
Information and Software Technology 92 (2017) 1–16

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Automated change-prone class pre diction on unlab ele d dataset using

unsupervised method

Meng Yan

b , Xiaohong Zhang

a , b , ∗, Chao Liu

b , Ling Xu

b , Mengning Yang

b , Dan Yang

b

a Key Laboratory of Dependable Service Computing in Cyber Physical Society Ministry of Education, Chongqing 40 0 044, PR China
b School of Software Engineering, Chongqing University, Chongqing 401331, PR China

a r t i c l e i n f o

Article history:

Received 20 September 2016

Revised 17 February 2017

Accepted 4 July 2017

Available online 6 July 2017

Keywords:

Software maintenance

Change-prone prediction

Unlabeled dataset

Unsupervised prediction

a b s t r a c t

Context: Software change-prone class prediction can enhance software decision making activities dur-

ing software maintenance (e.g., resource allocating). Researchers have proposed many change-prone class

prediction approaches and most are effective on labeled datasets (projects with historical labeled data).

These approaches usually build a supervised model by learning from historical labeled data. However, a

major challenge is that this typical change-prone prediction setting cannot be used for unlabeled datasets

(e.g., new projects or projects with limited historical data). Although the cross-project prediction is a so-

lution on unlabeled dataset, it needs the prior labeled data from other projects and how to select the

appropriate training project is a difficult task.

Objective: We aim to build a change-prone class prediction model on unlabeled datasets without the

need of prior labeled data.

Method: We propose to tackle this task by adopting a state-of-art unsupervised method, namely CLAMI.

In addition, we propose a novel unsupervised approach CLAMI + by extending CLAMI. The key idea is to

enable change-prone class prediction on unlabeled dataset by learning from itself.

Results: The experiments among 14 open source projects show that the unsupervised methods achieve

comparable results to the typical supervised within-project and cross-project prediction baselines in av-

erage and the proposed CLAMI + slightly improves the CLAMI method in average.

Conclusion: Our method discovers that it is effective for building change-prone class prediction model by

using unsupervised method. It is convenient for practical usage in industry, since it does not need prior

labeled data.

© 2017 Elsevier B.V. All rights reserved.

1

p

i

l

t

c

c

t

e

d

c

l

s

H

c

m

n

i

d

s

r

c

t

a

s

o

i

p

h

0

. Introduction

Software maintenance has been regarded as one of the most ex-

ensive and tough tasks in the whole software lifecycle [1] . Change

s fundamental for software maintenance according to the techno-

ogical advancements and new requirements. Managing and con-

rolling change in software maintenance is one of the significant

oncerns of the software industry [2] . A change could be made be-

ause of existence of bugs, new features or refactoring [3 , 4] . It is

he source of defects and modifications. Understanding the knowl-

dge about change-prone classes in a software is significant for

evelopers and mangers [5] . A change-prone class means that the

lass is likely to change with a high probability after a product re-

ease. It can represent the weak part of a software system [2] . Thus,

oftware change-prone class prediction contributes to better allo-
∗ Corresponding author at: School of Software Engineering, Chongqing University,

uxi Town, Shapingba, Chongqing, PR. China 401331.

E-mail address: xhongz@cqu.edu.cn (X. Zhang).

w

b

c

s

ttp://dx.doi.org/10.1016/j.infsof.2017.07.003

950-5849/© 2017 Elsevier B.V. All rights reserved.
ation of software resources (e.g., time and staff) in the software

aintenance process [6] . This technique aids to support mainte-

ance related decision making by identifying change-prone classes

n advance. As a result, the quality assurance teams or testers can

etermine the critical parts of the software where the quality as-

urance or testing activities should pay more attention and track

igorously.

In order to predict change-prone classes in advance, various

ategories of software metrics which indicate various characteris-

ics have been proved to correspond to the change-proneness, such

s OO metrics (e.g., cohesion, coupling, inheritance, etc.) [7] , code

mells [8] , design patterns and [9] evolution metrics [10 , 11] . Based

n these metrics, a number of studies which use machine learn-

ng techniques have been proposed for building change-prone class

rediction models, such as Bayesian networks [12] , neural net-

orks [13] , and ensemble methods [6] . A typical prediction model

ased on machine learning is designed by learning from histori-

al labeled data within a project in a supervised way as Fig. 1 (a)

hows. This manner is referred as supervised within-project pre-

http://dx.doi.org/10.1016/j.infsof.2017.07.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2017.07.003&domain=pdf
mailto:xhongz@cqu.edu.cn
http://dx.doi.org/10.1016/j.infsof.2017.07.003

2 M. Yan et al. / Information and Software Technology 92 (2017) 1–16

Fig. 1. Illustration of three prediction manners. Manner (a) is the supervised within-project prediction which training on historical labeled data and testing on target data

within a project. Manner (b) is the cross-project prediction which training on another labeled project data and testing on the target project. Manner (c) is the unsupervised

prediction which directly learning from the target project data.

h

c

s

w

n

t

b

t

f

t

p

s

p

i

c

t

a

d

o

H

c

a

i

s

fi

i

t

i

m

(
diction [14] . Namely, the key idea is to train the model on histori-

cal labeled data within a project and then predict the target data.

We refer the dataset which have historical labeled data as “labeled

dataset ”. However, in practice, it is often time-consuming and ex-

pensive to collect labeled data. Furthermore, this manner is diffi-

cult to apply on new projects or projects with limited historical

data whose label information are unavailable (referred to as “unla-

beled dataset”), since it is difficult to collect label information for

training a prediction model.

Cross-project change-prone class prediction method has been

proposed to address the above-mentioned issue [14] as Fig. 1 (b)

shows. The cross project technique is motivated by the similar

techniques in defect prediction [15 , 16] . It enables change-prone

class prediction on unlabeled projects by learning from other

projects which are already labeled. However, one issue which re-

mains is that training set and testing set in cross-project prediction

come from different project which possess different distributions

[17] . The distribution similarity of training set and testing set is

important for building a prediction model [18 , 19] . As a result, the

success rate (ratio of combination whose performance is greater

than a certain threshold) of cross-project prediction reported in

the work [14] is generally poor (30%). Moreover, the cross-project

change-prone prediction may not be effective and it depends on

the selection of the source project [14] .

To address the above-mentioned limitation, we propose to

tackle this task by using unsupervised method as Fig. 1 (c) shows.

Compared with supervised models, unsupervised method does not

need the prior labeled data to build prediction models which are

more desirable in practice. It has been widely used in software

quality prediction [17 , 20 , 21] . In detail, we apply a state-of-art un-

supervised method (CLAMI: Clustering, Labeling, Metric selection

and Instance selection) to the change-prone class prediction which
as been successfully used in another field [17] . The key idea is to

onduct the prediction on unlabeled dataset by learning from it-

elf. Strictly, it is a special case of within-project manner. In this

ork, we use unsupervised refers to as the prediction without the

eed of historical labeled data particularly. Concretely, clustering is

o group the instances, labeling is to estimate the label of groups

y using a unsupervised way, metric selection and instance selec-

ion is to select more informative features and training sets. By the

ollowing, we predict the target set by training on the selected fea-

ures and training sets.

The detailed process of the unsupervised method can be inter-

reted by dividing three phases as Fig. 2 shows. Each phase con-

ists of two steps. The clue of the whole process is to build the

rediction model by learning on selected informative metrics and

nstances from the target dataset itself. In detail, the first phase is

lustering and labeling. In this phase, an unlabeled dataset is clus-

ered into groups according to the difference between metric value

nd metric threshold. Subsequently, we estimate the labels of the

ataset according to the magnitude of metric values [17] . The goal

f this phase is to provide the estimated labels of all the instances.

owever, the estimated labels of all the instances might not be

orrect enough. In our unsupervised method, part of them will be

utomatically selected as final training set according to our criteria

n the following phase. The second phase is to conduct the metric

election and instance selection from the labeled instances in the

rst phase. As a result, an informative training set of metrics and

nstances are generated. The third phase is modeling and predic-

ion. The prediction model is built by learning from the selected

nstances and features in the second phase.

In particular, the labeling step in the first phase of the adopted

ethod CLAMI is conducted by measuring the count of violation

i.e., a metric value is greater than a certain threshold) of an in-

M. Yan et al. / Information and Software Technology 92 (2017) 1–16 3

Fig. 2. The overview of CLAMI/CLAMI + . It consists of three phases with two steps in each phase. The first phase is clustering and labeling (step 1.1 and 1.2), the CLAMI and

CLAMI + are different in this phase. The second phase is metric selection and instance selection (step 2.1 and 2.2). The third phase is learning and prediction (step 3.1 and

3.2).

s

f

s

v

w

C

t

i

p

A

l

fi

s

w

d

n

a

c

m

i

1

r

p

5

a

e

C

A

c

(

p

l

o

o

e

m

o

t

a

t

a

e

l

s

p

c

2

2

p

a

b

a

f

r

u

T

a

r
tance. However, we observe that information loss might result

rom mapping the violation to a 1 or 0 (i.e., violation or not) re-

ult in the first phase. The information that how much the instance

iolated on a metric is not considered. Based on this observation,

e propose a novel unsupervised method CLAMI + by extending

LAMI. The difference lies in the first phase as Fig. 2 shows. In de-

ail, the CLAMI + method uses the violation degree (i.e., transform-

ng the difference between the metric value and the threshold to a

robabilistic value) to replace the Boolean representation in CLAMI.

s a result, the fine information that how much the instance vio-

ated on a metric is considered. Under this way, the selection of

nal training set of CLAMI + is different from CLAMI. The training

et generated by CLAMI + is expected more informative that CLAMI

hich is beneficial for building prediction model.

The goal of our study is to conduct the change-prone class pre-

iction on unlabeled dataset in an automated way without the

eed of historical data. In our empirical experiments, we evalu-

te the unsupervised methods on 14 open source projects which

ome from the Qualitas Corpus [22] . As a result, the unsupervised

ethods yields a reasonable performance which improves the typ-

cal within-project prediction models by 5.2%–19.7% (average CCR),

3.9%–27.2% (average AUC) and 21.7%–61.9% (average F-measure),

espectively. Meanwhile, considering the comparison with cross-

roject method, the CLAMI and CLAMI + methods improve it by

.4% and 7.9% (average CCR), 14.5% and 18.2% (average AUC), 35.1%

nd 40.5% (average F-measure), respectively. In addition, consid-

ring the comparison between CLAMI and CLAMI + , the proposed

LAMI + improves the CLAMI by 2.9% (average CCR), 3.2% (average

UC) and 4% (average F-measure).

This paper extends our preliminary study [23] published as a

onference paper. In summary, the main extensions are as follows:

1) additional comparison of unsupervised method over cross-

roject method is added, since both of them are suitable on un-

abeled datasets (see Section 5.2). (2) Exploration on the effect

f varying the steepness of sigmoid function to the performance

f our method is added (see Section 5.4). (3) Exploration on the

ffect of varying the metric threshold to the performance of our

ethod is added (see Section 5.5). (4) More detailed descriptions

f the motivation, related work, and approach are added. In addi-

ion, more expanded and qualitative analysis about the results are
dded.
m
In summary, the contributions of this study are as follows:

• We apply unsupervised approach to tackle change-prone class

prediction on new projects or projects with limited historical

data. In addition, we propose a novel unsupervised method

CLAMI + by extending the method CLAMI. (See Section 3)

• We present an empirical study to evaluate the unsupervised

methods compared with supervised within-project and cross-

project methods on 14 public datasets. The results show

that the unsupervised methods achieve a reasonable perfor-

mance which outperform the baselines in average. (See Sections

5.1 and 5.2)

• We explore the effect of two factors to the performance of our

proposed method: the metric threshold and a transformation

parameter in the first phase. As a result, we find that the two

factors impact the performance of our method. (See Sections

5.4 and 5.5)

This article is structured as follows: in Section 2 , we describe

he related work. Section 3 shows the detailed description of our

pproach. In Section 4 , we provided the experimental design of the

mpirical study, including the research questions, datasets, base-

ines and measures. Next, Section 5 reports the experimental re-

ults and the answers for each research question. In Section 6 , we

rovide the threats to validity of this work. Finally, we draw our

onclusions and the future work plans in Section 7 .

. Related work

.1. Change-prone prediction on labeled dataset

A variety of approaches have been proposed to predict change-

rone classes by learning from historical labeled dataset. For ex-

mple, Amoui et al [13] proposed an innovative Neural Network-

ased temporal change prediction model which can predict where

nd when the change will happen. They achieved a reasonable per-

ormance on Mozilla and Eclipse. Giger et al [24] proposed a Neu-

al Network model to identify potentially change-prone classes by

sing metrics from social network analysis (SNA) and OO metrics.

he results show that the Neural Networks model based on SNA

nd OO metrics outperforms the model based on SNA or OO met-

ics separately. Godara and Singh [25] proposed an ID3 prediction

odel based on multi-factors, including trace events generated

4 M. Yan et al. / Information and Software Technology 92 (2017) 1–16

m

o

t

e

v

d

t

“

t

p

m

a

h

C

o

a

v

i

g

C

t

t

l

F

t

t

m

n

t

D

m

i

P

i

t

p

p

v

fi

p

b

a

u

d

u

w

p

t

i

d

m

t

w

3

r

m

p

from code, execution time and behavioral dependency. Koru and

Liu [26] first validated the Pareto’s law on change-prone classes on

two open source projects, namely KOffice and Mozilla. They found

the applicability of Pareto’s law and developed a tree based pre-

diction model. Lu et al [27] proposed a statistical meta-analysis

approach to explore the ability of 62 OO metrics for predicting

change-proneness on 102 Java systems. They found that size met-

rics were more discriminative that other OO metrics, such as cohe-

sion, coupling and inheritance. Elish et al [6] proposed an empiri-

cal study which used ensemble methods on change prediction. The

base learners adopted in their work are typical machine learning

methods, such as Multilayer perceptron, Radial basis function net-

work, Support vector machine, and Logistic regression. They found

that ensemble methods can achieve a better performance than us-

ing individual models. However, one issue in the above-mentioned

works is that the prediction model relies on learning from the his-

torical labeled dataset in a supervised way. It is difficult to apply

the technique on unlabeled dataset.

2.2. Change-prone prediction on unlabeled dataset

Cross-project prediction is a solution to address the above-

mentioned limitation. The cross-project concept is introduced by

Briand et al [28] . The basic thinking is to train the prediction

model by using labeled dataset from another project. It has been

widely used in defect prediction [15,29,30,31,32] . In change-prone

class prediction, there are also a few studies which have investi-

gated the cross-project change prediction recently.

Malhotra and Bansal [14] proposed to build the cross project

change prediction model by using the logitboost method. In an-

other work, Malhotra and Bansal [33] validated the cross project

change prediction by using machine learning and search-based

techniques. However, they found that the cross-project (or inter-

project) prediction cannot comparable to the within-project pre-

diction [14] . Besides, one main issue remains in cross-project pre-

diction is that different projects possess different data distributions

[17] . How to select an appropriate source as the training data is a

difficult task [14] .

To address the above-mentioned limitation, the unsupervised

method can enable the prediction task which does not need a prior

labeled source as the training dataset.

3. Approach

This section describes the process of the proposed unsupervised

approach CLAMI + which extends the state-of-art method CLAMI. It

consists of three phases and we describe the three phases in three

subsections (Sections 3.1 , 3.2 and 3.3). The first phase is Cluster-

ing and Labeling, the second phase is Metric selection and Instance

selection, the third phase is Learning and Prediction. In particular,

the idea of the first phase in CLAMI + is different with CLAMI, and

the idea of the second phase and the third phase in CLAMI + is

identical with CLAMI.

3.1. Clustering and labeling

(1) Clustering : The goal of this step is to clutter all the in-

stances according to the difference between metric value and met-

ric threshold. A threshold means that the instance whose metric

values exceed a threshold is more change-prone [34] . In our ap-

proach, we set the threshold as the median value as Nam and Kim

[17] described, and we apply various cutoff thresholds to explore

the effect to the performance in Section 5.5 . Fig. 3 illustrates the

clustering process in the unsupervised approach. We use A-G to

denote the instances of the dataset and X − X denote the adopted
1 7
etrics. The first step is to compare the metric value to the thresh-

ld value for each metric. The higher metric values which exceed

he threshold are in bold. Subsequently, we transform the differ-

nce between metric value and metric threshold to a violation

alue which indicates whether (CLAMI) or how much (CLAMI +)

oes the metric value exceeds the threshold. As a result, a viola-

ion table is generated.

In CLAMI, the violation table consists of 0 or 1 values. The value

1" represents a higher value which means it is greater than the

hreshold value as highlighted in Fig. 3 . After that, the clustering

rocess groups the instances by the sum of the count of the higher

etric values (refered to as K value). For example, the instance A

nd E belong to one cluster (K = 3) which means there are three

igher metric values in A and E. However, one issue remains in

LAMI is that the information that how much the instance violated

n a metric is not considered. For example, considering instance B

nd E at the metric X 6 , the metric value of B is 3 and the metric

alue of E is 10. Although both of them are higher values which

s greater than threshold 1, the violation degree of instance E is

reater thant instance B obviously. This information is ignored in

LAMI.

In CLAMI + , we extend the CLAMI approach by transforming

he 1 or 0 result (violation or not) to a continuous value from 0

o 1 which represents the violation degree. As a result, the vio-

ation table consists of continuous values ranging from 0 to 1 as

ig. 3 shows. In detail, we adopt the sigmoid function which is of-

en used as the activation function in neural networks to conduct

he transformation. Formally, suppose there are M instances and N

etrics, Xij denotes the j th metric value of the i-th instance, Nj de-

otes the threshold value of the j th metric. The violation degree of

he j th metric of the i th instance P (Vij) is computed as Formula (1) .

ifferent from the CLAMI, the K value in CLAMI + represents the

ean violation degree of an instance and we cluster the instances

nto two clusters by K > = 0 . 5 and K < 0.5.

 (V i j) =

1

1 + e −(X i j −N j)
(1)

(2) Labeling : In CLAMI, the labeling step is conducted by divid-

ng the clusters into a top half and a bottom half by considering

he K value [17] . Next, the first half clusters are labeled as change-

rone and the bottom half clusters are labeled as not change-

rone. Similar to CLAMI, in CLAMI + , we label the instances by di-

iding the clusters into K > = 0 . 5 and K < 0.5. Next, we label the

rst cluster as change-prone and the second cluster as not change-

rone. As the Fig. 3 shows, in CLAMI, Instance C, A and E are la-

eled as change-prone while in CLAMI + Instance A, B, C, E and F

re labeled as change-prone. This difference is resulted from our

sage of the violation degree.

The labeling step is motivated by the tendency in defect pre-

iction, namely, the defect-prone instances have higher metric val-

es than clean-prone instances [17 , 35] . Since the typical metrics

hich are usually adopted in both defect prediction and change

rediction (e.g., OO metrics and typical size metrics) represent

he complexity of the instance, there is also the similar tendency

n change-prone prediction [34 , 36] (named as change-prone ten-

ency). For example, Koru and Tian [36] found that high-change

odules had fairly high places in metric rankings, although not

he highest places. Malhotra and Bansal [34] found that the classes

hose metric values exceed a threshold value are change prone.

.2. Metric selection and instance selection

In order to generate a high-quality training set, we use met-

ic and instance selection to select more informative metrics and

inimize the instances that may be incorrectly labeled in the first

hase.

M. Yan et al. / Information and Software Technology 92 (2017) 1–16 5

Fig. 3. Illustration of the first phase in the unsupervised approach.

r

m

o

t

t

A

p

c

o

s

o

t

w

w

i

d

i

i

m

f

a

a

t

(

B

s

s

s

a

t

t

3

l

l

w

l

4

4

R

m

i

m

v

s

a

t

i

m

t

w

d

d

s

o

m

t

t

c

w

s

d

function to the performance of CLAMI + ?
(1) Metric selection : The quality of features plays a significant

ole in building a prediction model. Since there might be some

etrics which do not follow the change-prone tendency well, the

bjective of metric selection step is to select the most informa-

ive metrics which can enhance the prediction ability. The selec-

ion criteria is the metric violation scores (MVS) for each metric.

 violation means the metric value does not follow the change-

rone tendency. In terms of one metric, the MVS is equal to the

ount of instances which do not follow the change-prone tendency

n this metric. Take the metric X 1 in Fig. 3 as the example, in-

tance B is labeled as a change-prone instance in the first phase

f CLAMI + , however, the metric value of X 1 is not a higher value,

hereby B does not follow the tendency at metric X 1 . Using this

ay, we compute the MVS for each metric and select the metrics

hich have the minimum MVS.

(2) Instance Selection : In order to generate a better training set,

nstance selection is a widely adopted technique in software pre-

iction models [37 , 38] . It is the final step for generating the train-

ng dataset in this unsupervised method. In detail, we select the

nstances which follow the change-prone tendency at the selected

etrics. In other words, we remove the instances which do not

ollow the change-prone tendency on the selected metrics. For ex-

mple, suppose X 1 is a selected metric in Fig. 3 and B is labeled

s a change-prone instance in the first phase of CLAMI + . However,

he metric value of X 1 does not follow the change-prone tendency

the metric value is expected to greater than threshold) in Instance

, thereby we will remove B from the final training set. After this

tep, in some cases which have too many tendency-violated in-

tances, there might be no change-prone or not change-prone in-

tances. In this sense, we will get back to the metric selection step

nd choose extra metrics which have the next minimum MVS un-

il both change-prone and not change-prone instances exist in the

raining set.

.3. Learning and prediction

After generating a training set, we adopt a general machine

earner (logistic regression) to build the prediction model which

earns from the selected metrics and instances. By the following,

e predict the change-prone classes of the testing set on the se-

ected metrics.
. Experimental design

.1. Research questions

We design five research questions (RQs) to evaluate this study.

Q1 is designed to evaluate the performance of unsupervised

ethod compared with the within-project prediction method

ncluding four supervised methods and one typical clustering

ethod. RQ2 is designed to compare the performance of unsuper-

ised method with the cross-project prediction method. RQ3 is de-

igned to evaluate the extended CLAMI + by comparing with the

dopted CLAMI. RQ4 is to explore the effect of the parameter of

he adopted sigmoid function to the prediction performance. RQ5

s to explore the effect of different thresholds.

• RQ1: Is the prediction performance of the unsupervised method

comparable to typical within-project prediction methods?

We will answer this question by comparing the unsupervised

ethod and the supervised within-project prediction methods on

he same target dataset. The difference is that the supervised

ithin-project prediction methods learn from historical labeled

ata while our unsupervised method does not need prior labeled

ata.

• RQ2: Is the prediction performance of the unsupervised method

comparable to cross-project prediction method?

Building cross-project prediction model is also an alternative

olution to predict unlabeled project when we have access to an-

ther labeled project. Since both unsupervised and cross-project

ethods aim at building prediction model for unlabeled dataset,

his research question is designed to compare the performance of

wo solutions on the same target datasets.

• RQ3: Does the prediction performance of CLAMI + outperform

CLAMI?

The difference between CLAMI and CLAMI + is the criteria of

lustering and labeling. As a result, the training set is different

hich has an impact on the prediction performance. We will an-

wer this question by comparing the two methods on the same

atasets.

• RQ4: What is the effect of varying the steepness of sigmoid

6 M. Yan et al. / Information and Software Technology 92 (2017) 1–16

Table 1

Summary of the evaluation datasets in this study.

Previous version Target version % changed # instances

‘ant-1.8.1.0’ ‘ant-1.8.2.0’ 12.20% 844

‘antlr-3.3.0’ ‘antlr-3.4.0’ 70.95% 241

‘argouml-0.32.1’ ‘argouml-0.32.2’ 39.67% 1505

‘azureus-4.1.0.2’ ‘azureus-4.1.0.4’ 7.71% 3150

‘freecol-0.10.4’ ‘freecol-0.10.5’ 71.74% 598

‘freemind-0.6.5’ ‘freemind-0.6.7’ 89.19% 74

‘hibernate-3.1.1.0’ ‘hibernate-3.1.2.0’ 93.62% 925

‘jgraph-5.12.0.4’ ‘jgraph-5.12.1.0’ 20.75% 53

‘jmeter-2.7.0.0’ ‘jmeter-2.8.0.0’ 58.07% 830

‘jstock-1.0.7.1’ ‘jstock-1.0.7.2’ 11.59% 276

‘jung-1.7.2’ ‘jung-1.7.4’ 28.85% 468

‘junit-4.9.0’ ‘junit-4.10.0’ 92.02% 163

‘lucene-3.6.2.0’ ‘lucene-4.0.0.0’ 34.35% 620

‘weka-3.5.7’ ‘weka-3.5.8’ 13.94% 1119

4

p

m

C

m

t

h

t

t

s

p

b

o

b

p

a

f

t

a

g

i

m

I

r

a

c

b

c

p

4

p

c

r

t

o

c

p

i

5

5

w

p

u

o

b

a

u

l

a

o

1

C

i

l

C

4
In the CLAMI + method, we adopt the sigmoid function to per-

form the transformation task, namely, transform the difference be-

tween the metric value and the metric threshold to the violation

degree. The sigmoid function is a special case of logistic function.

The equation in our case is as formula (2) shows. The L represents

the maximum value and S represents the steepness of the function

curve. In our case, the maximum value represents a probabilistic

value which is fixed at L = 1. However, the steepness of the func-

tion curve represents how sensitive of the transformation with the

difference between the metric value and the metric threshold. In

our previous work, we use the default setting: S = 1. In order to

investigate the effect of steepness to the performance, we will an-

swer this question by varying the steepness in a certain range.

P (V i j) =

L

1 + e −S(X i j −N j)
(2)

• RQ5 : Which is the effect of varying the metric threshold to the

performance of CLAMI + ?

The identification of the higher metric values relies on the

choice of the threshold. Different thresholds can result in different

clustering and labeling results which have an impact on the pre-

diction model. This research question is designed to explore what

the effect of varying the metric thresholds. We will apply different

thresholds on the experiments to analysis the effect to the perfor-

mance.

4.2. Datasets

We evaluate this study on 14 open source projects which come

from the public dataset Qualitas Corpus [22] (Qualitas Corpus ver-

sion is 20130901e). They are written in Java and have multiple evo-

lution versions. For each project, we choose the recent version as

the target dataset and label each instance by tracking the version

control system. The target project version, previous version (only

used in baselines), percentage of changed instances and the to-

tal number of instances in the target version are listed in Table 1 .

The percentage and the number of instances possess a substantial

range which can validate the model ability among a wide range.

Considering the code metrics, we adopt the typical metrics

which are identical with the relevant studies of change predic-

tion [1 , 6 , 12 , 39] as the Table 2 shows. In detail, five Chidambar

and Kemerer metrics [40] : WMC, DIT, NOC, RFC, and LCOM; four

Li and Henry metrics [41] : MPC, DAC, NOM, SIZE2; and one tra-

ditional lines of code metric (SIZE1) are adopted. SIZE1 represents

the number of lines of code excluding comments and SIZE2 rep-

resents the total count of the number of data attributes and the

number of local methods in a class.
.3. Experimental baselines

In RQ1, we set the four typical supervised within-project

rediction methods and one typical unsupervised clustering

ethod as baselines to compare with our unsupervised methods

LAMI/CLAMI + . In supervised within-project prediction, the basic

anner is that in order to predict the change-prone classes of the

arget data, the prediction models are built by learning from the

istorical labeled data within the project. In our experiment, the

arget data is as Table 1 shows (i.e., target version) and we set

he previous neighbor version of the target data as the training

ource in the baselines. In detail, the first baseline is the change-

rone class prediction based on logitboost (LB) which is proposed

y Malhotra and Bansal [14] . In addition, to avoid the bias from

nly one classifier, we also adopt three typical machine learners as

aselines which are used in all three empirical studies on change

rediction proposed by Elish et al [6] . Namely, the second, third

nd the fourth baseline is Multilayer perceptron (MLP), Radial basis

unction network (RBF) and Support vector machine (SVM), respec-

ively. At last, since our method is an unsupervised method, we

lso adopt a typical unsupervised machine learning clustering al-

orithm, i.e., simple k-means (SK) [42] , as the fifth baseline. When

mplementing the SK method, we set the clusters as 2 and deter-

ine which cluster is change-prone by using a heuristic method.

n detail, we use the average row sums of the normalized met-

ics of each cluster to determine which cluster is change-prone

s Zhang et al suggested [43] . In RQ2, we set the cross-project

hange-prone work proposed by Malhotra and Bansal [14] as the

aseline to compare with the unsupervised methods. In RQ3, we

ompare the extended CLAMI + to the original CLAMI method pro-

osed by Nam and Kim [17] .

.4. Performance measures

Following the similar work of Elish et al [6] , two widely used

rediction measures are adopted in our evaluation, namely correct

lassification rate (CCR) and the area under curve (AUC). CCR rep-

esents the ratio of cases which were correctly predicted to the

otal number of cases. AUC represents the area under the receiver

perating characteristic (ROC) curve. In addition, we adopt a typi-

al classification performance measure (i.e., F-measure) as the third

erformance measure. It is a widely used prediction measure since

t represents the harmonic mean of precision and recall [17] .

. Results

.1. Answer of RQ1: performance of the unsupervised and

ithin-project method

Table 3 shows the performance comparison between the unsu-

ervised methods and the baselines in CCR, AUC and F-measure

nder 14 datasets. In terms of each dataset, if the performance

f the unsupervised methods CLAMI/CLAMI + outperforms all the

aselines, the results are bold. The better results between CLAMI

nd CLAMI + are underlined.

In summary, in terms of RQ1, considering the CCR measure, the

nsupervised methods CLAMI/CLAMI + outperform the five base-

ines among 8 datasets and improve them by 5.2% −19.7% in aver-

ge of all datasets. Considering the AUC measure, CLAMI/CLAMI +
utperform five baselines among 8 datasets and improve them by

3.9% −27.2% in average of all datasets. Considering the F-measure,

LAMI/CLAMI + outperform five baselines among 7 datasets and

mprove them by 21.7% −61.9% in average of all datasets. Nonethe-

ess, in some datasets, the proposed unsupervised methods

LAMI/CLAMI + may perform worse, such as ‘ant-1.8.2.0’, ‘azureus-

.1.0.4’ and ‘jstock-1.0.7.2’. One potential impact factor is the per-

M. Yan et al. / Information and Software Technology 92 (2017) 1–16 7

Table 2

Summary of the adopted metrics in this study.

Metric Description

WMC Weighted methods per class

DIT Level for a class within its class hierarchy

NOC Number of immediate subclasses of a class

RFC Count of methods implemented within a class plus the number of methods accessible to an object class due to inheritance

LCOM Counts the sets of methods in a class that are not related through the sharing of some of the class’s fields

MPC The number of messages sent out from a class

DAC The number of instances of another class declared within a class

NOM The number of methods in a class

SIZE1 The number of lines of code excluding comments

SIZE2 The total count of the number of data attributes and the number of local methods in a class

c

p

t

r

c

m

d

b

v

a

m

b

p

t

d

d

a

o

a

5

c

m

t

u

s

p

C

a

F

g

t

r

a

p

(

1

3

a

(

i

F

s

a

‘

a

f

s

a

a

T

s

m

s

c

1

s

a

C

C

i

s

o

t

a

l

m

5

p

d

c

p

i

C

f

S

n

r

p

i

a

f

d

m

s

t

t

r

t

t

[

f

s

F
entage of changed instances. These three datasets have the least

ercentage of the changed instances. This will have on impact on

he ‘instance selection’ step of our method, since the final model

elies on learning from the selected instances. Therefore, the per-

entage of changed instances might be a threat of applying our

ethod. However, considering the performance in average of 14

atasets, our unsupervised methods do not need prior labeled data

ut achieve competitive or even better performance than super-

ised within-project prediction methods. Hence, our method offers

 viable solution for unlabeled dataset.

In addition, we also compute the weighted average perfor-

ance in Table 3 based on the size of each dataset (i.e., the num-

er of instances as Table 1 shows). In terms of CCR, our unsu-

ervised methods CLAMI/CLAMI + perform worse. The reason is

hat CLAMI/CLAMI + perform worse in terms of CCR at some large

atasets, such as ‘argouml-0.32.2’ and ‘azureus-4.1.0.4’. These two

atasets have the highest number of instances. In terms of AUC

nd F-measure, it shows that our conclusion remained no change,

ur unsupervised methods outperform the five baselines in aver-

ge.

.2. Answer of RQ2: performance of the unsupervised and

ross-project method

The application scene of unsupervised and cross-project (CP)

ethod are similar. Both of them are suitable for building predic-

ion model for unlabeled datasets. In this section, we compare the

nsupervised method with cross-project prediction method on the

ame target datasets.

In cross-project prediction, there is a source and target in each

air. The source is the training set and the target is the testing set.

oncretely, we use the previous version in Table 1 as the source

nd the target version as the target. Fig. 4 shows the CCR, AUC and

-measure in different cross-project prediction pairs. For each tar-

et data, there are 13 〈 source, target 〉 pairs (14 projects except for

he one previous version in the same project). In Fig. 4 , the x-axis

epresents the target data, the y-axis represents the source data,

nd the color (i.e., the gray degree) in each entry represents the

erformance. For example, when the target dataset is ‘ant-1.8.2.0’

the first column), we will build 13 cross-project models by using

3 previous version data in other 13 projects (i.e., from ‘ < antlr-

.3.0, ant-1.8.2.0 > ’ to ‘ < weka 3.5.7, ant-1.8.2.0 > ’). The case which

dopts the ‘ant-1.8.1.0’ as the source is not considered in this RQ

we will use 0 to represent the performance in this RQ), since it

s a within-project case which has been investigated in RQ1. From

ig. 4 , we find that the performance is not stable due to different

ource. For example, when target on ‘ant-1.8.2.0’, the CCR is gener-

lly good in most pairs except for training on ‘lucene-3.6.2.0’ and

weka-3.5.7’. When target on ‘freemind-0.6.7’, most of the source

re not suitable for training. The reason behind the not stable per-

ormance is the difference of data distribution [17] between the

ource and target.
In order to compare the performance of the unsupervised

nd cross-project methods, we compute the average performance

mong 13 cross-project pairs for each target version. In detail,

able 4 lists the comparison among 14 projects. Overall, the un-

upervised methods CLAMI and CLAMI + show comparable perfor-

ance to the cross-project prediction method. In particular, con-

idering the CCR measure, the unsupervised methods outperform

ross-project method among 7 datasets. In the dataset like ant-

.8.2.0, the unsupervised methods perform worse. However, con-

idering the average of all datasets, unsupervised methods CLAMI

nd CLAMI + improve them by 5.4% and 7.9% in terms of CCR.

onsidering the AUC measure, unsupervised methods CLAMI and

LAMI + outperform cross-project method among 13 datasets and

mprove them by 14.5% and 18.2% in average of all datasets. Con-

idering the F-measure, unsupervised methods CLAMI and CLAMI +
utperform cross-project method among 10 datasets and improve

hem by 35.1% and 40.5% in average of all datasets. Note that the

dvantage of unsupervised method is that they do not need prior

abeled data from other projects but achieve comparable perfor-

ance than cross-project prediction method.

.3. Answer of RQ3: performance of the CLAMI and CLAMI +

Table 3 shows that the performance of CLAMI + achieves com-

arable or better result than CLAMI method. Only one out of the 14

atasets in which the CLAMI + shows the worse result than CLAMI

onsidering AUC, CCR or F-measure. In other cases, the CLAMI +
erforms better or at least the same with CLAMI. Also, consider-

ng the average of all datasets, the CLAMI + method improves the

LAMI method by 2.9% in CCR, 3.2% in AUC and 4% in F-measure.

In addition, we adopt the Friedman test to test whether the dif-

erence of the performance of all the methods (i.e., LB, MLP, RBF,

VM, SK, CP, CLAMI and CLAMI +) are statistically significant or

ot by following the guideline of Demšar [44] . The Friedman test

esults are as Table 5 shows. We list the average ranks (the ap-

roach with the best performance is ranked in “8") and the signif-

cant level p-value. In terms of CCR, the CLAMI and CLAMI + show

 comparable rank although not the best, and the CLAMI + outper-

orms CLAMI. The p-value is greater than 0.05 which means the

ifference at CCR is not statistically significant between all the 8

ethods. In terms of AUC and F-measure, the CLAMI and CLAMI +
how the higher ranks than other six baselines and the CLAMI + is

he best. And the p-values in both of the two measures are smaller

han 0.05 which suggests that the difference between the average

anks of all the methods is statistically significant in terms of the

wo performance measures.

Subsequently, we conduct a post-hoc test (i.e., the Nemenyi

est) for each pair of the methods by following the guidelines

17 , 44] . We use Fig. 5 to show the results of the Nemenyi test by

ollowing the visualization technique of Yan et al. [45] . Fig. 5 (a)

hows the results of CCR, Fig. 5 (b) shows the results of AUC and

ig. 5 (c) shows the results of F-measure. The x-axis value repre-

8 M. Yan et al. / Information and Software Technology 92 (2017) 1–16

Fig. 4. CCR and AUC in cross-project predicton. Each square represents a prediction pair (source- > target). The diagonal squre is not considered in this RQ, since it has been

investigated in RQ1.

M. Yan et al. / Information and Software Technology 92 (2017) 1–16 9

Fig. 5. The average ranks comparison of all the baselines and unsupervised methods by using the Nemenyi test. Methods that are not significantly different are connected.

Fig. 5(a) shows the results of CCR, Fig. 5(b) shows the results of AUC and Fig. 5(c) shows the results of F-measure.

10 M. Yan et al. / Information and Software Technology 92 (2017) 1–16

Table 3

Performance comparison between unsupervised methods and five baselines. If the performance of the unsupervised

methods CLAMI/CLAMI + outperforms all the five baselines, the results are in bold. The better results between CLAMI

and CLAMI + are underlined.

(a) CCR Comparison

CCR

Project LB MLP RBF SVM SK CLAMI CLAMI +

‘ant-1.8.2.0’ 88.63 89.22 88.63 87.80 61.85 58.29 58.29

‘antlr-3.4.0’ 56.85 53.53 46.47 36.51 37.76 65.56 65.56

‘argouml-0.32.2’ 60.33 60.33 60.33 60.33 28.31 46.05 52.23

‘azureus-4.1.0.4’ 92.32 92.38 92.29 92.29 91.17 52.83 52.83

‘freecol-0.10.5’ 29.93 30.10 28.26 28.26 32.27 63.88 64.05

‘’freemind-0.6.7’ 39.19 43.24 32.43 24.32 47.57 52.70 60.81

‘hibernate-3.1.2.0’ 6.92 8.22 6.38 6.38 41.73 50.70 57.62

‘jgraph-5.12.1.0’ 84.91 86.79 88.68 83.02 88.68 69.81 69.81

‘jmeter-2.8.0.0’ 52.89 57.59 51.08 50.84 56.87 63.98 66.63

‘jstock-1.0.7.2’ 89.49 89.49 89.13 88.41 70.65 55.07 55.07

‘jung-1.7.4’ 72.65 72.01 71.58 71.15 69.66 52.35 51.50

‘junit-4.10.0’ 12.88 14.72 9.20 7.98 26.99 52.76 52.76

‘lucene-4.0.0.0’ 34.35 34.35 34.35 34.35 56.94 65.97 65.97

‘weka-3.5.8’ 36.10 33.87 37.62 21.00 44.98 55.59 55.67

Average 54.10 54.70 52.60 49.47 53.96 57.54 59.20

Weighted average 61.49 61.77 61.00 58.84 59.50 55.03 56.71

(b) AUC Comparison

Project AUC

LB MLP RBF SVM SK CLAMI CLAMI +

‘ant-1.8.2.0’ 0.60 0.60 0.58 0.51 0.66 0.65 0.65

‘antlr-3.4.0’ 0.63 0.60 0.55 0.47 0.48 0.65 0.65

‘argouml-0.32.2’ 0.51 0.51 0.51 0.51 0.31 0.49 0.52

‘azureus-4.1.0.4’ 0.47 0.47 0.47 0.47 0.58 0.64 0.64

‘freecol-0.10.5’ 0.47 0.47 0.45 0.45 0.49 0.67 0.67

‘freemind-0.6.7’ 0.66 0.62 0.56 0.58 0.50 0.61 0.63

‘hibernate-3.1.2.0’ 0.54 0.55 0.54 0.54 0.48 0.61 0.62

‘jgraph-5.12.1.0’ 0.65 0.67 0.73 0.49 0.65 0.72 0.7 7

‘jmeter-2.8.0.0’ 0.56 0.60 0.56 0.58 0.61 0.65 0.67

‘jstock-1.0.7.2’ 0.61 0.61 0.60 0.57 0.55 0.62 0.6 6

‘jung-1.7.4’ 0.49 0.48 0.47 0.47 0.54 0.51 0.56

‘junit-4.10.0’ 0.57 0.59 0.55 0.55 0.65 0.76 0.76

‘lucene-4.0.0.0’ 0.47 0.47 0.47 0.47 0.54 0.65 0.65

‘weka-3.5.8’ 0.52 0.48 0.53 0.45 0.60 0.59 0.58

Average 0.55 0.55 0.54 0.51 0.55 0.63 0.6 5

Weighted average 0.52 0.51 0.51 0.49 0.53 0.61 0.62

(c) F-measure Comparison

Project F-measure

LB MLP RBF SVM SK CLAMI CLAMI +

‘ant-1.8.2.0’ 0.30 0.31 0.26 0.25 0.31 0.30 0.30

‘antlr-3.4.0’ 0.59 0.54 0.42 0.21 0.23 0.72 0.72

‘argouml-0.32.2’ 0.48 0.45 0.42 0.44 0.28 0.46 0.43

‘azureus-4.1.0.4’ 0.12 0.12 0.13 0.11 0.32 0.21 0.21

‘freecol-0.10.5’ 0.44 0.45 0.60 0.43 0.11 0.69 0.70

‘freemind-0.6.7’ 0.48 0.54 0.40 0.26 0.62 0.65 0.73

‘hibernate-3.1.2.0’ 0.52 0.53 0.60 0.53 0.70 0.65 0.72

‘jgraph-5.12.1.0’ 0.50 0.53 0.63 0.31 0.63 0.56 0.56

‘jmeter-2.8.0.0’ 0.45 0.55 0.39 0.31 0.48 0.65 0.70

‘jstock-1.0.7.2’ 0.17 0.17 0.12 0.13 0.18 0.24 0.24

‘jung-1.7.4’ 0.42 0.41 0.39 0.37 0.32 0.39 0.47

‘junit-4.10.0’ 0.52 0.44 0.43 0.42 0.34 0.65 0.65

‘lucene-4.0.0.0’ 0.51 0.51 0.51 0.51 0.43 0.58 0.58

‘weka-3.5.8’ 0.26 0.24 0.26 0.23 0.34 0.30 0.30

Average 0.41 0.41 0.40 0.32 0.38 0.50 0.52

Weighted average 0.33 0.33 0.33 0.29 0.35 0.41 0.42

r

f

p

b

o
sents the average rank of each method. The y-axis which corre-

sponds to an arrow represents the index of a method (8 methods

in total). In addition, the 9 th index at y-axis represents the criti-

cal difference (referred to as CD), its value is represented by the

line’s length. In detail, it is a critical value, namely, the average
anks of the two methods is significantly different when the dif-

erence of the average ranks exceeds CD value [44] . The CD is im-

acted by the significance level α (α = 0 . 05 in this case), the num-

er of compared methods k (k = 8 in this case) and the number

f the datasets N (N = 14 in this case) . It is computed as Formula

M. Yan et al. / Information and Software Technology 92 (2017) 1–16 11

Table 4

Performance comparison between unsupervised methods and cross-project (CP) prediction method. If the perfor-

mance of the unsupervised methods CLAMI/CLAMI + outperforms the cross-project method, the results are in bold.

Project CCR AUC F-measure

CP CLAMI CLAMI + CP CLAMI CLAMI + CP CLAMI CLAMI +

‘ant-1.8.2.0’ 74.21 58.29 58.29 0.56 0.65 0.65 0.31 0.30 0.30

‘antlr-3.4.0’ 41.94 65.56 65.56 0.48 0.65 0.65 0.43 0.72 0.72

‘argouml-0.32.2’ 57.71 46.05 52.23 0.52 0.49 0.52 0.34 0.46 0.43

‘azureus-4.1.0.4’ 76.49 52.83 52.83 0.58 0.64 0.64 0.30 0.21 0.21

‘freecol-0.10.5’ 45.95 63.88 64.05 0.55 0.67 0.67 0.44 0.69 0.70

‘freemind-0.6.7’ 27.86 52.70 60.81 0.57 0.61 0.63 0.41 0.65 0.73

‘hibernate-3.1.2.0’ 24.24 50.70 57.62 0.56 0.61 0.62 0.40 0.65 0.72

‘jgraph-5.12.1.0’ 75.04 69.81 69.81 0.61 0.72 0.77 0.45 0.56 0.56

‘jmeter-2.8.0.0’ 49.04 63.98 66.63 0.54 0.65 0.67 0.39 0.65 0.70

‘jstock-1.0.7.2’ 72.88 55.07 55.07 0.62 0.62 0.66 0.27 0.24 0.24

‘jung-1.7.4’ 65.96 52.35 51.50 0.51 0.51 0.56 0.40 0.39 0.47

‘junit-4.10.0’ 19.77 52.76 52.76 0.53 0.76 0.76 0.37 0.65 0.65

‘lucene-4.0.0.0’ 65.21 65.97 65.97 0.53 0.65 0.65 0.34 0.58 0.58

‘weka-3.5.8’ 71.68 55.59 55.67 0.51 0.59 0.58 0.27 0.30 0.30

Average 54.86 57.54 59.20 0.55 0.63 0.65 0.37 0.50 0.52

Table 5

Friedman test for the performance comparison.

Measure Average rank p-value

LB MLP RBF SVM SK CP CLAMI CLAMI +

CCR 4.93 5.39 4.25 3.04 4.46 4.07 4.75 5.11 0.243

AUC 4.07 4.14 3.18 2.29 4.39 4.04 6.43 7.46 0.0 0 0

F-measure 4.39 4.64 3.68 2.07 4.39 3.79 6.29 6.75 0.0 0 0

Fig. 6. Illustration of the difference in the curve of sigmoid function by varying the steepness.

(

g

a

C

t

i

n

o

a

o

p

i

a

t

n

n

c

m

a

C

t

5

f

d

t

e

t
3) shows [44] . The q α is decided by referring the value table sug-

ested by Demšar [44] which is related with the significance level

nd the number of compared methods (q α = 3 . 031 in our case).

D = q α

√

k (k + 1)

6 N

(3)

The connected line between two methods in Fig. 5 represents

hat the difference of the average ranks between the two methods

s less than CD. It represents that there is not a statistically sig-

ificant difference between the two methods. From Fig. 5 (a), we

bserve that the differences of the average ranks of all the pairs

re not statistically significant in terms of CCR, since all the meth-

ds are connected. From Fig. 5 (b), we observe that CLAMI + out-

erforms the SVM, RBF, CP, MLP, SK and LB with statistical signif-

cance in terms of AUC. In addition, CLAMI outperforms the SVM

nd RBF with statistical significance. From Fig. 5 (c), we observe

hat CLAMI + outperforms the SVM, RBF and CP with statistical sig-
ificance. And the average ranks between CLAMI and CLAMI + do

ot show a significant difference in AUC and F-measure.

Overall, In terms of CCR, the unsupervised methods show a

omparable rank although not the best. In terms of AUC and F-

easure, the unsupervised methods show the higher ranks than

ll the baselines. In addition, CLAMI + shows the better ranks than

LAMI in both CCR, AUC and F-measure although they are not sta-

istically significant.

.4. Answer of RQ4: effect of varying the steepness of sigmoid

unction

In this work, we adopt the sigmoid function to transform the

ifference between metric value and metric threshold to the viola-

ion degree. The sensitivity of the transformation with the differ-

nce is impacted by the steepness of the function. Fig. 6 illustrates

he different curves of the function by setting different steepness

12 M. Yan et al. / Information and Software Technology 92 (2017) 1–16

Fig. 7. The average performance by varying the steepness of sigmoid function.

M. Yan et al. / Information and Software Technology 92 (2017) 1–16 13

Fig. 8. Distribution comparison of the performance by varying the threshold. Each box represents the performance distribution of all the datasets at a threshold. The line

plot represents the average performance.

f

n

r

w

c

w

r

s

i

r

t

(

o

f

m

e

h

t

o

t

a

1

o

n

t

T

m

b

c

o

d

s

t

s

5

o

1

n

d

e

t

t

o

s

t

t

t

t

f

d

a

e

P

d

f

t

c

b

s

o

m

p

o

w

T

e

m

i

t

a

r

6

6

i

rom S = 0.5 to S = 1.5 (stepped by 0.5) . It shows that if the steep-

ess value is greater, the function curve is steeper, the working

ange in the x-axis (e.g., [−6, 6] when S = 1) is more narrow. The

orking range corresponds to the results of transformation which

an further impact our clustering and labeling step.

In order to explore the effect of steepness to our performance,

e conduct the experiments by varying steepness in a certain

ange. Fig. 7 shows the results of performance by varying the

teepness. Overall, our finding suggests that: (1) the performance

s slightly impacted by the steepness. Concretely, the average CCR

anges from 58.618 to 59.828, the average AUC ranges from 0.633

o 0.652 and the average F-measure ranges from 0.514 to 0.534.

2) The steepness smaller than 1 has better performance than the

ne greater than 1. The reason is that the transformation of the

unction is slower when smaller than 1. As a result, the output is

ore diverse which records more informative values of the differ-

nce between metric values and metric threshold. However, it is

asty to state that the smaller the better, since it does not follow

he pattern certainly. For example, we manually check the results

f each project. The best steepness choice of ‘ant-1.8.2’ is 1 while

he best steepness choice of ‘antlr-3.4.0’ is 0.05. Therefore, gener-

lly, the performance is better when the steepness is smaller than

 and the best choice of the steepness is different which depends

n the datasets. (3) The performance is stable when the steep-

ess is greater than a certain value. From Fig. 7 , we found that

he performance keep fixed when the steepness is greater than 2.

his indicates that the performance converges when the transfor-

ation does not impact the following step of our method (i.e., la-

eling). The reason is that when the steepness is greater than a

ertain value, the working range of x-axis is smaller than a thresh-

ld. Meanwhile, the output of the K value (in our clustering step)

oes not impact the clustering result. As a result, the clustering re-

ults are the same, and the labeling results are also the same in

hose cases. Therefore, the models and the performances are the

ame when the steepness is greater than a certain value.

.5. Answer of RQ5: effect of varying the metric threshold

To investigate the effect of the threshold, we adopt various cut-

ff metric values as the threshold: n-th percentiles where n is

0, 20, …, 90 and the mean value. Totally, we use 10 thresholds,

amely, P10 (i.e., the 10th percentile), P20, P30, P40, P50 (i.e., me-
ian), P60, P70, P80, P90 and Mean. Fig. 8 and Table 6 provide the

xperimental results. In detail, Fig. 8 shows the performance dis-

ribution comparison at different thresholds. Each box represents

he performance distribution at a certain threshold. In addition, in

rder to provide the overall insight, we use the line plot to repre-

ent the mean of the performance of all the datasets at different

hresholds. Table 6 provides the detailed performance values of all

he datasets at different thresholds.

In summary, our finding suggests that: (1) the choice of the

hreshold has an effect to the performance of our method. Through

he boxplot, we found that there is a significant difference at dif-

erent thresholds, including the median, mean and the degree of

ispersion of each box. Through Table 6 , we found that there is

 significant difference for a certain dataset when choosing differ-

nt threshold. For example, the best CCR for ‘ant-1.8.2.0’ is 87.2 at

30 and the worst is 12.91 at P90. (2) The threshold P50 (i.e., me-

ian) is not the best choice considering the average performance

or all the datasets. In detail, the best choice is P10 considering

he average CCR and F-measure. The best choice is P30 and P50

onsidering the average AUC. Besides, through the spacing of the

ox in Fig. 8 and the standard deviation value in Table 6 , we ob-

erve that the degree of dispersion is smaller when setting thresh-

ld as P50 considering both CCR and AUC. This suggests that the

edian can be regarded as an empirical choice when we have no

rior knowledge for deciding better threshold. (3) The best choice

f the threshold depends on the dataset. In detail, through Table 6 ,

e observe that the best choice for different datasets are various.

he reason comes from the problem of using thresholds. In gen-

ral, it is stated that a threshold value woks well in one setting

ust not necessarily be good every setting [46] . It depends on var-

ous factors which are project dependent, such as the organization,

he tools used and the qualification of the developers. Therefore,

 more specific thresholds deciding method for different project is

equired to enhance our method.

. Threats to validity

.1. Internal validity

Threats to internal validity result from the potential limitations

n our experiments.

14 M. Yan et al. / Information and Software Technology 92 (2017) 1–16

Table 6

The performance of different datasets at different thresholds. The best choice for each dataset are in bold.

Threshold

Dataset P10 P20 P30 P40 P50 P60 P70 P80 P90 Mean

(a) CCR with different thresholds

‘ant-1.8.2.0’ 38.51 35.55 87.20 71.45 58.29 86.02 67.18 72.75 12.91 71.45

‘antlr-3.4.0’ 71.37 80.50 64.32 30.71 65.56 47.30 48.96 75.93 74.27 56.02

‘argouml-0.32.2’ 57.08 55.28 60.40 56.74 52.23 47.04 57.61 46.05 59.14 54.68

‘azureus-4.1.0.4’ 65.66 85.05 52.51 39.49 52.83 16.89 84.25 29.75 63.71 73.84

‘freecol-0.10.5’ 74.25 45.32 60.20 80.77 64.05 72.91 73.58 40.80 37.79 48.33

‘freemind-0.6.7’ 50.00 58.11 83.78 45.95 60.81 32.43 81.08 66.22 21.62 35.14

‘hibernate-3.1.2.0’ 65.62 9.62 65.62 37.51 57.62 72.97 80.32 58.16 28.97 31.24

‘jgraph-5.12.1.0’ 69.50 41.51 86.79 54.72 69.81 77.36 39.62 62.26 84.91 84.91

‘jmeter-2.8.0.0’ 73.37 60.48 69.40 66.87 66.63 66.63 70.00 70.00 72.41 60.36

‘jstock-1.0.7.2’ 55.07 26.81 15.58 72.83 55.07 87.32 42.03 34.06 33.33 72.83

‘jung-1.7.4’ 48.93 69.02 68.59 51.50 51.50 56.62 58.55 58.55 37.18 61.54

‘junit-4.10.0’ 98.16 60.12 81.60 95.71 52.76 31.90 52.76 75.46 37.42 37.42

‘lucene-4.0.0.0’ 69.52 56.13 68.87 65.65 65.97 63.55 67.74 44.03 70.00 67.74

‘weka-3.5.8’ 72.83 54.07 40.30 83.29 55.67 66.22 35.75 75.34 59.96 65.06

Average 64.99 52.68 64.65 60.94 59.20 58.94 61.39 57.81 49.55 58.61

Standard deviation 14.00 19.37 19.40 19.02 6.22 21.28 15.99 16.12 22.27 15.94

(b) AUC with different thresholds

‘ant-1.8.2.0’ 0.63 0.61 0.64 0.67 0.65 0.66 0.65 0.72 0.50 0.67

‘antlr-3.4.0’ 0.59 0.67 0.65 0.43 0.65 0.56 0.56 0.56 0.48 0.62

‘argouml-0.32.2’ 0.57 0.59 0.51 0.59 0.52 0.56 0.51 0.49 0.52 0.50

‘azureus-4.1.0.4’ 0.54 0.64 0.65 0.59 0.64 0.51 0.65 0.56 0.67 0.68

‘freecol-0.10.5’ 0.52 0.58 0.67 0.73 0.67 0.70 0.50 0.54 0.53 0.60

‘freemind-0.6.7’ 0.56 0.62 0.70 0.59 0.63 0.63 0.71 0.66 0.57 0.65

‘hibernate-3.1.2.0’ 0.62 0.56 0.62 0.63 0.62 0.60 0.56 0.62 0.62 0.63

‘jgraph-5.12.1.0’ 0.66 0.55 0.77 0.65 0.77 0.79 0.54 0.70 0.62 0.76

‘jmeter-2.8.0.0’ 0.71 0.63 0.64 0.61 0.67 0.67 0.69 0.69 0.70 0.63

‘jstock-1.0.7.2’ 0.62 0.60 0.59 0.66 0.66 0.60 0.66 0.64 0.63 0.66

‘jung-1.7.4’ 0.58 0.49 0.51 0.56 0.56 0.60 0.61 0.51 0.52 0.52

‘junit-4.10.0’ 0.95 0.80 0.93 0.98 0.76 0.67 0.76 0.89 0.69 0.69

‘lucene-4.0.0.0’ 0.64 0.61 0.62 0.65 0.65 0.66 0.63 0.55 0.61 0.63

‘weka-3.5.8’ 0.56 0.58 0.57 0.54 0.58 0.60 0.54 0.56 0.59 0.59

Average 0.63 0.61 0.65 0.64 0.65 0.63 0.61 0.62 0.59 0.63

Standard deviation 0.11 0.07 0.11 0.12 0.07 0.07 0.08 0.11 0.07 0.07

(c) F-measure with different thresholds

‘ant-1.8.2.0’ 0.27 0.26 0.36 0.35 0.30 0.37 0.32 0.39 0.22 0.35

‘antlr-3.4.0’ 0.81 0.87 0.70 0.05 0.72 0.42 0.45 0.85 0.85 0.57

‘argouml-0.32.2’ 0.50 0.56 0.00 0.55 0.43 0.59 0.21 0.46 0.14 0.31

‘azureus-4.1.0.4’ 0.31 0.31 0.21 0.18 0.21 0.15 0.31 0.17 0.24 0.28

‘freecol-0.10.5’ 0.85 0.40 0.63 0.87 0.70 0.80 0.84 0.31 0.25 0.45

‘freemind-0.6.7’ 0.63 0.71 0.91 0.58 0.73 0.39 0.89 0.78 0.22 0.43

‘hibernate-3.1.2.0’ 0.78 0.07 0.78 0.51 0.72 0.84 0.89 0.72 0.39 0.42

‘jgraph-5.12.1.0’ 0.54 0.42 0.70 0.48 0.56 0.63 0.41 0.52 0.43 0.64

‘jmeter-2.8.0.0’ 0.78 0.58 0.79 0.78 0.70 0.70 0.75 0.75 0.78 0.56

‘jstock-1.0.7.2’ 0.24 0.23 0.22 0.29 0.24 0.22 0.26 0.24 0.24 0.29

‘jung-1.7.4’ 0.49 0.19 0.26 0.47 0.47 0.49 0.50 0.36 0.47 0.35

‘junit-4.10.0’ 0.99 0.72 0.89 0.98 0.65 0.41 0.65 0.85 0.48 0.48

‘lucene-4.0.0.0’ 0.53 0.56 0.49 0.57 0.58 0.59 0.54 0.53 0.46 0.54

‘weka-3.5.8’ 0.30 0.29 0.28 0.29 0.30 0.32 0.27 0.30 0.31 0.32

Average 0.57 0.44 0.52 0.50 0.52 0.49 0.52 0.52 0.39 0.43

Standard deviation 0.24 0.23 0.29 0.26 0.19 0.21 0.24 0.23 0.21 0.12

t

o

C

t

i

A

f

6

o

d
Impact of the threshold. The clustering and labeling phase

is impacted by the choice of metric threshold. There are various

methods for deciding a metric threshold. The results show that the

choice of threshold depends on the dataset. However, we did not

provide the threshold deciding method. This might be a threat to

our work. In this work, we adopt a typical threshold (i.e., the me-

dian) and explore the effect of different thresholds to mitigate this

issue. A more refined work is to propose a method of automatically

deciding the threshold for each dataset.

Impact of sigmoid function. The difference of our proposed

CLAMI + method is that we transform the 1 or 0 result (violation

or not) to a continuous value ranging from 0 to 1 which represents

the violation degree by using the sigmoid function. The parame-

ter of sigmoid function, such as steepness, has an impact on the

a
ransformation. However, we adopt the regular sigmoid function

n all the metrics. This might be a limitation to the performance of

LAMI + , since different metrics possess different distribution and

hey may suitable for different parameter settings. We explore the

mpact of different settings of steepness to mitigate this problem.

 more refined work is to investigate the different settings at dif-

erent metrics.

.2. External validity

Threats to external validity correlate with the generalizability of

ur approach.

Impact of project features. The proposed methods are vali-

ated on the adopted versions of open-source projects. The gener-

lization of the results may be an external threat. Different projects

M. Yan et al. / Information and Software Technology 92 (2017) 1–16 15

h

t

c

s

H

o

J

t

g

o

I

t

l

h

C

o

a

s

t

t

7

t

c

p

s

I

p

w

f

p

l

p

C

C

F

m

i

A

m

a

m

t

a

p

d

c

i

t

p

o

s

A

N

a

t

C

o

R

[

[

[

[

[

[

[

[

ave different properties, such as programming languages, dura-

ion between releases and software maturity. These properties are

onfounding factors which may impact the results. Thus, how to

elect the experimental projects may be a threat to the validity.

owever, we adopted 14 projects to mitigate this threat. In terms

f the programming language, since the adopted datasets are all

ava systems, the method may not work well when generalizing

o other languages. The reason is that different programming lan-

uages may have different code metrics. For example, the object-

riented (OO) metrics are only existed in OO languages. However,

f the generalized language has the similar metric rationale (i.e.,

he change-prone tendency), the problem can be mitigated.

Impact of the project version features. There are multiple re-

ease versions in a software lifecycle. Different software versions

ave different features, such as types and percentage of changes.

urrently, we does not draw a conclusion on how does it impact

ur method. Thus, how to select the experimental versions may be

 threat to the validity. However, we adopted 14 projects with the

ame version selection manner to mitigate this threat. To eliminate

his threat further, a more refined work is needed to investigate

he proposed method on massive versions in a variety of projects.

. Conclusion and future work

In this paper, we proposed to adopt unsupervised approach to

ackle change-prone class prediction on unlabeled datasets. Con-

retely, we applied a state-of-art unsupervised method CLAMI and

roposed a novel approach CLAMI + by extending CLAMI. The un-

upervised approach was evaluated on 14 open source projects.

n addition, we compared its performance against typical within-

roject prediction methods (learning from historical labeled data

ithin a project) and cross-project prediction methods (learning

rom another labeled project). The results showed that the unsu-

ervised methods yield comparable or better results to the base-

ines.

In summary, we drew the conclusions as follows: first, com-

ared with the within-project prediction methods in average,

LAMI and CLAMI + improved them by 5.2% −19.7% in terms of

CR, 13.9% −27.2% in terms of AUC and 21.7% −61.9% in terms of

-measure. Second, compared with the cross-project prediction

ethod, the unsupervised methods CLAMI and CLAMI + improved

t by 5.4% and 7.9% in terms of CCR, by 14.5% and 18.2% in terms of

UC, by 35.1% and 40.5% in terms of F-measure. Third, the perfor-

ance of CLAMI + outperforms the CLAMI method. Considering the

verage of all datasets, the CLAMI + method improves the CLAMI

ethod by 2.9% in CCR, 3.2% in AUC and 4% in F-measure. Fourth,

he steepness of the sigmoid function and the choice of threshold

re two factors which have an impact on the proposed method.

In the future, we plan to enhance the effectiveness of our ap-

roach further from three aspects. First, we plan to add some stan-

ard machine learning clustering methods (e.g., k-means or fuzzy

-means) in the grouping step. Second, we plan to investigate the

mpact of data imbalance and propose to use imbalance-aware

echnique to enhance our method. Third, we plan to improve the

erformance by proposing an adaptive method to determine the

ptimized parameters including the threshold and the setting of

igmoid function.

cknowledgments

The work described in this paper was partially supported by the

ational Natural Science Foundation of China (Grant no. 61402062

nd 61602068), the Fundamental Research Funds for the Cen-

ral Universities of China (Grant No. 106112017CDJXY090 0 01) and

hongqing Research Program of Basic Science & Frontier Technol-

gy (No. cstc2017jcyjB0305).
eferences

[1] Y. Zhou , H. Leung , Predicting object-oriented software maintainability using

multivariate adaptive regression splines, J. Syst. Softw. 80 (2007) 1349–1361 .

[2] R. Malhotra , M. Khanna , Examining the effectiveness of machine learning al-
gorithms for prediction of change prone classes, in: Proceedings of the nter-

national Conference on High Performance Computing & Simulation, 2014,
pp. 635–642 .

[3] M. Yan , Y. Fu , X. Zhang , D. Yang , L. Xu , J.D. Kymer , Automatically classifying
software changes via discriminative topic model: supporting multi-category

and cross-project, J. Syst. Softw. 113 (2016) 296–308 .

[4] Y. Fu , M. Yan , X. Zhang , L. Xu , D. Yang , J.D. Kymer , Automated classification of
software change messages by semi-supervised latent dirichlet allocation, Inf.

Softw. Technol. 57 (2015) 369–377 .
[5] R. Malhotra , M. Khanna , An exploratory study for software change prediction

in object-oriented systems using hybridized techniques, Autom. Softw. Eng.
(2016) 1–45 .

[6] M. Elish , H. Aljamaan , I. Ahmad , Three empirical studies on predicting software
maintainability using ensemble methods, Soft Comput. 19 (2015) 2511–2524 .

[7] Z. Yuming , H. Leung , X. Baowen , Examining the potentially confounding ef-

fect of class size on the associations between object-oriented metrics and
change-proneness, IEEE Trans. Softw. Eng. 35 (2009) 607–623 .

[8] F. Khomh , M. Di Penta , X Gue , X He , Y. Neuc , An exploratory study of the im-
pact of code smells on software change-proneness, in: Proceedings of the 16th

Working Conference on Reverse Engineering (WCRE 2009), 2009, pp. 75–84 .
[9] D. Posnett , C. Bird , P. Dévanbu , An empirical study on the influence of pattern

roles on change-proneness, Empir. Softw. Eng. 16 (2011) 396–423 .

[10] M.O. Elish , M. Al-Rahman Al-Khiaty , A suite of metrics for quantifying histori-
cal changes to predict future change-prone classes in object-oriented software,

J. Softw. 25 (2013) 407–437 .
[11] S. Eski , F. Buzluca , An empirical study on object-oriented metrics and software

evolution in order to reduce testing costs by predicting change-prone classes,
in: Proceedings of the IEEE Fourth International Conference on Software Test-

ing, Verification and Validation Workshops, 2011, pp. 566–571 .

[12] C. van Koten , A.R. Gray , An application of Bayesian network for predicting ob-
ject-oriented software maintainability, Inf. Softw. Technol. 48 (2006) 59–67 .

[13] M. Amoui , M. Salehie , L. Tahvildari , Teporal software change prediction using
neural networks, Int. J. Softw. Eng. Knowl. Eng. 19 (2009) 995–1014 .

[14] R. Malhotra , A.J. Bansal , Cross project change prediction using open source
projects, in: Proceedings of the International Conference on Advances in Com-

puting, Communications and Informatics, 2014, pp. 201–207 .

[15] J. Nam , S.J. Pan , S. Kim , Transfer defect learning, in: Proceedings of the Interna-
tional Conference on Software Engineering, „ IEEE Press, San Francisco, CAUSA,

2013, pp. 382–391 .
[16] A. Panichella , R. Oliveto , A. De Lucia , Cross-project defect prediction models:

L’Union fait la force, in: Proceedings of the IEEE Conference on Software Main-
tenance, Reengineering and Reverse Engineering, 2014, pp. 164–173 .

[17] J. Nam , S. Kim , CLAMI: defect prediction on unlabeled datasets, in: Proceed-

ings of the 30th IEEE/ACM International Conference on Automated Software
Engineering, 2015, pp. 452–463 .

[18] S.J. Pan , Q. Yang , A survey on transfer learning, IEEE Trans. Knowl. Data Eng.
22 (2010) 1345–1359 .

[19] B. Turhan , On the dataset shift problem in software engineering prediction
models, Empir. Softw. Eng. 17 (2012) 62–74 .

20] S. Zhong , T.M. Khoshgoftaar , N. Seliya , Unsupervised learning for expert-based

software quality estimation, in: HASE, Citeseer, 2004, pp. 149–155 .
[21] Y. Yang , Y. Zhou , J. Liu , Y. Zhao , H. Lu , L. Xu , B. Xu , H. Leung , Effort-aware

just-in-time defect prediction: simple unsupervised models could be better
than supervised models, in: Proceedings of the 2016 24th ACM SIGSOFT In-

ternational Symposium on Foundations of Software Engineering, ACM, Seattle,
WA , USA , 2016, pp. 157–168 .

22] E. Tempero , C. Anslow , J. Dietrich , T. Han , L. Jing , M. Lumpe , H. Melton , J. Noble ,
TheQualitas Corpus , A curated collection of java code for empirical studies, in:

Proceedings of the 17th Asia Pacific Software Engineering Conference, 2010,

pp. 336–345 .
23] M. Yan , M. Yang , C. Liu , X. Zhang , Self-learning change-prone class prediction,

in: Proceedings of the 28th International Conference on Software Engineering
and Knowledge Engineering, 2016 .

[24] E. Giger , M. Pinzger , H.C. Gall , Can we predict types of code changes? An em-
pirical analysis, in: Mining Software Repositories (MSR), 2012 9th IEEE Work-

ing Conference on, 2012, pp. 217–226 .

25] D. Godara , R. Singh , A new hybrid model for predicting change prone class in
object oriented software, Int. J. Comput. Sci. Telecommun. 5 (2014) 1–6 .

26] A. Güne ̧s Koru , H. Liu , Identifying and characterizing change-prone classes in
two large-scale open-source products, J. Syst. Softw. 80 (2007) 63–73 .

[27] H. Lu , Y. Zhou , B. Xu , H. Leung , L. Chen , The ability of object-oriented met-
rics to predict change-proneness: a meta-analysis, Empir. Softw. Eng. 17 (2012)

200–242 .

28] L.C. Briand , W.L. Melo , J. Wust , Assessing the applicability of fault-proneness
models across object-oriented software projects, IEEE Trans. Softw. Eng. 28

(2002) 706–720 .
29] Z. He , F. Shu , Y. Yang , M. Li , Q. Wang , An investigation on the feasibility of

cross-project defect prediction, Autom. Softw. Eng. 19 (2012) 167–199 .
30] F. Peters , T. Menzies , A. Marcus , Better cross company defect prediction, in:

Proceedings of the 10th IEEE Working Conference on Mining Software Reposi-

tories, 2013, pp. 409–418 .

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0030

16 M. Yan et al. / Information and Software Technology 92 (2017) 1–16

[

[31] T. Zimmermann , N. Nagappan , H. Gall , E. Giger , B. Murphy , Cross-project de-
fect prediction: a large scale experiment on data vs. domain vs. process, in:

Proceedings of the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software

engineering, ACM, Amsterdam, The Netherlands, 2009, pp. 91–100 .
[32] B. Turhan , T. Menzies , A.B. Bener , J. Di Stefano , On the relative value of cross–

company and within-company data for defect prediction, Empirical Software
Engineering 14 (2009) 540–578 .

[33] R. Malhotra , M. Khanna , Mining the impact of object oriented metrics for

change prediction using machine learning and search-based techniques, in:
Proceedings of the International Conference on Advances in Computing, Com-

munications and Informatics, 2015, pp. 228–234 .
[34] R. Malhotra , A. Bansal , Prediction of change prone classes using threshold

methodology, Advances in Computer Science and Information Technology vol.
2 (2015) 30–35 .

[35] T. Menzies , J. Greenwald , A. Frank , Data mining static code attributes to learn

defect predictors, IEEE Trans. Softw. Eng. 33 (2007) 2–13 .
[36] A.G. Koru , J. Tian , Comparing high-change modules and modules with the

highest measurement values in two large-scale open-source products, IEEE
Trans. Softw. Eng. 31 (2005) 625–642 .

[37] E. Kocaguneli , T. Menzies , J. Keung , D. Cok , R. Madachy , Active learning and
effort estimation: Finding the essential content of software effort estimation

data, IEEE Trans. Softw. Eng. 39 (2013) 1040–1053 .
[38] Y.F. Li , M. Xie , T.N. Goh , A study of project selection and feature weighting for
analogy based software cost estimation, J. Syst. Softw. 82 (2009) 241–252 .

[39] M.O. Elish , K.O. Elish , Application of treenet in predicting object-oriented soft-
ware maintainability: a comparative study, in: Proceedings of the 13th Euro-

pean Conference on Software Maintenance and Reengineering (CSMR 2009),
2009, pp. 69–78 .

[40] S.R. Chidamber , C.F. Kemerer , A metrics suite for object oriented design, IEEE
Trans. Softw. Eng. 20 (1994) 476–493 .

[41] W. Li , S. Henry , Object-oriented metrics that predict maintainability, J. Syst.

Softw. 23 (1993) 111–122 .
[42] J.A . Hartigan , M.A . Wong , Algorithm AS 136: A k-means clustering algorithm, J.

R. Stat. Soc. Ser. C 28 (1979) 100–108 .
[43] F. Zhang , Q. Zheng , Y. Zou , A.E. Hassan , Cross-project defect prediction us-

ing a connectivity-based unsupervised classifier, in: Proceedings of the 38th
International Conference on Software Engineering, ACM, Austin, Texas, 2016,

pp. 309–320 .

44] J. Demsar , Statistical comparisons of classifiers over multiple data sets, J. Mach.
Learn. Res. 7 (2006) 1–30 .

[45] M. Yan , X. Zhang , D. Yang , L. Xu , J.D. Kymer , A component recommender
for bug reports using discriminative probability latent semantic analysis, Inf.

Softw. Technol. 73 (2016) 37–51 .
[46] S. Herbold , J. Grabowski , S. Waack , Calculation and optimization of thresholds

for sets of software metrics, Empir. Softw. Eng. 16 (2011) 812–841 .

http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0033a
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0033a
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0033a
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0033a
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0033a
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30163-X/sbref0045

	Automated change-prone class prediction on unlabeled dataset using unsupervised method
	1 Introduction
	2 Related work
	2.1 Change-prone prediction on labeled dataset
	2.2 Change-prone prediction on unlabeled dataset

	3 Approach
	3.1 Clustering and labeling
	3.2 Metric selection and instance selection
	3.3 Learning and prediction

	4 Experimental design
	4.1 Research questions
	4.2 Datasets
	4.3 Experimental baselines
	4.4 Performance measures

	5 Results
	5.1 Answer of RQ1: performance of the unsupervised and within-project method
	5.2 Answer of RQ2: performance of the unsupervised and cross-project method
	5.3 Answer of RQ3: performance of the CLAMI and CLAMI+
	5.4 Answer of RQ4: effect of varying the steepness of sigmoid function
	5.5 Answer of RQ5: effect of varying the metric threshold

	6 Threats to validity
	6.1 Internal validity
	6.2 External validity

	7 Conclusion and future work
	 Acknowledgments
	 References

