
Information and Software Technology 57 (2015) 369–377
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Automated classification of software change messages
by semi-supervised Latent Dirichlet Allocation
http://dx.doi.org/10.1016/j.infsof.2014.05.017
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: School of Software Engineering, Chongqing
University, Huxi Town, Shapingba, Chongqing 401331, PR China. Tel.: +86
15923238399.

E-mail address: xhongz@cqu.edu.cn (X. Zhang).
Ying Fu b, Meng Yan b, Xiaohong Zhang a,b,⇑, Ling Xu b, Dan Yang b, Jeffrey D. Kymer b

a Key Laboratory of Dependable Service Computing in Cyber Physical Society Ministry of Education, Chongqing 400044, PR China
b School of Software Engineering, Chongqing University, Chongqing 401331, PR China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 12 September 2013
Received in revised form 21 May 2014
Accepted 22 May 2014
Available online 6 June 2014

Keywords:
Software repositories mining
Semi-supervised topic modeling
LDA
Change message
Context: Topic models such as probabilistic Latent Semantic Analysis (pLSA) and Latent Dirichlet
Allocation (LDA) have demonstrated success in mining software repository tasks. Understanding software
change messages described by the unstructured nature-language text is one of the fundamental
challenges in mining these messages in repositories.
Objective: We seek to present a novel automatic change message classification method characterized by
semi-supervised topic semantic analysis.
Method: In this work, we present a semi-supervised LDA based approach to automatically classify change
messages. We use domain knowledge of software changes to make labeled samples which are added to
build the semi-supervised LDA model. Next, we verify the cross-project analysis application of our
method on three open-source projects. Our method has two advantages over existing software change
classification methods: First of all, it mitigates the issue of how to set the appropriate number of latent
topics. We do not have to choose the number of latent topics in our method, because it corresponds to the
number of class labels. Second, this approach utilizes the information provided by the label samples in
the training set.
Results: Our method automatically classified about 85% of the change messages in our experiment and
our validation survey showed that 70.56% of the time our automatic classification results were in agree-
ment with developer opinions.
Conclusion: Our approach automatically classifies most of the change messages which record the cause of
the software change and the method is applicable to cross-project analysis of software change messages.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Since the pioneering work of Mockus and Votta [1] has exempli-
fied that a textual description field of a change is useful to under-
stand why that change was performed, classification of change
messages corresponding to software changes has become a useful
task in software lifecycle management assisting in tracing and
monitoring: software evolution [2], software maintenance [3], soft-
ware state, and development. For example, using these classifica-
tions the project manager can adjust the development plan
according to the rate of corrective changes versus adaptive
changes. A high rate indicates that too much time is spent fixing
bugs. This information provides a suggestion to enforce quality
control practices to improve the quality of code. The classification
performance and automatically classifying speed are naturally
critical to the project manager’s decision. The main goal of this
paper is to provide a novel and good performance method for
automatically classifying the large corpus of changes using only
the textual descriptions of change messages.

Many nature language processing (NLP) techniques have been
extensively utilized for classifying change messages for conducting
many software engineering activities, such as keyword based
matching [1,4,5], Weka Machine Learning framework [6], naive
Bayes classifiers [7], and so on. The successful applications of NLP
in software engineering activities result from several facts: (1)
Change messages record the purpose of making the changes in
nature-language, such as adding a new feature or a bug fix, but
not explicitly labeling the change category. (2) There are many
software engineering domain terms included in the textual
description of change messages, such as ‘‘bug’’, ‘‘fix’’, and ‘‘main-
tain’’. (3) The description is brief and unformatted. The textural
description of change messages is effectively used for conducting
many software engineering activities such as quickly classifying
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the change messages and filtering out irrelevant versions. This is
significantly less expensive and simple [6] than retrieving then
analyzing the source code of the change. Among NLP techniques,
the topic model provides a powerful tool for discovering and
exploiting the hidden thematic structure in large archives of text,
which can discover hidden semantic relations between words [8].
It had been introduced into the domain of software engineering
to help to solve various software engineering research questions,
such as software evolution [9] and software defect prediction
[10]. Especially, probabilistic Latent Semantic Analysis (pLSA)
[11] and Latent Dirichlet Allocation (LDA) [12] which have demon-
strated success in mining software repository tasks [8,9,13–15]. In
this paper, our research is motivated by the success mentioned
above of applying the statistical topic model to automatically
extract topics by mining textual software repositories [1,5,16].

Despite the great success some issues with topic models remain
in software engineering. First of all, many works applied the LDA
model to extract topics from software repositories [8,9,13,15,17].
However, their works seldom considered using the software
engineering domain knowledge to cue the application of the topic
model. In fact, the domain knowledge is useful in classification or
pattern discovery [18] as Wu and Chien [19] showed the semi-
supervised LDA with the domain knowledge added achieved
higher classification performance compared to the other methods
on text categorization. Secondly, many researchers set the number
of topics by their experience or referred to the results of similar
studies such that there is no guarantee that the latent topics found
by their approaches will necessarily correspond to the goal of the
research. For example, Somasundaram and Murphy [20] used the
LDA model to automatically categorize bug reports by assuming
T to be 20, 70, 120, 170, 220, 270 to compute an estimate of P
(W|T), and attained a peak for a particular value of T. The number
of topics was set to be that particular value in their research. How-
ever, the latent topics found by this method do not correspond to
the bug report categories. In this paper, we made two changes to
the original LDA based method: (1) In building the semi-supervised
LDA model, we added labeled samples with the domain knowledge
of software changes to train the model. In this way, we influence
the co-occurrence frequency of words which belong to the same
category. (2) The latent topics in our model directly correspond
to the class labels and we classified the change messages according
to a comparison of the similarity between topics and class labels
instead of the probability distribution of the topics.

The contributions of this paper are twofold. First, we mitigate
the issue of how to set the appropriate number of latent topics.
We do not have to choose the number of latent topics because
the latent topics in our model directly correspond to the software
change class labels. Second, we extended the standard LDA model
to make use of the class label information with the domain knowl-
edge in the trained data, and trained the LDA in a semi-supervised
fashion. To understand the detail of our work and how our research
performs, we focused on the following research questions.

� RQ1 How to build a semi-supervised LDA based model for
change message features?
� RQ2 Could the iterations affect the results of the classification in

our approach?
� RQ3 How to automatically classify the software change

messages by semi-supervised LDA modeling?

The remainder of this paper is structured as follows: Section 2
presents the related work of our research, including the research
of software change and LDA modeling in mining software reposito-
ries (MSR). Section 3 provides the information of our study projects
and the procedure of our research. Sections 4-7 provide our
detailed research process and the application of our approach to
three open-source projects. Section 8 presents a conclusion of
our work and the potential threats to the validity of our study.
2. Related work

This section provides an overview of software change mining,
the software change classification rules, and LDA modeling in
mining software repositories (MSR).

2.1. The research of software change

Software change is one of the significant characteristics of soft-
ware evolution [21]. And change messages in VCS are used to
record the software changes by developers, including the cause
of the changes and all the details about the updated, deleted, or
added source code files. Most of the researchers studied software
changes through the change messages and have obtained a great
number of achievements.

2.1.1. Software change messages mining
In this subsection, we describe the related work conducted on

some software engineering activities through software change
message mining, such as: identifying the reasons for the software
change, guiding software changes, and connecting the change mes-
sages to bug reports.

To understand the cause of software changes, Mockus and Votta
[1] proposed a lexical analysis approach to automatically classify a
change by a textual description of the changes. In their work, they
not only showed that a textual description field of a change is use-
ful to understand the cause of the changes but they also showed
that difficulty, size, and interval would vary greatly across different
types of changes. Hence, they defined every logically distinct
change as a Modification Request (MR), where the keywords in
the textual descriptions were directly used to classify the changes.
For example, if the keywords such as ‘‘add’’, ‘‘new’’, ‘‘create’’, or
‘‘change’’ were present in a change description, the change was
classified as adaptive. Their validation surveys showed that 61%
of the time their automatic classification results were in agreement
with developer opinions. In terms of Mockus’s idea, Hassan [5]
applied a similar approach to several open source projects as
opposed to commercial projects. In this paper, unlike the work of
Mockus, we will understand the cause of software changes by clas-
sifying change messages based on a semi-supervised LDA method,
which mitigates the issue of how to set the appropriate number of
latent topics and utilizes the information provided by the label
samples in the training set.

After the work of Mockus and Votta [1], Hattori and Lanza [4]
and Mauczka et al. [16] proposed some other variations of keyword
approaches to classify change messages. The method of Hattori
automatically classified each change commit into development or
maintenance activities according to the first keywords found in
the commit’s comment, and the classification results were
employed to further investigate the characteristics of each commit
category. However, the first keyword found in the commit’s com-
ment used to classify change messages may cause some deviation
when the first keyword cannot describe the cause of the changes.
Mauczka developed an Eclipse plug-in named Subcat to automati-
cally assess whether a change to the software was a bug fix, a
refactoring, or others. They further introduced a weighting of
keywords and rule sets for ambiguous, yet strongly indicative
words. However, the weight of the keywords was defined by the
researcher; hence it introduces the problem that different people
have different opinions about the weight.

Except the keyword based methods and its variants, there were
other machine learning methods used to mine the change
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messages. For example, Antoniol et al. [7] discussed alternating
decision trees, naive Bayesian classifiers, and logistic regression
that automatically divided the change requests in the Bug Tracking
System (BTS) into two classes: bugs and non-bugs and proposed an
algorithm that accurately distinguished bugs from other issues.
Hindle et al. [6] used several machine learners from Weka Machine
Learning framework including J48, NativeBayes, SMO, KStar, IBk,
JRip, and ZeroR to automatically classify large changes into the
extended Swanson Categories of Changes. Zimmermann et al.
[22] applied data mining to change messages to guide program-
mers along related changes and developed a tool called ROSE to
discover association rules from a set of existing changes. The dis-
covered association rules are used to predict the change locations
and show item coupling that is undetectable by program analysis
and can prevent errors due to incomplete changes.

It is important to note that many researchers [23–26] discussed
the link between change messages and bug reports for predicting
bugs. Bachmann et al. [26] linked the change messages to bug
reports through mining the information in change messages, and
explored how the linked data bias affected the BUGCACHE algo-
rithm. Although there are some advantages to cross-referencing a
bug report in the bug database with a commit in the VCS to assist
automatic classification of change messages, it is difficult to find
out the corresponding relationship between change messages
and bug reports without automatic-assisted tools.

2.1.2. Software change classification rules
The research field of the identification and classification of

software changes has evolved for decades. The first classification
system of software changes was put forward by Swanson [21] in
1977. Nowadays, Swanson’s classification definition is widely used
for mining software repositories. Swanson defined a maintenance
task as a change that can be classified into one of his classification
definitions. His definition is as follows:

� Corrective: These are the changes that are made to fix process-
ing failures, performance failures, or implementation failures.
� Adaptive: These are the activities that focus on the changes in

data environment or processing environment.
� Perfective: These are the changes which are made to improve

processing efficiency, enhance the performance, or increase
the maintainability.

Since the work of Swanson, there have been many variants and
extensions of his classification system. For instance, Hassan [5]
provided a simpler classification rule than Swanson’s. In Hassan’s
classification rule, software changes are classified into three cate-
gories: Bug Fixing change (BF), General Maintenance change
(GM), and Feature Introduction changes (FI). In addition, a fourth
category Not Sure (NS) was introduced when asking participating
developers to classify the change messages. Hindle et al. [9]
extended Swanson’s categorization into corrective-, adaptive-
and perfective changes with two additional changes: implementa-
tion changes and non-functional changes. Mauczka et al. [16] also
made a slight extension to Swanson’s original definition by intro-
duced an additional category ‘‘Blacklist’’.

In our work, we adopted a modified version of Swanson’s origi-
nal maintenance-classification to meet our requirements. In addi-
tion to the three categories which were defined by Swanson, a
fourth category which is Not Sure (NS) was added. This was also
adopted and defined by Hassan. The decision to use Swanson’s def-
inition of maintenance tasks has been made because it provides a
categorization into a few, well defined categories and is therefore
a very good starting-point to construct the keywords-list which
is used to classify the change messages. If the change messages
do not have sufficient information to be automatically classified
into one of the other three categories, they will be classified into
the NS category.
2.2. LDA modeling in mining software repositories

Mining software repositories (MSR) is a technique which
focuses on analyzing and understanding the data in software
repositories which is related to the software development lifecycle.
To combat the complexities of MSR, a recent achievement was the
use of statistical topic models, such as PLSA [11], LDA [12], CTM
[27] and their variants.

Hindle et al. [9] proposed the link Latent Dirichlet Allocation
model for discovering a set of topics in change messages over a
defined time-window, such as 30 days. The link model with 20 top-
ics per window showed what topics are being worked on by the
developers and identify activity trends in a particular time win-
dow. Later, Hindle et al. [17] presented another approach to label-
ing change descriptions by LDA modeling. In their work, they first
set the number of topics to 20 to generate topics from change
descriptions, then they labeled the topics by using a non-functional
requirements (NFR) taxonomy which is based on the ISO quality
model [28]. In addition to being used to analysis change messages,
LDA is also used to analysis other artifacts in software repositories.
Linstead et al. [29] adapted and applied LDA, for the first time, to
extract concepts from source code and demonstrated the results
on the SourceForge and Apache projects. Their study effectively
demonstrated the effectiveness of LDA to extract topics from
source code. Liu et al. [30] as well applied LDA to extract the latent
topics embedded in comments and identifiers in source code and
combined with information entropy measures to quantitatively
evaluate the cohesion of classes in software. In addition to method-
ological advancements, LDA is also implemented in tools. Asuncion
et al. [31] introduced a tool called TRASE that uses LDA for prospec-
tively recovering traceability links amongst diverse artifacts in
software repositories which include source code, email, require-
ment design documents, and bug reports. Asuncion demonstrated
that LDA outperforms LSI [32] in terms of precision and recall. It is
noted that the researchers mentioned above experimented with
manual or automatic techniques for choosing an optimal value
for the topic number.

The LDA based method is not only used to analysis the unstruc-
tured data but also used to classify unstructured data such as done
in the work of Somasundaram and Murphy [20]. Somasundaram
used the LDA model to automatically categorize bug reports into
the appropriate components. They investigated three approaches
to automating bug report categorization, and found that LDA com-
bined with the Kullback Leibler divergence (LDA-KL) based
approach achieved the most consistent results, which achieved a
recall of 70–95%. The combined work of Hindle and Somasundaram
provided a preliminary and rough clue that LDA can be used to
classify the change messages for us. Since the number of topics
in Somasundaram’s work [20] was chosen by experiment the dis-
covered topics did not correspond to the bug report categories.
So far, the number of topics is a critical parameter and determining
the number of topics is still an open problem.
3. Research methodology

3.1. The data under study

We performed our experiments on the change messages repos-
itories of five mature open-source projects (Table 1 lists the details
of these projects). Exploring the effect of iterations on Boost and
Wireshark and validating our approach on Bugzilla, Firebird, and
Python. The five projects belonged to different fields, programmed
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Table 1
Five open-source projects.

Projects Application type Start date Devs Changes Programming language

Bugzilla Project management August 1998 62 27539 Perl
Wireshark Packet analyzer September 1998 43 40511 C
Boost Prog. library July 2000 294 42208 C++
Firebird RDBMS May 2001 43 48622 C++
Python Interpreter August 1998 216 45032 C
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in different programming languages, and the number of change
messages in each is near 30,000 changes. Another feature of these
projects is that the number of developers is at least 40. The reasons
that we decided to choose these projects as our experimental data
is as follows: (1) To validate if our approach can do across-project
analysis. (2) To validate if our approach can understand nature-
language and the expression diversity of different projects or
developers. (3) To validate if the programming language or the
application field would affect our approach.

3.2. LDA model

LDA is an unsupervised generative model that categorizes the
words that appear in the corpus of documents into clusters which
are typically referred to as topics. According to Blei et al. [12], the
joint distribution of LDA is as follow:

pðw; z=a; bÞ ¼ pðw=z;bÞpðz=aÞ ð1Þ

The parameters a and b are given model parameters, w is the word,
and z is the topic. The p(z|a) is the probability of topic z occurring in
document d, and p(w|z, b) is the probability of word w occurring in a
particular topic z. The direct computation of Eq. (1) is intractable.
According to Griffiths and Steyvers [33], we can use a suitable
approximation instead of computing it directly. The suitable
approximation is given by:

pðzi ¼ k=z�i;wÞ /
nwi
�i;k þ b

n��i;k þWb
�

ndi
�i;k þ a

ndi
�i;� þ Ta

ð2Þ

In Eq. (2), nð�Þ�i is a count that does not include the current assign-
ment of the topic zi, nwi

�i is the number of times the topic z which
is associated with the word wi, nai

�i is the number of times the topic
z which is associated with the document di, W is the number of dis-
tinct words which are preprocessed and T is the number of topics.
Since Eq. (2) is a straightforward Markov Chain, we use the Gibbs
Sampler approach [33] to resolve it using approximation according
to Griffiths.

3.3. Study setup

The procedure of our research was mainly divided into six parts.
First, we analyzed the characteristic of the change message in
order to adapt the LDA. Secondly, we preprocessed the change
messages using nature-language text preprocessing. After data
preprocessing, we pruned the change messages by removing mes-
sages that are too brief. Thirdly, we built three sets of term lists as
signifiers which matched Swanson’s [21] original definition of
maintenance tasks. The construction of the term lists was con-
ducted with the help of Mauczka’s et al. [16]. Using these term
lists, we converted the text information to numerical information
by term frequency calculation. Fourthly, the related prior knowl-
edge was added to the software change classification to build a
semi-supervised LDA model. Fifthly, we choose the iterations
through an experiment. Finally, we validated the applicability of
our approach on three open-source projects.
3.3.1. Preprocessing the change messages
In this research, we preprocessed the software change messages

of each project by applying the required nature-language text pre-
processing steps used by any information retrieval technique. The
change messages were preprocessed by Lucene1 and Snowball2 in
our research. The preprocessing steps included: sentence splitting,
term splitting, stop words filtering, and stemming. We filtered com-
mon English language stop words (such as: the, it, and on) to reduce
noise. In addition, we stemmed the words (e.g. ‘‘fixing’’ becomes
‘‘fix’’) in order to reduce the vocabulary size and reduce duplication
due to the word form.

3.3.2. Prune the change messages
Open-source projects do not enforce how to write a change

description; hence, some change messages do not clearly describe
the cause of the changes. After reading a lot of changes, we found
that many change messages were too brief; hence they did not
record the cause of the change clearly. This problem made it diffi-
cult to classify the software changes according to the text descrip-
tions of the change messages. These change messages will be noise
in the LDA modeling. So we pruned the change messages by
removing these messages (the total number of words being less
than five after data preprocessing) to reduce the noise of the data.

3.3.3. Constructing the term list
In the process of term frequency calculation, the key point is the

construction of three sets of term lists as signifiers. Each set of term
lists is associated with a type which matches Swanson’s [21] origi-
nal definition of maintenance tasks. In our work, the term lists
which are used for cross-project analysis were derived with the
help of Mauczka et al. [16] whose final dictionary was validated
in analyzing cross-project data (see Table 2).

3.3.4. Choosing the number of topics
There is no agreed-upon standard method for choosing the

value for the input parameter K (the number of topics) in advance,
although some heuristics have been proposed [33–35]. The choice
of the value of K is a trade-off between coarser topics (smaller K)
and finer-grained topics (large K). After long term research,
researchers put forward typical values of K instead of a correct
value.

In our work, we classified software change messages into three
categories according to Swanson’s original definition of mainte-
nance. Naturally, we made the latent topics in our models directly
correspond to the software change class label. We kept K = 3 in our
method, therefore, the topics correspond to the three categories in
Swanson’s definition.

3.3.5. The hyper-parameters of LDA
As to the number of topics, there is no agreed-upon standard

method for generating the values of a and b. The a is the Dirichlet
prior parameter of the topics within each document and the b is
the Dirichlet prior parameter of words within each topic. Although

http://lucene.apache.org/
http://snowball.tartarus.org/


Table 2
Keywords in three sets of term lists.

Signifier Keywords

Corrective Bugfix bug cause error failure fix miss null warn wrong bad correct incorrect problem opps valid invalid fail bad dump except
Adaptive Add new create feature function appropriate available change compatibility config configuration text current default easier future information internal

method necessary old patch protocol provide release replace require security simple structure switch context trunk useful user version install introduce
faster init

Perfective Clean cleanup consistent declaration definition documentation move prototype remove static style unused variable whitespace header include dead
inefficient useless
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Griffiths’s [33] algorithm was easily extended to allow a and b to
be sampled, this extension could slow the convergence of the
Markov Chain. Therefore we set the values of the hyper-parame-
ters the same as the Griffiths’s work. In our research, we kept the
hyper-parameters a to be 50/T (T is the number of topics) and b
to be 0.01, as described by Griffiths.
4. Semi-supervised LDA (RQ1)

The original LDA model is an unsupervised model. Although
Sections 1 and 2 provide evidence for the applicability of LDA,
directly applying the original LDA based approach to the change
messages is not a good idea because of the differences between
the change messages and nature-language text. As to the features
of change message which are mentioned above, we added the
domain knowledge of software changes to train the LDA in a
semi-supervised fashion.

In Fig. 1(a), the probabilistic graphical model of LDA shows two
processes; a ? h ? z and z ? w. The process a ? h ? z indicates
the generation process of topic z. As well, the process z ? w
indicates the generation process of word w. In Fig. 1(b), the
probabilistic graphical model of the semi-supervised LDA also
shows the same two processes. The gray cycle indicates the main
difference between LDA and semi-supervised LDA is the generation
of topic z. In the semi-supervised LDA model, we added signifier
documents to change the unsupervised training process into a
semi-supervised fashion. The signifier documents can influence
the generation process of the words because they can increase the
co-occurrence [36] frequency of the keywords which belong to the
same category used by human supervision.

The original LDA only provided the probability of topics within
the document and the probability of words within that topic. In our
semi-supervised LDA based method, the classification algorithm
(a)

M 

θ Z W Nα

β

(b)

M 

θ Z W Nα

β

Fig. 1. Graphical representation of: (a) the LDA model, adopted from Blei et al.; (b)
the semi-supervised LDA for training.
relies on the similarity comparison between the unclassified docu-
ments and the signifier documents. Therefore, the similarity is cal-
culated by calculating the distance between the unclassified
documents and the signifier documents. Here we used the Cosine
Similarity method as used in previous research [37]. The specific
calculation equation is as follows:

simðd1;d2Þ ¼
P

iðd1i � d2iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
id

2
1i �

P
id

2
2i

q ð3Þ

where d1 and d2 are two documents, and the i-th dimension weight
in topic spaces are d1i and d2i.
5. The effect of iterations (RQ2)

In the LDA model the iterations are the Gibbs samplings. There
is no agreed-upon standard method for choosing the iterations. As
described by Griffiths and Steyvers [33], the iterations can be
selected according to the demands of the problem. To explore
the best iterations for our study, an experiment was designed to
explore the iteration effects on the automatic classification accu-
racy. We applied the semi-supervised LDA based method to two
open-source projects (Boost and Wireshark) which are introduced
in Section 3.1. In this experiment, we set the iterations to be 1, 100,
200, 300, 400, 500, 600, 700, 800, 900, and 1000. Then for all iter-
ation values, we randomly selected 60 change messages of every
project to evaluate the accuracy of automatic classification. As
Fig. 2 shows, the accuracies of both Boost and Wireshark were sus-
tainably increasing between 1 and 100, and then remained stable
between 100 and 700. After 700 iterations the accuracies began
to decrease slightly then remained stable. The results suggested
that the classification accuracies reached a peak at iterations
between 100 and 700.
Fig. 2. The effect of iterations on classification accuracy (Boost, Wireshark).



Software Change 

messages 

Data preprocessing: Term split; 

Stopping words filter; Stemming 

Prune the change messages 

Term frequency 

calculation 

Similarity calculation 

Semi-supervised 

LDA modeling 

Classification  

results 

Signifier docs 

Start 

Training data Testing data 

Term frequency 

calculation 

Semi-supervised 

LDAmodel

End 

Fig. 4. The procedure of the semi-supervised experiment.

374 Y. Fu et al. / Information and Software Technology 57 (2015) 369–377
Then according to the results of our first experiment, we nar-
rowed the change granularity and set the iterations to be 1, 5,
10, 15, 20, 25, 30, 35, 40, 45, and 50 to explore the effect of the iter-
ations further. As Fig. 3 shows, the accuracies of both Boost and
Wireshark were sustainably increasing between 1 and 30, and then
remained stable between 30 and 50. Furthermore the accuracies of
50 iterations and 100 iterations were equal.

According to the results of these two experiments, we decided
to set the iterations to be 100 in our approach where the accuracies
peaked in both Boost and Wireshark.

6. Applying semi-supervised LDA to open-source projects (RQ3)

In order to verify the cross-project analysis applicability of the
semi-supervised LDA based method, we applied the method to
the rest of the three open-source projects which were introduced
in Section 3.1.

In this experiment, we divided the data of each project into two
parts. The 50% data used to test the approach and we combined the
other 50% data with 25% signifier documents which are mentioned
in Section 3.3.2 as training data. Therefore the amount of the train-
ing data is about 60% and the amount of the testing data is about
40%. For all projects, we used K = 3, a = 50/K, b = 0.01, and itera-
tions = 100. The detailed procedure of the experiment is shown
in Fig. 4. The dotted line represents the training course of the
model. The solid line represents the testing procedure. The bold
solid line represents the shared part of model training and model
testing.

6.1. Results and conclusions

The results of our automatic classification approach are summa-
rized in Table 3. As mentioned above, the change messages with
words less than five were not used to classify as we filtered them
out from the experiment data. As Table 3 shows, these following
conclusions are drawn from the results:

� In all projects, the number of unclassified change messages is
acceptable and the amount of NS (Not Sure) is about 14.12%.
Therefore, we conclude that our approach automatically classi-
fies most of the change messages which record the cause of the
software changes.
Fig. 3. The effect of iterations on classification accuracy (Boost, Wireshark).
� As Table 3 shows, in Firebird and Python, the number of cor-
rective changes is more than either adaptive or perfective
changes and in Bugzilla the number of perfective changes is
more than either corrective or adaptive changes. The phenom-
enon indicates that the activities of project debugging and cor-
rection accounted for more time than other development
activities in Firebird and Python. According to the automatic
classification results of projects, we found the cause of soft-
ware evolution. For example, by tracing the release history
of Bugzilla, we found that feature introduction and perfection
were the main cause of Bugzilla evolution which matches the
results in Table 3.
� In all projects, the total change messages which were classified

were less than the actual number of change messages in the
project. The reason is that messages that were too brief did
not record the cause of the changes well and introduced noise
to our approach. Hence, we filtered them out before classifica-
tion. There is a little exception in the case of Firebird, the total
messages of training and testing is 7675 less than the actual.
After checking the data, we found that we filtered out 31,698
changes with the same description of ‘‘increment build num-
ber’’, in addition these messages were not entered by develop-
ers. They were caused by a repository–converter.



Table 3
Automatic classification results of semi-supervised LDA.

Projects Corrective Adaptive Perfective Not Sure Total

Bugzilla 1486(37.35%) 830(20.86%) 1617(40.64%) 46(1.16%) 3979
Firebird 1408(36.70%) 998(26.01%) 605(15.76%) 826(21.53%) 3837
Python 5094(29.06%) 5054(28.83%) 3935(22.44%) 3449(19.67%) 17532

Fig. 5. The classification accuracy result of three projects (Python, Firebird, Bugzilla).

Fig. 6. The F-measure score between the professional manually labeled results and
our automatic results on 3 open source projects.
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7. Validation

To evaluate our results, we did a survey with a small number of
professional software developers who are working in different
software domains. Our validation was constructed as follows:

� We made three lists of questions, each with 60 change descrip-
tions of each project which were selected randomly by a pro-
gram (20 of each category except the NS category).
� Three questionnaires for developers, each developer catego-

rized one questionnaire.

In the procedure of generating the questionnaires, we randomly
selected change messages to guarantee that the mathematical
analysis performed later does not suffer from any bias due to their
type or source.

7.1. Conducting the evaluation

Fig. 5 shows the agreement between developers and the auto-
mated classification method. In the survey, if a developer chooses
two categories, a point was split between these categories. As
Fig. 5 shows, the average agreement between developers and our
automated classification method is 70.56%.

In order to evaluate more accurately, we took the F-measure
value to evaluate our approach. The F-measure value considers
both the precision (p) and the recall (r) of the classification to com-
pute the value, where the p is the number of correct results divided
by the number of all returned results and the r is the number of
correct results divided by the number of results which should have
been returned. The F-measure value is interpreted as a weighted
average of the precision and recall and the higher score indicates
a better classification result. Fig. 6 shows the F-measure value of
the three projects.

F �measure ¼ 2 � ðprecision � recallÞ
precisionþ recall

ð4Þ
7.2. Comparing to a lightweight approach

We used the term lists which was mentioned in Section 3.3.3 to
simply implement the lightweight method mentioned by Hattori
and Lanza [4], then it automatically classified each change commit
into the extended Swanson’s classification rules which we were
used according to the first keywords found in the commit’s com-
ment. Here we call this method the first keyword method. We
applied the first keyword method to automatically classify the test
dataset, which was mentioned in Section 6, and calculated the
agreement between the results of the survey, which we mentioned
before, and the results of the first keyword method. As Table 4
shows, the average agreement between developers and the first
keyword method is 50.56% and the amount of NS (Not Sure) is
about 16.83%. Then we compared the classification accuracy of
our method to first keyword method on the same dataset as shown
in Fig. 7.
7.3. Interpretation of the evaluation

The following conclusions are drawn from the results:



Table 4
Automatic classification results of first keyword method.

Bugzilla (%) Firebird (%) Python (%)

Accuracy 41.67 53.33 56.67
NS (Not sure) 1.68 24.14 24.81

Fig. 7. The comparison of classification accuracy.
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� The average agreement between the developers and our auto-
matic classification method is 70.56% and the average F-mea-
sure value is about 0.7. These results indicate that our method
is valid for cross-project analyzing software change messages.
� The amount of NS in our method is less than the first keyword

method and the classification accuracy of our method is better
than the first keyword method.
� The agreement for the perfective category is better than the

other categories in all projects. It shows our semi-supervised
LDA based classification method excelled at identifying the per-
fective maintenance tasks.
� The best results of our method and the first keyword method

are in the Python project. By comparing and analyzing the
descriptions of change message in the three projects which
we surveyed, we found that the messages in Python are more
regular and normative than others.

8. Conclusions

In this section we make a conclusion about our work and dis-
cuss the limitations and potential threats to the validity of our
research.
8.1. Conclusions

In this paper, we studied change messages which are attached
to software changes committed to a version control system. We
presented a novel method to automatically classify change mes-
sages based on a semi-supervised LDA modeling using change
messages description. The experimental results showed that our
approach classified about 85% of the change messages. In addition,
the validation surveys showed that 70.56% of the time our auto-
matic classification results were in agreement with developer
opinions. These show that the method is applicable to cross-pro-
ject analysis of software change messages.
8.2. Limitation and threats to validity

The completeness of change messages. Attention needs to be paid
to the problem of incompleteness and bias in the VCS [26]. Devel-
opers did not always make an explicit comment in the VCS when
committing a change. We will explore how to cross-referencing
bug tracker with VCS and use the corresponding relationships
between change messages and bug reports to recover the missing
change messages in our future work.

Quality of software change messages. As with most of software
change analysis techniques based on the description of change
messages, our results are dependent on the quality of the descrip-
tion style of the project developers. During our survey, we found
that there were several change descriptions which cannot be cate-
gorized into any of the three categories. This was because most of
these descriptions were irregularly written or there was little
information indicating the reason for the change.

Preprocessing steps. We performed several preprocessing steps
on the description of change messages, such as term splitting, fil-
tering the stop words, and stemming. After checking the results
of the preprocessing, we found a few of the words that were not
precisely stemmed. This led to these words being classified into
the wrong category or not being classified.

Parameter values. Our work involves choosing several parame-
ters for the LDA model inputs, such as document smoothing
parameters (a and b), the number of topics, and the number of
sampling iterations. There is no theoretically guaranteed method
for choosing optimal values for them currently, even though they
will deeply affect the result of the research when using the LDA
model. In our research, the number of topics K is set to 3 this cor-
responds to the software change classification labels, the values of
a and b are the same as previous work [33,38], and we chose the
number of iterations through experimentation.

Term list. The term lists, which is a key problem to our work, are
derived from the help of Mauczka et al. [16]. The words in the list
needed further editing and validation.

Validation method. Although we performed a survey with a
small number of participants, we believe that their classifications
are representative of developers in the industry. Nevertheless, it
is desirable to enhance our work by having more participants to
participate in the survey and for additional projects.
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