
CoSec: On-the-Fly Security Hardening of Code LLMs via
Supervised Co-decoding

Dong Li
Chongqing University
Chongqing, China
lidong@cqu.edu.cn

Meng Yan∗
Chongqing University
Chongqing, China
mengy@cqu.edu.cn

Yaosheng Zhang
Chongqing University
Chongqing, China

yaosheng_zhang@stu.cqu.edu.cn

Zhongxin Liu
Zhejiang University
Hangzhou, China
liu_zx@zju.edu.cn

Chao Liu
Chongqing University
Chongqing, China

liu.chao@cqu.edu.cn

Xiaohong Zhang
Chongqing University
Chongqing, China
xhongz@cqu.edu.cn

Ting Chen
University of Electronic Science and

Technology of China
Chengdu, China

brokendragon@uestc.edu.cn

David Lo
Singapore Management University

Singapore, Singapore
davidlo@smu.edu.sg

Abstract
Large Language Models (LLMs) specialized in code have shown
exceptional proficiency across various programming-related tasks,
particularly code generation. Nonetheless, due to its nature of pre-
training on massive uncritically filtered data, prior studies have
shown that code LLMs are prone to generate code with potential
vulnerabilities. Existing approaches to mitigate this risk involve
crafting data without vulnerability and subsequently retraining
or fine-tuning the model. As the number of parameters exceeds a
billion, the computation and data demands of the above approaches
will be enormous. Moreover, an increasing number of code LLMs
tend to be distributed as services, where the internal representation
is not accessible, and the API is the only way to reach the LLM,
making the prior mitigation strategies non-applicable.

To cope with this, we propose CoSec, an on-the-fly Security
hardening method of code LLMs based on security model-guided
Co-decoding, to reduce the likelihood of code LLMs to generate
code containing vulnerabilities. Our key idea is to train a separate
but much smaller security model to co-decode with a target code
LLM. Since the trained secure model has higher confidence for
secure tokens, it guides the generation of the target base model
towards more secure code generation. By adjusting the probability
distributions of tokens during each step of the decoding process, our
approach effectively influences the tendencies of generation with-
out accessing the internal parameters of the target code LLM. We

∗Meng Yan is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680371

have conducted extensive experiments across various parameters
in multiple code LLMs (i.e., CodeGen, StarCoder, and DeepSeek-
Coder), and the results show that our approach is effective in se-
curity hardening. Specifically, our approach improves the average
security ratio of six base models by 5.02%-37.14%, while maintaining
the functional correctness of the target model.

CCS Concepts
• Computing methodologies→Machine learning; • Security
and privacy→ Software and application security.

Keywords
Large Language Models; Code Generation; Software Security; AI
Safety

ACM Reference Format:
Dong Li, Meng Yan, Yaosheng Zhang, Zhongxin Liu, Chao Liu, Xiaohong
Zhang, Ting Chen, and David Lo. 2024. CoSec: On-the-Fly Security Harden-
ing of Code LLMs via Supervised Co-decoding. In Proceedings of the 33rd
ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA ’24), September 16–20, 2024, Vienna, Austria. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3650212.3680371

1 Introduction
Recently, large language models (LLMs), e.g., GPT3 [5], Llama [41],
and GLM [11], among others, have demonstrated remarkable perfor-
mance across numerous NLP applications. Code LLMs (e.g., Code-
Gen [30], StarCoder [25], and DeepSeek-Coder [10]), which are
generative models pretrained on a large amount of code along with
the code-related natural language texts, are capable of performing
various code-related tasks according to the programmer’s intent,
such as code completion [34], [44], [50], code translation [31], [9],
[40], and defect analysis [7], [15], [42]. Various development assis-
tance plug-ins (e.g., GitHub Copilot [16], AWS CodeWhisperer [2],
CodeGeeX [1], etc.) based on code LLMs are serving a growing num-
ber of developers. A report from Google indicates that more than

1428

https://orcid.org/0009-0003-2032-2015
https://orcid.org/0000-0002-9538-9121
https://orcid.org/0009-0008-7134-3672
https://orcid.org/0000-0002-1981-1626
https://orcid.org/0000-0002-8283-9146
https://orcid.org/0000-0002-1767-9342
https://orcid.org/0000-0001-9165-8331
https://orcid.org/0000-0002-4367-7201
https://doi.org/10.1145/3650212.3680371
https://doi.org/10.1145/3650212.3680371

ISSTA ’24, September 16–20, 2024, Vienna, Austria D. Li, M. Yan, Y. Zhang, Z. Liu, C. Liu, X. Zhang, T. Chen, and D. Lo

Figure 1: Example of Github Copilot generated code which
contains CWE-89 [37].

10,000 Google developers are trying out AI-based code assistance
plugins in their IDEs [18].

The inherent design of LLMs, which generate texts based on
conditional probabilities, coupled with their training on predomi-
nantly crowd-sourced open-source code, poses a risk of unintention-
ally producing and injecting insecure code into ongoing software
projects [25], [21], [35]. The essence of the problem lies in the na-
ture of the crowdsourced datasets used for pre-training, which often
include examples of vulnerable code. Consequently, these models
may inadvertently learn to replicate patterns that contain vulner-
bilities. When a user inputs a code snippet that resembles known
vulnerable code, these LLMs might proceed to suggest subsequent
code that, despite being contextually appropriate, is inherently in-
secure. For example, when GitHub Copilot was prompted with the
code in the yellow box in Figure 1, it generated the code shown in
the green box. Notably, the code snippet "cursor.execute("SELECT
* FROM users WHERE username = ’%s’ " % username)" exhibits a
vulnerability to SQL injection attacks, as it incorporates a pattern
susceptible to CWE-89 (SQL Injection) weakness.1 Pearce et al. [32]
first conducted a vulnerability scan of code generated by GitHub
Copilot using codeQL2 in multiple scenarios, and the statistics
showed that 40.73% of the code completions generated were unsafe.
Extending this research, a large number of different works have
confirmed that these intelligent tools based on code LLMs will have
a high chance of generating dangerous code [21], [25], [29], [32].

In order to mitigate the risk of generating vulnerable code from
code LLMs, researchers proposed security hardening of code LLMs.
This involves making LLMs more inclined to secure code that does
not contain vulnerabilities during its code generation process (i.e.,
increasing the security ratio of model-generated code). Importantly,
any method employed for this purpose must not compromise the
LLMs’ ability to generate functionally accurate code, thereby pre-
serving their overall utility. Recently, He and Vechev [19] proposed
SVEN, the state-of-the-art security hardening approach of code
LLMs, which operates by applying certain prefixes that effectively
alter the computation of the models’ hidden states via an attention
mechanism. This steers the code LLMs towards the generation of

1Due to the constant updating of Github Copilot and differences in users’ contexts,
such output may not be obtained consistently.
2https://github.com/github/codeql

code that aligns with security standards. Despite SVEN’s efficacy
in improving security, it still suffers from the following limitations.

Limitation 1: require access to internal parameters. The ef-
fectiveness of SVEN hinges on the modification of newly introduced
fine-tunable parameters within the LLM. This presents a significant
challenge for clients, as the internal parameters of ultra-large LLMs,
especially those distributed as services, cannot be accessed and
updated [6].

Limitation 2: cannot be shared by models with different
parameter sizes. The performance of SVEN in securing code LLMs
is contingent upon the parameter size. Distinct models, varying
in parameter size, necessitate unique prefix lengths and tuning
approaches. This constraint hampers SVEN’s adaptability and its
ability to be uniformly applied across models with different param-
eter sizes. For instance, to perform security hardening on models of
four sizes (i.e., 350M, 2.7B, 6.1B, and 16.1B) of the CodeGen family,
we need to perform four different trainings for each of them. This
repetitive training effort creates an additional financial burden.

To address the limitations mentioned above, we introduce CoSec,
a novel decoding-time security hardening framework of code LLMs
that operates at decoding time, eliminating the need for additional
training iterations or modifications to the training pipeline or model
architecture. CoSec incorporates a distinct, significantly smaller
security model, that is obtained by fine-tuning on a dataset with
a focus on security. Owing to its high confidence in the security
code, the security model is able to guide the base model to generate
secure code completions. The co-decoding process is shown in part
(B) of Figure 2. When a code snippet is given as a prompt, CoSec
achieves security hardening by making the two autoregressive de-
coders infer the next token synchronously, until the end. We chose
the smallest model within this family of models as the basis for
the security model. Because they share the same tokenizer and
the model architecture, to guarantee correct decoding at each step.
Low-rank adaptation (LoRA) [20], a parameter efficient fine-tuning
approach, is used to achieve high efficiency in training and reduce
computing requirements for training and inference. The model with
a much larger parameter size is the base code LLM to be hardened.
The security model first predicts the next token, and then we deter-
mine whether the token meets the security requirements through
an acceptance algorithm. If the answer given by the security model
is accepted, we directly adopt it as the generation of the current
time step, and if it does not, we let the base model resample the
output token as the result of the current time step.

We train the security model with the training dataset provided by
He and Vechev [19], and perform extensive experiments on six dif-
ferent parameter sizes of CodeGen, StarCoderBase, and DeepSeek-
Coder in terms of security and functional correctness [8], [29], [32],
[38]. The results show that CoSec achieves effective security hard-
ening of all these models and is able to maintain the functional
correctness of the hardening targets. In particular, regardless of
the experimental setup with the same sampling temperature or
different sampling temperatures, our approach improves the av-
erage relative security ratio of the six models by 21.26%, 16.15%,
8.01%, 12.61%, 5.02%, and 11.89% respectively. At the same time, we
control the average functional correctness float between -8.5% and
+97.9%. We consider such a fluctuation acceptable on the premise
of effectively enhancing security.

1429

CoSec: On-the-Fly Security Hardening of Code LLMs via Supervised Co-decoding ISSTA ’24, September 16–20, 2024, Vienna, Austria

We would like to emphasize the differences between CoSec and
two existing work: vulnerability repair [4], [45], [47] and post-
processing based quality enhancement [8], [26], [46], [36], [49].
Vulnerability repair focuses on fixing vulnerability snippets in ex-
isting code, where the input is the code containing the vulnerability,
and the output is the secure code. Our work focuses on the code
that is being written and reduces the likelihood that code LLMs will
generate vulnerable code. Methodologically, unlike post-processing-
based quality enhancement approaches, which focus on reducing
undesired results by sorting or filtering the recommended codes
generated by a large language model, our approach intervenes in
the probability of token sampling during the decoding phase. The
post-processing based approaches do not really improve the ca-
pabilities of the LLM itself, and in the worst case, the user may
not get a response that matches his/her intent.3 Conversely, the
decode-time approaches, by intervening with the predicted proba-
bility distribution of the next token, can truly generate results that
match the user’s intent.

The major contributions of this paper are as follows:
• We propose the problem of on-the-fly security hardening of
code LLMs. To our knowledge, we are the first to attempt
on-the-fly security hardening of code LLMs.
• We propose a novel decode-time security hardening frame-
work that utilizes a separate but much smaller security model
to guide a target model to generate secure code. It is called
CoSec.
• We conduct extensive experiments using the state-of-the-
art security evaluation framework and the most prevalent
functional correctness evaluation framework. Our analysis
includes multiple parameter sizes for three popular code
LLMs. The experimental results demonstrate the effective-
ness and generalisability of our proposed approach. Our
approach also maintains the functional correctness of the
target model.
• To support the open science community, we release our
replication package for further studies.4

2 Methodology
In this section, we elaborate on the details of CoSec. As shown in
Figure 2, our framework mainly consists of two parts, (A) Security
Model Fine-Tuning (c.f., Section 2.1), which obtain the security
model by parameter-efficient fine-tuning the code LLM on security-
related data; (B) Supervised Co-Decoding (c.f., Section 2.2), which
generate more secure completions based on the given prompt .

2.1 Security Model Fine-Tuning
2.1.1 Parameter-Efficient. We argue that only security-relevant
code data that matches daily development can be used to train
security models that meet real needs. However, such labeled code
data tend to be extremely rare. Furthermore, in order to be privately
deployed by users to defend against harmful generation, the se-
curity model should be able to cope with limited computational

3Our experimental report shows that the CodeGen-350M has a security ratio of 0 in
the generation test against CWE-476. In this case, the generated code is not secure, no
matter how much the post-processing approach is filtered and sorted.
4https://github.com/Nero0113/CoSec

resources. To fulfill these requirements, we adapt Low-Rank Adap-
tation (LoRA) [20], a parameter-efficient tuning method based on
low-dimensional representations. For a pre-trained weight matrix
𝑊 ∈ R𝑑×𝑘 , LoRA constrains its update by representing the latter
with a low-rank decomposition𝑊 + 𝛿𝑊 =𝑊 +𝑊𝑑𝑜𝑤𝑛𝑊𝑢𝑝 , where
𝑊down ∈ R𝑑×𝑟 ,𝑊𝑢𝑝 ∈ R𝑟×𝑘 are tunable parameters, and the rank
𝑟 ≪ min(𝑑, 𝑘). During training,𝑊 is frozen and does not receive
gradient updates. Applying LoRA to modify the attention layer
within an security model, requires training merely 0.11% of those
parameters, which greatly reduces the computational burden. At
the same time, a small number of parameters also implies less need
for high-quality data.

2.1.2 Security and Functional Correctness. He and Vechev [19] find
that the code modified in the repair determines the security of
the whole program, while the code not modified in the repair is
closely related to the functional correctness. They weighted the
multitask loss term during learning process, i.e., the overall loss
is equal to the weighted sum of the loss of security, the loss of
functional correctness, and the comparative loss of the vulnerability
representation and the security representation. Differently, we find
that letting the model learn only the security-relevant contexts in
the data results in a model with excellent security performance.
Specifically, we utilize cross-entropy loss to learn security-related
hidden representation:

Lsec = −
|n |∑︁
𝑖=1

𝑚𝑖 · log 𝑃 (𝑥𝑖 | X1:𝑖−1) (1)

where𝑚𝑖 is the mask of the loss term, which indicates whether
the token in the current time step is a secure change or not. It is
1 if it is and 0 otherwise. This operation encourages the model to
learn safer code.

Kullback-Leibler divergence, also known as relative entropy,
measures the difference between two probability distributions and
is often used as a regularization term that constrains the model’s
learned representation from deviating excessively from the original
representation. Following the above findings, we model functional
correctness as:

Lfunc =
|n |∑︁
𝑖=1
(−𝑚𝑖) KL(S (𝑥𝑖 | X1:𝑖−1) ∥B (𝑥𝑖 | X1:𝑖−1)) (2)

where S is the predictive distribution of the security model at
the current time step and B is the predictive distribution of the base
model. The base model is the Transformer that keeps the factory
settings unchanged, and we use this to simulate the model that
provides the service. Taking the inverse of𝑚𝑖 means that the loss
function only takes effect for unchanged code.

Finally, our multitasking loss term is modeled as follows.

L = Lsec + Lfunc (3)

2.2 Supervised Co-Decoding
Our decoding process is motivated by the insight that model fine-
tuned on security data have higher confidence in their predictions.
When the relative confidence of the security model compared to
the base model is higher than the threshold, it is a safe prediction;

1430

https://github.com/Nero0113/CoSec

ISSTA ’24, September 16–20, 2024, Vienna, Austria D. Li, M. Yan, Y. Zhang, Z. Liu, C. Liu, X. Zhang, T. Chen, and D. Lo

Figure 2: Architecture of CoSec, which mainly contains two parts: (A) Security Model Fine-Tuning and (B) Supervised Co-
Decoding. In the secure code example, the grey part is the prompt and the green part is the generated security completion.
For the current time step, we use "file_path" as the common output for both models; otherwise, we resample "if" as the output.

instead, we sample using base model to maintain functional cor-
rectness. The co-inference process is shown in Algorithm 1. For
a given initial code prefix 𝑥1, · · · , 𝑥𝑛−1, 𝑥𝑛 , accepting threshold 𝑎,
maximum new generation length 𝐿, and batch size𝑚, the security
model and the target base model synchronously infer the token 𝑥𝑛+1
at each time step until a stop mark is encountered or the maximum
length is reached. Where batch size is equal to the number of code
prefixes input to the model multiplied by the number of sampling.
In detail, at each time step, we feed the code prefix into the two
models to obtain𝑚 hidden layer representations generated by the
security model and the base model, respectively, i.e., logits𝑠1:𝑚 and
logits𝑏1:𝑚 . Then, from the current𝑚 logits of the security model, we
calculate𝑚 predictions 𝑥1, 𝑥2, . . . , 𝑥𝑚 that best meet the security
requirements as alternatives. Next, we compute the conditional
probability 𝑆 (𝑥𝑛+1 | 𝑥1, . . . , 𝑥𝑛, 𝑥1), . . . , 𝑆 (𝑥𝑛+1 | 𝑥1, . . . , 𝑥𝑛, 𝑥𝑚)
and 𝐵(𝑥𝑛+1 | 𝑥1, . . . , 𝑥𝑛, 𝑥1), . . . , 𝐵(𝑥𝑛+1 | 𝑥1, . . . , 𝑥𝑛, 𝑥𝑚) outputs
of the security model and the base model for each of these𝑚 candi-
date security tokens. Finally, we evaluate whether the prediction of
the security model should be accepted by the acceptance algorithm.
Specifically, we accept 𝑥𝑖 as the output of the ith time step if the ratio
of the conditional probability 𝐵(𝑥𝑛+1 | 𝑥1, . . . , 𝑥𝑛, 𝑥𝑖) of token 𝑥𝑖 in
the base model to its conditional probability 𝑆 (𝑥𝑛+1 | 𝑥1, . . . , 𝑥𝑛, 𝑥𝑖)
in the security model satisfies our acceptance conditions, otherwise

the base model resamples the current time step as a successor to
the 𝑖th sampling. The acceptance process is shown in Equation 5.

𝑎 < min
(
1,
𝐵(𝑥𝑛+1 | 𝑥1, . . . , 𝑥𝑛, 𝑥𝑖)
𝑆 (𝑥𝑛+1 | 𝑥1, . . . , 𝑥𝑛, 𝑥𝑖)

)
(4)

Namely, for a token predicted by a security model, if the confi-
dence of the security model compared to the base model exceeds a
set threshold (c.f., Section 4.4, by default we choose 0.3), it is highly
probable that this token is a prediction of the required security.

3 Experimental Setup
3.1 Research Questions
In order to evaluate our co-decoding framework, we answer the
following research questions:

RQ1: How well does CoSec perform in security hardening?
RQ2: How well does CoSec perform in maintaining functional

correctness?
RQ3: Is CoSec also effective for vulnerability types not seen in the

training set?
RQ4: How do different acceptance thresholds affect security and

functional correctness?

1431

CoSec: On-the-Fly Security Hardening of Code LLMs via Supervised Co-decoding ISSTA ’24, September 16–20, 2024, Vienna, Austria

Algorithm 1: Supervised Security Hardening
Initial code that needs to be completed: 𝑥1, · · · , 𝑥𝑛−1, 𝑥𝑛
Acceptance threshold: 𝑎; Maximum length of new generations: 𝐿; Batch size:𝑚
while true do

if 𝑥𝑛+1 == 𝑒𝑜𝑠 or 𝑛 + 1 >= 𝐿 then
break

else
In parallel, obtain m logits from the security model: logits𝑠1, . . . , logits

𝑠
𝑚 ← security(𝑥1, · · · , 𝑥𝑛−1, 𝑥𝑛)

In parallel, obtain m logits from the base model: logits𝑏1 , . . . , logits
𝑏
𝑚 ← base(𝑥1, · · · , 𝑥𝑛−1, 𝑥𝑛)

In parallel, obtain m token predictions from the security model: 𝑥1, 𝑥2, . . . , 𝑥𝑚 ← multinomial(softmax(logits𝑠1:𝑚))
Obtain m probability distribution of the security model: 𝑆 (𝑥𝑛+1 | 𝑥1, . . . , 𝑥𝑛, 𝑥1), . . . , 𝑆 (𝑥𝑛+1 | 𝑥1, . . . , 𝑥𝑛, 𝑥𝑚)
Obtain m probability distribution of the base model: 𝐵(𝑥𝑛+1 | 𝑥1, . . . , 𝑥𝑛, 𝑥1), . . . , 𝐵(𝑥𝑛+1 | 𝑥1, . . . , 𝑥𝑛, 𝑥𝑚)
for 𝑖 = 1 to𝑚 do

Determine whether the predictions of the security model meet the security requirements:
if 𝑎 < min

(
1, 𝐵 (𝑥𝑛+1 |𝑥1,...,𝑥𝑛,𝑥̃𝑖)

𝑆 (𝑥𝑛+1 |𝑥1,...,𝑥𝑛,𝑥̃𝑖)

)
then

Accept security model’s prediction as the output of current time-step: 𝑥𝑛+1 ← 𝑥𝑖
else

Obtain base model’s resample: 𝑥𝑛+1 ← multinomial(softmax(𝑙𝑜𝑔𝑖𝑡𝑠𝑏
𝑖
)

end
[𝑥1, . . . , 𝑥𝑛]𝑖 ← 𝑥1, . . . , 𝑥𝑛 + 𝑥𝑛+1

end
end

end

Table 1: The CWE types in the dataset provided by SVEN [19]

Split CWE Language Total

Seen

CWE-089 Python

710 function level
pairs for train
24 prompts for eval

CWE-125 C/C++
CWE-078 Python & C/C++
CWE-476 C/C++
CWE-416 C/C++
CWE-022 Python & C/C++
CWE-787 C/C++
CWE-079 Python & C/C++
CWE-190 C/C++

Unseen

CWE-119 C/C++

12 prompts for evalCWE-502 Python
CWE-732 Python & C/C++
CWE-798 Python

3.2 Datasets
We adopt the dataset provided by He and Vechev [19] to train our
security model. It encompasses a selection of 13 CommonWeakness
Enumerations (CWEs) identified in the MITRE top-25 report as crit-
ical vulnerabilities. Out of these, nine CWE types were specifically
chosen for the model’s training phase, while the remaining four
served for testing the model’s effectiveness in enhancing security
against previously unencountered vulnerabilities. The training data
has 710 pairs of function pairs before and after vulnerability fixing.
These function pairs are coded in either Python or C/C++. Accord-
ingly, 24 prompts are included for evaluating the model’s ability to
securely harden on seen CWE types, and another 12 prompts for

evaluating the ability to harden on unseen CWE types. The details
of the training dataset and their descriptions are shown in Table 1.

3.3 Evaluation Framework
To investigate the effectiveness of our inference framework, follow-
ing SVEN [19], we utilized the benchmark introduced by Pearce et
al. [32]. The evaluation framework for security omits seven CWEs
that CodeQL could not detect in MITRE top-25. He and Vechev
[19] further excluded CWEs where the application scenario relied
on manual inspection. We followed this experimental setup and
tested our work on all the remaining 13 CWEs. In detail, each of
these 13 CWEs is manually crafted into three application scenarios,
and each scenario contains a function prompt, based on which the
model freely generates code completions. Each prompt contains
the complete code representation of a method to be successfully
compiled or parsed, i.e., package introductions, global or local vari-
able definitions, decorator definitions, function definitions, and the
corresponding comments for the specific functionality that needs
to be implemented by the LLMs. For the code generated for each
scenario, we filtered out duplicate generations and generations
that could not be parsed or compiled. Finally, CodeQL was used
to query the security of the sampling. To guarantee the reliabil-
ity of the experiment results, we repeat the sampling 10 times for
different random seeds.

We leverage the standard HumanEval [8] benchmark to evaluate
functional correctness. HumanEval consists of 164 meticulously
crafted Python programming problems. Each problems includes
a function header, docstrings, a function body, and several unit
tests. These programming tasks are tailored to evaluate a range of
competencies, including language understanding, logical reasoning,

1432

ISSTA ’24, September 16–20, 2024, Vienna, Austria D. Li, M. Yan, Y. Zhang, Z. Liu, C. Liu, X. Zhang, T. Chen, and D. Lo

Table 2: Hyperparameter Settings

Hyperparameter Value Hyperparameter Value

Training Settings

Optimizer AdamW Warm Up Strategy Linear
Warn Up Steps 50 Learning Rate 5e-5
Adam Epsilon 1e-8 Traing Batch Size 1

Gradient Acc Step 2 Training Epoch 8
Max. Gradient Norm 1.0 Dropout 0.1

Max. Tokens 1024 Weight Decay 0.01
LoRA Rank 8 LoRA Alpha 16

LoRA Dropout 0.05

Inference Settings

Num. Return 25 Max. New Tokens 256
TOP-P 0.95 Min. Prob 0

algorithmic proficiency, and basic mathematical skills. The evalua-
tion metric of HumanEval is pass@k, which is the proportion of
sampled k passing test cases.

3.4 Target Models
In our evaluation, We demonstrate the effectiveness of our work by
security hardening CodeGen [30], StarCoderBase [25] andDeepSeek-
Coder [10]. We chose the models based on the following: (1) good
open source ecosystem; (2) large download numbers.

CodeGen [30]. CodeGen-multi is a standard auto-regressive
language model for multi-round program synthesis, was trained on
ThePile [14] and BigQuery5. CodeGen-multi comes with 4 parame-
ter sizes: 350M, 2.7B, 6.1B, and 16.1B.

DeepSeek-Coder [10]. DeepSeek-Coder is a code LLM released
by DeepSeek AI, trained from scratch on 2T tokens, with a compo-
sition of 87% code and 13% natural language in both English and
Chinese. There are versions of sizes 1.3B, 5.7B, 6.7B, and 33B.

StarCoderBase [25]. StarCoderBase is trained on 80+ program-
ming languages from The Stack (v1.2) [23] with causal modeling
and the Fill-in-the-Middle objective [3]. There are four versions
with 1B, 3B, 7B, and 15.5B parameters, respectively.

Given the cost of experiments and the fact that the functional cor-
rectness of some of the base models cannot be properly measured,
we chose six of these parameter sizes for our experiments.

3.5 Experimental Settings
All the code LLMs and the corresponding tokenizer in our experi-
mentation are loaded from the official Huggingface repository.

For fine-tuning, we pick CodeGen-350M [30] as a backbone,
while using a LoRA with a rank of 8, an alpha of 16, and a dropout
of 0.05 to be parameter-efficient. We set the maximum input length
to 1024. We limit the maximum epochs to 8 with a learning rate
of 5e-5, and choose the best checkpoint. For DeepSeek-Coder [10]
and StarCoderBase [25], we trained the 1.3B and 1B models as the
security models, respectively, and set the training hyperparameters
consistent with CodeGen. In the inference phase, for RQ1, RQ2

5https://cloud.google.com/bigquery/docs/datasets-intro?hl=zh-cn

and RQ3, we fix the number of sampling to be 25, the maximum
number of new generated tokens to be 256, the TOP-P6 to be 0.95,
the minimum prediction probability to be 0, and the acceptance
threshold to be 0.3. For RQ4, we fix the number of sampling bars to
be 25, the maximum number of newly generated tokens to be 256,
and the TOP-P to be 0.95, and the security model and the target
base model sampling temperatures are both 0.4. We will discuss
why the acceptance threshold of 0.3 was chosen in RQ4. The details
are shown in Table 2.

All experiments are conducted on a computer server with 1
NVIDIA Tesla A800-80G GPUs and Intel(R) Xeon(R) Platinum CPUs
operating at 2.8GHz.

3.6 Performance Metrics
We use the following two performance metrics in our evaluation:

Security Ratio: Let 𝑆𝑅 denote the security ratio, 𝑁𝑡 denote the
total sampled generation, 𝑁𝑑 denotes the duplicate generation, 𝑁𝑛𝑝

denotes the generation which is not compiled or parsed, and 𝑁𝑠𝑒𝑐

denotes the generation which is considered as secure by CodeQL,
then the security ratio can be calculated as:

𝑆𝑅 =
𝑁𝑠𝑒𝑐

𝑁𝑡 − 𝑁𝑛𝑝 − 𝑁𝑑

(5)

Pass@k: This metric evaluates the performance of code genera-
tion models by generating 𝑛 codes for each given problem, where
𝑛 > 𝑘 . It measures the probability that at least one of these gener-
ated codes will pass a specified test. This is achieved by calculating
an unbiased estimate according to the following equation:

pass@k := EProblems

1 −
(
𝑛 − 𝑐
𝑘

)
(
𝑛

𝑘

)  (6)

Here, 𝑐 denotes the number of codes out of the total 𝑛 that
successfully pass the test. The metric quantifies the likelihood that,
from 𝑛 codes generated for a particular problem, at least one will
pass the test, based on all possible combinations of selecting 𝑘 codes
from the total 𝑛 generated.

4 Results
4.1 RQ1. Security Hardening Efficacy
Our investigation into the efficacy of the security hardening capa-
bilities of CoSec considers two real-world situations: 1) the security
hardening effect when the security model and the base model are
at the same sampling temperature; 2) the effectiveness of security
hardening when the security model and the base model are at dif-
ferent sampling temperatures. These two cases were chosen out
of consideration that the sampling temperature is an important
hyperparameter that affects the generation results in real API calls.

In the first situation, we would like to explore the effect of se-
curity hardening of CoSec when the security model and the base
model are at the same sampling temperature. To answer it, we
carried out experiments at sampling temperatures of 0.1, 0.4, and
6TOP-P sampling, also known as Nucleus Sampling, means that at each step, only the
smallest set of words whose cumulative probability exceeds a certain threshold 𝑃 is
randomly sampled, regardless of other low probability words.

1433

CoSec: On-the-Fly Security Hardening of Code LLMs via Supervised Co-decoding ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 3: Table of security hardening effects when the sam-
pling temperatures of the security model and the base model
are the same

Temperature of Security Model

Model Size 0.1 0.4 0.8

Security Hardening of CodeGen

CodeGen 350M𝑡=† 56.12% 55.36% 62.86%
+Harden 350M 70.72% 67.10% 67.00%

(↑26.02%) (↑21.21%) (↑6.59%)

CodeGen 2.7B𝑡=† 54.29% 55.98% 60.53%
+Harden 350M 62.18% 66.06% 67.80%

(↑14.53%) (↑18.57%) (↑12.01%)

CodeGen 6.1B𝑡=† 66.62% 68.18% 69.34%
+Harden 350M 75.62% 72.93% 73.52%

(↑13.51%) (↑6.97%) (↑6.03%)

Security Hardening of DeepSeek-Coder

DeepSeek-
Coder 1.3B𝑡=† 72.50% 68.90% 71.60%

+Harden 1.3B 78.90% 79.60% 80.20%
(↑8.83%) (↑15.53%) (↑12.01%)

DeepSeek-
Coder 6.7B𝑡=† 77.80% 71.70% 72.70%

+Harden 1.3B 78.40% 74.90% 75.10%
(↑0.77%) (↑4.46%) (↑3.30%)

Security Hardening of StarCoderBase

StarCoder-
Base 1B𝑡=† 73.10% 63.70% 64.10%

+Harden 1B 79.40% 73.30% 73.60%
(↑8.62%) (↑15.07%) (↑14.82%)

0.8, respectively. The three temperatures were chosen to represent
"more stable output, but lower diversity", "balanced stability and
diversity", and "lower stability, but more diverse generation". As
we can see in Table 3, CoSec achieves strong security hardening
of CodeGen at different sampling temperatures. Among them †
indicates that the base model uses the same sampling temperature
settings as the security model. Taking the sampling temperature
of 0.4 as example, diversity and stability are more balanced at this
temperature. The relative security ratio improvement for CodeGen
of three parameter scales is 21.21%, 18.57%, and 6.97%, respectively.

In the second situation, we evaluate the security hardening ef-
fect when the security model and the base model apply different
sampling temperatures. For this purpose, we set the sampling tem-
perature of the security model to 0.1, 0.6, and 0.8. The experimental
results are shown in Table 4. Take the temperature of 0.8 as an ex-
ample, where the sampling temperature of the base CodeGen is set
to 0.4. The improvement in the relative security ratio for CodeGen
of three parameter sizes are 21.03%, 21.15%, and 7.80%, respectively.

Experiments on two other popular models (i.e., DeepSeek-Coder
and StarCoderBase) confirm the generality of CoSec. For cases

Table 4: Table of security hardening effects when the sam-
pling temperatures of the security model and the base mode
are different

Temperature of Security Model

Model Size 0.1 0.6 0.8

Security Hardening of CodeGen

CodeGen 350M𝑡=0.4 55.36% 55.36% 55.36%
+Harden 350M 70.70% 69.20% 67.00%

(↑27.71%) (↑25.00%) (↑21.03%)

CodeGen 2.7B𝑡=0.4 55.98% 55.98% 55.98%
+Harden 350M 62.20% 66.90% 67.80%

(↑11.11%) (↑19.51%) (↑21.15%)

CodeGen 6.1B𝑡=0.4 68.18% 68.18% 68.18%
+Harden 350M 75.60% 70.10% 73.50%

(↑10.88%) (↑2.82%) (↑7.80%)

Security Hardening of DeepSeek-Coder

DeepSeek-
Coder 1.3B𝑡=0.4 68.90% 68.90% 68.90%

+Harden 1.3B 76.60% 77.70% 79.50%
(↑11.18%) (↑12.77%) (↑15.38%)

DeepSeek-
Coder 6.7B𝑡=0.4 71.70% 71.70% 71.70%

+Harden 1.3B 78.40% 77.10% 75.10%
(↑9.34%) (↑7.53%) (↑4.74%)

Security Hardening of StarCoderBase

StarCoder-
Base 1B𝑡=0.4 63.70% 63.70% 63.70%

+Harden 1B 70.90% 67.50% 73.60%
(↑11.30%) (↑5.97%) (↑15.54%)

where the secuiry ratio improvement is too small, we attribute it to
under-fitting. The experiments on DeepSeek-Coder and StarCoder-
Base were conducted only to verify the generality of our proposed
method, and we used the same security model training parameter
settings as CodeGen. Specifically, at the same sampling temperature
of 0.1, DeepSeek-Coder-6.7B only improves security for CWE-476
and CWE-787, with a small decrease for CWE-089.

Answer to RQ1: CoSec can effectively guide code LLMs to gener-
ate more secure code in real-life usage scenarios. In particular, our
framework improves the average relative security ratio of each of the
six code LLMs by 21.26%, 16.15%, 8.01%, 12.61%, 5.02%, and 11.89%
respectively.

4.2 RQ2. Functional Correctness Maintainance
In this section, we evaluate the functional correctness of CodeGen,
DeepSeek-Coder, and StarCoderBase models across six parameter
sizes, both before and after the application of our security hardening
method, at identical and different sampling temperatures.

1434

ISSTA ’24, September 16–20, 2024, Vienna, Austria D. Li, M. Yan, Y. Zhang, Z. Liu, C. Liu, X. Zhang, T. Chen, and D. Lo

Table 5: Table of functional correctness when the security
model and base model sampling temperatures are the same

Temp. Model Size pass@1 pass@50 pass@100

0.4 CodeGen 350M 6.4 14.0 14.9
- +Harden 350M 5.5 12.8 14.3

0.4 CodeGen 2.7B 12.9 30.2 34.2
- +Harden 350M 10.1 30.7 36.0

0.4 CodeGen 6.1B 17.7 37.1 41.6
- +Harden 350M 13.4 36.8 41.0

0.4 DeepSeek-
Coder 1.3B 27.9 55.6 57.8

- +Harden 1.3B 27.8 62.8 67.7

0.4 DeepSeek-
Coder 6.7B 43.7 78.6 80.7

- +Harden 1.3B 38.5 81.9 85.1

0.4 StarCoder-
Base 1B 0.7 5.8 6.8

- +Harden 1B 0.9 8.7 11.2

Table 6: Table of functional correctness when the security
model and base model sampling temperatures are different

Temp. Model Size pass@1 pass@50 pass@100

0.4 CodeGen 350M 6.4 14.0 14.9
0.8 +Harden 350M 4.1 14.2 16.8

0.4 CodeGen 2.7B 12.9 30.2 34.2
0.8 +Harden 350M 7.7 29.5 33.5

0.4 CodeGen 6.1B 17.7 37.1 41.6
0.8 +Harden 350M 9.8 35.2 41.6

0.4 DeepSeek-
Coder 1.3B 27.9 55.6 57.8

0.8 +Harden 1.3B 24.0 69.5 75.8

0.4 DeepSeek-
Coder 6.7B 43.7 78.6 80.7

0.8 +Harden 1.3B 32.2 79.5 83.2

0.4 StarCoder-
Base 1B 0.7 5.8 6.8

0.8 +Harden 1B 0.6 11.4 14.9

Tables 5 and 6 provide a comprehensive summary of the orig-
inal functional correctness for these models, together with their
performance after security hardening. The analysis reveals that our
security hardening method maintains performance, especially for
the CodeGen model, when the security and base models operate at
the same sampling temperature. A slight reduction in functional
correctness is observed, but is deemed acceptable in light of the
security enhancements achieved. In a situation where the security
model operates at a divergent sampling temperature, specifically
set to 0.8, known to yield more diversity outputs, we scrutinize the

potential repercussions on functional correctness under these more
challenging conditions. The initial impact on functional correctness,
particularly on the pass@1 metric, is somewhat more pronounced
compared to a uniform sampling temperature scenario. However,
this disparity decreases with an increase in the number of samples,
which aligns with expectations.

For both DeepSeek-Coder and StarCoderBase, with either the
same or different sampling temperature settings, we observe a negli-
gible decrease in functional correctness. Even, our CoSec inference
framework can improve the functional correctness of these models,
although this is unintentional. We argue that this improvement is
mainly due to the fact that the functional correctness of some of the
code containing vulnerabilities is also missing. As shown in Fig.3,
when models generate code that does not contain vulnerabilities,
their functional correctness is subsequently improved.

It’s worth noting that when the sampling temperature of the
safety model differs from that of the base model, and the safety
model’s sampling temperature is very high, the safety model will
have high confidence in a more diverse set of tokens, which leads
to a reduction in the one-time pass rate (i.e., pass@1). To avoid such
impacts, we advocate for maintaining a lower sampling temperature
in the safety model when using CoSec.

Answer to RQ2: CoSec is effective in preserving the functional
correctness of the base model and even improves it. In particular, the
average functional correctness improvement of the above six models
after security hardening fluctuates between -8.5% and +97.9%.

4.3 RQ3. Effectiveness on Unseen Vulnerability
Types

To answer this question, we evaluate the security performance
of our inference framework on four CWE types that have never
appeared in the security model training set. Each CWE contains 3
trigger scenarios [32]. We report the average security ratio of our
hardening framework for three application scenarios per CWE. 7

The results in Table 7 show that for CWE-119, our method pro-
vides 17.38% and 22.35% improvements in relative security for Code-
Gen and DeepSeek-Coder, while StarCoderBase’s hardening de-
creases only slightly. For CWE-502, our approach provides relative
improvements of 58.47%, 9.41% and 36.89% for all three models,
respectively. For CWE-732, our method provides a relative security
improvement of 12.62% and 20.0% for DeepSeek-Coder and Star-
CoderBase, but a decrease for the CodeGen model. For CWE-798,
our method provides a relative security improvement of 104.09%
and 7.22% for CodeGen and DeepSeek-Coder, while only a slight
degradation in the hardening performance of StarCoderBase.

Answer to RQ3: CoSec also achieves effective security hardening
on vulnerability types that have not been learned by security models.
Even for unseen vulnerability types, i.e., CWE-119, CWE-502, CWE-
732, and CWE-798, our inference framework improves the security
ratio of CodeGen-2.7B, DeepSeek-Coder-6.7B and StarCoderBase-1B
by an average of 37.14%, 12.9%, and 9.55%.

7Due to page limitations, we choose to present the three models with the most popular
parameter sizes, CodeGen-2.7B, DeepSeek-Coder-6.7B and StarCoderBase-1B, respec-
tively, which had the largest number of downloads at that time. More findings can be
found in our replication package.

1435

CoSec: On-the-Fly Security Hardening of Code LLMs via Supervised Co-decoding ISSTA ’24, September 16–20, 2024, Vienna, Austria

(a) The code before hardening (b) The code after hardening

Figure 3: Example of functional correctness improvement. The code generated before security hardening contained a CWE-078
vulnerability and did not meet the requirement specified in the prompt. After hardening, not only is the code generated secure,
but its functionality also meets the requirements specified in the prompt.

Table 7: Table of security hardening efficacy on CWEs that
did not appear in the training dataset

Model Size CWE-119 CWE-502

CodeGen 2.7B 56.17% 39.27%
+Harden 350M 65.93% 62.23%

(↑17.38%) (↑58.47%)

DeepSeek-Coder 6.7B 42.23% 91.40%
+Harden 1.3B 51.67% 100.00%

(↑22.35%) (↑9.41%)

StarCoderBase 1B 69.73% 31.17%
+Harden 1B 68.07% 42.67%

(↓2.38%) (↑36.89%)

Model Size CWE-732 CWE-798

CodeGen 2.7B 69.83% 37.40%
+Harden 350M 47.90% 76.33%

(↓31.40%) (↑104.09%)

DeepSeek-Coder 6.7B 86.10% 63.73%
+Harden 1.3B 96.97% 68.33%

(↑12.62%) (↑7.22%)

StarCoderBase 1B 50.00% 61.43%
+Harden 1B 60.00% 53.10%

(↑20.00%) (↓13.56%)

4.4 RQ4. Effect of Different Acceptance
Thresholds on Security and Functional
Correctness

To answer this question, we select CodeGen-2.7B, DeepSeek-Coder-
6.7B, and StarCoderBase-1B as subjects for security hardening.8
The outcomes, post-hardening, are quantified across a spectrum of

8Please see our replication package for more results.

acceptance thresholds: 0.1, 0.3, 0.5, 0.7, and 0.9. Figure 4 illustrates
the correlation between the acceptance threshold and both security
ratio and functional correctness for each model, where the left Y-
axis represents the security ratio, the right Y-axis denotes functional
correctness, and the X-axis marks the acceptance threshold levels.
Observations reveal that at a lower acceptance threshold of 0.1, the
security ratio for CodeGen, Deepseek-Coder, and StarCoderBase
are notably high, at 75.9%, 76.8%, and 82.2%, respectively. However,
as the acceptance threshold increases, making it more challenging
for the security model’s outputs to be accepted, we notice a down-
ward trend in security ratio, culminating at 60.4%, 62.1%, and 69.8%
respectively, when the threshold is set to 0.9. Conversely, functional
correctness exhibits an upward trajectory with the increase in the
acceptance threshold, benefiting from additional token resampling.

As shown in Table 5, it is evident that the application of our
security hardening method can lead to improvements in functional
correctness for certain models. Nevertheless, this positive correla-
tion begins to diverge when the acceptance threshold is increased
to higher levels (for instance, from 0.7 to 0.9). Under such circum-
stances, the acceptance algorithm becomes more inclined to favor
the base model’s predictions, given that surpassing the heightened
threshold becomes increasingly challenging for the safety model’s
relative probability scores. Despite, there is still a relatively small
likelihood that the security model’s predictions will be selected. As
a result, the overall functional correctness tends to regress toward
the intrinsic functional correctness of the base model.

Answer toRQ4:Overall, the acceptance threshold serves to regulate
the ratio of security to functional correctness, i.e., the higher the
value, the lower the safety and the higher the functional correctness.
Therefore, we chose 0.3 as the default setting for reporting, as it
allows the most balanced security and functional correctness.

5 Threats to Validity
Effects on inference speed. First, due to the autoregressive na-
ture of the generative model itself, code LLMs infer one token at

1436

ISSTA ’24, September 16–20, 2024, Vienna, Austria D. Li, M. Yan, Y. Zhang, Z. Liu, C. Liu, X. Zhang, T. Chen, and D. Lo

(a) Effect of Different Acceptance Threshold
on CodeGen-2.7B

(b) Effect of Different Acceptance Threshold
on DeepSeek-Coder-6.7B

(c) Effect of Diiferent Acceptance Threshold
on StarCoderBase-1B

Figure 4: The effect of different acceptance thresholds on the safety and functional correctness of hardened models

Table 8: Table of inference time consumption per 20 tokens

Method Size Time Cost (second)

CodeGen 350M 0.49
+ Harden 350M 0.50

CodeGen 2.7B 0.75
+ Harden 350M 0.81

CodeGen 6.1B 1.06
+ Harden 350M 1.25

DeepSeek-Coder 1.3B 0.30
+ Harden 1.3B 0.33

DeepSeek-Coder 6.7B 0.64
+ Harden 1.3B 0.81

StarCoderBase 1B 0.36
+ Harden 1B 0.45

a time, and then concatenate the output token with the input as
the input for the next inference. This process is repeated until the
maximum generation length is reached or a terminator is encoun-
tered. It is inefficient to perform the forward computation from
scratch every time. In particular, CoSec requires two models to
infer synchronously. For Code LLM, which is provided as a service,
the response time is a key indicator of the quality of the service.
However, as shown in Table 8, although our approach reduces the
inference speed to some extent, the reduced performance is still
acceptable.9 On the one hand, we use KV-Cache [24] to improve
the inference speed; on the other hand, our inference framework
supports batch inference.

In terms of trade-off tactics, we recommend starting with the
smallest model in the family as the foundation for the security
model. This approach helps minimize the requirements for high-
quality data and computational resources during the training phase,
while also ensuring a quick response time alongside enhanced
security. Although opting for a larger parameter model, such as
CodeGen-6.1B, as the security base can also lead to improved secu-
rity, it significantly extends the response time.

9https://www.websitebuilderexpert.com/building-websites/website-load-time-
statistics/

Limited types of vulnerabilities. Second, only 13 of the 25
most dangerous vulnerabilities reported by MITRE were included
in our experiments, and many more types of vulnerabilities were
not considered. Additionally, LLMs are learning new patterns of
potentially high-risk vulnerabilities over time. Although our ap-
proach performs well on seen and partially unseen vulnerability
types, building training data that covers more vulnerability pat-
terns is necessary. We should set out to build a more diverse set of
high-quality training data in a semi-automated form.

Independent measurement of security and functional cor-
rectness. Another threat to validity is that our approach regards
that security and functional correctness are independent of each
other. However, it is well known that while considering security,
functional correctness should be equally considered. Specifically,
for a given code prompt, when the model complements the code,
we should consider both the security and functional correctness of
the following code, because for partial generation, we find that if
the generated code does not trigger a specific CodeQL keypoint, it
will not be judged as a vulnerability expression; and the functional
correctness test, if it is not specific to the current code, does not
mean that the model-generated code is necessarily code that meets
our requirements.

6 Related Work
In this section, we introduce the key concept and background that
have played an important role in our work.

6.1 Code LLMs
Because the training objective is causal language modeling, de-
coding transformer-based language models are also referred to as
causal language models (CLMs), which are capable of long-range
semantic modeling. Benefiting from this, the code LLMs trained on
massive code data and natural language texts can generate partial
programs or natural language documents based on already written
content. CodeGen [30] stands out as a prominentmodel designed for
iterative program synthesis, leveraging autoregressive transformer
architectures that undergo CLM training on both programming
language and natural language datasets. Furthermore, various or-
ganizations have released their code LLMs based on decoding-only
architectures and CLM traing objective [28], [39], [34], [50]. Multi-
task pre-training has also been shown to increase other capabilities
of code LLMs [10], [25], [30].

1437

CoSec: On-the-Fly Security Hardening of Code LLMs via Supervised Co-decoding ISSTA ’24, September 16–20, 2024, Vienna, Austria

6.2 Security of Code LLMs
Pearce et al. [32] pioneered the systematic evaluation of security in
code generated by LLMs. Their groundbreaking study on GitHub
Copilot’s security across C/C++, Python, and Verilog assessed the
code against the top 25 vulnerabilities as identified by the MITRE
Common Weakness Enumeration (CWE)10. They discovered that
about 40% of the generated code is vulnerable. Following this, a
great deal of work has been devoted to studying the security of
code LLMs from different perspectives [12], [13], [21], [25], [29].

While extensive research has highlighted security issues inher-
ent in code LLMs, efforts to address these vulnerabilities remain
relatively nascent. Research on how to enhance the security of
LM code is still in its infancy. GitHub Copilot [17] introduces an
LLM-based vulnerability prevention system that leverages LLM
to mimic the behaviour of static analysis tools, thereby enabling
the real-time identification and blocking of insecure coding pat-
terns. He and Vechev [19] adopt a prefix-tuning based security
hardening of code LLM, known as SVEN. This approach freezes
the entire model and uses the prefix as inserted modules. Their
results across various real-world applications demonstrate SVEN’s
effectiveness in security hardening. Wang et al. [43] focus on code
LLMs that support instrucitons. It is important to note that not all
of the code LLMs that provides intelligent services are fine-tuned
by instruction, and those models are the focus of our attention.

6.3 Decoding-Time Constraint Approaches
As we mentioned above, the causal decoding-based LLMs sequen-
tially predict the token with the highest probability of conforming
to the conditions in the current context, but they cannot grasp the
security properties of the generated content. This oversight not
only amplifies the existing biases within training datasets but also
increases the likelihood of generating content that is toxic11 or
unsafe. To address this challenge, a number of decoding-time con-
strained text-controllable generation methods have been proposed
to reduce toxicity while preserving text content and fluency. The de-
coding time approach only works in inference and does not directly
access the weights of the LLMs, while being plug-and-play [6], [22],
[27], [51], [33]. Such features of decoding-time approaches have
recently received attention from researchers in the fields related
to intelligent coding [48]. However, existing work has not taken
into account the security of code LLMs and how security relates to
functional correctness.

7 Conclusion and Future Work
In this paper, we propose a novel on-the-fly security hardening
method of code LLMs, called CoSec, which aims to reduce the
probability that the completions generated by code LLMs contain
vulnerable code. CoSec utilize a significantly small security model
trained on secure data to infer the next token in an iterative fashion
with the target base model. Our inference framework operates
without requiring access to the internal parameters of the target
model, offering a deployment that is considerate of computational

10https://cwe.mitre.org/
11Toxic content (or toxicity) refers to speech in textual content that may cause readers
to feel uncomfortable, attacked, or marginalized, including, but not limited to, hate
speech, discriminatory language, bullying, and expressions of violence of any kind.

resources and the demand for high-quality security data. We have
performed extensive experimental validation of 6models on 13 high-
risk CWE vulnerabilities, and the results show that our approach is
able to achieve a strong security hardening effect while maintaining
the functional correctness of the hardened models.

For now, our approach only supports sharing between models of
different sizes in the samemodel family. However, we know that not
all large open source models are released in families. Therefore, it is
meaningful to investigate a generalized security hardening method
for different model architectures at decoding time in the future.
In addition, comprehensively exploring the security of generating
existing code LLMs (both open- and closed-source) and constructing
quality training data covering a wider range of vulnerability types
is also an important research question that we plan to address in
the future.

Acknowledgement
This work was supported in part by the National Natural Science
Foundation of China (No. 62372071 and 62202074), the Chongqing
Technology Innovation and Application Development Project (No.
CSTB2022TIAD-STX0007 and No. CSTB2023TIAD-STX0025), the
Fundamental Research Funds for the Central Universities (No. 2023-
CDJKYJH013), and the National Research Foundation, under its
Investigatorship Grant (NRF-NRFI08-2022-0002). Any opinions,
findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not reflect the views of
National Research Foundation, Singapore.

References
[1] ZHIPU AI. 2024. Powerful AI Assistant for developers. https://codegeex.cn/en-US
[2] Amazon. 2022. Amazon Codewhisperer. https://aws.amazon.com/cn/

codewhisperer/
[3] Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine

McLeavey, Jerry Tworek, and Mark Chen. 2022. Efficient training of language
models to fill in the middle. arXiv preprint arXiv:2207.14255 (2022).

[4] Guru Bhandari, Amara Naseer, and Leon Moonen. 2021. CVEfixes: automated
collection of vulnerabilities and their fixes from open-source software. In Proceed-
ings of the 17th International Conference on Predictive Models and Data Analytics
in Software Engineering. 30–39. https://doi.org/10.1145/3475960.3475985

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Amanda Neelakantan, et al. 2020. Language Models are Few-
Shot Learners. In Advances in Neural Information Processing Systems, Vol. 33.
Curran Associates, Inc., 1877–1901.

[6] Meng Cao, Mehdi Fatemi, Jackie Chi Kit Cheung, and Samira Shabanian. 2023.
Systematic rectification of language models via dead-end analysis. arXiv preprint
arXiv:2302.14003 (2023).

[7] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. 2021.
Deep learning based vulnerability detection: Are we there yet. IEEE Transactions
on Software Engineering (2021), 3280–3296. https://doi.org/10.1109/TSE.2021.
3087402

[8] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[9] Xinyun Chen, Chang Liu, and Dawn Song. 2018. Tree-to-tree neural networks
for program translation, In Proceedings of the 32nd International Conference
on Neural Information Processing Systems. Advances in neural information
processing systems 31, 2552–2562.

[10] DeepSeek. 2023. DeepSeek Coder: Let the Code Write Itself. https://github.com/
deepseek-ai/DeepSeek-Coder

[11] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and
Jie Tang. 2022. GLM: General Language Model Pretraining with Autoregressive
Blank Infilling. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 320–335. https://doi.org/10.
18653/v1/2022.acl-long.26

[12] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. Incoder: A

1438

https://codegeex.cn/en-US
https://aws.amazon.com/cn/codewhisperer/
https://aws.amazon.com/cn/codewhisperer/
https://doi.org/10.1145/3475960.3475985
https://doi.org/10.1109/TSE.2021.3087402
https://doi.org/10.1109/TSE.2021.3087402
https://github.com/deepseek-ai/DeepSeek-Coder
https://github.com/deepseek-ai/DeepSeek-Coder
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26

ISSTA ’24, September 16–20, 2024, Vienna, Austria D. Li, M. Yan, Y. Zhang, Z. Liu, C. Liu, X. Zhang, T. Chen, and D. Lo

generative model for code infilling and synthesis. arXiv preprint arXiv:2204.05999
(2022).

[13] Yujia Fu, Peng Liang, Amjed Tahir, Zengyang Li, Mojtaba Shahin, and Jiaxin Yu.
2023. Security Weaknesses of Copilot Generated Code in GitHub. arXiv preprint
arXiv:2310.02059 (2023).

[14] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles
Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, et al. 2020. The
Pile: An 800GB dataset of diverse text for language modeling. arXiv preprint
arXiv:2101.00027 (2020).

[15] ShuzhengGao, Hongyu Zhang, CuiyunGao, and ChaozhengWang. 2023. Keeping
Pace with Ever-Increasing Data: Towards Continual Learning of Code Intelligence
Models. In Proceedings of the 45th International Conference on Software Engineering.
30–42. https://doi.org/10.1109/ICSE48619.2023.00015

[16] GitHub. 2022. The world’s most widely adopted AI developer tool. https://github.
com/features/copilot

[17] GitHub. 2023. GitHub Copilot now has a better AI model and new capabili-
ties. https://github.blog/2023-02-14-github-copilot-now-has-a-better-ai-model-
and-new-capabilities/

[18] Google. 2022. ML-Enhanced Code Completion Improves Developer Produc-
tivity. https://blog.research.google/2022/07/ml-enhanced-code-completion-
improves.html

[19] Jingxuan He and Martin Vechev. 2023. Large language models for code: Secu-
rity hardening and adversarial testing. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security. 1865–1879.

[20] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685 (2021).

[21] Raphaël Khoury, Anderson R Avila, Jacob Brunelle, and Baba Mamadou Camara.
2023. How secure is code generated by chatgpt?. In 2023 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2445–2451.

[22] Minbeom Kim, Hwanhee Lee, Kang Min Yoo, Joonsuk Park, Hwaran Lee, and
Kyomin Jung. 2023. Critic-Guided Decoding for Controlled Text Generation. In
Findings of the Association for Computational Linguistics: ACL 2023. 4598–4612.
https://doi.org/10.18653/v1/2023.findings-acl.281

[23] Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Car-
los Muñoz Ferrandis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas
Wolf, et al. 2022. The Stack: 3 TB of permissively licensed source code. arXiv
preprint arXiv:2211.15533 (2022).

[24] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serving with pagedattention. In
Proceedings of the 29th Symposium on Operating Systems Principles. 611–626.

[25] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 2023.
StarCoder: may the source be with you! arXiv preprint arXiv:2305.06161 (2023).

[26] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. 2022.
Competition-level code generation with alphacode. Science 378 (2022), 1092–1097.
https://doi.org/10.1126/science.abq1158

[27] Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula,
Noah A Smith, and Yejin Choi. 2021. DExperts: Decoding-Time Controlled Text
Generation with Experts and Anti-Experts. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers). 6691–
6706. https://doi.org/10.18653/v1/2021.acl-long.522

[28] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambro-
sio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset for code understanding and
generation. arXiv preprint arXiv:2102.04664 (2021).

[29] V. Majdinasab, M. Bishop, S. Rasheed, A. Moradidakhel, A. Tahir, and F. Khomh.
2024. Assessing the Security of GitHub Copilot’s Generated Code - A Targeted
Replication Study. In 2024 IEEE International Conference on Software Analysis, Evo-
lution and Reengineering (SANER). 435–444. https://doi.org/10.1109/SANER60148.
2024.00051

[30] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2022. Codegen: An open large language
model for codewithmulti-turn program synthesis. arXiv preprint arXiv:2203.13474
(2022).

[31] Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lam-
bert Pouguem Wassi, Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh
Sinha, and Reyhaneh Jabbarvand. 2023. Understanding the effectiveness of large
language models in code translation. arXiv preprint arXiv:2308.03109 (2023).

[32] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. 2022. Asleep at the keyboard? assessing the security of github
copilot’s code contributions. In 2022 IEEE Symposium on Security and Privacy
(SP). IEEE, 754–768. https://doi.org/10.1109/SP46214.2022.9833571

[33] Lianhui Qin, Sean Welleck, Daniel Khashabi, and Yejin Choi. 2024. COLD de-
coding: energy-based constrained text generation with langevin dynamics. In

Proceedings of the 36th International Conference on Neural Information Processing
Systems (NIPS ’22, Vol. 35). 9538–9551.

[34] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. Code
llama: Open foundation models for code. arXiv preprint arXiv:2308.12950 (2023).

[35] Gustavo Sandoval, Hammond Pearce, Teo Nys, Ramesh Karri, Siddharth Garg, and
Brendan Dolan-Gavitt. 2023. Lost at C: A User Study on the Security Implications
of Large Language Model Code Assistants. In 32nd USENIX Security Symposium
(USENIX Security 23). Anaheim, CA, 2205–2222.

[36] Freda Shi, Daniel Fried,MarjanGhazvininejad, Luke Zettlemoyer, and Sida IWang.
2022. Natural Language to Code Translation with Execution. In Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing. 3533–3546.

[37] Mohammed Latif Siddiq and Joanna Santos. 2023. Generate and pray: Using sallms
to evaluate the security of llm generated code. arXiv preprint arXiv:2311.00889
(2023).

[38] Mohammed Latif Siddiq and Joanna CS Santos. 2022. SecurityEval dataset: mining
vulnerability examples to evaluate machine learning-based code generation
techniques. In Proceedings of the 1st International Workshop on Mining Software
Repositories Applications for Privacy and Security. 29–33. https://doi.org/10.1145/
3549035.3561184

[39] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020.
Intellicode compose: Code generation using transformer. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1433–1443. https://doi.org/10.1145/
3368089.3417058

[40] Marc Szafraniec, Baptiste Roziere, Hugh Leather, Francois Charton, Patrick La-
batut, and Gabriel Synnaeve. 2022. Code translation with compiler representa-
tions. arXiv preprint arXiv:2207.03578 (2022).

[41] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[42] Chaozheng Wang, Yuanhang Yang, Cuiyun Gao, Yun Peng, Hongyu Zhang,
and Michael R Lyu. 2022. No more fine-tuning? an experimental evaluation of
prompt tuning in code intelligence. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 382–394. https://doi.org/10.1145/3540250.3549113

[43] Jiexin Wang, Liuwen Cao, Xitong Luo, Zhiping Zhou, Jiayuan Xie, Adam Ja-
towt, and Yi Cai. 2023. Enhancing Large Language Models for Secure Code
Generation: A Dataset-driven Study on Vulnerability Mitigation. arXiv preprint
arXiv:2310.16263 (2023).

[44] Yue Wang, Hung Le, Akhilesh Gotmare, Nghi Bui, Junnan Li, and Steven Hoi.
2023. CodeT5+: Open Code Large Language Models for Code Understanding and
Generation. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing. 1069–1088. https://doi.org/10.18653/v1/2023.emnlp-main.68

[45] Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and Denys
Poshyvanyk. 2019. Sorting and transforming program repair ingredients via
deep learning code similarities. In 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 479–490. https:
//doi.org/10.1109/SANER.2019.8668043

[46] Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. 2023. Self-Edit: Fault-Aware
Code Editor for Code Generation. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). 769–787.
https://doi.org/10.18653/v1/2023.acl-long.45

[47] Quanjun Zhang, Chunrong Fang, Yuxiang Ma, Weisong Sun, and Zhenyu Chen.
2023. A Survey of Learning-based Automated Program Repair. arXiv preprint
arXiv:2301.03270 (2023).

[48] Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B Tenenbaum,
and Chuang Gan. 2023. Planning with large language models for code generation.
arXiv preprint arXiv:2303.05510 (2023).

[49] Tianyi Zhang, Tao Yu, Tatsunori Hashimoto, Mike Lewis, Wen-tau Yih, Daniel
Fried, and Sida Wang. 2023. Coder reviewer reranking for code generation. In
Proceedings of the 40th International Conference on Machine Learning. PMLR,
41832–41846.

[50] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Lei Shen,
Zihan Wang, Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023.
CodeGeeX: A Pre-Trained Model for Code Generation with Multilingual Bench-
marking on HumanEval-X. In Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining. 5673–5684. https://doi.org/10.1145/
3580305.3599790

[51] Tianqi Zhong, Quan Wang, Jingxuan Han, Yongdong Zhang, and Zhendong Mao.
2023. Air-Decoding: Attribute Distribution Reconstruction for Decoding-Time
Controllable Text Generation. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing. 8233–8248. https://doi.org/10.18653/v1/
2023.emnlp-main.512

Received 2024-04-12; accepted 2024-07-03

1439

https://doi.org/10.1109/ICSE48619.2023.00015
https://github.com/features/copilot
https://github.com/features/copilot
https://github.blog/2023-02-14-github-copilot-now-has-a-better-ai-model-and-new-capabilities/
https://github.blog/2023-02-14-github-copilot-now-has-a-better-ai-model-and-new-capabilities/
https://blog.research.google/2022/07/ml-enhanced-code-completion-improves.html
https://blog.research.google/2022/07/ml-enhanced-code-completion-improves.html
https://doi.org/10.18653/v1/2023.findings-acl.281
https://doi.org/10.1126/science.abq1158
https://doi.org/10.18653/v1/2021.acl-long.522
https://doi.org/10.1109/SANER60148.2024.00051
https://doi.org/10.1109/SANER60148.2024.00051
https://doi.org/10.1109/SP46214.2022.9833571
https://doi.org/10.1145/3549035.3561184
https://doi.org/10.1145/3549035.3561184
https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1145/3540250.3549113
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.1109/SANER.2019.8668043
https://doi.org/10.1109/SANER.2019.8668043
https://doi.org/10.18653/v1/2023.acl-long.45
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.18653/v1/2023.emnlp-main.512
https://doi.org/10.18653/v1/2023.emnlp-main.512

	Abstract
	1 Introduction
	2 Methodology
	2.1 Security Model Fine-Tuning
	2.2 Supervised Co-Decoding

	3 Experimental Setup
	3.1 Research Questions
	3.2 Datasets
	3.3 Evaluation Framework
	3.4 Target Models
	3.5 Experimental Settings
	3.6 Performance Metrics

	4 Results
	4.1 RQ1. Security Hardening Efficacy
	4.2 RQ2. Functional Correctness Maintainance
	4.3 RQ3. Effectiveness on Unseen Vulnerability Types
	4.4 RQ4. Effect of Different Acceptance Thresholds on Security and Functional Correctness

	5 Threats to Validity
	6 Related Work
	6.1 Code LLMs
	6.2 Security of Code LLMs
	6.3 Decoding-Time Constraint Approaches

	7 Conclusion and Future Work
	References

