
Improving Code Summarization Through
Automated Quality Assurance

Yuxing Hu1,2, Meng Yan2,3∗, Zhongxin Liu4, Qiuyuan Chen4, Bei Wang1,2
1Key Laboratory of Dependable Service Computing in Cyber Physical Society (Chongqing University),

Ministry of Education, China
2School of Big Data and Software Engineering, Chongqing University, Chongqing, China

3Pengcheng Laboratory, Shenzhen, China
4College of Computer Science and Technology, Zhejiang University, Hangzhou, China

Email:{yuxhu, mengy, bwang2013}@cqu.edu.cn,{liuzx, chenqiuyuan}@zju.edu.cn

Abstract—The code summarization task aims to generate brief
descriptions of source code automatically. It is beneficial for
developers to understand source code. However, almost all of cur-
rent code summarization approaches may generate low-quality
(BLEU4<40) summaries, which will mislead developers. Previous
work has shown that it is possible to conduct quality assurance for
document generation (QA4DG) and improve the practicability of
document generation approaches. Code summarization can also
be regarded as a document generation task. This work aims
to investigate whether QA4DG approaches can be leveraged to
improve code summarization.

Specifically, we first investigate whether existing QA4DG
approaches can be plugged in code summarization approaches.
We find that an automated quality assurance framework for
commit message generation named QACom performs best. In-
spired by the idea behind QAcom, we propose an ensemble code
summarization approach called Ensum. Precisely, given a code
snippet, Ensum first uses current code summarization approaches
to generate candidate summaries. Then, Ensum predicts the
quality of each candidate summary using a collaborative filtering-
based component and a retrieval-based component and selects the
best candidate summary as the output. Experimental results on
two public datasets show that Ensum outperforms three state-of-
the-art single approaches and one ensemble approach for code
summarization in terms of BLEU-4, METEOR, and ROUGE-L.

Index Terms—Code Summarization, Code Comment, Quality
Assurance

I. INTRODUCTION

A code summary is a natural language description of a code

snippet that helps the developer understand the meaning of

this code without reading the entire source code. Considering

that developers often spend a lot of time on source code

comprehension [1], high-quality code summaries are essential

for software development and maintenance. However, writing

code summaries manually is tedious and time-consuming,

which increases the need for automatic code summarization

approaches.

Many code summarization approaches have been pro-

posed [2]–[7]. Recently, with the advances of deep learning

and the large and ever-increasing amount of source code data,

leveraging deep learning models to automatically learn to

∗Corresponding author.

Fig. 1: An example where the summaries generated by Deep-

com, NMT, and Rencos are all low-quality summaries.

generate code summaries from massive code-summary pairs

has become a very popular research topic. For example,

Hu et al. [2] propose a novel neural network model which

combines both the lexical and the structural information of

code snippets to generate code summaries. Zhang et al. [4]

propose a retrieval-based code summarization approach called

Rencos, which enhances neural network model with the most

similar code snippets retrieved from the training set. We refer

to this topic as “neural code summarization”.

Although existing neural code summarization approaches

are shown to have promising performance and can generate

many high-quality code summaries, according to previous

studies, some code summaries generated by existing code

summarization approaches obtain BLEU-4 scores less than 40,

which are considered to be low-quality summaries [8]. Fig-

ure 1 shows an example where the code summaries generated

by three state-of-the-art code summarization approaches are of

low quality. These summaries may mislead developers while

taking extra developer time to filter.

In fact, almost all neural document generation approaches

suffer from the problem mentioned above [9], [10]. To alleviate

this problem, researchers have proposed several quality assur-

ance approaches [11], [12] for document generation tasks like

neural machine translation (NMT) [11] and commit message

generation (CMG) [12]. Such approaches aim to automatically

predict the quality of generated documents and filter out the

ones that are predicted to be of low quality, and can improve

the practicability of NMT and CMG approaches. We refer

486

2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/21/$31.00 ©2021 IEEE
DOI 10.1109/ISSRE52982.2021.00057

20
21

 IE
EE

 3
2n

d
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

So
ft

w
ar

e
Re

lia
bi

lit
y

En
gi

ne
er

in
g

(IS
SR

E)
 |

 9
78

-1
-6

65
4-

25
87

-2
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IS

SR
E5

29
82

.2
02

1.
00

05
7

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:31:14 UTC from IEEE Xplore. Restrictions apply.

to this kind of idea as QA4DG. However, no prior work

investigates whether QA4DG approaches can be applied to

improve code summarization.
To bridge this gap, in this work, firstly we conduct an

empirical study to investigate whether existing QA4DG ap-

proaches can be applied to code summarization to filter

out generated low-quality code summaries and improve the

practicability of code summarization approaches. Specifically,

we apply three QA4DG approaches, i.e., collaborative filter-

ing (CF) [13], QAcom [11], and Test-NMT [12] to three

popular code summarization approaches, namely Deepcom

[2], Rencos [4], and NMT [7]. Given a QA4DG approach

and a code summarization approach, the QA4DG approach

predicts the quality of each summary generated by the code

summarization approach and filters out the predicted low-

quality ones. Four metrics, i.e., BLEU-4 [14], METEOR [15],

ROUGE-L [16] and Preserved-Ratio [11], are calculated on the

preserved generated summaries to measure the effectiveness

of the QA4DG approach. Experiments show that QAcom [11]

can achieve a BLEU-4 close to 40 with the highest Preserved-

Ratio. Therefore, we believe that QAcom is the most applica-

ble approach for code summarization.
Secondly, inspired by the idea behind QA4DG approaches,

i.e., automatically predicting the quality of generated docu-

ments, we propose an ensemble code summarization approach

called Ensum. The core idea of Ensum is that given a code

snippet and multiple code summarization approaches, we can

automatically predict the quality of the summaries generated

by the code summarization approaches and choose the one

predicted to be the best as the final generated summary. Specif-

ically, based on the finding of our empirical study, Ensum

adopts the technique of QAcom to perform summary quality

prediction, i.e., predicts the quality of a summary based on a

collaborative filtering-based component and a retrieval-based

component. It integrates three code summarization approaches,

namely NMT, Rencos and Hybrid-Deepcom (hereon, Deep-

com), all of which are popular state-of-the-art approaches. We

evaluate the effectiveness of Ensum on two public datasets

in terms of BLEU, METEOR, and ROUGE-L, and compare

them with the three single-model approaches and a state-of-

the-art ensemble approach named Codesum [17]. It is worth

mentioning that Codesum is a supervised approach requiring

manual efforts to label code comment types, while Ensum is

unsupervised and does not require human-labeled information.

Experimental results show that Ensum can well integrate

multiple single-model code summarization approaches by ef-

fectively identifying the generated code summaries with the

best quality, and the unsupervised Ensum also outperforms

the supervised Codesum in terms of all metrics.
In summary, the contributions of this paper include :

• We conduct an empirical study to investigate whether

QA4DG approaches can be applied to code summariza-

tion to filter out low-quality generated code summaries.

We plug three QA4DG approaches in three popular code

summarization approaches, respectively, and find QAcom

is the best performed QA4DG approach. This paper is

the first study to explore the impact of existing QA4DG

approaches on code summarization.

• We propose an ensemble code summarization approach

Ensum, which can effectively integrate multiple single-

model code summarization approaches by predicting the

quality of their generated summaries.

• We leverage Ensum to integrate three single-model code

summarization approaches and conduct comprehensive

experiments to evaluate Ensum on two datasets. The

results confirm that Ensum is effective and outperforms

its used single-model approaches and a state-of-the-art

ensemble approach.

• We open source our replication package, including the

dataset and the source code of our study [18].

The rest of the article is organized as follows: Section

II introduces the background. Section III describes the ex-

perimental setup. Section IV details the empirical study on

applying QA4DG approaches to code summarization. Section

V proposes Ensum and describes the evaluation methods and

results of Ensum. Section VI discusses the threats to validity.

Section VII reviews related studies. Section VIII concludes

this paper.

II. BACKGROUND

In this section, we briefly introduce the background of code

summarization and quality assurance for document generation

(hereon, QA4DG).

A. Code Summarization

Code summarization task aims to generate a brief descrip-

tion for a given code snippet. In recent years, with the advances

of deep learning and the large and ever-increasing amount

of source code data, leveraging neural network to perform

automatic code summarization has attracted a lot of attention

and become a hot research topic [2], [4], [6], [7], [19]. We

refer to it as neural code summarization.

The basic idea of neural code summarization is that we can

leverage neural networks to learn the transition between code

and summaries from massive code-summary pairs collected

from existing software projects. Those neural code summariza-

tion approaches generally consist of two parts, i.e., the encoder

part and the decoder part. The encoder part is composed of

one or more neural components, namely encoders, to capture

different kinds of information, i.e., lexical information and

structure information, of the given code snippet and encode

such information into real value vectors. Such vectors can

be regarded as the intermediate representation of the input

code snippet, and will be input into the decoder part. The

decoder part usually contains only one neural component

called decoder, and is responsible for generating summary

based on the output of the encoder part. RNN and its variants

are commonly-used decoders. Decoders are used to model

the conditional probability of generating a summary token

conditioned on the input code snippet and the summary tokens

that have already been generated. Recently, some approaches

487

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:31:14 UTC from IEEE Xplore. Restrictions apply.

[4] also integrate retrieval methods into neural networks to

enhance the performance of code summarization.

B. Quality Assurance for Document Generation

The idea of quality assurance for document generation

(QA4DG) is to predict the quality of the documents generated

by document generation approaches, and filter out the ones that

are predicted to be of low quality before presenting generated

documents to readers. In this way, we can improve the overall

quality of the generated documents that are presented to read-

ers and consequently improve the practicability of document

generation approaches. Existing QA4DG approaches generally

calculate quality scores based on the generated documents, the

input from which the documents are generated and the training

set to measure the quality of generated documents. They differ

from each other in how they compute quality scores. Currently,

researchers have proposed QA4DG approaches for document

generation tasks such as neural machine translation [12]

(NMT) and commit message generation [11], [20] (CMG).

Unfortunately, whether QA4DG approaches can be used to

improve code summarization is still uninvestigated.

III. EXPERIMENT SETUP

In this work, we first conduct an empirical study to inves-

tigate whether quality assurance for document generation ap-

proaches can be applied to code summarization, and then pro-

pose and evaluate an ensemble code summarization approach

called Ensum that is inspired by the idea of QA4DG. This

section presents the datasets, the selected QA4DG approaches

and code summarization approaches and the evaluation metrics

code summarization used in our empirical study and the

evaluation of Ensum.

A. Datasets

We use the dataset provided by Hu et al. [2], which is

collected from 9,714 GitHub projects. This dataset consists

of 588,108 code-summary pairs. For this dataset, we used its

two settings:

Within-project dataset: It does not distinguish between

projects, with a training set consisting of 445,812 code-

summary pairs and a validation set and a test set of 20,000

pairs each.

Cross-project dataset: Its training set consists of 455,000

code-summary pairs, the validation set and the test set contain

15,606 pairs each. The validation and the test sets do not

overlap with the training set in terms of the projects where

the pairs are collected from.

Table I and Table II present the statistics of the two datasets,

including the number of code tokens, code lines, summary

words, and the mean, median, minimum, and quantile length of

codes and summaries. It can be seen that the data distributions

of the training set, validation set, and test set are consistent

on both datasets.

B. Code Summarization Approach Selection

We select three state-of-the-art approaches from the existing

neural code summarization approaches, i.e., Hybrid-DeepCom

and Rencos. When using these approaches, we follow their

original settings.

NMT [7]: Neural machine translation model. Here we use a

RNN with global attention [21], which is a baseline commonly

used in the code summarization domain. We input code tokens

to the encoder. And summaries output from the decoder. We

implement the model using the OpenNMT [7] and adopt the

default settings.

Hybrid-DeepCom [2]: Hybrid-Deepcom, for short Deepcom,

exploits a deep neural network that combines the lexical and

syntactic information of Java methods for better comments

generation. Specifically, the lexical information learns from

source code, and the code will be processed as tokens. The

syntactic information learns from abstract syntax tree (AST)

sequences which uses javalang [22] to process. We input code

tokens and AST sequences to encoder and Deepcom outputs

summaries from decoder.

Rencos [4]: Rencos is the first that tries to enhance neural

code summarization approaches with retrieval. It consists of

a retrieval-based component and a neural-based component.

For the retrieval-based component, it calculates the similarity

of the new code segment to the historical code to find the

most similar one. We input the code tokens as context vectors

through encoder and retrieval component. The decoder then

computes the conditional probabilities and generates the final

summaries.

C. Quality Assurance Approach Selection

We select three state-of-the-art QA4DG approaches to eval-

uate their effectiveness on code summaries. It is important to

note that for all three QA4DG approaches they construct an

objective function and then train it on the validation set using

a differential evolutionary algorithm [23].

Collaborative Filtering (CF) [13]: This approach uses a

collaborative item-based filtering algorithm to calculate two

separate scores for both under-translated and over-translated

cases. Under-translated means some essential words or phrases

are missing in the generated documents. Over-translated means

some words or phrases in the generated documents are unnec-

essary.

Specifically, CF uses an item-based collaborative filtering

algorithm to discover the similarity between items and items,

based on all users’ ratings of the items, then recommends

similar item information to that user based on the user’s

historical preference information. For the code summarization

task, CF considers a function as a user and each word in

code or summary as an item. And then CF can construct a

mapping of associated words in summaries for each word in

code that corresponds to it. Based on these mappings, CF can

calculate precision and recall for under-translation and over-

translation respectively. Thus CF can get two quality scores.

If they are below the thresholds, CF will treat this as a low-

quality summary and filter it.

488

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:31:14 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Count of the Datasets

Type
Within-project dataset Cross-project dataset

Pairs Code Tokens Code Lines Summary Words Pairs Code Tokens Code Lines Summary Words
Train 445,812 24,889,887 1,834,662 4,571,644 455,000 20,515,239 1,873,214 4,671,191
Valid 20,000 1,112,533 82,207 204,357 15,406 699,983 62,526 155,539
Test 20,000 1,103,447 81,573 205,476 15,406 698,458 62,701 154,747

TABLE II: Statistics of the Datasets

Type
Within-project dataset Cross-project dataset

Mean Std. Min. 1st Quart Med. 3rd Quart. Max. Mean Std. Min. 1st Quart Med. 3rd Quart. Max.
Train-Code 55.83 53.07 5 18 36 75 665 45.44 42.60 5 14 29 63 199
Train-NL 10.25 4.48 1 7 9 13 32 10.09 4.36 1 7 9 12 30
Valid-Code 55.63 52.41 5 18 36 75 397 45.08 42.56 5 15 28 61 199
Valid-NL 10.22 4.46 1 7 9 13 30 10.27 4.49 1 7 9 13 32
Test-Code 55.17 52.54 5 18 35 74 365 45.33 42.57 5 14 29 62 199
Test-NL 10.27 4.49 2 7 9 13 29 10.05 4.36 1 7 9 12 29

Test-NMT [12]: Test-NMT addresses the current problem of

faulty NMT translations and proposes an approach to check

the translated content. It also divides the problem into two

parts: under-translated content, over-translated content.

For under-translated, a collaborative filtering algorithm is

used. Thus it can calculate a quality score for code summariza-

tion according to CF we just mentioned. For over-translated,

the algorithm is based on the frequency of words appearing in

the translation. Precisely, the algorithm will count the number

of times each word appears in the translation. If it occurs more

than once, it is considered to be over-translated. The over-

translated words will be removed and not to calculate quality

score. Thus Test-NMT will obtain one quality score. If it is

below the threshold, Test-NMT will treat this as a low-quality

summary and filter it.

Quality Assurance for Commit Message (QAcom) [11]:

This approach is used to automatically ensure the quality of

generated messages and consists of a collaborative filtering-

based component and a retrieval-based component. Each com-

ponent will produce a quality score to measure the quality of

a generated document.

The collaborative filter-based component has two cases of

over-translation and under-translation [12]. Therefore, the CF

component will calculate the collaborative filtering score (CF

score) by checking whether each generated summary is under-

translated or over-translated for code summarization.

The retrieval-based component uses the similarity between

the current code and the historical code to calculate the

retrieval score for code summarization. And it will use BLEU-

4 to represent the similarity so retrieval score can be calcu-

lated. Thus QAcom will get two quality scores from the two

components. If they are below the thresholds, QAcom will

treat this as a low-quality summary and then filter it.

D. Evaluation Metrics

We use several evaluation metrics commonly used in code

summarization and QA4DG, BLEU-4 [14], Meteor [15],

ROUGE-L [16], Preserved-Ratio [11], Precision, and Recall.

BLEU-4 measures the n-gram precision between X and

Y by computing the overlap ratios of n-grams and applying

brevity penalty on short translation hypotheses. Given the

generated summary X and the corresponding references Y ,

BLEU − N calculates the similarity by computing the n-

gram precision of the candidate sentences for the reference

sentences and penalizes the lengths that are too short. BLEU-

1/2/3/4 correspond to 1-gram, 2-gram, 3-gram, and 4-gram

scores, respectively. The formula to calculate BLEU-N (N =

1, 2, 3, 4) is:

BLEU −N = BP ∗ exp
(

N∑
n=1

wnlogpn

)
(1)

where pn is the precision score of n-gram matching between

candidate and reference sentences, bp is the brevity penalty

score, and wn is the uniform weight 1
N . BP stands for Brevity

Penalty and its formula is

BP =

{
1 , if cand < ref

e1−
ref
cand , if cand ≥ ref

(2)

where cand and ref represent the length of the candidate and

reference sentences, respectively. In particular, in this paper we

use BLEU-4 because it is widely used by code summarization

approaches for evaluation.

METEOR is based on word matches between the generated

summaries and its reference. It is calculated using the F-score

of word matches and a fragmentation penalty for considering

word order differences. METEOR calculates sentence-level

similarity scores by aligning the generated summaries to the

corresponding references with the formula:

Meteor = (1− γ · fragβ) · P ·R
α · P + (1− α) ·R′ (3)

where P and R are single word precision and recall, and frag
is the fragmentation fraction. γ, β and α are three penalty

parameters with default values of 0.9, 3.0 and 0.5, respectively.

ROUGE-L is widely used in text summarization and

provides F-score based on longest common subsequence.

ROUGE-L provides F scores based on the longest common

subsequence (LCS). Suppose the lengths of X and Y are m
and n, ROUGE-L is computed as follows:

PLCS =
LCS (X,Y)

m
(4)

RLCS =
LCS (X,Y)

n
(5)

489

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:31:14 UTC from IEEE Xplore. Restrictions apply.

FLCS =

(
1 + β2

)
RLCSPLCS

RLCS + β2PLCS
(6)

where β = PLCS/RLCS and FLCS is the value of ROUGE-L.

Preserved-Ratio measures the retention of high quality

summaries by QA4DG approaches. It calculates the percentage

of preserved summaries to all summaries with the formula:

Preserve =
summarypre
summaryall

(7)

where Preserve is the preserved percentage, summarypre is

the number of preserved summaries, and summaryall is the

number of all summaries.

We also use Precision and Recall to evaluate the effective-

ness of QA4DG approaches.

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

where True Positive (TP) represents the number of the com-

ments that are correctly predicted to high quality; False

Positive (FP) represents the number of the comments that

are wrongly predicted to high quality; False Negative (FN)

represents the number of the comments that are wrongly

predicted to low quality.

IV. QUALITY ASSURANCE FOR CODE SUMMARIZATION

In this section, we introduce the overview and empirical

study of quality assurance for code summarization.

A. The Overview of Our Empirical Study

Figure 2 shows the overview of quality assurance for code

summarization. The quality assurance for code summarization

involves the following four steps: data preprocessing, using

code summarization approaches to generate code summaries,

applying quality assurance approaches to code summaries, and

filtering low-quality code summaries.

First, we preprocess the dataset for each code summarization

approach following the original data preprocessing procedure

of this approach. The neural model of each code summariza-

tion approach is trained on the training set. During the model

training phase, different code summarization approaches can

be used. We select three popular code summarization ap-

proaches, i.e., NMT, Deepcom and Rencos. The model will

then generate code summaries for each code snippet in the

test set. Subsequently, we apply three QA4DG approaches

namely CF, TestNMT and QAcom to filter out the low-quality

summaries.

Specifically, for three QA4DG approaches we will construct

an objective function and then train it on the validation set

using a differential evolutionary algorithm. To find the optimal

thresholds of quality scores, we set the objective function

to preserve as many generated summaries as possible while

ensuring that the BLEU scores of the preserved summaries

exceed 40. The BLEU scores above 40 are based on the fact

that we consider a set of generated summaries to be of high

quality if their BLEU scores exceed 40 [8]. After finding the

optimal thresholds, each QA4DG approach will calculate the

quality scores. If the quality scores are below the thresholds,

QA4DG will treat this as a low quality summary and filter it.

B. Empirical Study on Code Summarization

We conduct an empirical study to investigate whether ex-

isting QA4DG approaches can be applied to code summariza-

tion to filter out generated low-quality code summaries and

improve the practicability of code summarization approaches.

Specifically, we use BLEU-4, METEOR, and ROUGE-L to

automatically evaluate these approaches. For example, given

a dataset and a code summarization approach, we will first

evaluate the summaries generated by this approach on the test

set. Next, we use the three quality assurance approaches to

filter out the summaries generated by this code summarization

approach for quality assurance. Subsequently, we can obtain

three different filtering results from each of the three quality

assurance approaches. In addition, we will calculate the ratio

of preserved summaries to all summaries, i.e., the Preserved-

Ratio. Finally, by comparing the filtering results, we choose the

quality assurance approach whose result is close to or above 40

on BLEU-4, and preserving as many summaries as possible.

Once we have selected the most effective quality approach

for code summarization by automatic evaluation, we need to

validate the approach’s performance further. Therefore, we

also perform the human evaluation. Based on a previous

study [9], [20], we invite four master students in software engi-

neering to participate, all of whom have four years of java pro-

gramming experience. We randomly select 100 functions and

the corresponding summaries by the three code summarization

approaches from the two datasets. The four participants need

to compare the reference with the generated summaries and

assign a score to each generated summary. Scores ranged from

1 to 5. A score of 1 indicates no association between the two

summaries, and a score of 5 tells that the two summaries are

identical or have the same meaning. In particular, we consider

summaries with a score of 4 or 5 to be of high quality and the

rest of the messages to be of low quality. The scoring range

and criteria are consistent with Liu et al. [9]. For each function,

we obtain scores from four participants. The final score of the

function is obtained by averaging the four scores. Finally, we

will compare the distribution of scores and Preserved-Ratio in

the human evaluation results with the automatic assessment

results.

C. Experimental Results

Automatic Evaluation. Table III shows the results of our

experiments. The Rencos in Within-project dataset is used as

an example. The “Rencos” row represents the performance of

Rencos on the test set since the quality assurance approach has

not been used on the dataset at this point, and therefore the

Preserved-Ratio is 100%. The “Rencos+CF” row represents

the overall quality of the preserved code summaries after

applying CF to Rencos. We can observe from Table III that:

(1) All three existing quality assurance approaches im-

prove code summarization. For example, on the Within-project

490

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:31:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Overview of Quality Assurance for code summarization.

TABLE III: Effectiveness of Three Quality Assurance Approaches on Two Datasets.

Approach
Within-project dataset Cross-project dataset

Bleu-4 METEOR ROUGE-L Preserve-Ratio Bleu-4 METEOR ROUGE-L Preserve-Ratio
Deepcom 0.326 0.249 0.513 100% 0.205 0.163 0.385 100%
Deepcom+CF 0.353 0.277 0.579 32.36% 0.453 0.308 0.586 35.78%
Deepcom+Test-NMT 0.355 0.264 0.501 63.07% 0.270 0.196 0.430 71.74%
Deepcom+QAcom 0.482 0.337 0.617 68.27% 0.397 0.273 0.541 42.91%
Rencos 0.281 0.210 0.458 100% 0.210 0.162 0.382 100%
Rencos+CF 0.383 0.286 0.571 44.22% 0.385 0.267 0.539 40.65%
Rencos+Test-NMT 0.398 0.280 0.529 41.45% 0.239 0.183 0.412 80.00%
Rencos+QAcom 0.376 0.268 0.526 67.23% 0.477 0.317 0.598 35.18%
NMT 0.255 0.197 0.457 100% 0.165 0.137 0.349 100%
NMT+CF 0.379 0.271 0.543 26.10% 0.422 0.290 0.576 22.87%
NMT+Test-NMT 0.407 0.284 0.561 37.54% 0.202 0.157 0.373 70.26%
NMT+QAcom 0.394 0.274 0.550 60.10% 0.404 0.316 0.541 31.02%

dataset, compared with Deepcom, Deepcom+CF goes up 8%,

10%, 11% on BLEU-4, METEOR, ROUGE-L, respectively.

Deepcom+QAcom goes up 48%, 35%, 20%, respectively.

Deepcom+Test-NMT goes up 9%, 6% on BLEU-4, METEOR,

and no improvement on ROUGE-L, respectively. We can see

that the existing QA4DG approaches can be applied to code

summarization and enhance code summarization. In addition,

all three approaches use a differential evolutionary algorithm

to adjust the thresholds, but there are still some approaches

that generate summaries with BLEU-4 below 40, which means

these approaches cannot filter out low-quality summaries better

for the current dataset.

(2) The overall quality of code summaries preserved by

QAcom is the best. First, QAcom can raise BLEU-4 above

40 in all cases, while many QA4DG approaches cannot do

so. Secondly, for those QA4DG approaches that can reach

BLEU-4 above 40, QACom achieves a higher Preserved-Ratio

than them. For example, on the dataset Cross-project dataset,

NMT+QAcom can improve on average 145%, 131%, and 60%

over NMT in terms of BLEU-4, METEOR, and ROUGE-L,

respectively. In contrast, NMT+CF can only improve 33%,

27%, and 16%, respectively, while NMT+Test-NMT can im-

prove 40%, 33%, and 19%, respectively. In addition, it can

be seen on the Within-project dataset that the Preserved-Ratio

of Deepcom+Test-NMT and Deepcom+QAcom are basically

the same. However, Deepcom+QAcom is 36%, 28%, and 23%

higher than Deepcom+Test-NMT on BLEU-4, METEOR, and

ROUGE-L, respectively. Therefore, we can infer that QAcom

is the most effective quality assurance approach for improving

code summarization.

(3) The overall good results of QAcom are due to the

combination of collaborative filtering and retrieval methods.

For example, on the Within-project dataset, the Preserved-

Ratio of Deepcom+Test-NMT is close to QAcom. However,

it is lower than QAcom on other evaluation metrics, which

means the quality of preserved summaries by Test-NMT is

generally inferior to QAcom. Therefore, we believe that QA-

com can better filter out low-quality summaries by combining

collaborative filtering and retrieval methods and preserve as

many high-quality summaries as possible.

(4) The BLEU scores of all three code summarization

approaches that use QAcom are close to or exceed the BLEU

constraint we use during training, i.e., 40, indicating that the

overall quality of the code summaries preserved by QAcom is

good. Thus, QAcom can guarantee the overall quality of the

code summaries.

In addition, the Preserved-Ratio of QAcom is related to the

used dataset and code summarization approach. For example,

on the Within-project dataset, the Preserved-Ratios of all

three approaches are higher than 60%. On the Cross-project

dataset, Deepcom+QAcom, which has the highest Preserved-

Ratio, preserved only 42.91% of the summaries. The reason

may be that on the Cross-project dataset data, Deepcom is

no longer able to generate better code summaries. Based on

these observations, we believe that QAcom can effectively

guarantee the quality of code summaries generated by code

491

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:31:14 UTC from IEEE Xplore. Restrictions apply.

summarization approaches and improve the practicability of

existing code summarization approaches.

Human Evaluation. After we select the most effective

approach QAcom, we also conduct the human evaluation of

QAcom. Table IV and Table V show the results of the human

evaluation. The “1” to “5” columns show the distribution

of the final scores of each code summarization approach on

each dataset. The “Preserved” column refers to the number of

preserved summaries, and the “Mean-score” column represents

the average score of the scores. We can observe Table IV that:

(1) The distribution of the scores is consistent with the

results of the automatic evaluation shown in Table IV. For

example, in the Within-project dataset, Deepcom has the high-

est percentage of scores of 2 and 3. While Deepcom+QAcom

has the highest rate of 4 and 5. This indicates that the

results filtered by QAcom have the highest percentage on 4

and 5 scores, meaning that QAcom can preserve high-quality

summaries.

(2) “Preserved” is consistent with the Preserved-Ratio of

the automatic evaluation shown in Table III. For example,

Deepcom’s Preserved-Ratio on the Within-project dataset is

68.27%, and Deepcom’s “Preserved” is 68 out of 100. This

indicates that QAcom does filter out a large number of low-

quality code summaries. In all cases, QAcom can filter out

more low-quality summaries and preserve more high-quality

summaries.

(3) The average score of code summaries preserved by

QAcom is higher than the average score of the original

approach. For example, the average score of Deepcom on the

Within-project dataset is 2.84, and the average score improves

to 3.58 after QAcom filtering.

(4) As shown in Table V, we also calculate the precision

and recall of QAcom about low-quality and high-quality

summaries. We note that QAcom consistently outperforms

random selection. Therefore, randomly preserving generated

summaries hardly affects the overall quality.

Our human evaluation results confirm the ability of QAcom

to guarantee the quality of the summaries generated by the

code summarization approaches and further demonstrate the

effectiveness of QAcom in filtering low-quality code sum-

maries and preserving high-quality summaries.

Existing quality assurance approaches can improve code
summarization, and QAcom can maximize code summaries
and ensure the quality of the summaries while preserving
as many high-quality summaries as possible.

V. ENSUM: AN ENSEMBLE CODE SUMMARIZATION

APPROACH

Based on the above empirical study, we also notice that the

idea behind QA4DG approaches, i.e., predicting the quality of

generated documents, can also be used to construct ensemble

code summarization approach. Inspired by this, we propose an

ensemble code summarization approach called Ensum. This

section describes the motivation, the details, the evaluation,

and the evaluation results of Ensum.

Fig. 3: An example of human evaluation scores of the sum-

maries generated by different approaches showing that only

one approach performs well.

A. Motivation of Ensum

As shown in Figures 3, during the human evaluation, we

find that for the same function, only one of the summaries

generated by the three code summarization approaches may

perform well, i.e., get a score of 5. Therefore, we do an

automatic complementarity analysis on the high-quality sum-

maries preserved by the three code summarization approaches

after filtering. As shown in Table VI, good(only) means that

only the summary generated by the current approach is of

high quality compared with its reference. Good(all) means

that the summaries generated by all three approaches are of

high quality the current reference. For example, on the Within-

project dataset, Deepcom generates 14 unique high-quality

summaries, Rencos generates 17 unique summaries, and NMT

generates 8 unique summaries.

The above phenomena suggest that the three code summa-

rization approaches are complementary to each other so we

can take advantages of them. Therefore, we propose the Ensum

approach to integrate the three selected complementarity ap-

proaches for improving complementarity. In addition, we have

obtained through empirical research that the quality assurance

approach that maximizes complementarity is QAcom. There-

fore, we consider whether we can apply the idea of QAcom

to Ensum, which enhances the quality of complementarity.

B. Overview of Ensum

Figure 4 shows the overview of the Ensum. On the one

hand, we take advantage of the fact that the three code

summarization approaches have complementary characteristics

to integrate the three approaches. On the other hand, we use the

idea of QAcom to filter out low-quality summaries to ensure

the quality of code summarization. Thus, we can evaluate the

summaries generated by the three summarization approaches

using the idea of QAcom. Finally, for each code block, the

best quality summary is kept as the final result.

Specifically, Ensum consists of a collaborative filtering-

based component and a retrieval-based component. Both com-

ponents will use the corresponding quality scores to evaluate

the summaries generated by each of the three summarization

492

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:31:14 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: The Human Evaluation Results of QAcom on two datasets.

Dataset Approach 1 2 3 4 5 #Preserved Mean Score

Within-project dataset

Deepcom 15.0% 29.0% 27.0% 16.0% 13.0% 100 2.84
Deepcom+RS 14.8% 28.2% 28.0% 16.4% 12.6% 68 2.83
Deepcom+QAcom 8.8% 10.3% 22.1% 30.9% 27.9% 68 3.58

Rencos 24.0% 24.0% 25.0% 15.0% 12.0% 100 2.67
Rencos+RS 23.6% 26.0% 25.4% 14.3% 10.7% 66 2.63
Rencos+QAcom 9.1% 13.6% 21.2% 25.8% 30.3% 66 3.55

NMT 30.0% 21% 23% 14.0% 11.0% 100 2.52
NMT+RS 28.3% 22.6% 22.4% 14.5% 12.2% 60 2.59
NMT+QAcom 11.9% 15.8% 14.6% 30.1% 27.6% 60 3.46

Cross-project dataset

Deepcom 24.0% 18.0% 29.0% 15.0% 14.0% 100 2.77
Deepcom+RS 24.4% 20.2% 30.4% 15.3% 9.7% 42 2.66
Deepcom+QAcom 6.3% 11.0% 31.3% 28.1% 24.3% 42 3.56

Rencos 28.0% 22.0% 25.0% 15.0% 10.0% 100 2.57
Rencos+RS 28.9% 21.3% 26.4% 15.6% 7.8% 35 2.52
Rencos+QAcom 8.9% 4% 30.1% 33.6% 23.4% 35 3.58

NMT 38.0% 26% 19% 9.0% 8.0% 100 2.23
NMT+RS 37.8% 26.4% 18.6% 10.3% 6.9% 31 2.22
NMT+QAcom 17.9% 19.3% 35.6% 13.1% 14.1% 31 2.86

Fig. 4: The overview of Ensum.

TABLE V: The Evaluation Results of QAcom about Predicting

Low-quality and High-quality summaries.

Dataset Approach
Low-quality summaries High-quality summaries
Precision Recall Precision Recall

Within-project dataset

Deepcom+RS 71.6% 32.1% 29.0% 68.0%
Deepcom+QAcom 83.0% 44.3% 58.8% 72.5%
Rencos+RS 74.3% 33.8% 25.0% 66.0%
Rencos+QAcom 84.8% 46.2% 56.1% 72.9%
NMT+RS 74.1% 35.3% 26.7% 64.1%
NMT+QAcom 82.3% 42.1% 57.7% 72.2%

Cross-project dataset

Deepcom+RS 71.0% 62.8% 25.1% 36.2%
Deepcom+QAcom 88.0% 78.1% 52.4% 75.9%
Rencos+RS 75.7% 67.3% 23.4% 32.7%
Rencos+QAcom 83.5% 77.1% 57% 73.0%
NMT+RS 83.7% 68.6% 17.2% 31.4%
NMT+QAcom 93.1% 79.4% 27.2% 49.6%

approaches. Subsequently, Ensum will automatically select the

best quality summary among the code summaries generated

TABLE VI: The Results of Complementarity Analysis.

Dataset Approach Good Good (Only) Good (All)

Within-project dataset

Deepcom 68 14

40Rencos 66 17
NMT 60 8

Cross-project dataset

Deepcom 42 7

30Rencos 35 5
NMT 31 2

by the three summarization approaches for each code. Specif-

ically, for each code, the three summarization approaches will

generate three different summaries. We use CF scores and

retrieval scores to compare these three different summaries.

493

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:31:14 UTC from IEEE Xplore. Restrictions apply.

We keep the highest-scoring summary as the corresponding

summary for the current code. In this way, we can generate a

summary of the best quality code for all codes.

C. Evaluation of Ensum

To automatically evaluate the effectiveness of Ensum, we

also use metrics such as BLEU-4, METEOR, ROUGE-L. For

example, given a dataset, we will use Ensum to integrate the

three summarization approaches to obtain summaries of the

corresponding test set in that dataset. Note that the Preserved-

Ratio here is 100% because we generate summaries of the best

quality for the entire test set by approach ensemble, rather than

simply filtering. Finally, we compare the summaries generated

by Ensum with the original three summaries generated by

the three summarization approaches. If the final result is

better than all three approaches, we successfully integrate the

advantages of the three summarization approaches.

D. Experimental Results

1) Effectiveness of Ensum: As shown in Table VII, the

ensemble results outperforms the results of the three summa-

rization approaches, and the Preserved-Ratio reached 100%.

For example, on the Within-project dataset, the BLEU-4,

METEOR, ROUGE-L of ensemble results reached 0.406,

0.289, and 0.557, respectively. The results have reached the

standard of high-quality summaries. Meanwhile, compared

with the best of the three approaches, the improvement in

BLEU-4, METEOR, ROUGE-L was 25%, 16%, and 9%,

respectively, indicating the advantages of different aspects the

three approaches are successfully integrated.

2) Results of Ensum Compared to Codesum: Codesum is

the state-of-the-art ensemble approach for code summarization

proposed by Chen et al. [17]. It classifies code comments into

six categories by manual labeling, then trains the classifier to

find a suitable code summarization approach for each type, and

finally integrates them. Codesum needs to label and classify

20,000 comments to train the classifier manually, so it is a

supervised method.

To compare the effectiveness of Ensum and Codesum in

terms of approach ensemble, we first need to apply the three

selected code summarization approaches: Deepcom, Rencos,

and NMT on six categories, and thus find out the most suitable

code summarization approach for each of the six categories.

As shown in table VIII, for the categories “What”, “How-

it-is-done”, and “How-to-use”, Deepcom is the most suitable

approach. For the categories “Why” and “Others”, Rencos is

the most suitable approach. For the “Property” category, NMT

is the most suitable approach. Here, although for the category

“Property”, NMT does not have the highest BLEU-4 score,

METEOR and ROUGE-L are the highest, so we chose the

NMT approach for the “Property” category.

Subsequently, we evaluate the ensemble effectiveness of

Ensum and Codesum on two datasets. As shown in Ta-

ble VII, on the Within-project dataset, Ensum’s effectiveness

on BLEU-4, METEOR, ROUGE-L is improved by 26%,

17%, and 9% compared to Codesum, respectively. On the

Cross-project dataset, Ensum improved 11%, 6%, and 5% on

BLEU-4, METEOR, and ROUGE-L, respectively, compared

to Codesum. For the current function, Ensum generates an

entirely consistent summary with the ground truth compared

to the results generated by Codesum. Thus, the idea of Ensum

can gather the advantages of the approach more effectively

and produce higher-quality code summaries than Codesum.

Ensum can generate high-quality code summaries by
combining the advantages of three state-of-the-art code
summarization approaches. Also, Ensum is more effective
in taking the advantages of existing code summarization
approaches for ensemble than Codesum.

VI. THREATS TO VALIDITY

We discuss the threats to validity. One threat to validity

concerns the actual results of the three code summarization

approaches. To obtain the results, we experiment with their

publicly available code and follow the descriptions in their

papers or public code to set their hyper-parameters. In addi-

tion, some approaches require only the source code tokens,

while others require the extraction of the source code AST,

which makes it more challenging to reproduce the approaches.

However, we keep in touch with the authors via email or

GitHub issue to address the existing problems. The second

threat to validity is about reproducing the results of Codesum.

To mitigate this threat, we keep in touch with the authors

and use the original code provided by the author to maintain

correctness.

VII. RELATED WORK

In this section, we introduce the related work about code

summarization and quality assurance for document generation.

A. Code Summarization

Studies related to code summarization fall into three main

categories: rule-based, retrieval-based, and neural model-

based, and their interactions [4]. Rule-based approaches [24]–

[27] generate code summaries through predefined rules. Srid-

hara et al. [25], [26] propose a Software Word Usage Model

(SWUM) approach that selects statements from java methods.

Moreno et al. [27] also predefine heuristic rules to generate

summaries. Liu et al. [24] propose a latent semantic indexing

and clustering method.

However, the rule-based approach has the limitation that

it cannot handle cases where the rules are not predefined.

Therefore, information retrieval-based approaches [28]–[33]

are proposed where researchers consider more contextual

information [27], [34]–[36]. Haiduc et al. [29] generate code

summaries by retrieving similar term-based summaries. Wong

et al. [32] propose CloCom for automatically generating

code summaries by analyzing existing software repositories.

Moskowitz-Attias et al. [30] use topic models and n-grams to

predict the summaries corresponding to Java code. Brian et al.

[28] propose a new topic modeling-based approach to source

code summarization. Peige et al. [31] present an eye-tracking

494

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:31:14 UTC from IEEE Xplore. Restrictions apply.

TABLE VII: The Results of Ensemble Approach Ensum and Codesum.

Approach
Within-Project dataset Cross-Project dataset

Bleu-4 Meteor Rouge-L Preserve Ratio Bleu-4 Meteor Rouge-L Preserve Ratio
Deepcom 0.326 0.249 0.513 100% 0.205 0.158 0.344 100%
Rencos 0.281 0.210 0.458 100% 0.210 0.162 0.382 100%
NMT 0.255 0.197 0.457 100% 0.165 0.137 0.349 100%
Codesum 0.323 0.246 0.511 100% 0.203 0.163 0.382 100%
Ensum 0.406 0.289 0.557 100% 0.226 0.172 0.403 100%

TABLE VIII: Performances of the code summarization Models

in Each Comments Category

Approach Category BLEU-4 METEOR ROUGE

Deepcom

What 0.225 0.189 0.375
Why 0.169 0.147 0.278
How-is-it-done 0.250 0.177 0.362
How-to-use 0.234 0.178 0.354
Property 0.199 0.103 0.309
Others 0.186 0.156 0.264

Rencos

What 0.135 0.168 0.324
Why 0.200 0.162 0.330
How-is-it-done 0.110 0.142 0.221
How-to-use 0.196 0.141 0.234
Property 0.145 0.094 0.298
Others 0.233 0.187 0.340

NMT

What 0.102 0.101 0.309
Why 0.029 0.060 0.164
How-is-it-done 0.046 0.067 0.198
How-to-use 0.068 0.077 0.21
Property 0.148 0.120 0.324
Others 0.133 0.185 0.288

study to produce a tool. Wong et al. [33] propose an approach

that mines comments from the Question and Answer site.

In recent years, many neural network models [6], [17], [19],

[37]–[47] have been proposed to generate code summaries.

Iyer et al. [6] is the first to apply neural network techniques

to code summary generation. Allaman et al. [19] use attention-

based convolutional networks to generate short methods and

class names as code summaries. Chen et al. [37] propose a

framework BVAE to generate code summaries by learning

vector representations of code and summaries. Shrivastava

[45] proposes an automatic approach based on benchmarked

and custom datasets. Arthur [46] proposes a novel system

to automate the source code documentation process for C

programming language . Mcburney and Mcmillan [47] present

a technique that includes context by analyzing how the Java

methods are invoked. Wan et al. [38] improve the encoder-

decoder-based approach using a hybrid encoder and a rein-

forcement learning-based decoder to generate code summaries.

Similarly, Wang et al. [39] use reinforcement learning a hier-

archical attention network to combine multiple code features.

In addition, Alon et al. [40], [41] propose a method for

summary generation by representing source code by tokens

and AST paths. Liang et al. [42] use the structural information

of source code and RNN-based networks to generate code

summaries. Ahmad [43] et al. use AST information and learn

code representation by Transformer. LeClair et al. [44] propose

a neural model called FunCom that combines tokens and AST

of codes to generate summaries.

In addition, Chen et al. [17] propose a comment classifier.

It classifies code summaries by manual labeling, then trains

the classifier to find suitable code summarization approaches

for each category. It is a supervised method. In contrast,

Ensum does not require human-labeled scores and is therefore

unsupervised and automated.

B. Quality Assurance for Document Generation
Our proposed approach is inspired by document generation

quality assurance in the field of natural language process-

ing [11], [12], [20], [48]–[50]. Zheng et al. [12] propose

an approach to test the results of NMT translations. He et

al. [50] propose a test approach for guaranteeing the quality of

NMT with invariant structure. Tu et al. [48] propose coverage-

based NMT to improve translation quality. Wu et al. [49]

present Google’s Neural Machine Translation system to reduce

translation errors.
In addition, Jiang et al. [20] propose a quality assurance

filter for commit message generation which is a learning-

based approach. Subsequently, Wang et al. [11] propose an

approach for automatic quality assurance of commit messages

that uses collaborative filtering and retrieval methods. It worth

mentioning that we are the first to apply quality assurance to

code summarization to the best of our knowledge.

VIII. CONCLUSION

In this paper, we aim to improve code summarization

through quality assurance approaches for document generation

(QA4DG approaches). We first conduct an empirical study

to investigate whether QA4DG approaches can be applied to

code summarization. We find that QA4DG approaches are able

to improve the practicability of existing code summarization

approaches by predicting and filtering out low-quality code

summaries generated by them. Then, inspired by the idea

of QA4DG, we propose an ensemble code summarization

approach named Ensum, which can integrate multiple single-

model code summarization approaches by predicting the qual-

ity of their generated summaries. We evaluate the effectiveness

of Ensum on two datasets, and the experimental results show

that Ensum outperforms its used single-model code sum-

marization approaches and a state-of-the-art ensemble code

summarization approach.

IX. ACKNOWLEDGMENT

This work is supported by the National Key Research

and Development Project (No. 2018YFB2101200), the Na-

tional Natural Science Foundation of China (No. 62002034),

the Fundamental Research Funds for the Central Univer-

sities (Nos. 2020CDJQY-A021, 2020CDCGRJ072) and the

National Defense Basic Scientific Research Program (No.

WDZC20205500308).

495

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:31:14 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring
program comprehension: a large-scale field study with professionals,”
in Proceedings of the 40th International Conference on Software Engi-
neering, 2018, pp. 584–584.

[2] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation
with hybrid lexical and syntactical information,” Empirical Software
Engineering, vol. 25, no. 3, pp. 2179–2217, 2020.

[3] Q. Chen, H. Hu, and Z. Liu, “Code summarization with abstract syntax
tree.” in International Conference on Neural Information Processing,
2019, pp. 652–660.

[4] J. Zhang, X. Wang, H. Zhang, H. Sun, and X. Liu, “Retrieval-based
neural source code summarization,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, 2020, pp.
1385–1397.

[5] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment gener-
ation,” in 2018 IEEE/ACM 26th International Conference on Program
Comprehension (ICPC), 2018, pp. 200–210.

[6] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2016, pp. 2073–2083.

[7] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush, “Opennmt:
Open-source toolkit for neural machine translation,” in Proceedings of
ACL 2017, System Demonstrations, 2017, pp. 67–72.

[8] “Interpretation of bleu score,” https://cloud.google.com/translate/automl/
docs/evaluate, 2020.

[9] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-
machine-translation-based commit message generation: how far are we?”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018, pp. 373–384.

[10] “The shallowness of google translate,” 2018.
[11] B. Wang, M. Yan, Z. Liu, L. Xu, X. Zhang, and D. Yang, “Quality

assurance for automated commit message generation,” International
Conference on Software Analysis, Evolution and Engineering, 2021.

[12] W. Zheng, W. Wang, D. Liu, C. Zhang, Q. Zeng, Y. Deng, W. Yang,
P. He, and T. Xie, “Testing untestable neural machine translation:
an industrial case,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion),
2019, pp. 314–315.

[13] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collabo-
rative filtering recommendation algorithms,” in Proceedings of the 10th
international conference on World Wide Web, 2001, pp. 285–295.

[14] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of 40th
Annual Meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[15] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evalua-
tion with improved correlation with human judgments,” in Proceedings
of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures
for Machine Translation and/or Summarization, 2005, pp. 65–72.

[16] C. Lin, J. Gao, G. Cao, and J. Nie, “Automatic evaluation of summaries,”
in Workshop on Text Summarization Branches Out at ACL.

[17] Q. Chen, X. Xia, H. Hu, D. Lo, and S. Li, “Why my code summarization
model does not work,” in ACM Transactions on Software Engineering
and Methodology, 2021, pp. 1–29.

[18] “Our replication package,” https://github.com/cqu-isse/Ensum, 2021.
[19] M. Allamanis, H. Peng, and C. A. Sutton, “A convolutional attention

network for extreme summarization of source code,” in Proceedings
of The 33rd International Conference on Machine Learning, 2016, pp.
2091–2100.

[20] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating
commit messages from diffs using neural machine translation,” in Pro-
ceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, 2017, pp. 135–146.

[21] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing,
2015, pp. 1412–1421.

[22] “javalang,” https://pypi.org/project/javalang.
[23] J. Vesterstrom and R. Thomsen, “A comparative study of differential

evolution, particle swarm optimization, and evolutionary algorithms on
numerical benchmark problems,” in Proceedings of the 2004 Congress

on Evolutionary Computation (IEEE Cat. No.04TH8753), vol. 2, 2004,
pp. 1980–1987.

[24] Y. Liu, X. Sun, X. Liu, and Y. Li, “Supporting program comprehension
with program summarization,” in Computer and Information Science
(ICIS), 2014 IEEE/ACIS 13th International Conference on, 2014, pp.
363–368.

[25] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for java meth-
ods,” Proceedings of the IEEE/ACM international conference on Auto-
mated Software Engineering, pp. 43–52, 2010.

[26] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Generating parameter
comments and integrating with method summaries,” 2011 IEEE 19th
International Conference on Program Comprehension, pp. 71–80, 2011.

[27] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Automatic generation of natural language summaries for java
classes,” in 2013 21st International Conference on Program Compre-
hension (ICPC), 2013, pp. 23–32.

[28] B. P. Eddy, J. A. Robinson, N. A. Kraft, and J. C. Carver, “Evaluating
source code summarization techniques: Replication and expansion,” in
2013 21st International Conference on Program Comprehension (ICPC),
2013, pp. 13–22.

[29] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of
automated text summarization techniques for summarizing source code,”
2010 17th Working Conference on Reverse Engineering, pp. 35–44,
2010.

[30] D. Movshovitz-Attias and W. W. Cohen, “Natural language models for
predicting programming comments,” in Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), 2013, pp. 35–40.

[31] P. Rodeghero, C. Liu, P. W. McBurney, and C. McMillan, “An eye-
tracking study of java programmers and application to source code
summarization,” IEEE Transactions on Software Engineering, vol. 41,
no. 11, pp. 1038–1054, 2015.

[32] E. Wong, T. Liu, and L. Tan, “Clocom: Mining existing source code for
automatic comment generation,” in 2015 IEEE 22nd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
2015, pp. 380–389.

[33] E. Wong, J. Yang, and L. Tan, “Autocomment: mining question and
answer sites for automatic comment generation,” in Proceedings of
the 28th IEEE/ACM International Conference on Automated Software
Engineering, 2013, pp. 562–567.

[34] J. Fowkes, P. Chanthirasegaran, R. Ranca, M. Allamanis, M. Lapata,
and C. Sutton, “Tassal:autofolding for source code summarization,” in
International Conference on Software Engineering Companion, pp. 649–
652.

[35] P. W. McBurney, “Automatic documentation generation via source code
summarization,” in Proceedings of the 37th International Conference on
Software Engineering - Volume 2, vol. 2, 2015, pp. 903–906.

[36] P. W. McBurney and C. McMillan, “Automatic source code summa-
rization of context for java methods,” IEEE Transactions on Software
Engineering, vol. 42, no. 2, pp. 103–119, 2016.

[37] Z. M. Chen Q, “A neural framework for retrieval and summarization
of source code,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, 2018, pp. 826–831.

[38] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and P. S. Yu, “Im-
proving automatic source code summarization via deep reinforcement
learning,” Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, pp. 397–407.

[39] W. Wang, Y. Zhang, Y. Sui, Y. Wan, Z. Zhao, J. Wu, P. Yu, and
G. Xu, “Reinforcement-learning-guided source code summarization via
hierarchical attention,” IEEE Transactions on Software Engineering,
no. 1, pp. 1–1, 2020.

[40] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” in International
Conference on Learning Representations, 2018.

[41] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, p. 40, 2019.

[42] Y. Liang and K. Q. Zhu, “Automatic generation of text descriptive
comments for code blocks.” in Association for the Advance of Artificial
Intelligence, 2018, pp. 5229–5236.

[43] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A
transformer-based approach for source code summarization,” in Proceed-

496

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:31:14 UTC from IEEE Xplore. Restrictions apply.

ings of the 58th Annual Meeting of the Association for Computational
Linguistics, 2020, pp. 4998–5007.

[44] A. LeClair and C. McMillan, “Recommendations for datasets for source
code summarization,” in Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short Papers),
2019, pp. 3931–3937.

[45] P. Shrivastava, “Neural code summarization.” arXiv preprint
arXiv:2103.01025, 2021.

[46] M. P. Arthur, “Automatic source code documentation using code sum-
marization technique of nlp,” Procedia Computer Science, vol. 171, pp.
2522–2531, 2020.

[47] P. W. McBurney and C. McMillan, “Automatic documentation genera-

tion via source code summarization of method context,” in Proceedings
of the 22nd International Conference on Program Comprehension, 2014,
pp. 279–290.

[48] Z. Tu, Z. Lu, Y. Liu, X. Liu, and H. Li, “Modeling coverage for neural
machine translation,” in Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
vol. 1, 2016, pp. 76–85.

[49] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, and M. Norouzi, “Google’s
neural machine translation system: Bridging the gap between human
and machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[50] P. He, C. Meister, and Z. Su, “Structure-invariant testing for machine
translation,” in Proceedings of the ACM/IEEE 42nd International Con-
ference on Software Engineering, 2020, pp. 961–973.

497

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:31:14 UTC from IEEE Xplore. Restrictions apply.

