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Context: The component field in a bug report provides important location information required by devel-

opers during bug fixes. Research has shown that incorrect component assignment for a bug report often

causes problems and delays in bug fixes. A topic model technique, Latent Dirichlet Allocation (LDA), has

been developed to create a component recommender for bug reports.

Objective: We seek to investigate a better way to use topic modeling in creating a component recom-

mender.

Method: This paper presents a component recommender by using the proposed Discriminative Probability

Latent Semantic Analysis (DPLSA) model and Jensen–Shannon divergence (DPLSA-JS). The proposed DPLSA

model provides a novel method to initialize the word distributions for different topics. It uses the past

assigned bug reports from the same component in the model training step. This results in a correlation

between the learned topics and the components.

Results: We evaluate the proposed approach over five open source projects, Mylyn, Gcc, Platform, Bugzilla

and Firefox. The results show that the proposed approach on average outperforms the LDA-KL method by

30.08%, 19.60% and 14.13% for recall @1, recall @3 and recall @5, outperforms the LDA-SVM method by

31.56%, 17.80% and 8.78% for recall @1, recall @3 and recall @5, respectively.

Conclusion: Our method discovers that using comments in the DPLSA-JS recommender does not always

make a contribution to the performance. The vocabulary size does matter in DPLSA-JS. Different projects

need to adaptively set the vocabulary size according to an experimental method. In addition, the corre-

spondence between the learned topics and components in DPLSA increases the discriminative power of

the topics which is useful for the recommendation task.

© 2016 Elsevier B.V. All rights reserved.
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. Introduction

Bug report is a fundamental artifact for informing developers

bout software problems. Research on mining bug report reposi-

ories has demonstrated success in a variety of software activities,

uch as tracing the evolution of the project [1], evaluating devel-

per’s expertise and contribution [2] and improving the software

roduct quality [3]. However, the use of a bug report depends

n correct triaging. Every new bug report has to be triaged to

component when submitted. This allows an efficient fixing by

he appropriate development team which is responsible for the

omponent [4]. Previous research reported that bug reporters

requently make inaccurate decisions in assigning the categorical

elds such as the component in a bug report [5]. Unfortunately,
∗ Corresponding author at: School of Software Engineering, Chongqing University,

hongqing 401331, PR China. Tel.: +86 15923238399.

E-mail address: xhongz@cqu.edu.cn (X. Zhang).
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ug reports are always triaged manually, which is time consuming

nd error prone. Take Eclipse as an example, approximately 25% of

he bug reports need to be reassigned because of triaging mistakes

6], and it costs nearly two person-hours per day in triaging bug

eports [7]. To assist correct bug triaging, this paper presents a

ovel Discriminative Probability Latent Semantic Analysis (DPLSA)

ased component recommender, in which a recommender is

rovided with a small list of component suggestions.

Across the popular issue tracking systems, such as JIRA1 and

ugzilla2, the bug reports submitted by reporters possess the fol-

owing common features: first, there are a variety of mandatory

nd categorical fields like component, product, status and assigned

o. Second, there are some other fields which are non-structured

atural language text, including report title, detail description and
1 http://www.atlassian.com/software/jira/, verified 2015 /08/13.
2 http://www.bugzilla.org/, verified 2015 /08/13.
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comments which are written by developers or users. Third, each

free-form text field in the bug reports contains rich information

which reflects different facts about the bug. For example, the full

free-form description text field reflects the detailed bug effects and

provides indispensable conditions to track the bug. By utilizing

these features, researches have proposed a variety of approaches

to investigate different bug report related activities, such as du-

plicate bug report detection [8], bug report summarization [9] and

bug triaging recommendations [6]. In this work, we focus on creat-

ing a component recommender by utilizing the full free-form text

fields including title, description and comments.

This proposed method is motivated by the recent success of

topic modeling in mining bug reports [4,10-13]. The most similar

work is a Latent Dirichlet Allocation (LDA) [14] based component

recommender proposed by Somasundaram and Murphy [4]. Al-

though they achieved a state-of-art performance, there are still

several unsolved issues in this line of research. First, a critical

issue in topic modeling is how many topics should be sought [15].

There is no agreed-upon method for choosing the right number of

topics among different datasets. In the similar work proposed by

Somasundaram and Murphy [4], the number of topics varied from

10 to 120 and it was determined by using a series of experiments.

Second, it is rarely discussed that the comments in bug reports

decrease the performance of the recommendation or improve it.

It is hasty to decide whether or not to consider comments. There

are different decisions in related works. For example, Naguib et al.

[16] did not adopt the comments in building the recommender.

Shokripour et al. [17], Xuan et al. [18] and Zhang et al. [19]

used the comments in their recommendation works. Third, the

vocabulary in bug reports has an impact on the bug assignment

accuracy [20]. Meanwhile, vocabulary plays a significant role in

topic modeling [14]. However, it is rarely discussed whether the

vocabulary size impacts the component recommender based on

topic modeling.

To address the aforementioned issues, we present a Discrim-

inative Probability Latent Semantic Analysis (DPLSA) model with

discriminative power to create a recommender that assists with

the component assignment task. We divide our recommender

into three phases, namely the training phase, the testing phase

and the recommendation phase. In the training phase, we use

past assigned bug reports as our training datasets. The number

of topics is simply set to the number of components. We develop

a novel method to initialize the word distributions for different

topics. This introduces the past component labels to initialize

the topic-conditional probability of a particular word. Thus, the

topics are estimated in a supervised way. As a result, it cre-

ates a correspondence between learned topics and components.

This increases the discriminative power of the learned topics

and overcomes the difficult in determining an appropriate topic

number in LDA. In the testing phase, given a new bug report,

we fix the obtained word-topic distribution in the training phase

and compute the test sample’s topic distribution by the standard

EM algorithm of Probability Latent Semantic Analysis (PLSA). In

the recommendation phase, the component recommendations

are decided by ranking the divergence with each component’s

centroid topic representation in the training set. A small list of

top-k most suitable components are recommended. The similarity

with Somasundaram and Murphy [4] is that both of us use the

topic modeling and divergence measuring technique. The main

differences from Somasundaram and Murphy [4] lie in: first, we

investigate the impacts of comments and vocabulary size which is

not discussed in their work. Second, we use DPLSA instead of LDA.

In summary, the contributions in our paper are threefold:

• We propose DPLSA, which performs an initialization method

in the PLSA modeling step. It assigns the category-conditional
probability of a specific word conditioned on the correspond-

ing topic by using the assigned bug reports. Such that a corre-

spondence between components and topics is created. It is uti-

lized to enhance the discrimination of the estimated topics and

overcomes the difficulty in choosing the right number of topics.

(See Section 3.2.1).

• We evaluate our DPLSA-JS recommender on five open source

projects to validate the effectiveness. Compared with two LDA

based methods [4], we show that DPLSA-JS outperforms LDA-KL

and LDA-SVM on the component recommendation problem by

a substantial range. (See Section 4.5.1).

• We explore the impact of vocabulary size and comments on

the recommendation performance by conducting a comparative

study on five datasets. As a result, we find that the vocabulary

size and whether or not using the comments impact the rec-

ommendation performance (See Sections 4.5.2 and 4.5.3).

The paper is structured as follows: Section 2 presents the

elated work of our research, including bug triage recommenders,

opic modeling in mining bug reports and similar supervised

opic models. We describe our research preparation, models and

echniques in Section 3. Section 4 presents the research ques-

ions, sketches the experiment design, results and comparisons.

ection 5 provides the threats to validity, including internal va-

idity and external validity. Then at last in Section 6, we draw a

onclusion about our findings and provide our future plans.

. Related work

In this section, we discuss related literature from three aspects:

ug triage recommenders, topic modeling in mining bug reports

nd similar supervised topic models.

.1. Bug triage recommenders

A variety of techniques have been investigated to guide the bug

riaging process, such as duplicate bug report detection [8,21,22],

eveloper recommenders [7,12,13,16,17,23-27] and component rec-

mmenders [4-6].

Many researches have focused on automating the process of

etecting duplicate bug reports by analyzing the free-text fields

hich is also used in this work. Several kinds of methods were

mployed, such as the statistical model, vector space model (VSM)

28], and TF-IDF [21]. In 2005, Anvik et al. [22] built a statistical

odel, using cosine similarity and detected 28% of all duplicate

eports on Firefox. Hiew [29] improved on it by applying VSM to

etect duplicate bug reports. The TF-IDF term weighting measure-

ent was employed in their work and achieved a 50% recall and

9% precision on Firefox and 20% and 14% for Eclipse, respectively.

he similarity between their work and this work is the textual pro-

essing on non-structured natural language fields of bug reports.

hile they differ from our work in how the training data is la-

eled and what data is used.

There have been several researches on creating developer

ecommenders which automatically assign a bug report to a

articular developer. Cubranic [30] first modeled a bug report

eveloper recommender by using a text classification method.

fter that, Anvik et al. [6,7] enhanced the above work by removing

inactive and less active developers (according to the count of re-

cent bug fixes). In their experiments on five open source projects,

they increased the precision accuracy up to 64% by using three

machine learning classifiers, namely C4.5, Naive Bayes and SVM.

Based on these works, several approaches such as bug tossing

(i.e., bug reports are reassigned to other developers) and source

location based methods were proposed to enhance the existing

performance. For example, Jeong et al. [24] presented an enhanced



M. Yan et al. / Information and Software Technology 73 (2016) 37–51 39

b

r

a

t

t

p

f

t

S

l

m

b

t

c

f

t

s

[

t

m

c

t

o

e

u

f

o

S

w

e

i

s

s

t

2

i

c

b

i

c

b

d

r

t

t

r

c

[

m

m

t

d

a

L

a

a

w

i

w

h

t

v

a

r

c

t

p

D

p

e

v

t

b

X

w

b

t

m

t

f

p

M

t

o

i

d

d

2

e

T

u

s

t

j

b

s

m

m

t

g

t

s

L

l

e

o

t

l

i

a

s

i

a

l

l

a

i

c

w

v

D

i

ug triage technique by capturing bug tossing history. Their model

educed the tossing steps by up to 72% and improved the bug

ssignment accuracy by up to 23%. Chen et al. [31] combined

he tossing graph and VSM text similarity to enhance the bug

riage efficiency on Mozilla and Eclipse. Bhattacharya et al. [32]

rovided a refined classifier by learning a precise ranking method

or tossing recommendation and reduced an average of 1.5–2

osses on tossing path lengths. Linares-Vasquez et al. [26] and

hokripour et al. [17] provided a novel perspective, i.e., a source

ocation based method for developer recommendation. Their com-

on feature lies in that the relevant source location is addressed

efore the recommendation. The difference of the two works is

hat code authorship is used in Linares-Vasquez et al [26] while

ode commit is used in Shokripour et al [17]. Our work differs

rom these works in selecting topics as features instead of using

erms. Also it does not require mining other software repositories,

uch as source code files and code commits.

With respect to the component recommender, Di Lucca et al.

33] were the first to perform the component recommendation

ask by using various machine learning methods. Their recom-

ender triaged a bug report to one of eight components on a

ommercial software dataset. In their conclusion, they stated that

he SVM based component recommender performed better than

ther algorithms. However, one issue is that the reports in their

valuation were created by a technical support team. It may have

sed a more constrained language than the reports which come

rom a diverse population. Anvik et al. [6,34] improved their work

n five open source projects with 11–34 components by using

VM. The bug reports used in [6] came from open source projects

hich possessed a diverse population. Sureka [5] was the first to

nhance the component recommendation by making use of the

ncorrect assignments. They suggested that learning the corre-

pondence between words in bug reports and components was

ignificantly useful in performing the component recommendation

ask. It also supported the method in this work.

.2. Topic modeling for mining bug reports

The idea of extracting high-level topics from bug reports us-

ng topic models (e.g. LDA and PLSA) has been investigated in re-

ent years. It has been used to enhance diverse activities, such as

ug report retrieving, duplicate bug report detection and bug triag-

ng. Compared with the traditional VSM method which does not

onsider polysemy or synonymy, topic models have been found to

e superior in several software activities [35,36]. Specially, LSI [37]

emonstrated success in quite a few recent works on mining bug

eports. Dit et al. [38] presented an LSI based method to measure

he textual coherence of bug reports by extracting topics from the

extual content found in the descriptions and comments of the bug

eports. They confirmed that the topic similarity was a good indi-

ator of textual coherence of bug report comments. Ahsan et al.

39] were the first to create a developer recommender use topic

odeling. They applied LSI to obtain a reduced term-document

atrix on the titles and descriptions. The best recommender in

heir approach achieved 45% classification accuracy. However, one

rawback of LSI is that it is difficult to interpret the results which

re represented with numeric spatial representation [40]. Besides,

SI can only sketch the synonymy, it cannot handle the polysemy

s well [40]. To overcome this, the generative topic models such

s PLSA and LDA (with a more complete foundation in statistics)

ere widely used in analyze bug reports. Details about compar-

ng LSI and the generative topic model are presented in Hofmann’s

ork [41].

Along with the progress of topic models, several researches

ave applied generative topic models and their variants and ex-

ensions to enhance bug report triaging. Asuncion et al. [42] de-
eloped TRASE, which recovered traceability links amongst diverse

rtifacts in software repositories, such as bug reports and change

equests. The authors demonstrated that LDA outperforms LSI by

omparing recall and precision. Lukins et al. [40] developed an au-

omatic bug localization approach using LDA and demonstrated the

erformance over open source projects. Xie et al. [23] proposed a

RETOM recommender based on LDA to recommend a small list of

otential developers for fixing bugs in a collaborative way. Naguib

t al. [16] proposed a novel activity profile based approach for de-

erloper recommendation. They utilized LDA to help create a bug-

racking activity profile for every user. Geunseok et al. [13] com-

ined LDA and multi-feature to create a developer recommender.

ie et al. [12] proposed a composite developer recommender

hich performs both bug report based analysis and developer

ased analysis. They employed LDA to characterize topic features

o measure the distance between bug reports. However, a com-

on issue in most of these works is that they adopted the original

opic model approach. The original goal of the topic model was not

or inference or classification, but rather representation and com-

ression of signals. Very similar to this work, Somasundaram and

urphy [4] provided a component recommender by using LDA and

he Kullback–Leibler divergence. They achieved a state-of-art recall

n three open source projects. However, there are several unclear

ssues, such as how to decide the number of topics and how to

ecide the vocabulary size. We implemented their work on our

atasets to compare the recommendation performance.

.3. Similar supervised topic models

Compared with DPLSA, there are three similar supervised mod-

ls, namely sLDA [43], L-LDA [44] and Semi-supervised LDA [45].

he sLDA added a response variable (e.g., the category of a doc-

ment or the ratings attached to a movie) into LDA which is as-

ociated with every document. Then, in order to find latent topics

o predict the response variables for newly given documents, sLDA

ointly modeled the documents and the responses. The similarity

etween DPLSA and sLDA is that all the documents in the training

et are labeled. The difference lies in that DPLSA supervised the

odel using an initialization method while sLDA supervised the

odel by jointly modeling the document and response. Besides,

he number of topics in DPLSA is equal to the number of cate-

ories. While in sLDA, there is no agreed-upon method to choose

he correct number of topics.

L-LDA [44] extended the LDA model by creating a 1-1 corre-

pondence between topics and categories. The similarities between

-LDA and DPLSA are (1) all the documents in the training set are

abeled; (2) the number of topics is equal to the number of cat-

gories. The differences lies in that L-LDA [44] is mainly focused

n a multi-labeled corpora. There is an assumption in L-LDA: that

he documents are multiply tagged with human labels, both at

earning and inference time [44]. While the initialization method

n DPLSA makes it feasible to handle single-category corpora, such

s the labeled bug reports which only belong to one component.

Fu et al. [45] presented a semi-supervised LDA method for clas-

ifying software change messages. They added signifier documents

nto the training set to transform the unsupervised training into

semi-supervised one. A signifier document is a sample which is

abeled with a category. It is constructed by a pre-defined vocabu-

ary. The similarities between the semi-supervised LDA and DPLSA

re that (1) both of them use labeled documents and topic model-

ng techniques, (2) the number of topics is equal to the number of

ategories. The difference lies in that (1) the signifier documents

hich are necessary in semi-supervised LDA need a pre-defined

ocabulary. It provides the keyword list for each category. While in

PLSA, this information is not needed. (2) Part of the training set

n semi-supervised LDA is labeled as signifier documents. While
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3 http://lucene.apache.org/, verified 2014 /09/28.
4 http://snowball.tartarus.org/, verified 2014 /09/28.
5

all the training samples are labeled in DPLSA. (3) Semi-supervised

LDA differs from the original topic model in the training set. DPLSA

differs from the original topic model by using a supervised initial-

ization method.

3. Proposed approach

3.1. Preliminary

In our work, a bug report is regarded as a document. A topic is

an abstract concept which possesses a distribution of words. The

topic model technique in bug report analysis is used to cluster bug

reports into topics. It is done by categorizing the terms occurring

in bug reports into topics. For example, a bug report about a UI bug

is more likely to correlate with the topic which highly corresponds

to terms such as “button” and “style”. With this technique, we can

analyze the bug reports on the topic representations.

Among all the topic models, a common and fundamental idea

is that documents are mixtures of topics, while topics are multi-

nomial distributions of terms like a unigram language model. The

differences in various topic models are the statistical approaches

and the generation process [46]. For example, in PLSA, the topic

mixture is conditioned on each document. In comparison, the topic

mixture in LDA is drawn from a conjugate Dirichlet prior. The PLSA

model is an extension of the Latent Semantic Analysis. One as-

sumption of PLSA is that topics are decomposed from documents,

while terms are generated from a mixture of topics. In addition,

the occurring term order in a document is ignored in PLSA. We

briefly sketch the main principles of PLSA and its extension in this

work. The details of PLSA can be found in Hofmann’s work [41].

To simplify the notations in this paper, we adopt the simple no-

tations used by [46]. A bug report is regarded as a document and

a component is regarded as a category. Let D represent the collec-

tion of all the bug reports, V represents the term vocabulary, P(z|d)

represents the distribution over topics for a particular bug report

d and P(w|z) represents the probability distribution over words for

a topic z. To simplify, we use φ( j)
w = P(w|z = j) to represent the

P(w|z) for topic j and θ (d)
j

= P(z = j|d) to represent the P(z|d) for

document d. For PLSA, the conditional probability P(w|d) over la-

tent topics is represented as follows.

P(w|d) =
K∑

j=1

φ( j)
w θ (d)

j
(1)

The Expectation-Maximization (EM) algorithm [47] is employed

for fitting the model. The parameters θ̂ and φ̂ are estimated by

maximizing the log likelihood of the observed data:

log P(D|φ, θ ) =
∑
d∈D

∑
w∈V

{
c(w, d) log

K∑
j=1

φ( j)
w θ (d)

j

}
(2)

In which c(w, d) denotes the count of term w in bug report d.

The hidden variable z is estimated by using the previous iteration

in the E-step.

P(zd,w = j) =
φ( j)

w θ (d)
j∑K

j′=1 φ( j′)
w θ (d)

j′
(3)

Then, in the M-step, the parameters θ (d)
j

and φ( j)
w , respectively,

are updated as:

θ (d)
j

=
∑

w∈V c(w, d)P(zd,w = j)∑
j′
∑

w∈V c(w, d)P(zd,w = j′) (4)
( j)
w =

∑
d∈D c(w, d)P(zd,w = j)∑

w′∈V

∑
d∈C c(w′, d)P(zd,w′ = j)

. (5)

The parameter φ( j)
w denotes which words are informative for

topic while θ (d)
j

denotes which topics are relevant for a docu-

ent. In fact, the purpose of PLSA is to find the most informative

ords for a particular topic. However, the basic PLSA ignores the

eatures of the training samples for the classification problem, such

s the structure of the training samples from a single category, the

elationship between the samples from a single category and the

ord-topic distributions, and the relationship between topics and

ategories. In addition, PLSA randomly initializes the word-topic

istributions φ( j)
w so that words in a document are connected to

opics in an uncontrolled way. It is difficult to obtain the discrimi-

ative information in θ̂ (d)
j

.

We address the above issues in the following sections by cap-

uring the features of bug reports from the same component and

esigning a word-topic distribution initialization method. After

hat, the estimated model provides insights about how to inter-

ret each topic with the discriminative information using φ( j)
w and

ow to obtain the topic-document distribution θ̂ (d)
j

to perform the

ecommendation task.

.2. Data extraction and preprocessing

In this paper, bug reports are extracted from Bugzilla reposi-

ories. Since the bugs stored in Bugzilla have one characteristic,

he description field of a report is unchangeable after a bug re-

ort is submitted. This feature allows us to easily trace the infor-

ation from when the bug was submitted [4]. The preprocessing

tep is similar to our previous work [45] using Lucene3 and Snow-

all4. The preprocessing step consists of sentence splitting, term

plitting, stop words filtering, and stemming. We stemmed the

ords (e.g. ‘‘submitting’’ becomes “submit”) to decrease the vocab-

lary size and reduce duplication due to the word form. In addi-

ion, non-informative words were removed to reduce noise, such

s prepositions and pronouns. The stop words list in this work is

erived from Mallet.5

.3. Building component recommender

This section provides a running example of the proposed ap-

roach first. Then we describe the two steps in creating the rec-

mmender in detail: (1) the DPLSA modeling step, including model

raining and testing, and (2) the recommendation step.

.3.1. Running example

This section provides a running example to explain our ap-

roach as illustrated in Fig. 1. Four training bug reports (D1,D2,D3

nd D4) and a test bug report (D5) are abstracted to give the ex-

mple. Suppose that D1 and D2 are already assigned to component

I while D3 and D4 are already assigned to component Core. The

rocess is divided into four phases. In Fig. 1(a), the recommender

tarts by a simple supervised initialization step such that the top-

cs and the components are correlated. In detail, the training bug

eports from the same component are employed to initialize the

opic-conditional probability of a particular word. Hence, seman-

ically similar words are forced to connect to the topic partially

ith a dominant probability (i.e., relatively higher than most of the

ther entries). As Fig. 1(b) shows, words W1, W2 and W3 connect
http://mallet.cs.umass.edu/, verified 2014 /09/28.

http://lucene.apache.org/
http://snowball.tartarus.org/
http://mallet.cs.umass.edu/
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Fig. 1. The component recommendation process using DPLSA-JS: (a) Initialization step. (b) DPLSA training step. (c) DPLSA testing step. (d) Recommendation step.
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o the Z1 topic with a similar dominant probability. In the follow-

ng, the standard Expectation-Maximization (EM) algorithm [47] in

LSA is utilized for estimating the conditional distribution of words

ithin the topics. Due to the supervised initialization approach,

ach topic correlates with one or more closely related components,

ike topic Z1 strongly correlates with component UI in Fig. 1(b). Af-

er that, for a test bug report, we fix the obtained conditional dis-

ributions of words within topics and compute the test sample’s

opic distributions by the standard EM algorithm of PLSA. Fig. 1(c)

hows the topic representation of the test sample. It reflects that

he test sample is closely related with topic Z1. Finally, the rec-

mmendation step is decided by measuring the divergence with

ach component’s topic distribution centroid which is represented

y the average document-topic distribution (i.e., P(Z|UI(mean)) and

(Z|Core(mean)) in Fig. 1(d)). Take D5 as the example, it is closer

o P(Z|UI(mean)). Thus, we recommend the component UI to the

ew bug report D5 (in the case of 1 component recommendation).

etails and formulations on how to create and configure the rec-

mmender are below. Section 3.3.2 formulates the DPLSA modeling

tep, including model initializing, training and testing. Section 3.3.3

rovides the recommendation approach.

.3.2. DPLSA modeling step

Suppose we are given a collection of N components in a project.

n the training set, a bug report is already labeled by a component

n the bug repository. Set D(j) ( j = 1, 2, 3, ..., N) denotes the collec-

ions of bug reports for each component j. It is worth noting that
(j) is a subset of D.

In the training step, we suggest a simple initialization approach

n DPLSA which replaces the random initialization approach in

LSA. It initializes φ( j)
w using the training samples from a single

ategory such that word w dominantly connects with one or more

opics and the redundant features are pruned for φ( j)
w . Meanwhile,

his initialization method determines the number of topics directly

qual to the number of components which also alleviates the dif-
cult of choosing the right number of topics. For formulation, the

nitialization step is as formula (6) and formula (7) shows.

( j)
w = c(w, D( j))/c(D( j)) (6)

(w, D( j)) =
∑

d∈D( j)

c(w, d), c(D( j)) =
∑
v∈V

∑
d∈D( j)

c(v, d) (7)

In which φ( j)
w is the objective of the initialization, it repre-

ents the word-topic distribution for topic j. D(j) denotes the col-

ection of bug reports in component j, c(v, d) represents the count

f each word v in the vocabulary V occurring in document d, c(w,
(j)) represents the count of word w occurring in the collection
(j), c(D(j)) is the count of all words in the vocabulary V in the

ollection D(j).

In this manner, DPLSA reduces redundant connections between

opic j. The estimated P(w|z) over the vocabulary V turns out to

e a matrix which contains several entries with dominant values

or each topic, thus, the φ̂( j)
w effectively reflects which words are

nformative for topicj. After training, given a test bug report dnew

nd fixing the estimated value P̂(w|z) from DPLSA, we obtain the

opic document distribution θ (dnew)
j

of the test bug report dnew by

he EM algorithm. The topic coverage distribution for a bug report

rovides an alternative discriminative semantic representation of

he bug report, which is promisingly superior to the original word-

ased representation in performing the recommendation task be-

ause topics which correlate with components are discriminative.

.3.3. Recommendation step

For the estimated topic distribution θ
j

of all the training bug

eports in D, we compute the average document topic probability
dmean
j

of all reports in one component. Let θdmean
j

serve as the cen-

roid of the component. The divergence of a test bug report θ (dnew)
j

rom the θdmean
j

of a component determines the recommendation.
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Table 1

Experimental data sets.

Projects Domain Triage process Developers Components

Platform Programming tool Developer-based 151 18

Bugzilla Issue tracking Volunteer-based 43 21

Mylyn Programming tool Developer-based 13 14

Gcc Compiler Developer-based 81 39

Firefox Browser Volunteer-based 343 55
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When measuring the divergence, we adopt the Jensen–Shannon di-

vergence (JSD) to perform this task. It is based on the Kullback–

Leibler divergence, extended by several notable differences, includ-

ing that it is always well-defined, symmetric, and bounded [48].

The JSD between two distributions is computed as formula (8) and

(9) shows.

dJS(H, K) = dKL

(
H,

H + K

2

)
+ dKL

(
K,

H + K

2

)
(8)

dKL(H, K) =
∑

i

hi log
hi

ki

(9)

In Eqs. (8) and (9), H denotes the θ (dnew)
j

, K denotes θdmean
j

, hi

and ki denote the entry of topic i. After computing the JSD of a

test bug report, our DPLSA recommender (referred to DPLSA-JS)

will recommend a small list (e.g. top three) of the component rec-

ommendations, whose average document topic probability θdmean
j

diverge the least from the test bug report.

In summary, the recommendation step in this work is simi-

lar to the recommendation step in the LDA based method pro-

posed by Somasundaram and Murphy [4]. The similarity is that

both of them use the divergence measuring policy. Namely, the

recommendation is decided by measuring the divergence of a test

bug report’s topic-document distribution from the average topic-

document distribution of all training reports in each component.

The differences lie in (1) the topic-document distribution in this

work is estimated by DPLSA while their work relied on LDA, (2)

we use the JS-divergence while their work used the KL-divergence

to measure the divergence.

4. Experiments

4.1. Data sets

We chose five open source projects to build, test, and verify our

recommender, i.e., Eclipse platform (referred to Platform), Bugzilla,

Mylyn, Gcc and Firefox (Table 1). The following criteria were used

to select the projects:

Bug reports repositories accessible. The candidate open source

projects were mature projects and had public accessible bug

reports repositories.

Number of bug reports, components and developers. For this

work, we chose to use projects which have many compo-

nents, mature development communities, and have a large

set of past assigned bug reports for training. We consider

only projects with at least 6 000 bug reports and 10 compo-

nents. In order to validate if the topic modeling understands

natural languages and the expression diversity of different

developers, we consider only projects with at least 15 devel-

opers.

Repository type. As mentioned before, we consider only

projects with Bugzilla repositories.

Previous research. To make our work comparable, all of the

candidate projects were investigated by previous researches

[6].
.2. Experimental setup

In setting up our experiment, we use a time-sequential policy

6] rather than the general cross validation to divide the training

et and testing set. The advantage of the time-sequential policy is

hat it is closer to the realistic situation when using the recom-

ender. In detail, the recommender was trained by using a few

onths of bug reports and validated on the bug reports of the fol-

owing months [6]. Under this policy, we determine the number of

eports in the training phase and testing phase by fixing the pro-

ortion of the training time period and the testing time period.

or example, if we collect the reports for one year, we will test

he method on the latest month. However, the active degree of the

roject community differs in different projects. For example, there

re only 159 bug reports which satisfy our retrieving criteria from

011-8-31 to 2014-8-31 in project Mylyn. Therefore, the time pe-

iod may vary in different projects. Besides, at any moment a bug

eport in Bugzilla is at a particular phase of the report life cycle.

he reports in the phase of NEW or UNCONFIRMED do not pro-

ide information in creating the component recommender [6]. As

result, we ignored these reports. In addition, we consider all bug

eports with the status FIXED and WONTFIX, which is the same

s the work by Somasundaram and Murphy [4]. We also removed

eports with the INVALID status, such as the #427193 bug report

n Eclipse which does not contain any valid information in its ti-

le and description. Table 2 outlines the time periods of the bug

eports in our training and testing set for each project.

.3. Performance measure

Since there is only one component in a bug report, measur-

ng the precision did not provide insightful results [4,6]. The recall

nd the precision are the same when performing one recommen-

ation. Also, when performing two and three recommendations,

he achieved performance would be a 50% and 33% precision, re-

pectively. Hence, we evaluate the recommendation performance

y using the standard measure recall which is also used in previ-

us component recommenders [4,6] (see formula (10)).

ecall = #of appropriate recommendations

#of reports intest set
(10)

For simplification, we adopt “recall @k” [12] to represent the re-

all when we recommend top-k (e.g., top-1, top-3, and top-5) com-

onents.

.4. Research questions

To investigate the effectiveness of our method, we designed the

ollowing research questions:

RQ1 Is the DPLSA-based method better than LDA-KL or LDA-SVM

for recommending components to incoming bug reports? The

similar work [4] proposed LDA-KL and LDA-SVM methods

which were comparable to those machine learning meth-

ods previously developed. We wish to answer this question

by evaluating the performance of the DPLSA based method
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Table 2

Characterization of training set and testing set.

Projects Training time period Training reports Testing time period Testing reports

Platform 2011.8.31–2014.5.30 4002 2014.5.31–2014.8.31 247

Bugzilla 2007.8.31–2014.1.30 3302 2014.1.31–2014.8.31 192

Mylyn 2005.8.31–2011.2.27 4899 2011.2.28–2011.8.31 53

Gcc 2011.8.31–2014.5.30 5204 2014.5.31–2014.8.31 250

Firefox 2013.8.31–2014.7.30 3850 2014.7.31–2014.8.31 256
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and compare it with LDA-KL and LDA-SVM methods on five

datasets.

RQ2 Do comments provide information that increases component

recommendation performance of our approach? There is no

agreed-upon decision whether comments in bug reports de-

crease the performance of the recommendation or improve

it. There are different decisions in the state-of-art works,

such as some works did not use the comments [16] and

other works used the comments [17-19,34]. We wish to an-

swer this question by performing a comparative study on

five datasets.

RQ3 What is the effect of varying the size of the vocabulary to

the performance of our approach? Vocabulary varies in differ-

ent projects. It’s hasty to state that the larger the vocabulary

size is the better the performance will be. Some odd words

which only occur once are useless for the recommendation

task. Thus, we wish to answer this research question by con-

ducting a correlation analysis over different vocabulary sizes.

RQ4 Do the learned topics correspond to components in our ap-

proach? The number of topics in the similar work [4] is set

from 10 to 120. It is hard to interpret what a topic repre-

sents. We wish to create a correspondence between topics

and components by using the Discriminative Probability La-

tent Semantic Analysis. The number of topics is set as the

component number and the topic can be interpreted with

a few components which are correlated to the topic with a

high probability.

.5. Results and analysis

To analyze the effectiveness of the proposed recommender, to

ompare this method with the LDA-KL and LDA-SVM methods and

o explore the configurations or parameters of our DPLSA method,

e divided our experiments into four sub-sections. Section 4.5.1

RQ1) is to compare our method to two state-of-art methods over

he same data. Section 4.5.2 (RQ2) and Section 4.5.3 (RQ3) are de-

igned to evaluate the impact of comments and vocabulary size on

he performance of our method. This proposed method is superior

o the LDA based methods because of the discriminative property.

he goal of Section 4.5.4 (RQ4) is to examine how and why the

opics possess discriminative power.

.5.1. Performance of DPLSA-JS vs. LDA-KL and LDA-SVM (RQ1)

Both the LDA-KL and LDA-SVM methods [4] were implemented

o conduct the comparison. In terms of the variables in implement-

ng the two LDA based methods, the number of topics T is set from

0 to 120 (stepping by 10) and keeping the hyper-parameters α to

e 50/T and β to be 0.1 as they described. However, the number

f topics in DPLSA is equal to the number of components. There-

ore, to make the comparison more comprehensive, the best topic

umber for the LDA based methods needs to be decided first. For

xample, let us assume the vocabulary size is equal to 5000, the

ecall of LDA-KL and LDA-SVM over a different number of topics

s shown in Table 3. It shows that the best setting for the number

f topics differs over the number of recommendations. Therefore,

or each vocabulary size, the computed final recall attains a peak
or a particular recommendation at T which is decided to be the

umber of topics T. Under this way, the decided number of top-

cs in Table 3 is highlighted in bold. For example, in the case of

ylyn in LDA-KL method, the T is set at 40 when making a top-3

ecommendations.

The vocabulary size plays a significant role in topic modeling

14]. The settings of vocabulary size in different projects might be

ifferent. Therefore, we make the comparison over various vocabu-

ary sizes (i.e., from 1000 to 6000, stepping by 500). The minimum

ize which is set to 1000 is an empirical value which may capture

minimum set of informative words. Fig. 2 shows the recall @1,

3 and @5 of DPLSA-JS compared with LDA-KL and LDA-SVM over

ifferent vocabulary sizes in five projects. In most cases, DPLSA-

S method outperforms the LDA-KL and LDA-SVM. Also, in some

ases, LDA-KL is superior to DPLSA-JS, such as in Mylyn with re-

all @1 when the vocabulary size is 2500. Considering the num-

er of component recommendations, the most distinct advantage

f DPLSA-JS is at one recommendation. In terms of the projects, the

ost distinct advantage of DPLSA-JS is in Mylyn. The most similar

erformance is in Platform.

For clarity of the comparison, considering the recall attained

he peak over different vocabulary size, we list the recall @1, @3

nd @5 of the three methods and the vocabulary size (inside

he parenthesis) in Table 4. We adopt the “Improv.LDA-KL” and

Improv.LDA-SVM” to represent the improvement of our method

ver the LDA-KL and LDA-SVM methods, respectively. The im-

roved values are highlighted in bold. In summary, across five

rojects DPLSA-JS outperforms the LDA-KL method by 30.08%,

9.60% and 14.13% for average recall @1, recall @3 and recall @5, re-

pectively. DPLSA-JS outperforms the LDA-SVM method by 31.56%,

7.80% and 8.78% for average recall @1, recall @3 and recall @5, re-

pectively.

For statistical tests on the performance comparison in Table 4,

e conduct the Friedman test when comparing multiple models

s suggested by Demšar [49]. The Friedman test compares whether

he difference of the average ranks of the performance of the three

ethods are statistically significant or not. We translate the ques-

ion into the null hypothesis Hnull: There is no significant differ-

nce between the average ranks of the performance of the three

ethods. And the alternative hypothesis Halt is that there is a sig-

ificant difference between the average ranks of the performance

f the three methods. Table 5 shows the Friedman test results. We

eport the average ranks (the approach with the best performance

s ranked in ‘3’) and the p-value for the three methods in terms of

ecall @1, recall @3 and recall @5. The Friedman test computes the

-value as 0.0294, 0.0224 and 0.0224 in terms of the three cases

recall @1, recall @3 and recall @5), respectively. This enables us to

eject the null hypothesis (p-value < 0.05 in all the three cases)

nd accept the alternative hypothesis in all the three cases. It in-

icates that there is a statistical difference between the average

anks of the performance of the three methods in each case.

Then, we perform the Nemenyi test (significance level α = 0.05)

s a post-hoc test for each pair of the methods as suggested by

emšar [49]. In this test, the average ranks of two methods is sig-

ificantly different if the average ranks differ by at least the critical

ifference (CD) which is computed as suggested by Demšar [49]
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Table 3

Recall of LDA-KL and LDA-SVM over different number of topics when the vocabulary size is set to 5000.

Method Projects Recall\Topics# 10 20 30 40 50 60 70 80 90 100 110 120

LDA-KL Mylyn @1 0.36 0.4 0.6 0.62 0.11 0.49 0.09 0.08 0.08 0.08 0.08 0.09

@3 0.55 0.68 0.75 0.79 0.21 0.72 0.19 0.19 0.13 0.19 0.17 0.17

@5 0.7 0.85 0.79 0.79 0.21 0.83 0.21 0.21 0.23 0.21 0.19 0.21

Gcc @1 0.15 0.1 0.18 0.24 0.26 0.28 0.25 0.32 0.36 0.33 0.32 0.34

@3 0.29 0.27 0.36 0.45 0.48 0.49 0.48 0.58 0.57 0.6 0.57 0.61

@5 0.39 0.37 0.48 0.54 0.58 0.63 0.6 0.72 0.71 0.74 0.71 0.73

Platform @1 0.17 0.17 0.16 0.22 0.25 0.28 0.26 0.26 0.29 0.36 0.31 0.38

@3 0.36 0.4 0.44 0.46 0.54 0.56 0.51 0.55 0.64 0.66 0.65 0.64

@5 0.51 0.53 0.6 0.62 0.7 0.72 0.71 0.68 0.8 0.79 0.81 0.79

Bugzilla @1 0.13 0.14 0.17 0.16 0.16 0.18 0.19 0.24 0.24 0.24 0.24 0.29

@3 0.31 0.28 0.31 0.39 0.41 0.43 0.45 0.49 0.48 0.54 0.53 0.62

@5 0.44 0.44 0.51 0.54 0.58 0.57 0.63 0.66 0.64 0.69 0.7 0.74

Firefox @1 0.04 0.06 0.09 0.11 0.13 0.13 0.14 0.15 0.14 0.15 0.13 0.17

@3 0.12 0.21 0.21 0.28 0.25 0.31 0.32 0.33 0.31 0.31 0.28 0.37

@5 0.19 0.27 0.29 0.36 0.39 0.43 0.43 0.5 0.45 0.46 0.42 0.52

LDA-SVM Mylyn @1 0.13 0.08 0.11 0.13 0.15 0.13 0.09 0.15 0.13 0.15 0.19 0.19

@3 0.19 0.25 0.3 0.19 0.43 0.26 0.23 0.4 0.38 0.4 0.34 0.42

@5 0.32 0.32 0.51 0.51 0.66 0.6 0.68 0.62 0.62 0.64 0.64 0.66

Gcc @1 0.4 0.41 0.44 0.48 0.46 0.49 0.49 0.53 0.51 0.52 0.52 0.52

@3 0.58 0.63 0.7 0.7 0.72 0.75 0.7 0.74 0.76 0.73 0.75 0.75

@5 0.75 0.77 0.83 0.82 0.84 0.84 0.81 0.85 0.87 0.83 0.87 0.84

Platform @1 0.39 0.39 0.39 0.41 0.39 0.43 0.41 0.4 0.44 0.43 0.44 0.42

@3 0.64 0.63 0.67 0.68 0.65 0.67 0.7 0.68 0.7 0.69 0.68 0.7

@5 0.79 0.79 0.83 0.83 0.84 0.81 0.84 0.84 0.85 0.83 0.82 0.85

Bugzilla @1 0.36 0.22 0.26 0.31 0.32 0.25 0.31 0.25 0.28 0.3 0.28 0.34

@3 0.46 0.56 0.62 0.6 0.61 0.61 0.63 0.64 0.67 0.63 0.62 0.68

@5 0.66 0.71 0.75 0.77 0.74 0.78 0.78 0.81 0.78 0.76 0.8 0.83

Firefox @1 0.13 0.2 0.27 0.27 0.29 0.28 0.3 0.31 0.3 0.32 0.33 0.34

@3 0.33 0.4 0.5 0.47 0.49 0.53 0.54 0.55 0.54 0.52 0.59 0.57

@5 0.45 0.51 0.58 0.57 0.66 0.64 0.66 0.67 0.66 0.66 0.69 0.68

Table 4

Performance and the vocabulary sizes (inside the parenthesis) of DPLSA-JS, LDA-KL and LDA-SVM considering the recall

attained the peak over different vocabulary sizes.

Recall @1

Projects DPLSA-JS LDA-KL Impro.LDA-KL LDA-SVM Impro.LDA-SVM (%)

Mylyn 0.6604(2000) 0.6604(2500) 0.00% 0.2264(5500) 191.67

Gcc 0.6560(6000) 0.3960(3500) 65.66% 0.5600(2500) 17.14

Platform 0.4777(2000) 0.4291(1000) 11.32% 0.4706(4500) 1.51

Bugzilla 0.4479(5500) 0.3229(1500) 38.71% 0.3948(6000) 13.46

Firefox 0.4102(5500) 0.2305(1500) 77.97% 0.3641(2500) 12.66

Average 0.5304 0.4078 30.08% 0.4032 31.56

Recall @3

Mylyn 0.9245(4500) 0.8302(6000) 11.36% 0.5094(3000) 81.48

Gcc 0.8440(5000) 0.6440(2500) 31.06% 0.7840(4500) 7.65

Platform 0.7490(2000) 0.7368(3000) 1.65% 0.7190(5500) 4.17

Bugzilla 0.7500(4500) 0.6198(5000) 21.01% 0.7073(2000) 6.04

Firefox 0.6367(5500) 0.4336(3500) 46.85% 0.5945(3500) 7.10

Average 0.7808 0.6529 19.60% 0.6629 17.80

Recall @5

Mylyn 0.9811(4500) 0.8868(2500) 10.64% 0.7547(3000) 30.00

Gcc 0.9040(4000) 0.7760(2500) 16.49% 0.8920(4500) 1.35

Platform 0.8794(5500) 0.8745(3000) 0.57% 0.8636(6000) 1.84

Bugzilla 0.8958(4000) 0.7708(3500) 16.22% 0.8271(5000) 8.31

Firefox 0.7617(5000) 0.5586(3000) 36.36% 0.7195(2000) 5.86

Average 0.8826 0.7733 14.13% 0.8114 8.78

C

v

F

o

t

v

t

C

o

(as the Formula 11 shows). In detail, the critical difference (CD)

is a critical value which is related to the significance level α, the

sample size N and the number of compared methods k. The qα is

a value which depends on α and k by referring the value table in

Demšar [49] (qα is 2.343 in this case).

D = qα

√
k(k + 1)

6N
(11)
Similar with the visualization method used by Li [50], Fig. 3

isualizes the results of the post-hoc test by the Nemenyi test.

ig. 3(a) shows the results in terms of recall @1. Since the results

f recall @3 and recall @5 are the same, we use Fig. 3(b) to show

he results in terms of recall @3 and recall @5. The value of the

ertical axis which corresponds to the arrow denotes the index of

he methods. The highest index of the vertical axis denotes the

D. The length of the CD line denotes the CD value. The value

f the horizontal axis denotes the average rank of each method.
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Fig. 2. Performance comparison of LDA-KL, LDA-SVM and DPLSA-JS over different vocabulary sizes.
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f the difference of the average ranks of two methods is smaller

han CD, then the two methods are connected as Fig. 3 shows.

his means that the difference of the two connected methods is

ot statistically significant. We observe that there are two groups

hich are connected, namely (DPLSA-JS, LDA-SVM) and (LDA-SVM,

DA-KL) in both Fig. 3(a) and (b). This represents that (1) DPLSA-JS

oes not show a significant difference compared to LDA-SVM, and

2) DPLSA-JS is better than LDA-KL with a statistical significance.

verall, though the difference is not significant between DPLSA-JS

nd LDA-SVM at the current significance level, the DPLSA-JS always

hows the best ranks in terms of recall @1, recall @3 and recall @5.

his is also consistent with the observations in Table 4.

Besides, PLSA was reported to suffer from an over-fitting prob-

em with a small amount of training data compared with LDA [46].

o evaluate the generalization performance of our DPLSA, we adopt

he perplexity which is widely used in language models [14,41]. It

s used to evaluate the generalization performance of the model

n the unseen data set. A lower perplexity value implies a better
 t
eneralization performance. Formally, it is defined as:

= exp

[
−

∑
i, j c(di, wj) log P(wj|di)∑

i, j c(di, wj)

]
, (12)

here c(di, wj) represents the wj word counts on test set di. The

erplexity of our DPLSA and LDA models on the test set over dif-

erent vocabulary sizes is shown in Fig. 4. Since the perplexity

s impacted by the number of topics, we keep the same number

f topics in LDA and DPLSA, namely the number of topics is set

o the number of components in each project (i.e., 18, 21, 14, 39,

5 for Platform, Bugzilla, Mylyn, Gcc. and Firefox, respectively). It

hows that the generalization performance of DPLSA outperforms

DA over various vocabulary sizes in Bugzilla, Firefox and Gcc. In

ylyn and Platform, the generalization performance of DPLSA is

etter under a relatively large vocabulary size and is worse under a

elatively small vocabulary size. It can also explain that LDA based

ethods are superior to DPLSA in some vocabulary size cases in

he two projects. For example, in terms of recall @5 in Mylyn,
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Fig. 3. The average ranks comparison of DPLSA-JS, LDA-KL and LDA-SVM by using

the Nemenyi test. Methods that are not significantly different are connected. Fig.

3(a) shows the results in terms of recall @1. Fig. 3(b) shows the results in terms of

recall @3 and recall @5.

Table 5

Friedman test for the performance comparison of DPLSA-JS, LDA-KL and

LDA-SVM.

Recommendation cases Average rank p-value

DPLSA-JS LDA-KL LDA-SVM

Recall @1 2.9000 1.3000 1.8000 0.0294

Recall @3 3 1.4000 1.6000 0.0224

Recall @5 3 1.4000 1.6000 0.0224

c

f

t

n

n

t

p

p

1

c

t

s

l

t

I

m

w

u

t

o

c

c

r

u

f

t

w

4

p

w

s

t

t

b

h

c

h

s

W

a

T

r

I

p

c

c

a

c

I

v

t

p

c

c

H

a

s

T

p

v

t

m

the LDA-KL outperforms DPLSA-JS method when vocabulary size

is 2000. The reason is the impact of different project’s vocabulary

on the topic modeling. The best settings of the vocabulary size for

DPLSA and LDA are different in various projects. Therefore, we con-

sidered the recall attained the peak over different vocabulary sizes

to fairly treat each method in the comparison as Table 4 shows.

Overall, DPLSA shows comparable generalization performance to

LDA although DPLSA may show worse at a relatively small vocab-

ulary size.

4.5.2. Exploring the impact of comments (RQ2)

In this section, we explore the impact of comments on the re-

call of the recommender. To make a comparison, we create two

DPLSA based component recommenders which were conducted us-

ing the same configuration as Section 3 except we change the

training feature. One only uses the title and description as features

while the other uses the title, description and comments as fea-

tures. Fig. 5 shows the recall of the two recommenders. It is seen

that the recommender with comments turns out to perform bet-

ter than the recommender without comments in Mylyn, Gcc and

Platform. However, the comments in Bugzilla and Firefox do not
ontribute to the recommendation, but also negatively impact per-

ormance in some cases.

For this statistical test, we conduct the Wilcoxon signed-rank

est to analyze the significant difference when using comments or

ot as Demšar suggested [49]. We translate the question into the

ull hypothesis Hnull: There is no significant difference between

he performance using comments and not. And the alternative hy-

othesis Halt is that there is a significant difference between the

erformance using comments and not. The statistical test contains

5 cases (five projects in terms of recall @1, recall @3 and re-

all @5) and 11 data points (vocabulary size varying from 1000

o 6000, stepping by 500) in each case. Table 6 reports the re-

ults in five projects. It shows that the computed p-value for My-

yn, Gcc, Platform and Bugzilla is less than 0.05. This enables us

o reject the null hypothesis and accept the alternative hypothesis.

t indicates that there is a statistical significance when using com-

ents or not in these cases. In Firefox, the p-value indicates that

e cannot reject the null hypothesis. In this case, the difference of

sing comments or not is not statistically significant. In terms of

he performance, it is seen that the recommender using comments

utperforms the recommender not using comments with statisti-

al significance in Mylyn, Gcc and Platform. However, the same

laim cannot be drawn on the other two projects. In Bugzilla, the

ecommender not using comments outperforms the recommender

sing comments with statistically significance. In Firefox, the dif-

erence is not statistically significant. Overall, our finding suggests

hat using comments in the DPLSA-JS recommender does not al-

ays make a contribution to the performance.

.5.3. Exploring the impact of vocabulary size (RQ3)

The vocabulary consists of a list of unique words in the bug re-

orts corpus. Furthermore it was normalized by removing the stop

ords and put into descending ordering by word frequency. This

ection examines the effect of varying the size of the vocabulary

o the performance of DPLSA-JS. We translate the research ques-

ion into the hypothesis Hnull: There is no significant correlation

etween vocabulary size and the performance. And the alternative

ypothesis Halt is that there is a significant correlation between vo-

abulary size and the performance. The correlation analysis for the

ypothesis contains 11 (vocabulary size varying from 1000 to 6000,

tepping by 500) data points for each case.

Correlation tests were conducted to test the above hypothesis.

e adopt the Spearman’s rank-correlation coefficient [51] to

nalyze the correlation between vocabulary size and performance.

he main advantage of the Spearman metric is that it does not

equire the variables to meet a particular distribution [52,53].

n detail, we list the Spearman correlation coefficient ρ and the

-value of all the cases in Table 7. To indicate the effect size of the

orrelations, we follow Cohen’s guideline [54] that the correlation

oefficient ρ = 0.1, 0.3, and 0.5 represent having small, medium

nd large effect sizes, respectively. It is seen that the cases whose

orrelation coefficient is smaller than 0.3 are highlighted in bold.

n these cases, there is not a significant correlation between

ocabulary size and performance. In four of the remaining cases,

he correlations have a medium effect size. This indicates that the

erformance is weakly correlated with vocabulary size at a weak

onfidence level (less than 95%). In these cases, no significant

orrelation was found and the hypothesis Hnull cannot be rejected.

owever, in most of the cases in Table 7, the correlations have

large effect size (ρ > 0.5). In these cases, the correlations are

ignificant with at least 95% confidence (p-value < 0.05) level.

his enables us to reject the Hnull and maintain the alternative hy-

othesis Halt in these cases. Overall, our finding suggests that the

ocabulary size does matter in DPLSA-JS. Different projects need

o adaptively set the vocabulary size according to an experimental

ethod.
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Fig. 4. Perplexity comparison of DPLSA and LDA over different vocabulary sizes.

Table 6

Wilcoxon singed-rank test for the performance comparison of recommenders without comments

and with comments in five projects.

Project p-value of Recall @1 p-value of Recall @3 p-value of Recall @5

Mylyn 0.0010 0.0029 0.0039

Gcc 0.0010 0.0010 0.0010

Platform 0.0010 0.0049 0.0137

Bugzilla 0.0010 0.0010 0.0010

Firefox 0.0508 0.8955 0.8135

Table 7

The Spearman coefficients with the p-value in different cases (∗medium effect size; ∗∗large effect size).

Project Spearman correlations (ρ(p-value))

Without comments With comments

@1 @3 @5 @1 @3 @5

Mylyn 0.687∗∗(0.020) 0.145(0.672) –0.765∗∗(0.006) 0.120(0.726) 0.496∗(0.121) 0.683∗∗(0.020)

Gcc 0.760∗∗(0.007) 0.781∗∗(0.005) 0.897∗∗(0.000) 0.893∗∗(0.000) 0.845∗∗(0.001) 0.452∗(0.163)

Platform 0.705∗∗(0.015) 0.838∗∗(0.001) 0.927∗∗(0.000) –0.301∗(0.368) –0.105(0.759) 0.197(0.562)

Bugzilla 0.751∗∗(0.008) 0.900∗∗(0.000) 0.873∗∗(0.001) –0.101(0.768) 0.879∗∗(0.000) 0.877∗∗(0.000)

Firefox 0.938∗∗(0.000) 0.707∗∗(0.015) 0.655∗∗(0.029) 0.800∗∗(0.005) 0.934∗∗(0.000) 0.443∗(0.173)
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.5.4. Exploring the correspondence between topics

nd components (RQ4)

The advantage of DPLSA is that it interprets each topic with

correspondence to components. The most expected correspon-

ence is a one-to-one correspondence between topics and compo-

ents, such that the recommendation comes down to finding the

aximum topic in the topic-document distribution of a new re-

ort. However, due to the existence of semantic similarities among

ug reports in different components, it is difficult to find a distinct

oundary between components. A tradeoff in bug triaging, similar

o this work, is to transform the one-to-one classification problem

nto a one-to-more (e.g., 1-3, 1-5) recommendation problem [4,34].

Fig. 6 shows the estimated θdmean
j

(i.e., the average document

opic probability of all the training reports in a component) in
ach project. The horizontal axis denotes the component index

or each project while the vertical axis denotes each topic. The

omponent index and topic index are identical with the order

n the initialization step. The value represents the probabilistic

elevance of each component on each topic in terms of θdmean
j

. For

ach topic, we fill the top 3 corresponding components with a

lack square. The black squares represent which components the

opic can be interpreted with. It is seen that most of the entries

n the diagonal are black. This can explain the discriminative

ower: most of the components are correlated with the identical

ndex topic in the initialization step with a significantly high

robability (within the top 3). Therefore, we conclude that there

s a diagonal correspondence between the learned topics and

omponents, namely each topic correlates with the identical index
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Fig. 5. The recall @1, @3 and @5 of five projects among different vocabulary sizes in a recommender without the comments and a recommender with the comments.
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component. This is also the significant difference between DPLSA

and LDA.

To explain the correspondence, we explore the word-topic dis-

tributions. Take the Mylyn dataset as an example, Table 8 lists the

correlated words among all the topics. The number of topics is set

to 14 which is the same as the number of components. The top

20 words are listed in Table 8 when the vocabulary size is equal

to 5000 using DPLSA, in descending order by the relevant proba-

bility. Some informative words connected with only one topic and

correlated with one component obviously. For example, ‘bugzilla’,

‘jira’, ‘trac’ and ‘attach’ (bold in Table 8) are informative words. Ob-

viously, they are correlated with ‘bugzilla’, ‘jira’, ‘trac’ and ‘XML’

component separately. It is difficult to say there is a one-to-one

correspondence between learned topics and components because
 t
f the existence of uninformative words. These words are con-

ected with several topics with similar probability and are shared

etween several components. For example, ‘eclipse’, ‘java’, ‘org’ and

mylyn’ (underlined in Table 8) are uninformative words.

. Threats to validity

.1. Internal validity

Threats to internal validity result from the potential limitations

n our experiments.

Impact of comments. Previous works have stated that the

omments in bug reports reflect several aspects of the bug: cor-

elations with other bugs, solutions to fix the bug, and indicators

o be a duplicate bug report. In this work, experiments show that
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Fig. 6. The correspondence between learned topics and components. The horizontal axis denotes the component index for each project while the vertical axis denotes each

topic. The value represents the probabilistic relevance of each component on each topic in terms of θ dmean

j
. For each topic, three filled black square represents the top 3

corresponding components ordered by relevance probability.

Table 8

Top 20 words in each topic in Mylyn.

Topic index Top 20 words

1 attach create patch context zip mylyn appli fix test file update add ad code steffen check good review bug great

2 java eclipse org intern core osgi framework bundleload ui start defaultclassload abstractbundle lang loadclass source baseadaptor findlocalclass runtime

run classload

3 editor task trac api comment bug method attribute connector hyperlink implement text descript id code field support repli string key

4 task queri list time synchron work date data categori bug set local change show schedul mark fix tasklist issue active

5 eclipse org java mylar core intern run error ui test junit framework assert task monitor log tasklist message source unknown

6 java org eclipse intern core run lang jface ui viewer util object actioncontributionitem wait abstracttreeview equinox thread wizarddialog method lock

7 line section screenshot comment text color expand node image layout attach fix size button viewer icon font label style space

8 bugzilla bug test comment field submit version error frank repli report work cgi rob fix update problem set change id

9 jira mylyn apache java org core service http server issue httpclient common axi client log eclipse connect soap intern atlassian

10 mylyn eclipse org update build feature http site version install project file download plug plugin release tool week dev connector

11 java eclipse org ui intern swt widget workbench main run display core runtime invoke reflect eclipsestart launcher adaptor eclipseapplaunch mylyn

12 comment make ui bug support point repli extens user project page good add code dont implement move current api report

13 task editor bug work open view select list action click show context menu make comment button set mark filter focus

14 repositori queri url dialog set connector web page wizard mylar search create task error user open properti work issue browser
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o

s

sing comments in some projects offer no contribution and even

ring negative impacts. There are different factors which may im-

act the usefulness of comments, such as the person who writes

he comment, the corresponded bug report and the informative

egree of the content. However, we did not draw the conclusion

bout the detailed guideline to identify the usefulness. This is a

hreat for generalizing a well-supported result. We perform a sta-

istical test and draw a converse conclusion that using comments

n the DPLSA-JS component recommender does not always make

ontribution to the performance to mitigate this problem. A more

efined work is needed on larger datasets to identify what factors

nd how they impact the usefulness of comments.

Impact of vocabulary. Vocabulary plays a significant role in

opic modeling. In this work, the vocabulary consists of a list

f unique words in the bug reports corpus. Furthermore, it was

ormalized by removing the stop words and put into descending
rder by word frequency. However, some words which possess a

igh frequency do not provide the discriminative information for

ug assignment, such as some key words in java code (e.g., “java”

nd “org”). The vocabulary selection method based on the word

requencies in this work may include these words which are not

iscriminative enough. This is a threat to the recommendation

erformance. We vary the vocabulary size in a substantial range

o mitigate this problem. Also, a more refined work is to take into

ccount the effects of searching and removing these words from

he vocabulary.

.2. External validity

Threats to external validity correlate with the generalizability

f our approach. When generalizing our approach outside of this

tudy, two aspects should be noticed.
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Impact of labeled bug reports. The proposed recommender

relies on learning from prior bug triaging knowledge in past bug

reports. Attention needs to be paid to the problem of the effective-

ness of the assigned bug reports. The correctness of their provided

prior knowledge is correlated with the state of each bug report. In

our work, we take the same policy as [6]. Reports with a state of

UNCONFIRMED or NEW are ignored. However, due to the diversity

of the triaging policy in different projects, the data set needs

to be further refined because of these diverse policies. Besides,

the time-sequential policy used in this work determines that the

selected test reports are created in the time period following the

time period of the training reports. This is a threat to apply this

approach to a practical environment. The recommender needs to

be updated every time period to mitigate this problem.

Impact of using a supervised model. The results and conclu-

sions are drawn through a supervised model. Using a supervised

model determines that the model needs to be trained on the

reports of the new system when generalizing the approach to

other systems. Moreover, when a new component is added to the

system, it indicates that the number of topics is changing. This

is a threat for generalizing our approach. The model needs to be

updated by adding sufficient reports for the new component to

mitigate this problem. In the evaluation, choosing how many com-

ponents to recommend is a variable. This may be a threat for the

comparison, since we did not consider all the choices. However,

we consider the typical choices (making 1, 3, 5 recommendations)

at the number of recommendations to mitigate this problem.

6. Conclusion and future work

This paper has empirically evaluated the capability of the

proposed DPLSA in creating a component recommender of bug

reports and compared its performance against the state-of-art

methods in the context of five open source projects. In summary,

the conclusions are drawn as follows: first, using comments in

the DPLSA-JS recommender does not always make a contribution

to the performance. Second, the vocabulary size does matter in

DPLSA-JS. Different projects need to adaptively set the vocabulary

size according to the experimental method. Third, the correspon-

dence between learned topics and components in DPLSA increases

the discriminative power of topics which is useful for the recom-

mendation task. Also, this overcomes difficulties in determining an

appropriate number of topics in the LDA method. The experiments

show that the DPLSA-JS outperforms the LDA-KL and LDA-SVM

methods. In detail, the proposed DPLSA-JS approach outperforms

the LDA-KL method by 30.08%, 19.60% and 14.13% for average

recall @1, recall @3 and recall @5, respectively. Also, DPLSA-JS

outperforms the LDA-SVM method by 31.56%, 17.80% and 8.78% for

average recall @1, recall @3 and recall @5, respectively.

In the future, we plan to enhance the effectiveness of our

method further. For example, we plan to employ various text min-

ing techniques to adaptively choose the valid comments and terms

in the vocabulary. Also, we plan to investigate whether our method

outperforms other LDA based methods, such as LDA-GA [55] and

sLDA [43]. Besides, we plan to test our method on more projects

and bug reports and conduct a field study by interviewing devel-

opers in both industrial and open source projects.
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