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Abstract—Method names in software projects are significant
for developers to understand the method functionality. Existing
state-of-the-art automated approaches tend to explore tokens
composing method names from method contexts. However, the
method name is not a simple combination of tokens, as it
is structured and contains many repetitive naming patterns
(e.g. “get ”, “create ”). Through a large-scale empirical
analysis on 15M methods from 14K real software projects
developed with Java codes, we found repetitive naming patterns
in method names. In addition, the names of two function-similar
methods usually have the same naming pattern.

Based on our empirical study, we propose a naming pattern-
based approach for method name recommendation, named Nam-
Pat. Specifically, for a target method, NamPat first retrieve
the most similar method from the training data by estimating
their body code similarity. Then, the name of the most similar
method is used as the pattern guider to provide the naming
pattern, and NamPat combines it with the context information
of the target method to perform method name recommendation.
To verify the effectiveness of the proposed approach, we con-
ducted experiments on 17M methods from a widely used Java
dataset. Experimental results show that compared with Code2vec,
Code2seq, MNire, and Cognac, NamPat improves the state-of-
the-art approaches in precision (5.8%-27.1%), recall (11.1%-
60.1%), and F-score (8.5%-43.9%), which proves the effectiveness
of our proposed approach.

Index Terms—method name recommendation, naming pattern,
deep learning

I. INTRODUCTION

Meaningful and succinct method names usually reflect the

functionality of the method, which help developers understand

the program behavior [1]–[3]. In contrast, misleading method

names may confuse developers and cause API misuses, leading

to software defects [4]–[6]. Therefore, it is crucial to find a

suitable name for the method. Actually, constructing a high-

quality method name is a challenging and time-consuming task

[7].

To obtain meaningful method names, researchers have pro-

posed various automated approaches to recommend meaning-

ful method names. Early studies mainly employed Information

Retrieval (IR) approaches [8], [9] such as Liu et al. [9] deemed

that two methods with similar bodies should have similar

names. They retrieved the similar methods and reused their

method names. However, in many cases, two methods with

similar bodies are given different names because they might

∗Corresponding author.

have different semantics or for various tasks. Besides, the IR-

based approaches cannot recommend new method names that

are unseen in the training data.

With the rapid development of deep learning, researchers

use deep learning technologies to recommend appropriate

method names [10]–[13]. Based on the idea that programming

languages can greatly benefit from representations that lever-

age the structured nature of their syntax [14]–[16]. Code2vec

[11] and Code2seq [10] used a set of paths between two leaf

nodes in the Abstract Syntax Tree (AST) to represent the

method body for predicting the method’s name. Nguyen et

al. [12] noted that for method naming, the naturalness factor,

i.e., the names of program entities, are more important than

structured representation. Therefore, they proposed MNire,

which used the program entity tokens of three contexts (i.e.,

implementation context, interface context, and enclosing con-

text) to generate the method name. Wang et al. [13] found that

MNire still has limitations in dealing with the methods having

little content, so they developed Cognac, which introduced

the caller/callee context of the method as prior knowledge to

complete the recommendation of method names.

The above state-of-the-art approaches mainly focus on intro-

ducing more context information which may contain the target

method name tokens for recommending method names. Their

approaches usually generate the method names by composing

the tokens extracted from context information. However, we

find that method names contain structured naming patterns,

and such combinations may lead to poor readability of method

names. We define that if a method name starts with a verb or

preposition, the method name is regarded as having a naming

pattern. For example, a method named “createItemForm”,

its naming pattern is “create ”. This naming pattern is

helpful in understanding the method’s intention and improving

the readability of the method name. Therefore, this finding

motivates us to investigate whether the naming pattern can be

utilized to infer meaningful method names better. We also ob-

serve that two methods with similar body code have the same

naming pattern. For example, two methods named “getImage”
and “getText” have token-level similarity in the body code

and have the same naming pattern “get ”. Therefore, to

obtain the naming pattern of the target method name, we use

the name of the most similar method as the pattern guider to

provide the naming pattern. Then, we combined pattern guider
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with the context semantic information of the target method, to

recommend meaningful method names.

To verify our observations and motivation, we extract 15M

methods from 14K high-quality projects from the GitHub

repository and conduct a large-scale empirical research. We

find that there are a lot of repetitive naming patterns in method

names, and similar methods usually have the same naming

pattern. In detail, among all the methods studied, in 58.53% of

the methods, their method name is named by statistical naming

patterns, such as “test ”, “get ” and “set ”. And

the proportion that the method names of two methods with

similar body code have the same naming pattern is 66.15%.

We also find that the tokens of the target method name can

be found in the name of its most similar method for 75.5% of

the total cases. These results show that the name of the most

similar method can provide additional information to help infer

method names.

Supported by the results of the above empirical research,

we propose NamPat, an approach that uses the name of

the most similar method as the pattern guider to provide

a naming pattern, and then combines the contexts of the

method to generate method names. First, NamPat retrieves

the most similar method for the target method from training

data by estimating their body code similarity through Lucene

[17], a widely used text search engine. And NamPat uses the

name of the most similar method as the pattern guider. Then,

NamPat extracts context token sequence (implementation con-

text, interface context, and enclosing context) from the target

method to represent the semantics of the target method. It

is better to use the token sequence of program entities in

the context for method name recommendation [12]. Finally,

NamPat combines the naming pattern in the pattern guider

with the semantic information provided by the context token

sequence to recommend method names.

We conduct experiments on a previously widely used dataset

[12] with 10K GitHub projects to evaluate the performance

of NamPat with Code2vec [11], Code2seq [10], MNire [12]

and Cognac [13]. The results show that NamPat improves the

state-of-the-art approaches in precision (5.8%-27.1%), recall

(11.1%-60.1%), and F-score (8.5%-43.9%).

In summary, our main contributions are outlined as follows:

• Empirical Study: Our research finds that method names

have many repetitive naming patterns, and methods with

similar body code usually have the same naming pattern.

• Method name recommended method: We propose a

novel approach NamPat for method name recommenda-

tion. It uses the name of the most similar method as

the pattern guider to provide the naming pattern and

combines the contexts of the method to recommend

method names.

• Performance evaluation: We conducted experiments on

a large-scale Java dataset to evaluate the performance

of NamPat. The experimental results show that NamPat

achieves overall better performance than the state-of-the-

art approaches.

Fig. 1. An example of the original method and a similar method retrieved

The rest of the paper is organized as follows: Section II de-

scribes motivating examples. Section III details the empirical

research on the name of the method. Section IV introduces

the details of our proposed approach NamPat. Section V and

Section VI describe the experimental setup and evaluation

results. Section VII and Section VIII discuss some details

and describe the related work, respectively. Finally, Section

IX concludes the paper.

II. MOTIVATING EXAMPLES

In this section, we present an example of obtaining the

naming pattern from the name of the most similar method

to help generate method names. Figure 1 shows an original

method, named “testAddParameter”, having a naming pattern

“test ”. we retrieve its most similar method through the

Lucene engine according to the code tokens of “testAddPa-
rameter” (the implementation details are described in Section

IV). Then we gain the most similar method “testAddKeyArgu-
ment” from the code base. We observe that the most similar

method’s name have the same naming pattern “test ” as

the name of original method. Further, in this example, we

can get a detailed naming pattern “testAdd ”. From the

detailed naming pattern, we can find that the similar function

of both methods is to complete the test addition. This motivates

us to retrieve the most similar method for the original method

and extract their method names to capture the naming pattern.

Besides observing the name pattern from the most similar

method’s name, we also find the tokens that make up the

original method’s name can be observed in the name of the

most similar method. For example, the tokens “test” and

“add” from the original method name “testAddParameter”,

which also appear in the name “testAddKeyArgument” of its

most similar method. While the token “add” does not appear

in the contexts of the original method testAddParameter.

This discovery prompts us to enrich the semantics of a method

name by incorporating its most similar method name.

Given the above observations, we address that the naming

pattern of the most similar method can be used to help method

name recommendation. In this paper, we propose an approach

to generate a proper method name by combining the name
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pattern in its most similar method’s name and semantic context

information of the method.

III. EMPIRICAL STUDY

Based on our observations, we conducted an empirical study

to ensure that our observations are universal across large

open-source projects. Specifically, this empirical study aims

to answer the following questions:

RQ1: Whether method names have repetitive naming pat-

terns?

This RQ aims to explore whether there are naming patterns

for method names in a large-scale dataset. In addition, whether

two methods with similar body code have a same naming

pattern.

RQ2: Can the tokens composing the name of a target

method be frequently observed in the name of its similar

method?

This RQ aims to investigate the frequency that similar method

names contain the target method name token and whether the

similar method names can help us better predict the method

names.

A. Concepts

To simplify the representation, we give a brief definition of

implementation context, interface context, enclosing context,

and pattern guider.

Implementation context: For a method, the implementation

context [12] is the names of all program entities in the method

body. This shows the implementation of the method.

Interface context: For a method, the interface context [12] is

the type of method input parameter and method return type.

This represents the input and output of the method.

Enclosing context: For a method, the enclosing context [12] is

the name of the class that defines the method. This represents

the general task purpose information of the class of the

method.

Pattern guider: For a method, the pattern guider is the name

of its most similar method. This represents the naming pattern

of the method name.

B. Data collection and processing

To complete the empirical research, we use a dataset

of 14,317 top-ranked and well-maintained java projects on

GitHub, which was used in previous work [12]. We processe

15,294,489 Java methods from this dataset with the latest,

stable project version, ensuring that method names have stable

status. For each method processed, we collect its contexts,

including the types of the parameters, the return type, the

enclosing name, and the body of the method. We split the

collected names into tokens using the camel case and under-

score naming convention, converting the obtained tokens to

lowercase. Then, we use the Lucene search engine to retrieve

TABLE I
THE NAMING PATTERNS AND SCALE OF THE METHOD NAMES

Method Name Pattern Number Proportion Same Pattern Proportion

get 3707168 0.2424 0.5674
set 1534798 0.1003 0.7063
test 1002558 0.0656 0.9275
is 485527 0.0317 0.5159
create 463080 0.0303 0.7257
add 317731 0.0208 0.6485
to 227229 0.0149 0.5669
on 205359 0.0135 0.8226
remove 134576 0.0088 0.5842
write 124636 0.0082 0.8219
update 114821 0.0075 0.6207
read 109325 0.0071 0.7702
do 103154 0.0067 0.7008
find 93031 0.0061 0.7169
visit 90968 0.0060 0.8665
check 81328 0.0053 0.6443
run 77877 0.0051 0.6352
parse 76504 0.0050 0.7442

Total 8949670 0.5853 0.6615

the most similar method for each method and extract its

method name. As a result, each method sample includes the

target method context sequence, the target method name, and

the name of the most similar method.

C. Statistical Analysis

RQ1:Naming patterns in method names. Based on observa-

tion, we count 18 naming patterns in the dataset. The results

are illustrated in Table I, about 58.5% (8,949,670/15,294,489)

of the methods have naming patterns. For example,

24.2% (37,007,168/15,294,489) of methods have the pattern

“get ”, 10.0% (1,534,798/15,294,489) of methods have

the pattern “set ”. These numbers indicate that there are

many naming patterns in method names, and many method

names use the same naming pattern.

Then, we further study the above methods with naming

patterns. The results are shown in Table I. In 66.1% of cases,

when a method has the above naming pattern, we can get

the same naming pattern from its most similar methods. For

example, in all the methods using the “get ” naming

pattern, their most similar methods also use the “get ”
naming pattern, accounting for 56.7%. These results motivate

us to use the name of the most similar method to obtain the

naming pattern of the target method.

Finding-1: Nearly 58.5% of methods have naming pat-
terns, and the method names of two similar methods
usually have the same naming pattern, which implies that
we use naming patterns to generate method names.

RQ2: Frequencies of tokens can be observed in the name
of the most similar method. We investigate the frequency that

the tokens composing the target method name are found in the

name of the most similar method. From 15,294,489 method

names, we extract 41,119,385 tokens, which means that each

method name is composed of three tokens on average. There-
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TABLE II
THE FREQUENCY OF METHOD NAMES BE FOUND IN SIMILAR METHOD

NAMES.

Number Frequency

# The number of method name samples 15294489 -
# Not in method contexts 3390396 22.2%
# In similar method name 11551101 75.5%
# In similar method name but not in method contexts 1794625 11.7%

# The number of method name tokens 41119385 -
# Not in method contexts 23489730 42.9%
# In similar method name 26177105 63.7%
# In similar method name but not in method contexts 8879199 21.6%

fore, we analyze the frequency from two perspectives: method

names and tokens.

As shown in Table II, we count the frequency of method

name tokens that are not observed in the method context. The

results showed that 22.2% of method names, any constituent

tokens of them could not be observed in their context. And

almost 42.9% of tokens in method names cannot be observed

in their context. These results imply to us that it is not enough

to rely on context information to predict method names.

Then, we count the frequency of method name tokens that

are observed in the name of the most similar method. The

results showed that 75.5% of method names could be observed

with any constituent tokens in the name of the most similar

method. Almost 63.7% of tokens in method names can be

observed in the name of the most similar method. This means

that the name of the most similar method can provide rich

prediction information for the target method name. After that,

for 11.7% of the methods, the tokens composed of method

names can only be observed in the name of the most similar

method. Nearly 21.6% of the method names constitute tokens,

which can only be observed in the name of the most similar

method. These results indicate that the name of the most

similar method can provide unique prediction information for

the target method name.

Finding-2: For the tokens constituting the method name,
63.7% of the tokens can be observed in the name of
similar methods, of which 21.6% can only be observed
in the name of similar methods. This implies that we
can use the method names of similar methods to provide
prediction information for the target method names.

IV. METHODOLOGY

In this work, we propose NamPat, an approach based on nam-

ing patterns for method name recommendation. The overview

of NamPat is shown in Figure 2. It mainly includes two mod-

ules: naming pattern extraction and method name generation.

In the naming pattern extraction module, a retrieval base is

built based on the training dataset. For a method, we use the

open-source search engine Lucene to retrieve the most similar

method according to the input method tokens. Then, the name

of the most similar method is extracted as the pattern guider

with the naming pattern. Meanwhile, the context sequence is

extracted for the input method to represent the semantics of

the input method. In the method name generation module, we

employ a seq2seq framework to generate the method name.

Specifically, we use two encoders to encode the pattern guider

and the contexts into vector representations, respectively. The

decoder generates the target method name sequentially by

predicting the probability of the tokens in the method name.

A. Naming Pattern Extraction Module

The results of statistical analysis in Section III show that

the naming pattern can be obtained from the name of the most

similar method to help predict method names. So, the naming

pattern extraction module aims to extract the context sequence

and get the name of the retrieved most similar method.

Inspired by previous studies [18], [19], we build a tokens-

level similarity-based retrieval module. Specifically, we use

BM25 [20] as the similarity evaluation metric to estimate

the relevance of methods. BM25 is a bag-of-words retrieval

function that is widely used. Given a method without the

method name, the BM25 function based on TF-IDF [21]

calculates the term frequency in the document of each token

in the method and multiplies it by the term’s inverse document

frequency. The more relevant the two methods are, the higher

the BM25 score is. We use the open-source search engine

Lucene [17] to build the retrieve component and the training

set as the retrieval corpus.

As depicted in Figure 2, input a method without the method

name, the Lucene-based retrieval component returns its most

similar method according to the similarity of code tokens.

Then, we extract the method name from the most similar

method and process it into a token level sequence, which is

a pattern guider with the naming pattern. On the other hand,

for the input method, we will extract three contexts in the

method, including implementation context, interface context,

and enclosing context, then process them into token level

sequence and connect them. Thus, for the input method, we get

the pattern guider sequence with naming pattern and context

sequence for the subsequent method name generation module.

B. Method Name Generation Module

As shown in the right part of Figure 2, this module

describes the seq2seq attention model architecture used in

NamPat, which is a novel pointer generator network [22]. The

reason why we adopt this network is to enable the model to

generate tokens that do not exist in the vocabulary to alleviate

the out-of-vocabulary (OOV) problem in the method name

recommendation.

The key step of this module is to learn the pattern in the

pattern guider and combine it with the context information of

the method to generate a new method name. Specifically, we

utilize the encoder to get the vector representation of pattern

guider and contexts, respectively. Lastly, the method name

decoder is used to generate a new method name conditioning

on the guider and contexts representation.

1) Pattern And Contexts Encoder. We input the context token

sequence and the pattern guider token sequence obtained in
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Fig. 2. Overview of NamPat

the previous module into the model. The encoder embeds the

input context tokens into a vector x = (x1, x2...xm), and the

pattern guider tokens into a vector x
′
= (x

′
1, x

′
2...x

′
n). Then,

the two embedded vector sequences are processed using a

single-layer bidirectional long short-term memory (Bi-LSTM)

[23] unit respectively. The hidden state hi of Bi-LSTM can

be represented as:

�hi = LSTM(�hi−1, xi);
←
hi = LSTM(

←
hi+1, xi) (1)

hi = [�hi ⊕
←
hi] (2)

where ⊕ is a concatenation operation. After encoding, two

sequences of encoder hidden states will be obtained: context

hidden states h = (h1, h2, ..., hm) and pattern guider hidden

states h′ = (h
′
1
, h

′
2
, ..., h

′
n
). Note that in our experiments, we

used two separate LSTMs, one for encoding context sequence

and one for encoding pattern guider sequence.

2) Method Name Decoder: The decoder is a single-layer

unidirectional LSTM. For the decoding stage, at the time step

t, the hidden state of the decoder is calculated by:

st = LSTM(st−1, yt−1) (3)

where st1 means the previous hidden state of the decoder, yt−1

is the embedding of a word (while training, this is the (t-1)-th

word embedding of ground-truth; while test, it is the previous

word emitted by the decoder ).

Then, at the t-th time step, NamPat focus and place more

attention on the relevant tokens of the context sequence and the

pattern guider sequence as needed. It is useful to introduce the

attention mechanism into the method name generation model.

We think different tokens of the method name are related to

different parts of the method. For example, when the model

generates the token “get” because it notices the token “return”

in the method. Similarly, NamPat also can focus on some parts

of the pattern guider when generating the method name. So,

we calculate the weight of the tokens α in the context sequence

and the pattern guider sequence, respectively according to the

attention mechanism:

eti = vT (Whhi +Wsst) (4)

at = softmat(et) (5)

where v, Wh and Ws are learnable parameters. st is the output

of the decoder at t-th time step. We calculate the attention

weight at and at
′

in the context hidden state sequence and the

pattern guider hidden state sequence, respectively. Next, we

use the attention weight distribution to calculate the weighted

sum of the hidden states of the two encoders, and call them

context vector h∗
t and pattern guider vector h∗′

t respectively,

and connect them together as pattern guider-context vector

hgc
t :

h∗
t =

∑
i
at

i
h

i
(6)

h∗′
t =

∑
i
at

′
i
h

′
i

(7)

hgc
t = [h∗

t ⊕ h∗′
t ] (8)

where pattern guider-context vector hgc
t can be seen as a fusion

representation of the context information in the method and

the naming pattern of the method name in the pattern guider.

Because NamPat is allowed to copy tokens from the input

sequences and generate tokens from a fixed vocabulary. In

addition, the generation probability pgen ∈ [0,1] at the time

step t is calculated based on the pattern guider-context vector

hgc
t , the state st of the decoder and the input zt of the decoder:

Pgen = σ(wT
hgch

gc
t

+ wT
s st + wT

z zt + bptr) (9)

where whgc , ws, wz and bptr are learnable parameters and is

the sigmoid function. pgen represents the probability that the

model generates tokens from a fixed vocabulary, which are
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tokens observed from the training corpus. On the other hand,

1-pgen indicates the probability of directly copying the token

from the input sequences as the output. Finally, at this time

step t, the probability of outputting token yt is calculated as:

P (y) = pgenPvocab(y) + (1− pgen)
∑

i:yi=y
at

i
(10)

where the first part represents the probability of generating y
from the fixed vocabulary, and the second part represents the

probability of copying y from the input sequences. We want to

replicate not only from the input method context sequence but

also from our pattern guider token sequence. Therefore, the

attention distribution here includes two parts: context token

sequence and pattern guider token sequence. If y is an OOV

token, the probability of token y generated from the fixed

vocabulary is 0, then pvocab(y) is 0. That is, the model copies

words based on the attention distribution of the input token

sequences. This will enable the model to generate OOV tokens.

3)Loss Function: During training, the overall loss of the

whole sequence is calculated as the average loss of each step,

which is the negative log-likelihood of the target word y∗t for

that timestep:

loss =
1

T

T∑

t=0

(−logP (y∗t )) (11)

V. EXPERIMENTAL SETUP

A. Dataset

To evaluate the performance of NamPat on the method name

recommendation task, we tested it on the widely used Java

dataset built by Nguyen et al. [12]. This dataset contains more

than 10K Java projects, which are collected from the top-

ranked public projects on GitHub. Following the same settings

of Nguyen et al. [12], we randomly split the dataset into

9772 training and 450 testing projects, containing 17M training

and 580K testing methods. In addition, we shuffle the corpus

according to items rather than files, which avoids the unfair

performance improvement caused by file-based shuffling [24].

B. Evaluation Metrics

To evaluate the quality of the method names generated

by our model, we use the same metrics as previous works

[11]–[13], which measured Precision, Recall, and F-score over

case-insensitive tokens. Specifically, for a target method name

t and a recommended method name r, its precision(t, r),
recall(t, r), and F − score(t, r) are calculated as:

precision(t, r) =
|token(t) ∩ token(r)|

|token(r)| (12)

recall(t, r) =
|token(t) ∩ token(r)|

|token(t)| (13)

F − score(t, r) =
2× precision(t, r)× recall(t, r)

precision(t, r) + recall(t, r)
(14)

where token(n) return the tokens in the name n. The overall

performances are computed as the average values of all

samples in the dataset. In addition, we also use the additional

metric Exact Match Accuracy (EM Acc), in which the order

of the tokens is also taken into consideration.

C. Implementation Details

NamPat is implemented based on PyTorch framework. We

set the embedded dimensions of words to 150, LSTM hidden

states dimensions to 400, and the batch size to 128. We use

gradient clipping with a maximum gradient norm of 2 and use

javalang to parse java codes and extract context information. In

our experiment, we limit the sequence constituting the method

context to 400 tokens, the pattern guider sequence to 6 tokens,

and the length of the target method name to 6. In the testing

phase, the method name is produced using beam search with

beam size of 4. We use Adagrad with the learning rate of 0.15

and the initial accumulator value of 0.1 to train the model for

about 1.3 million iterations (10 epochs). All experiments of

our model are performed on an NVIDIA Titan V GPU with

12 GB memory.

D. Research Questions

To evaluate the effectiveness of our proposed approach, we

conducted experiments to investigate the following research

questions:

RQ3: How effective is NamPat compared with the state-

of-the-art baselines?

To evaluate the performance of our proposed approach, we

compare NamPat with the state-of-the-art approaches on the

method name recommendation task.

RQ4: How does the pattern guider affect the NamPat

performance?

We regard the name of the most similar method as a pattern

guider, which is used to guide NamPat to generate a more

appropriate method name. To analyze the impact of the pattern

guider on NamPat effectiveness, we only use three local

contexts of the method as prediction information to explore

whether the performance of NamPat will be effected without

the help of the pattern guider.

RQ5: How effective is NamPat on method names of

different lengths?

We explored how many tokens developers usually used for

naming methods. Then, to measure the effectiveness of Nam-

Pat on different lengths of method name, we perform NamPat

under different lengths settings.
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VI. EVALUATION

A. RQ3: How effective is NamPat compared with the state-of-
the-art baselines?

To answer this research question, we compared NamPat

with the following state-of-the-art models of method name

recommendation:

code2vec [11]: An attention-based neural model decomposes

the code into a collection of paths in its AST and aggregates all

of the path vectors into a single vector by the attention mecha-

nism. The method name recommendation task is regarded as a

classification task, and the representation vector of the method

is used to predict a method name.

code2seq [10]: An extended approach of code2vec, which

utilizes the seq2seq framework to represent a code snippet as

a path set in its AST by using LSTMs, and uses the attention

mechanism to select the relevant path when generating the

method name subtokens.

MNire [12]: An RNN-based seq2seq approach uses the pro-

gram entity names in the method body and the enclosing class

name to recommend method names.

Cognac [13]: A context-guided method name recommenda-

tion approach recommends method names by using the local

context of the method, the global context of the interactive

method, and the probability of tokens in different contexts

composing the method name.

As shown in Table III, the performance of NamPat out-

performs all baseline models on all metrics. On the exact

match accuracy, NamPat reaches 50.4%, which is relatively

increase by 16.9%∼46.1% compared with the baselines. The

higher exact match accuracy indicates the more method names

recommended by NamPat completely matched the ground

truth. The method names recommended by all baseline models,

sometimes have a high F-score, but they do not achieve an ex-

act match because their models usually can’t learn the naming

pattern of method names written by developers. For example,

the ground truth is “prepare update item statement”, and the

recommended name is “prepare delete item statement”. In this

case, it gets a good F-score, but the exact match doesn’t occur.

In NamPat, the name of the most similar method is treated as

the pattern guider, which is written by people with the naming

pattern. Pattern guider will guide NamPat to recommend the

method name according to the same naming pattern so that

the recommended method name can better match the ground

truth.

We note that both code2vec and code2seq represent methods

by using the AST path. However, the structures of ASTs are

usually large and deep due to the complexity of the methods.

This complex representation leads to lower performance on

all metrics than MNire, which uses the name of the program

entity rather than the AST path for generating the method

name [12]. These results prove that it is correct for our

model to use the name of the program entity. Compared with

all baselines, NamPat has the highest recall and precision.

Specifically, NamPat improves the precision by 5.8%∼27.1%,

TABLE III
METHOD NAME RECOMMENDATION COMPARISON

Approaches Precision Recall F-score EM Acc

code2vec 58.4% 44.6% 50.6% 38.4%
code2seq 67.4% 57.5% 61.9% 41.3%
MNire 70.1% 64.3% 67.1% 43.1%
Cognac 69.8% 55.8% 62.1% 34.5%

NamPat 74.2% 71.4% 72.8% 50.4%

TABLE IV
IMPACT OF PATTERN GUIDER ON NAMPAT

Model Precision Recall F-score EM Acc

-Pattern Guider 67.6% 54.7% 60.5% 34.1%
NamPat 74.2% 71.4% 72.8% 50.4%

the recall by 11.1%∼60.1%, and F-score by 8.5%∼43.9%,

which means that the tokens in the method names generated

by our model can cover much more target tokens than the other

baselines. Through analysis, pattern guider plays an important

role in NamPat, which has a strong correlation with the target

method name and introduces more tokens that make up the

target method name.

The performance of NamPat is higher than state-of-the-art

approaches in all Metrics. Therefore, our model can suffi-

ciently recommend method names that precisely describe the

functionality of the method body.

B. RQ4: How does the pattern guider affect the NamPat
performance?

In our model, we use three kinds of context information of

methods and the name of the most similar methods as a pattern

guider to generate method names. To explore the effectiveness

of the pattern guider, we remove it from NamPat and only

use the three context information as input to recommend the

method name.

The experimental results are shown in Table IV. When

we use the pattern guider, the performance of NamPat is

greatly improved. Specifically, it increases precision from

67.6% to 74.2%, recall from 54.7% to 71.4%, F-score from

60.5% to 78.8%, and exact match accuracy from 34.1% to

50.4%. Among them, the larger improvement is achieved on

recall and exact match accuracy. These results mean that it

is difficult to generate method names with correct naming

patterns only relying on the three local context information

of the method (implementation context, interface context, and

enclosing context). When NamPat uses the pattern guider, it

can generate more accurate matching method names according

to the naming pattern of the pattern guider and cover more

target tokens.

C. RQ5: How effective is NamPat on method names of differ-
ent lengths?

To measure the performance of NamPat on different settings

of method name lengths, we first statistically analyze the

350

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on October 01,2023 at 01:30:53 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. Distribution of Method Name Length

TABLE V
PERFORMANCE OF NAMPAT ON DIFFERENT LENGTHS METHOD NAMES

Len 1 Len 2 Len 3 Len 4 Len≥ 5

Precision 40.3% 68.1% 79.1% 83.1% 84.5%
Recall 70.0% 75.5% 76.2% 73.3% 61.3%
F-score 51.2% 71.6% 77.6% 77.1% 71.0%
EM Acc 48.1% 56.1% 61.3% 43.5% 17.1%

number of methods with different method name lengths in

the test corpus. As shown in Figure 3, we put together the

methods whose length is greater than or equal to five, which

accounts for about 12.7% of the total methods in the test

corpus. Meanwhile, we can also find that the method names

with a length of one account for the minor proportion of

8.9%. Maybe it is difficult to describe the functionality of

the method when the length of the method name is too short.

The method names with the length of two and three have the

largest number, accounting for 64.1% together, and almost two

of every three methods have a name with a length of two or

three. These results indicate that developers tend to use two

or three words for method names.

As shown in Table V, we tested the performance of NamPat

on method names of different lengths. NamPat has obtained

the best performance on the method names with a length of

three, which achieved an F-score of 77.6%, and exact match

accuracy of 61.3%. As for the method names with a length

of two, NamPat also achieved excellent performance, which

reached an F-score of 71.6% and exact match accuracy of

56.1%. These results indicate that the method names generated

by our model fit well with the naming habit of developers.

When the method name length is one, the F-score of NamPat is

only 51.2%, which proves that NamPat prefers to recommend

detailed names rather than simple names. For method names

with a length of greater than or equal to five, NamPat still

has 71.0% F-score because the pattern guider provides a

unique naming pattern and many predictable tokens. But exact

match accuracy of NamPat only is 17.1%, which shows that

generating the method name exactly matching the ground truth

will become more difficult with the increase of the method

name length.

VII. DISCUSSION

A. Qualitative Analysis

As shown in Figure 4, we present four examples generated

by NamPat and the state-of-the-art baseline Cognac from

the test set. In cases 1 and 2, Cognac recommends the

method names “invoke user” and “apply paint”, in which

the tokens can be observed in the context of the methods,

but the recommended names do not match the real semantics

of the methods. In NamPat, with the help of the pattern

guider, we get the naming pattern of the target method names

“create ” and “set ” which help NamPat generate

more meaningful method names. In addition, we can observe

in case 3 that the naming pattern from the pattern guider is “on
create ”. The naming pattern provides particular predic-

tion information, that is, the tokens “on” and “create” appear

in the pattern guider instead of being observed in the method

contexts. In case 4, Cognac recommends the method name

“set attributes”, which has the naming pattern “set ”. This

does not conform to the semantics of the method. However,

with the help of the pattern guider, NamPat can get the

correct naming pattern “parse ”. The above examples

show that the method names recommended by NamPat are

close to the correct method names. Previous models tend to

generate tokens observed in contexts, which sometimes fail to

recommend meaningful method names.

B. Performance Enhancements from the Replication Mecha-
nism

Previous studies such as the seq2seq model-based MNire

can only generate tokens from their own fixed vocabularies but

cannot copy tokens from the input sequences, which makes

the models encounter OOV problems. So, the replication

mechanism is used in our model to replicate tokens from the

input sequences, which enables our model to process OOV

tokens. However, this is not the main reason for the superior

performance of our model. To verify this viewpoint, we re-

move the replication mechanism from NamPat by setting pgen
in the model to 1, so that our model can only generate tokens

from the fixed vocabulary and not from the input sequence.

We perform a performance evaluation on the same dataset,

and the experimental results show that the performance of the

model removing the replication mechanism reaches 72.1% (F-

score), which is slightly lower than NamPat (72.8%) and much

higher than MNire (67.1%) and Cognac (62.1%). In other

words, the performance of NamPat is superior mainly from the

information provided by the names of similar methods rather

than the replication mechanism. Although we experiment in

a large training set, the OOV problems always appear in

our tasks. So, it is reasonable for us to add the replication

mechanism to deal with OOV tokens. The above results show

that introducing the name of the most similar method into

our model NamPat makes it more effective than state-of-

the-art approaches, and the replication mechanism makes the

performance of NamPat better.
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Fig. 4. Examples of generated method names

C. Application Scenario
The inputs of our approach NamPat are the name of the

most similar method and the contexts of methods. The first

application scenario is that developers want to determine

an appropriate name for an implemented method. Given an

implemented method, NamPat can directly work to retrieve

its naming pattern and combine it with context information

to recommend an appropriate method name. This can be seen

as a just-in-time method name recommendation. The second

scenario is that developers determine whether the existing

name of a method is consistent. In this scenario, NamPat can

recommend an appropriate method name and compare it with

the existing name to check the consistency.

D. Threats to Validity
One threat to validity is that we have evaluated our approach

on only one dataset, which is the benchmark dataset for

method name recommendation in previous work [11]–[13]. All

projects in the dataset are high-quality and well-maintained

projects selected from GitHub. Therefore, we consider that

most method names are consistent with methods. In addition,

we only focus on the Java programming language, and our

large-scale empirical research is also done in the Java pro-

gramming language. However, according to the principle of

NamPat, it uses the name of the most similar method and the

context information of the method, which is not limited to a

specific programming language, and we will extend NamPat

to other languages in future work.

Another threat to validity relates to the statistical metrics.

We choose the statistical metrics (precision, recall, F-score,

and exact matching) used in the previous works [11]–[13] to

evaluate the performance of our approach. These evaluation

metrics maybe not be truly reflected whether the recommended

method names are helpful to developers in the actual de-

velopment. Therefore, more manual verification is needed to

confirm the usefulness of our approach.

VIII. RELATED WORK

The method name recommendation task aims to recommend

meaningful names that summarizes the key functionality of

the method. This is similar to the code summarization task of

generating good descriptions for the functionality of a method.

Therefore, we introduce the related works in three aspects:

method name recommendation, code summarization, and code

representation.

A. Method Name Recommendation

There are two categories of approaches for method name

recommendation. The first one is Information Retrieval (IR).

Liu et al. [9] relies on the principle that methods with similar
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bodies have similar names. They retrieved similar methods

and reused their method names for the recommendation. Jiang

et al. [8] searches for methods with similar return types and

parameters and derive method names based on heuristics.

The main disadvantage of these IR-based methods is that

they cannot generate new names that have not been seen in

the training set by searching in the existing method names

collection.

The other category is based on machine learning. Allamanis

et al. [25] considered method names as the extreme summa-

rization of source code. They proposed a convolution attention

neural network, which convoluted the tokens sequence of the

method body to obtain the structure information of the source

code. Alamanis et al. [1] projected all the names in the method

body and the tokens in the method name into the same vector

space. Their model combined nearby tokens to compose a new

method name. To use the structure information in the source

code, Alon et al. [11] proposed Code2vec, which aggregated

the paths from different leaf nodes to leaf nodes in the source

code AST and used the attention mechanism to generate a code

vector. Then Code2vec used the code vector to recommend

the method name. Later, Alon et al. [10] proposed code2seq,

which used the seq2seq model with attention to represent the

component distribution vector of the source code and generate

a series of words. MNire [12] used the seq2seq model with

attention to recommending method names and explored the

sub-tokens of method names appearing in the implementa-

tion context, interface context, and enclosing context of the

target method. Wang et al. [13] found that MNire still has

limitations in dealing with the methods having little content,

So they introduced the caller and callee context for method

name recommendation. They also used the frequency with

which the method name token appears in different contexts

as additional information for method name recommendation.

Li et al. [26] also considered using more contexts, including

the internal context, the caller and callee contexts, sibling

context, enclosing context, and learning context representation

to recommend method names.

B. Code Summarization

The code summarization task aims to generate brief de-

scriptions of code automatically. High-quality code summaries

also help developers understand the code. Most code summa-

rization generation approaches used the seq2seq framework.

Iyer et al. [27] used a Recurrent Neural Network (RNN)

[28] with an attention mechanism to generate code summaries

and achieved good results. Ahmad et al. [29] proposed a

transformer-based approach to generate code summarization.

In addition, many works used the structure information

of the code [30]–[32]. Hu et al. [30] proposed a neural

model named DeepCom to utilize the structural information

of code. Then, they converted the AST into a token sequence

to generate summarization for Java methods. Fernandes et al.

[31] construct a graph representation of code using AST and

lexical information. Then, Liu et al. [32] further use more

structural information. They combine diverse representations

of the source code, including AST, Control Flow Graph(CFG),

and Program Dependency Graph (PDG), into a joint code

property graph to generate summarization.

C. Code Representation

Code representation learning is a hot research topic in soft-

ware engineering. Existing code representation efforts repre-

sent code in three categories: (1) source code token sequence;

(2) AST; and (3) Graph. Based on the token representation,

the source code is tokenized as a token sequence, and each

token is represented as a vector. Based on AST representation,

AST is usually into a series of nodes by traversing. Based on

the representation of a Graph, some work is represented as a

Graph by adding edges to extending ASTs. And other works

use CFG and DFG to represent source code. These learned

code vectors then can be used for various SE tasks, such as

method name recommendation [11], [12], code clone detection

[33], [34], code search [35], code summarization [30], [36],

etc.

IX. CONCLUSION

In this paper, we conduct a large-scale empirical analysis

on 15M Jave methods, and the key findings are that: (1)

method names contain many repetitive naming patterns, and

the names of the two methods with similar body code usually

have the same naming pattern; (2) the tokens composing the

target method name can be observed in the name of the most

similar method. The name of the most similar method can be

utilized for better inferring the target method name. Motivated

by our finding, we propose a naming pattern-based approach

for method name recommendation, named NamPat. NamPat

contains two modules. The naming pattern extraction module

not only extracts the context information of the target method

but also retrieves the most similar method and extracts its

method name as a pattern guider. The method name generation

module is a pointer generator network that learns the semantics

of naming patterns and context information and combines

them to recommend method names. We conducted extensive

experiments on a widely-used Java dataset. The experimental

results show that NamPat outperforms the state-of-the-art

baselines. All the source code and data of this study can be

found at: https://github.com/cqu-isse/NamPat.
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