all cross project pairs 
for FSE framework with different normalization schemes. 
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significant differences compared with those in other groups. 
Analysis: Directly using the original data set (i.e., N0 option) as the 

input of the FSE framework results in the worst performance which 
demonstrates that data normalization is a necessary preprocessing step. 
The experimental results show that the performance based on z-score 
normalization is significantly better than that based on min-max 
normalization, whereas different schemes based on z-score normaliza-
tion have no significant differences. Overall, normalization schemes N2, 
N4, and NAS are the better options. This conclusion is somewhat 
inconsistent with that in [15] which suggested that normalization 
scheme NAS is the most suitable choice. The reasons are that our FSE 
method achieves the similar average results on crash data preprocessed 
by N2 and N4 schemes, and NAS selects the N2 and N4 normalization 
schemes to preprocess the crash data on many cross project pairs. Thus, 
there is not much difference between the experimental results on crash 
data preprocessed by NAS, N2, and N4 schemes. While in [15], 
normalization schemes selected by NAS may vary on different cross 
project pairs, which leads to that NAS becomes the better choice to 
preprocess the data. 

Answer: Considering that (1) applying z-score technique to the cross 
project data individually (i.e., the N2 option) is sufficient to achieve 
better ICFR performance; (2) it is the most commonly used data pre-
processing scheme in previous studies [63,64] without utilizing intricate 
rules to select the optimal normalization scheme (i.e., the NAS option) 
for specific cross project pair, in this work, we normalize the cross 
project data with the N2 option before conducting the FSE framework in 
the following experiments. 

5.2. RQ2:Are the feature selection process and the weighting scheme in 
the FSE framework helpful to improve the cross project ICFR performance? 

Motivation: As FSE is a combined framework of a GR based feature 
selection process and a weighted feature embedding method, this 
question is designed to explore whether the feature selection process and 
the weighting scheme are beneficial for the performance improvement 
of the proposed FSE framework. 

Methods: To answer this question, we employ the methods with and 

without the feature selection process, and the methods with and without 
the weighting scheme for comparison. In this work, we call these 
methods as variant methods of the FSE framework. More specifically, we 
choose a total of 5 variant methods as follows: 

NONE method does not involve any GR based feature selection and 
transfer learning based feature embedding. 

GR method only uses the GR based feature selection without transfer 
learning based feature embedding. 

BDA method only uses the BDA based feature embedding without GR 
based feature selection. 

WBDA method only uses the WBDA based feature embedding 
without GR based feature selection. 

GRBDA method uses the GR based feature selection with BDA based 
feature embedding. 

NONE is the most basic method to investigate the effectiveness of 
both feature selection and feature embedding. By comparing FSE against 
GR, we can investigate the effectiveness of feature embedding. By 
comparing FSE against WBDA and GRBDA against BDA, we can inves-
tigate the effectiveness of feature selection. By comparing FSE against 
GRBDA and WBDA against BDA, we can investigate the effectiveness of 
the weighting scheme in the feature embedding. 

Results: Fig. 5 shows the radar chart of the 6 average indicator 
values for our proposed FSE framework and 5 variant methods. We draw 
radar charts for the cross project pairs on each project and across all 
projects. Thus, we obtain a total of 8 radar charts in which the last one 
reports the average indicator values across all 42 cross project pairs. 
More specifically, since we conduct one-to-one cross project experiment, 
we have 6 sets of experimental results for each performance indicator 
when one project is selected as the target project. Thus, Fig. 5(a)–(g) 
present the radar charts of the 6 sets of experimental results for each 
project which is selected as the target project. In addition, as we conduct 
experiments on a total of 42 cross project pairs from the 7 projects, Fig. 5 
(h) presents the radar charts of the 6 indicators across the 42 pairs. From 
the figure, we have the following observation: 

First, from Fig. 5(h), we find that our FSE framework achieves the 
best average values on 5 indicators (except in terms of AUC) across 42 
cross project pairs compared with the 5 variant methods. The 5 average 

Fig. 4. Statistic test results for FSE framework with 6 normalization schemes in terms of 6 indicators.  
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Fig. 5. The radar chart of average indicator values for FSE framework and 5 variant methods on each project and all projects.  
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indicator values by our FSE framework are much higher than that by 
NONE and GR, but a little higher than that by WBDA and GRBDA 
methods. More specifically, compared with the best average indicator 
values among the 5 variant methods, our FSE framework achieves the 
average improvements of 1.5%, 1.3%, 1.3%, 1.3%, and 5% in terms of F 
(InTrace), F(OutTrace), g-mean, Balance, and MCC, respectively. In 
addition, the average AUC value by FSE is much higher than that by 
NONE and GR methods, similar to that by BDA and GRBDA methods, 
and only slightly lower than that by the WBDA method. 

Second, from Fig. 5(b), (d), (f), and (g), the results show that average 
F(InTrace) and Balance values by our FSE framework are better than 
that by the 5 variant methods on project Collections, Jsoup, Mango, and 
Ormlite-Core, respectively; from Fig. 5(a)–(d), and (g), the results show 
that average F(OutTrace) value by our FSE framework is better than that 
by the 5 variant methods on project Codec, Collections, IO, Jsoup, and 
Ormlite-Core, respectively; from Fig. 5(b), (d), (f), and (g), the results 
show that average g-mean value by our FSE framework is better than 
that by the 5 variant methods on project Collections, Jsoup, Mango, and 
Ormlite, respectively; from Fig. 5(a), (b), (d), (f), and (g), the results 
show that average MCC value by our FSE framework is better than that 
by the 5 variant methods on project Codesc, Collections, Jsoup, Mango, 
and Ormlite, respectively. 

Third, Fig. 6 visualizes the corresponding statistic test results for the 
6 methods in terms of the 6 indicators. The p-values of Friedman test (all 
less than 0.05) indicates that the performance differences among the 6 
methods are statistically significant in terms of all indicators. The CD 
diagrams show that our FSE framework belongs to the top ranking group 
in terms of all indicators and achieves the best average ranking on 5 
indicators except in terms of AUC. But our FSE framework has no sig-
nificant differences compared with 2 variant methods in terms of F 
(OutTrace) and 3 variant methods in terms of other 5 indicators. 

Analysis: Overall, the performance values of our FSE framework and 
the WBDA method are better than that of GRBDA and BDA methods, 
respectively. This indicates that the weighting scheme in the feature 
embedding is useful for performance improvement. From the point of 
the average ranking in the CD diagram, our FSE framework, GRBDA, and 
GR methods perform better than WBDA, BDA, and NONE methods, 
respectively. This indicates that the GR based feature selection process 

can promote the ICFR performance. The obvious performance superi-
ority of our FSE frameowrk compared with the GR method manifests the 
importance of the feature embedding process. In addition, although FSE, 
WBDA, and GRBDA belong to the same top rank group in the 6 in-
dicators, the specific ranking values of the 3 methods show that our FSE 
method ranks the first in terms of 5 performance indicators except in 
terms of AUC. In addition, the detailed results in our online materials 
show that our FSE method obtains the best average performance across 
the 42 cross project pairs of the 7 projects in terms of 5 indicators except 
in terms of AUC and obtains nearly the same average AUC value as 
WBDA and GRBDA. Overall, FSE is still superior to the two baseline 
methods, although the performance improvement is small and not 
significant. 

Answer: Both the feature selection process and weighting scheme in 
the feature embedding can promote the performance of the FSE frame-
work for cross project ICFR task. 

5.3. RQ3:Does FSE perform better than the downgraded methods in terms 
of WBDA? 

Motivation: As mentioned in Section 3.4, the WBDA method in our 
proposed FSE framework incorporates both the marginal and condi-
tional distributions during the feature embedding process. Besides, it 
assigns different weights to the two distributions for distinct cross 
project pairs and considers the class imbalanced issue when calculating 
the conditional distribution discrepancy. This question is designed to 
study whether our FSE framework is superior to GR combining the 
downgraded methods of the using transfer learning method WBDA. 
These methods are the downgraded versions in terms of WBDA, such as 
the ones that only consider one of the distribution distribution with and 
without the weighting scheme. 

Method: To answer this question, we employ a total of 5 down-
graded methods for comparison as follows: 

GRTCA method combines GR based feature selection with the 
feature embedding method TCA (Transfer Component Analysis) [56] 
that only focuses on narrowing margin distribution discrepancy (i.e., 
μ = 0 in Eq. (7)). 

GRCDT method combines GR based feature selection with the 

Fig. 6. Statistic test results for FSE framework and 5 variant methods in terms of 6 indicators.  
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Fig. 7. The radar chart of average indicator values for FSE framework and 5 downgraded methods on each project and all projects.  
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feature embedding method CDT (Conditional Distribution based 
Transfer learning) that only concerns about decreasing the conditional 
distribution discrepancy (i.e., μ = 1 in Eq. (7)). 

GRJDA method combines GR based feature selection with the 
feature embedding method JDA (Joint Distribution Analysis) [55] that 
considers simultaneously the two distributions with the same weight (i. 
e., μ = 0.5 in Eq. (7)). 

GRWCDT method combines GR based feature selection with the 
Weighted CDT based feature embedding method that considers the class 
imbalanced issue when calculating the conditional distribution 
discrepancy for CDT. 

GRWJDA method combines GR based feature selection with 
Weighted JDA based feature embedding method that considers the class 
imbalanced issue when calculating the conditional distribution 
discrepancy for JDA. 

Note that, the weighted TCA method has the same results as TCA 
because the weighting scheme works only in the calculation process of 
the conditional distribution discrepancy while TCA method only in-
volves in calculating marginal distribution discrepancy. 

Results: Fig. 7 shows the radar chart of the 6 average indicator 
values for our proposed FSE framework and the 5 downgraded methods. 
From the figure, we have the following findings: 

First, from Fig. 7(h), we find that our FSE framework achieves the 
best average values on all indicators across 42 cross project pairs 
compared with the 5 downgraded methods. More specifically, compared 
with the best average indicator values among the 5 downgraded 
methods, our FSE framework achieves the average improvements of 
4.6%, 1.6%, 2.4%, 2.3%, 10.1%, and 1.2% in terms of F(InTrace), F 
(OutTrace), g-mean, Balance, MCC, and AUC, respectively. 

Second, from Fig. 7(a) to (g), the results show that 5 average indi-
cator values except in terms of AUC by our FSE framework are better 
than that by the 5 downgraded methods on all projects; from Fig. 7(e)– 
(g), the results show that average AUC value by our FSE framework is 
only a bit lower than that by one downgraded method on project 
JSqlParser, Mango, and Ormlite. 

Third, Fig. 8 visualizes the corresponding statistic test results for the 
6 methods in terms of the 6 indicators. The p-values show that there exist 
statistically significant differences among the 6 methods in terms of all 

indicators. The CD diagrams show that our FSE framework belongs to 
the top ranking group in terms of all indicators and achieves the best 
average ranking on all indicators. Our FSE framework has significant 
performance differences compared with all downgraded methods in 
terms of F(InTrace), g-mean, Balance, and MCC, whereas has no sig-
nificant differences compared with 1 and 2 downgraded methods in 
terms of F(OutTrace) and AUC, respectively. 

Analysis: Overall, the performance values of our FSE framework are 
better than that of GRWJDA, GRWCDT and GRTCA methods. This in-
dicates that considering two distribution discrepancies and their 
different importance degrees on distinct cross project pairs is effective to 
achieve better ICFR performance. In other words, the similarity degrees 
indeed vary towards different cross project pairs and the two probability 
distributions of the cross project data should be treated differently. From 
the point of the average ranking in the CD diagrams, GRWJDA and 
GRWCDT methods perform better than GRJDA and GRCDT methods, 
respectively. This indicates that the weighting scheme is necessary to 
improve the cross project ICFR performance. In addition, GRWJDA and 
GRJDA method perform better than GRWCDT and GRCDT methods 
respectively, and GRWCDT and GRCDT methods perform better than 
GRTCA method. This indicates that the method considering two distri-
bution discrepancies with equal weights is more effective than the one 
considering the conditional distribution discrepancy, and the method 
considering conditional distribution discrepancy is better than the one 
considering the marginal distribution discrepancy. 

Answer: Considering both marginal and conditional distribution 
discrepancies with distinct weights is more effective to improve the cross 
project ICFR performance than the methods with equal weights or only 
considering one type of distribution discrepancy. 

5.4. RQ4: Is our proposed FSE framework superior to the other cross 
project models? 

Motivation: To the best of our knowledge, this is the first work to 
study the cross project ICFR task. Thus, we could not find the baseline 
methods tailored for ICFR to evaluate the effectiveness of our cross 
project ICFR framework. In this work, we select some cross project 
models for other learning tasks as our baseline methods. 

Fig. 8. Statistic test for FSE framework and 5 downgraded methods in terms of 6 indicators.  
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Fig. 9. The radar chart of average indicator values for FSE framework and 4 instance filtering based models on each project and all projects.  

Z. Xu et al.                                                                                                                                                                                                                                       



Information and Software Technology 131 (2021) 106452

15

Fig. 10. The radar chart of average indicator values for FSE framework, 4 transfer learning based models, and one feature selection based model on each project and 
all projects. 
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Fig. 11. The radar chart of average indicator values for FSE framework and 6 classifier combination based models on each project and all projects.  
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Method: We choose total 15 cross project models that are originally 
designed for software fault prediction task as our baseline methods, 
including 4 instance filtering based models (i.e., NN-Filter [28], 
Peter-Filter [29], Yu-Filter [30], and HISNN [65]), 4 transfer learning 
based models (i.e., TCA+ [15], TNB [32], IFS_5, and IFS_16 [66]), one 
feature selection based model (i.e., FeSCH[67]), and 6 classifier com-
bination based models (i.e., Bagging_J48 [36], Max_Voting [36], Ave_-
Voting [36], Diversity [37], CODEP [34], and ASCI [35]). 

Results: Fig. 9 shows the radar chart of the 6 average indicator 
values for our FSE framework and 4 instance filtering based models. 
Fig. 10 shows the radar chart of the 6 average indicator values for our 
FSE framework, 4 transfer learning based models, and one feature se-
lection based model. Fig. 11 shows the radar chart of the 6 average in-
dicator values for our FSE framework and 6 classifier combination based 
models. From these figures, we have the following observations: 

First, from Subfigure 9(h), we see that our FSE framework achieves 
the best average values on all indicators across 42 cross project pairs 
compared with 4 instance filtering based models. From Figs. 10(h) and 
11(h), we see that our FSE framework achieves the best average values 
on 5 indicators except in terms of F(OutTrace). More specifically, 
compared with the best average indicator values among the 15 cross 
project models, our FSE framework achieves the average improvements 
of 41.4%, 28.1%, 27.4%, 119.4%, and 20.4% in terms of F(InTrace), g- 
mean, Balance, MCC, and AUC, respectively. 

Second, from Fig. 9(a) to (g), the results show that all average in-
dicator values by our FSE framework are better than the 4 instance 

filtering based models on all projects; from Figs. 10(a) to (g), and 11(a) 
to (g), the results show that 5 average indicator values except in terms of 
F(OutTrace) by our FSE framework are better than the 4 transfer 
learning based models, one feature selection based model, and 6 clas-
sifier combination based models on all projects. 

Third, Fig. 12 visualizes the corresponding statistic test results for the 
16 methods in terms of the 6 indicators. The p-values show that the 16 
methods exist statistically significant performance differences in terms 
of all indicators. The CD diagrams show that our FSE framework belongs 
to the top ranking group in terms of 5 indicators except in terms of F 
(OutTrace) and achieves the best average ranking on the 5 indicators. In 
addition, our FSE framework has significant performance differences 
compared with all 15 cross project models in terms of 5 indicators except 
in terms of F(OutTrace), whereas 5 cross project models perform 
significantly better than our FSE framework in terms of F(OutTrace). 

Analysis: The performance superior of our FSE framework is obvious 
compared with the 15 cross project models except in terms of F(Out-
Trace), which indicates that our proposed FSE framework is more suit-
able for cross project ICFR task. In addition, Yu-Filter model achieves the 
better overall performance among the 4 instance filtering based models; 
TCA+ model achieves the better overall performance among the 4 
transfer learning based models; Max_Voting, ASCI, and CODEP models 
achieve the better overall performance among the 6 classifier combi-
nation based models; and feature selection FeSCH based model also 
achieves better performance. In addition, the average F(OutTrace) value 
by the FSE framework is lower than 2 transfer learning based models and 

Fig. 12. Statistic test for FSE framework and 15 cross project models.  
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4 classifier combination based models. The reason is that our proposed 
FSE method uses a weighting strategy to deal with the class imbalance 
issue which will lead to that the results tend to be biased towards F 
(InTrace) and sacrifice some of the performance of F(OutTrace). 

Answer: Our proposed FSE framework outperforms the comparative 
models that are designed for other cross project learning task, but there 
is still improvement room in terms of F(OutTrace) performance for our 
FSE framework since it is not always the best. 

6. Threats to validity 

6.1. External validity 

We conduct experiments on a benchmark dataset that has been 
released recently. Since all the employed 7 projects are developed with 
Java language, future studies are necessary to investigate whether our 
results can be generalized to the projects developed with other lan-
guages. Although the used benchmark dataset is collected via imitating 
the crashes caused by the seeded faults using program mutation oper-
ations, previous studies have stated that the faults by mutation can be 
used as a replacement for the real-world faults as they share similar 
properties due to the fact that mutation satisfies the major principles of 
experimental design [68,69]. For the fault analysis task similar to our 
work, previous studies have shown that the detection of faults by mu-
tation has a statistically significant correlation with the real-world fault 
[70], and the fault localization performance on faults by mutation has 
no statistical significance than that on real-world faults [71]. Thus, using 
the simulated data by mutation test to study the ICFR problem is an 
acceptable choice in the present case and the threat of using the simu-
lative crashes is minor for the generalization ability of our results. In 
addition, in this work, we just use a simple feature selection method in 
our proposed framework as we just aim to investigate whether the 
feature selection process can promote the performance of cross project 
ICFR task. Other state-of-the-art feature selection techniques can also be 
considered in future studies. 

6.2. Internal validity 

The internal validity is threatened by the re-implementation of the 
baseline methods. Since the source code of most cross project models 
used in our experiment comparison is not provided by the authors, we 
carefully implement them following their details described in the cor-
responding studies to minimize the potential faults. We make our source 
code and benchmark dataset online, which allows further studies to 
replicate our experiments and confirm our results. 

6.3. Construct validity 

As single performance evaluation could potentially threaten the 
construct validity, in this work, we employ 6 indicators as performance 
measurements, which enables us to have a more comprehensive evalu-
ation on the effectiveness of our method. In addition, we employ an 
improved statistic test to analyze the results, which makes our evalua-
tion more convincing. 

7. Conclusion 

Due to the potential issues induced by the crash, the analysis and 
handling of the crash cannot be ignored. Designing method to auto-
matically determine the localization of the crashing fault can assist de-
velopers for manual crash localization. The ICFR method has the 
potential to tell us specifically the localization where the crash is 
generated if the crash residence is predicted in the stack trace. For 
example, if the faulty code of a crash exactly matches the recorded in-
formation of one frame in the stack trace, the ICFR method will predict 
that the crashing fault is in the stack trace. In this case, the developers 

only need to inspect the limited code lines record in all frames for 
finding the faulty code. This will greatly reduce the search space for 
crashing faults. Thus, the ICFR method serves as a lightweight method to 
assist the fault localization task and help prioritize corresponding ef-
forts. The typical usage scenario of our cross project ICFR model is to 
provide an early warning to developers about whether the crashing fault 
resides in the stack trace or not once the software crashes even no pre-
vious labeled crash data available. Our model provides this kind of early 
warning through the classification model built on the labeled data of 
other projects. More specifically, for an ongoing project, historical 
software development data may not be available to collect the residence 
information of the crashing fault as a training set for the ICFR task on 
forthcoming crashes. To resolve the dilemma of label shortage for ICFR 
task, we propose a novel two-stage cross project ICRF framework, called 
FSE, that consists of feature selection stage and feature embedding stage. 
In the first stage, our FSE framework uses a simple GR based feature 
ranking method to identify the relevant features and remove the irrel-
evant ones, then, it employs an advanced WBDA based feature embed-
ding method to transform the feature space. WBDA has the advantage of 
reducing data distribution discrepancies of two projects and alleviating 
the class imbalance issue simultaneously. Using our FSE framework, the 
crashing fault of a new project that locates in the stack trace can be 
detected in an early stage by transferring the knowledge of the labeled 
crash data of other project. Then, only a few lines of code in the stack 
trace are needed for carefully inspection to find the root cause of the 
crash. This process can facilitate developers to fix the crash, accelerating 
the development process and saving debugging cost. The experiments on 
7 open-source Java projects show that our proposed FSE framework 
achieves better prediction performance for the ICFR task than 25 base-
line methods on 6 indicators overall. 

In future, we plan to explore a feasible way to automatically specify 
the weights of two distribution differences for WBDA method and 
integrate new feature selection methods into our framework. 
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