
Contextual-Semantic-Aware Linkable Knowledge
Prediction in Stack Overflow via Self-Attention

Zhaolin Luo1,2 Ling Xu1,2∗, Zhou Xu1,2, Meng Yan1,2, Yan Lei1,2, Can Li1,2,
1Key Laboratory of Dependable Service Computing in Cyber Physical Society (Chongqing University),

Ministry of Education, China
2School of Big Data and Software Engineering, Chongqing University, Chongqing, China

Email:{luozhaolin1999, xuling, zhouxullx, mengy, yanlei, 20151611}@cqu.edu.cn

Abstract—In Stack Overflow, a question and its answers are
defined as a knowledge unit. These knowledge units can be linked
together for different purposes, which typically subdivided into
four classes: Duplicate, Directly linkable, Indirectly linkable, and
Isolated. Developers usually use these linkable knowledge units
to search for more targeted information. Prior studies have found
that deep learning or SVM technique can effectively predict
the class of linkable knowledge units. However, they focus on
short-distance semantic relationship but fail to capture global
information (semantic relationship between a word and all the
words in the same knowledge unit) and ignore joint semantics
(semantic relationship between a word with all the words in
different knowledge units).

To address the issues, we propose a Self-Attention-based
contextual semantic aware Linkable Knowledge prediction model
(SALKU). SALKU leverages self-attention to pay attention to
all the words in a knowledge unit and fully capture the global
information needed for each word, then utilizes a variant of self-
attention to extract joint semantics between two knowledge units.
Experiment results on an existing dataset show that SALKU out-
performs the state-of-the-art approaches CNN, Tuning SVM, and
Soft-cos SVM in terms of three metrics, respectively. Additionally,
SALKU is faster than the three baseline approaches.

Index Terms—self-attention, link prediction, joint semantic,
Stack Overflow

I. INTRODUCTION

Programming-specific question and answer site, such as

Stack Overflow, accumulates a tremendous amount of knowl-

edge over time. Following prior studies [1], [2], we refer

to a question along with all its answers in Stack Overflow

as a knowledge unit. Like Wikipedia knowledge network [3]

and the general Web [4], a large number of knowledge units

containing semantically relevant knowledge form a complex

knowledge network, which provides more insights about their

problems and possible solutions [1]. As shown in Figure

1, URL sharing activities in Stack Overflow are created as

linkable knowledge units. The knowledge unit (id 56117419)

is linked to another knowledge unit (id 49007295) to obtain

some basic code about Tkinter. Developers can conveniently

click on the link to get more related information for different

purposes, such as solving technical problems, finding other

solutions, and taking some inspiration.

In Stack Overflow, all linkable knowledge units are listed

without distinction. However, for developers, linkable knowl-

∗Corresponding author.

Fig. 1. Linkable knowledge unit by URL sharing.

edge units are used for different purposes and achieve different

relatedness. As shown in Table I, Xu et al. [2] divided these

linkable knowledge units into four classes based on their re-

latedness: Duplicate, Directly linkable, Indirectly linkable, and

Isolated. Table II shows some examples of different classes.

The knowledge unit (id 42882632) is marked as Duplicate

to the original knowledge unit (id 22646463) because they

can be solved by the same answer. However, rare overlapping

words exist between these two knowledge units. From table II

we observe that the knowledge unit (id 471546) can help the

original knowledge unit indicate that “python cannot overload

logical operations”, which is considered Directly linkable.

While the knowledge unit (id 34598898) only discusses related

knowledge (boolean operation) with the original knowledge

unit. Therefore, they are regarded as Indirectly linkable.

Different classes of linkable knowledge units can recom-

mend more targeted information for developers. For example,

by searching duplicate knowledge units, developers can ana-

lyze problems from many aspects. Directly linkable knowledge

units can provide helpful content, while indirectly linkable

knowledge units expand developers’ searching domain.

There exist several studies on predicting linkable knowledge

units. Xu et al. [2] proposed a CNN model with various win-

dow sizes to capture word-level and document-level semantics

of knowledge units. Fu et al. [5] proposed a Tuning SVM

to calculate the mean vector of each word vector based on

115

2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/21/$31.00 ©2021 IEEE
DOI 10.1109/ISSRE52982.2021.00024

20
21

 IE
EE

 3
2n

d
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

So
ft

w
ar

e
Re

lia
bi

lit
y

En
gi

ne
er

in
g

(IS
SR

E)
 |

 9
78

-1
-6

65
4-

25
87

-2
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IS

SR
E5

29
82

.2
02

1.
00

02
4

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:34:59 UTC from IEEE Xplore. Restrictions apply.

TABLE I
CLASSES OF TWO KNOWLEDGE UNITS

Class Description

Duplicate Two knowledge units describe the same ques-
tion by different expressions

Directly linkable One knowledge unit can help to solve the
question in the other knowledge unit

Indirectly linkable One knowledge provides related information
for the other knowledge unit to solve it, but
not a direct answer.

Isolated Two knowledge units are unrelated.

word2vec [6], which is taken as their feature vector for each

knowledge unit. Then, SVM after parameter tuning is used to

classify the relatedness. In recent work, Xu et al. [7] proposed

Soft-cos SVM, which computes the soft cosine similarity to

measure the distance between two knowledge units according

to Simbow [8]. SVM is used as the final classifier.

Unfortunately, the aforementioned models still suffer from

three limitations: (1) When representing each word in a

knowledge unit, CNN, Tuning SVM, and Soft-cos SVM

based on word2vec or convolution operation can only pay

attention to nearby words (local information). It is inadequate

for understanding the complete semantics of a word in a

knowledge unit. For each word’s better representation, the

semantic relationship between a word and all the words in the

same knowledge unit (global information) should be focused

on. (2) Both local information and global information are only

concerned with internal words in a knowledge unit. To aware

of extra semantics from words in another knowledge unit (joint

semantic) is also significant for representing a word, which is

ignored by the above approaches. (3) The time cost of the

above models is expensive, such as the CNN model need 14

hours to train reported by [2]. Tuning SVM and Soft-cos SVM

require several hours for feature extraction. In addition, Tuning

SVM has a long-time tuning process.

To address these issues, we propose a Self-Attention based

Linkable Knowledge Units prediction model SALKU, which

can make better use of contextual semantics for representing

knowledge units. To capture the global information in a knowl-

edge unit, we perform a self-attention network [9] as san-

encoder, encoding all words and getting the attention weight

to enhance each word’s semantic representation. To extract

the joint semantics, we build a variant of self-attention—

joint-encoder. When representing a knowledge unit, the joint-

encoder allocates weights on another knowledge unit to enrich

the information for the former knowledge unit. Moreover, we

set a callback to save a lot of training time, and the parallel

computation of self-attention can also reduce the time costs of

SALKU.

To evaluate the performance, we apply SALKU to an

existing dataset released by Xu et al. [7], which contains

40000 pairs of knowledge units. We compare SALKU with

three baseline models CNN [2], Tuning SVM [5], and Soft-

cos SVM [7]. Experiment results show that SALKU achieves

an Overall F1-score (the mean F1-score of four classes) of

0.58, outperforming CNN, Tuning SVM, and Soft-cos SVM

by 34.88%, 16.94%, and 13.73%, respectively. Meanwhile,

TABLE II
EXAMPLES OF DIFFERENT CLASSES OF LINKABLE KNOWLEDGE UNIT

Class Title Body

Original
knowledge unit
Id 22646463

“and” (boolean)
vs “&” (bitwise) -
Why difference in
behavior with lists
vs numpy arrays?

What explains the difference
in behavior of boolean and
bitwise operations on lists vs
NumPy arrays? I’m confused
about the appropriate use of &
vs and in Python, illustrated in
the following examples ...

Duplicate
knowlegde unit
Id 42882632

Get count of an
item in a column
when values in
other column are
equal to some
value.

I need counts into a list
else groupby without second
condition works. if row
=[1,1,1,1,1,1,1,1] then the
count equals list should be
[2,4,4,2,4,1,3,4] ...

Directly
linkable
knowledge unit
Id 471546

Any way to over-
ride the and opera-
tor in Python?

I tried overriding and , but
that is for the & operator, not
and - the one that I want. Can
I override and?

Indirectly
linkable
knowledge unit
Id 34598898
(through
3845018)

Pandas boolean al-
gebra: True if True
in both columns.

I would like to make a
boolean vector that is created
by the comparison of two input
boolean vectors. I can use a for
loop, but is there a better way
to do this? My ideal solution
would look like this: ...

SALKU running on CPU is 7.1x, 102.7x, and 4.8x faster

than CNN, Tuning SVM, and Soft-cos SVM, respectively.

Additionally, SALKU running on GPU is more efficient.

The main contributions of this paper are as follows:

• We propose a linkable knowledge units prediction model

SALKU, which extracts global information and the joint

semantics in knowledge units based on self-attention

networks.

• We evaluate the effectiveness and efficiency of SALKU

on a public dataset in terms of three metrics. Experiment

results show SALKU outperforms the state-of-the-art

models CNN, Tuning SVM, and Soft-cos SVM.

• We open source our replication package 1, including the

source code and dataset for reproducing our experiment.

The remaining of this paper includes the following parts.

Section II introduces the background of linkable knowledge

units prediction. Section III presents our proposed model

SALKU. Section IV and Section V describes the experiment

setup and results, respectively. Section VI discusses the advan-

tage of SALKU and explains the reasons. Section VII presents

the related works. Finally, we conclude the paper and present

future work in Section VIII.

II. BACKGROUND

In this section, we introduce the background of linkable

knowledge unis prediction and the general process.

For the state-of-the-art predicting approaches of linkable

knowledge units (i.e., machine learning-based method, Tuning

SVM or Soft-cos SVM, and deep learning-based method,

CNN), the first step is to embed the texts in knowledge units

(i.e., ku1, ku2). The pre-trained word2vec model, such as

1https://github.com/cqu-isse/SALKU

116

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:34:59 UTC from IEEE Xplore. Restrictions apply.

Google word2vec [6] and specialized word2vec model based

on Stack overflow data, are typically used for embedding. e1
and e2 represent the knowledge unit matrices.

e1, e2 = embedding(ku1, ku2) (1)

The next step is to extract features from knowledge unit ma-

trices, such as the deep learning model using neural networks

and machine learning model computing recessive features. The

purpose of this step is to get the feature vector (i.e., v1, v2)

of each knowledge unit. feature is the feature extraction

operation.

v1, v2 = feature(e1, e2) (2)

Finally, researchers often use a simple classifier (i.e., fully

connected network for deep learning and SVM for machine

learning) to classify the relatedness into Duplicate, Directly

linkable, Indirectly linkable, and Isolated. classifier is the

simple classifier. The whole classification process is as Equa-

tion (3):

distribution = classifier(v1, v2) (3)

where distribution is the classification distribution. Prediction

result is the class with the highest probability in distribution.

III. THE APPROACH

This section presents the overall structure and details of our

proposed model SALKU.

A. Overview

Figure 2 shows the overall framework of SALKU which

consists of three phases: san-encoder, joint-encoder and fully-

connected-decoder. First of all, the inputs are texts in two

knowledge units, represented as two sentences. These two

sentences are converted into word vector representations by

looking up the dictionary of word embeddings, then encoded

into the corresponding feature matrices by san-encoder. After-

wards, joint-encoder learns the joint semantics between two

feature matrices, getting feature vectors. Finally, the fully-

connected-decoder calculates the probability distribution of the

classification results.

The following subsections present the details. Specifi-

cally, Section III-B, Section III-C and Section III-D describe

the san-encoder, joint-encoder and fully-connected-decoder in

SALKU, respectively. Section III-E describes training settings,

and section III-F describes the prediction process of linkable

knowledge units.

B. San-encoder

Before san-encoder, we randomly extract 100000 knowl-

edge units tagged with “java” from Stack Overflow to pre-

process and build the vocabulary dictionary following Xu et

al.’s method [2], [7]. To get a specialized dictionary of word

embeddings for technical Q&A sites, we use word2vec [6] to

train each knowledge unit. After looking up two sentences in

the dictionary of word embeddings individually, we calculate

the position vectors and adds them to embedding vectors.

Then, instead of CNN [2], which can only get local infor-

mation from nearby words limited by kernel size, we use

the scaled dot-product attention model [9] to encode every

word by paying attention to all the words in the sentence. In

this way, each word can fully capture the global information

needed. To enhance the feature representation, we build a

residual structure [10], named Feed Forward Network [9],

which contains a layer normalization, two linear transforma-

tions, and a non-linear activation with ReLu [11]. Since our

word embedding is trained by Stack Overflow data, SALKU

will be overfitting soon if we use an encoder stack to loop

encoding multiple times like other self-attention-based models

[9]. So, the number of encoder layers is 1 in this case.
In detail, given a knowledge unit with N words, we perform

lookup and position vector addition operation on each word,

getting a matrix U . In scaled dot-product attention model, we

use three linear transformations on U , respectively, to get the

query matrix Qs ∈ R
N×d, key matrix Ks ∈ R

N×d, value

matrix Vs ∈ R
N×d:

Qs = U ·WT
qs (4)

Ks = U ·WT
ks (5)

Vs = U ·WT
vs (6)

where Wqs ∈ R
d×d,Wks ∈ R

d×d,Wvs ∈ R
d×d are trainable

parameters, and d is the dimensionality of word embedding.
Next, we combine Qs and Ks to get the weights, and allo-

cate them for corresponding value in Vs, getting Cs ∈ R
N×d.

Each row in Cs represents a feature vector of a word, which

assimilating part of the semantic information of each word in

U :

Cs = Softmax(
Qs ·KT

s√
d

) · Vs (7)

where
√
d can counteract the problem of gradient disappear-

ance when training. Softmax is the normalization function.
Afterwards, we obtain the output of san-encoder S ∈ R

N×d

through Feed Forward Network:

S = FFN(Cs) (8)

where FFN is defined by Equation (9, 10, 11). Cs is

normalized at layer-level, which is to speed up training, getting

residual. R contains the high-dimensional feature for each

word by three transformations over residual. The addition

operation between residual and R is to preserve the original

semantic features in residual and get extra high-dimensional

features from R.

FFN(Cs) = residual +R (9)

residual = LayerNorm(Cs) (10)

R = Relu(residual ·W1 + b1) ·W2 + b2 (11)

where LayerNorm is layer normalization operation [12],

W1 ∈ R
d×2d, W2 ∈ R

2d×d, b1 ∈ R
2d and b2 ∈ R

2d are

to be learned in training phase. ReLu is a activation function.
We apply the above san-encoder to two different knowledge

units, getting S1 ∈ R
N×d and S2 ∈ R

N×d.

117

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:34:59 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Overall Framework of SALKU.

C. Joint-encoder

Many studies have shown that joint semantics are essential

[13]–[17]. For example, Fang et al. [17] utilize the self-

attention network to conduct an extra joint representation

network to build semantic relationships between code snip-

pets and their descriptions. Inspired by this, we build a

joint-encoder using a variant of the self-attention network

to learn joint semantics between two knowledge units to

enhance the representation of each knowledge unit. That is,

the representation of the knowledge unit S1 is enhanced

by the knowledge unit S2, and the representation of S2 is

enhanced by S1. Similar to Equation (4, 5, 6), we compute

the query, key, value matrix for S1 and S2, respectively.

Qj1,Kj1, Vj1, Qj2,Kj2, Vj2 ∈ R
N×d are calculated as fol-

lows:

Qj1 = S1 ·WT
qj (12)

Kj1 = S1 ·WT
kj (13)

Vj1 = S1 ·WT
vj (14)

Qj2 = S2 ·WT
qj (15)

Kj2 = S2 ·WT
kj (16)

Vj2 = S2 ·WT
vj (17)

where WT
qj ∈ R

d×d, WT
kj ∈ R

d×d, WT
vj ∈ R

d×d are trainable

parameters.

After completing the above steps, we combine Qj2 and Kj1

to get the joint weights, and allocate them for corresponding

value in Vj1, getting Cj1 ∈ R
N×d. Likewise, we can get Cj2 ∈

R
N×d by combining Qj1 and Kj2 over Vj2. Cj1 and Cj2 are

calculated as follows:

Cj1 = Softmax(
Qj2 ·KT

j1√
d

) · Vj1 (18)

Cj2 = Softmax(
Qj1 ·KT

j2√
d

) · Vj2 (19)

Then, similar to san-encoder, we also employ FFN to merge

the original semantic feature and high-dimensional feature as

Equation (8), obtaining J1 ∈ R
N×d and J2 ∈ R

N×d:

J1 = FFN(Cj1) (20)

J2 = FFN(Cj2) (21)

Finally, we set a linear transformation and layer normalization

on J1 and J2, respectively. The final feature matrices F1 ∈
R

N×d, F2 ∈ R
N×d are defined as follows:

F1 = LayerNorm(J1 ·Wj + bj) (22)

F2 = LayerNorm(J2 ·Wj + bj) (23)

where Wj ∈ R
d×d, bj ∈ R

d are trainable parameters.

To obtain feature vectors v1 ∈ R
d and v2 ∈ R

d from

feature matrices, we conduct a pooling operation. Prior study

shows that max-pooling may hurt the semantic relationship

between each word [17], so we utilize avg-pooling to keep

more semantic information. v1 and v2 are defined as follows:

v1 = Avgpooling(F1) (24)

v2 = Avgpooling(F2) (25)

118

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:34:59 UTC from IEEE Xplore. Restrictions apply.

D. Fully-connected-decoder

Xu et al. [2] compute the cosine similarity between v1
and v2 as the criterion to recognize different classes. They

manually define Duplicate ∈ [0.75, 1], Directly linkable

∈ [0.5, 0.75), Indirectly linkable ∈ [0.25, 0.5), Isolated ∈
[0, 0.25). This manual setting uncertainty may lead to critical

points being misclassified. To get a more reasonable probabil-

ity distribution, we build a decoder to learn the possibility of

each class. Specifically, we concatenate v1 and v2, and perform

a non-linear transformation with Relu on it, getting a vector

hidden ∈ Rh, which potentially contains relatedness between

v1 and v2. Then, we calculate the probability distribution of

four classes with the help of Softmax. The concrete definition

is as follows:

v = v1 ⊕ v2 (26)

hidden = Relu(v ·WH + bH) (27)

distribution = Softmax(hidden ·WD + bD) (28)

where ⊕ is concatenate operation, WH ∈ R
2d×h, WD ∈

R
h×4, bH ∈ R

h and bD ∈ R
4 are trainable parameters, Relu

and Softmax are activation functions. distribution ∈ R
4 is

the final output of SALKU, in which each element represents

the probability of a class.

E. Training

Like other classification models, we choose the categorical

cross-entropy loss function, which can reduce the distance

between the actual probability and the predicted probability.

The loss function of SALKU is as following:

Loss = − 1

n

n−1∑

i=0

yilog(ŷi) (29)

To minimize the loss value, we use Adam update algorithm

[18]. Moreover, SALKU set an early stopping callback, i.e.,

if no updates are made to the best valid loss on the validation

set for the last five epochs, we will stop training.

F. Predicting

After completing the training phase, SALKU has learned

a large number of knowledge unit pairs. Given a new pair

of preprocessed knowledge units, we feed them into SALKU,

which captures the global information by san-encoder, then

extracts the joint semantics between them in joint-encoder.

The classification probability distribution is given by fully-

connected-decoder. We select the class with the highest prob-

ability as the prediction result.

IV. EXPERIMENT SETUP

In this section, we describe the datasets used, the evaluation

metrics, and five investigated research questions (RQs). We

evaluate the effectiveness of SALKU and compare its perfor-

mance with three state-of-the-art approaches.

A. Dataset

For comparison, we use the same collection of datasets

provided by Xu et al. [7]. It contains a total of 40,000

pairs of knowledge units. The dataset has been divided into

training and testing data, containing 32,000 and 8000 pairs,

respectively, stored as .csv. And each class of knowledge unit

pairs accounts for 1/4 in both training and testing data. There

are some error rows when reading the CSV files. To ensure

correctness, we manually delete these rows. As shown in Table

III, we get 31984 pairs for training and 7999 pairs for testing

finally. To eliminate the influence of this data change on the

experiments, we replicate all the baselines conducting on our

dataset.
TABLE III

STATISTICS OF OUR DATASETS

Class Train-Test Actual Train-Test

Duplicate 8000-2000 8000-2000
Direct link 8000-2000 8000-2000
Indirect link 8000-2000 8000-2000
Isolated 8000-2000 7984-1999

Total 32000-8000 31984-7999

B. Baselines

This study compares the following three baselines:

CNN [2]. Xu et al. proposed the task of predicting seman-

tically linkable knowledge in Stack Overflow, conducting a

CNN model based on deep learning. As their implementation

only supports CPU without any deep learning framework, we

use Tensorflow to carefully build the same CNN model as

outlined in [2] so that we can training the CNN model on not

only CPU but also GPU.

Tuning SVM [5]. Fu et al. addressed the efficiency problem

on CNN and proposed a machine learning method, Tuning

SVM, which is based on differential evolution to fine-tune

SVM parameters. Their method is 84 times faster hours than

CNN. We reuse the source code opened by Fu et al. [5], and

conduct it on our dataset.

Soft-cos SVM [7]. Xu et al. proposed Soft-cos SVM based

on feature extraction and SVM without tuning parameters. In

total four different features are extracted from the knowledge

units: Cosine similarity based on Stack Overflow data, soft

cosine similarity based on Stack Overflow data’s word2vec,

pre-trained Google word2vec, and Levenshtein distance, re-

spectively. We use the source code released for Soft-cos SVM

[7] and apply it to our dataset.

C. Evaluation Metrics

To evaluate the performance of predicting linkable knowl-

edge units, we choose the same metrics as previous works

[2], [5], [7], i.e., Precision, Recall, and F1-score, which are

label-based metrics [19]. For the i-th class label yi, pi is

the total number of samples belonging to class i. xj is the

j-th sample, Yj is corresponding ground truth and h(xj) is

prediction result for xj . Four basic quantities characterizing

the binary classification performance on this label can be

defined based on h(·): TPi = |{xj |yi ∈ Yj ∧ yi ∈ h(xj), 1 ≤

119

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:34:59 UTC from IEEE Xplore. Restrictions apply.

j ≤ pi}|, FPi = |{xj |yi /∈ Yj ∧ yi ∈ h(xj), 1 ≤ j ≤
pi}|, TNi = |{xj |yi /∈ Yj ∧ yi /∈ h(xj), 1 ≤ j ≤ pi}|, FNi =
|{xj |yi ∈ Yj ∧ yi /∈ h(xj), 1 ≤ j ≤ pi}|.

Based on above definition, Precision, Recall and F1-score

for class i are as below:

Precisioni is the probability of knowledge unit pairs cor-

rectly classified as i over the number of knowledge unit pairs

classified as class i.

Precisioni =
TPi

TPi + FPi
(30)

Recalli is defined as the percentage of all knowledge unit

pairs classified as i correctly classified.

Recalli =
TPi

TPi + FNi
(31)

F1-scorei is harmonic mean of Precisioni and Recalli.

F1-scorei =
2× Precisioni ×Recalli
Precisioni +Recalli

(32)

D. Parameter Settings

For our model, 200-dimensional word embeddings are used

according to experience. Since the length of 90% of knowledge

units is less than 100, we fix the length of each sentence as 100

by post-truncating operation. As described in III-B, we do not

repeat encoding the knowledge units, so the number of encoder

layers in san-encoder is 1. In detail, we adopt a multi-head

strategy on scaled dot-product attention to expand the attention

domain, and the number of heads in multi-head attention is

2. In addition, the dimensionality of hidden vectors h in our

fully-connected-decoder is set to 1024 after the experiment in

IV-E5. The training parameters, including epochs, batch size,

and learning rate, are 100, 128, and 0.0001, respectively.

For the CNN model, according to the parameter settings in

[2], we use the same word embedding dictionary in our model.

The length of each sentence is fixed as 200 by post-truncating

operation. We build five convolution neural networks using

128 filters with different kernel sizes, capturing 1, 3, 5, 7, and

9-grams information, and we add the l2 norm regularization

on parameters in convolution neural networks. Additionally,

The dimensionality of the final hidden vector is 50.

For Tuning SVM, we use differential evolution to fine-tune

parameters based on our dataset and our word embedding

dictionary. For Soft-cos SVM, we use the same corpus to train

a new word embedding dictionary with a dimensionality of

300 to make it consistent with pre-trained Google word2vec

and calculate four features to classify the relatedness between

two knowledge units.

E. Research Questions

In this subsection, we present five research questions:
1) Model Performance:

RQ1. Compared with the state-of-the-art approaches, how

effective is SALKU?

Motivation. To obtain a more effective model for predicting

linkable knowledge units is our key work. Baseline approaches

only use simple local information to embed each word. They

have difficulty connecting two words that are far apart in a

knowledge unit. Besides, they cannot be aware of the semantic

relationship between two words in different knowledge units.

Therefore, we use SALKU to overcome these shortcomings.

Additionally, to illustrate the impact of data change described

in IV-A, we compare the performance of our replicated model

CNN, Tuning SVM, and Soft-SVM with the results reported

in [7].

2) Model Efficiency:

RQ2. Does SALKU run faster than the state-of-the-art

approaches on CPU and GPU respectively?

Motivation. Fu et al. [5] indicate that long training time

limits the ability of other researchers to repeat, improve, or

even refute the work for deep learning-based models, such

as CNN [2]. Although Xu et al. [7] instruction that Tuning

SVM’s efficiency is diminished as the number of instances for

tuning increases, the efficiency of deep learning-based model

is still unacceptable for predicting linkable knowledge units.

Therefore, we apply Early Stopping on our proposed model

to improve efficiency while ensuring similar effectiveness. To

show more rigorous time costs, we conduct deep learning-

based models on GPU and CPU, respectively. All the experi-

ments using GPU are implemented on a server with one Nvidia

Titan V GPU with 12 GB memory, while experiments using

CPU are implemented on Intel(R) Core(TM) i5-1035G4 CPU

with 16 GB memory.

3) Ablation Analysis:

RQ3. What is the contribution of san-encoder and joint-

encoder to SALKU?

Motivation. In SALKU, san-encoder and joint-encoder play

significant roles, representing global information and joint

semantics, respectively. To research the importance about these

two modules, we design two variants of SALKU, named

SALKU-san and SALKU-joint. The former replaces the san-

encoder with a simple embedding layer, the latter drops joint-

encoder and concatenates the san-encoder’s outputs to classify.

4) Prediction Method Analysis:

RQ4. Which method better predicts linkable knowledge

units, classification or regression?

Motivation. We find that both Tuning SVM and Soft-cos

SVM use the SVC classifier rather than the SVR classifier.

They outperform CNN [2] which uses the regression method

with mean square error loss function. Therefore, we analyze

regression and classification methods in predicting linkable

knowledge units by this research question. To clearly explain

the prediction method of each model, we rename the SALKU

and CNN to SALKU-classification and CNN-regression in this

research question. Additionally, we build SALKU with regres-

sion and CNN with classification, named SALKU-regression

120

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:34:59 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
EFFECTIVENESS COMPARISON OF MODELS CNN,TUNING SVM, SOFT-COS SVM, AND SALKU IN TERMS OF PRECISION, RECALL AND F1-SCORE AT

LABEL LEVEL. FOR THE OVERALL COLUMN, THE VALUES OUTSIDE THE BRACKETS REPRESENTS THE AVERAGE VALUE OF FOUR CLASSES FOR THREE

METRICS RESPECTIVELY, AND THE VALUES IN THE BRACKETS ARE AVERAGE VALUES REPORTED BY XU ET AL. [7]. THE HIGHEST SCORE FOR EACH

CLASS IS MARKED IN BOLD

Model Duplicate Directly linkable Indirectly linkable Isolated Overall

Precision

CNN 0.55 0.34 0.33 0.73 0.48(0.50)
Tuning SVM 0.50 0.35 0.47 0.65 0.49(0.49)
Soft-cos SVM 0.48 0.44 0.42 0.71 0.51(0.53)

SALKU 0.56 0.43 0.51 0.83 0.58

Recall

CNN 0.32 0.54 0.39 0.44 0.42(0.41)
Tuning SVM 0.51 0.24 0.56 0.73 0.50(0.51)
Soft-cos SVM 0.53 0.21 0.49 0.90 0.53(0.54)

SALKU 0.66 0.40 0.44 0.85 0.59

F1-score

CNN 0.40 0.42 0.36 0.55 0.43(0.41)
Tuning SVM 0.50 0.28 0.51 0.69 0.50(0.50)
Soft-cos SVM 0.50 0.29 0.45 0.79 0.51(0.52)

SALKU 0.60 0.42 0.47 0.84 0.58

and CNN-classification respectively. More specifically, model

based on classification is using fully-connected-decoder de-

scribed in III-D, while model based on regression computes

the cosine similarity between two feature vectors, and bins

similarity value as four classes: [0, 0.25) as Isolated, [0.25, 0.5)
as Indirectly linkable, [0.5, 0.75) as Directly linkable, and

[0.75, 1] as Duplicate.

5) Parameters Tuning:

RQ5. How do the key parameters affect the effectiveness?

Motivation. We have three key parameters: the number of en-

coder layers (num-layers), the number of heads in multi-head

strategy (num-heads), and the dimensionality of hidden vector

(h). To explore the influence of these parameters on SALKU’s

effectiveness, we design three parameter lists: [1, 2, 3, 4, 5, 6],
[1, 2, 4, 8] and [128, 256, 512, 1024] for num-layers, num-heads

and h, respectively. The parameters tuning process was varying

one value while fixing the other two values. The default value

of the three parameters is 1, 2, and 1024, respectively.

V. EXPERIMENT RESULTS

This section investigates the five research questions (RQs)

described in Section IV-E.

A. RQ1: Compared with the state-of-the-art approaches, how
effective is SALKU?

We compare linkable knowledge prediction effectiveness

with the state-of-the-art models CNN, Tuning SVM, and Soft-

SVM under three metrics. For comparison, we replicated the

baselines models. Experiment Results in the Overall column of

Table IV show that our replication are similar to their results,

which also show that the impact of the data change is subtle

and negligible.

Table IV shows that SALKU achieves best performance

i.e., 0.58, 0.59, 0.58 Overall Precision, Recall and F1-score,

respectively. SALKU outperforms the models CNN, Tuning

SVM, Soft-cos SVM by 21.83%, 17.89%, 13.73% in terms

of Precision, by 40.48%, 18%, 11.32% in terms of Recall, by

34.88%, 16.94%, 13.73% in terms of F1-score. For individual

classes, it is evident that SALKU shows better performance on

Duplicate class. SALKU outperforms Tuning SVM, which is

better than the other two baseline models for Duplicate class,

by 19.05% in terms of F1-score. In the other three classes, the

F1-score of SALKU is at least in the top two. For example,

for Indirectly linkable class, SALKU achieves 0.04 F1-score

worse than Soft-cos SVM, but 0.11, 0.02 better than CNN and

Tuning SVM, respectively.

Result 1: SALKU outperforms the baselines CNN, Tuning
SVM, and Soft-cos SVM substantially on overall and each
class’s effectiveness.

B. RQ2: Does SALKU run faster than the state-of-the-art
approaches on CPU and GPU respectively?

As shown in table V, CNN on CPU need more time than

Soft SVM, which is consistent with that reported by Xu et al.

[7]. Compared with other techniques, SALKU on CPU is 7.1x,

102.7x, and 4.8x faster than CNN on CPU, Tuning SVM, and

Soft-cos SVM respectively. Our proposed SALKU on GPU is

around 2.4x faster than CNN on GPU.

TABLE V
TIME COST OF SALKU ON CPU, GPU RESPECTIVELY, CNN ON ON CPU,

GPU RESPECTIVELY, TUNING SVM ON CPU AND SOFT-COS SVM ON

CPU

Deep learning Model Train time Test time Total time

SALKU(cpu) 1:05:38 0:00:29 1:06:07
SALKU(gpu) 0:11:10 0:00:07 0:11:19
CNN(cpu) 7:50:52 0:00:24 7:51:16
CNN(gpu) 0:26:26 0:00:27 0:26:53

Machine learning Model feature extraction Train-Test Total time

Tuning SVM(cpu) - - 112:56:31
Soft-cos SVM(cpu) 5:15:22 0:00:32 5:15:54

The reason why SALKU is so efficient is that our model

contains Early Stopping. When we use the same method on

CNN, as shown in table VI, both CNN on CPU and GPU

can reduce the time cost by nearly half. Moreover, they get

better performance to some degree on account of avoiding

overfitting.

Result 2: SALKU outperforms the baselines CNN, Tuning
SVM, and Soft-cos SVM substantially on efficiency.

121

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:34:59 UTC from IEEE Xplore. Restrictions apply.

TABLE VI
THE EFFECT OF EARLY STOPPING FOR THE CNN MODEL ON CPU AND

GPU RESPECTIVELY IN TERMS OF OVERALL PRECISION, RECALL,
F1-SCORE AND TOTAL TIME

Model Precision Recall F1-score Total time

CNN(cpu-earlystop) 0.49 0.42 0.43 3:49:31
CNN(gpu-earlystop) 0.50 0.41 0.42 0:14:51
CNN(cpu) 0.47 0.41 0.41 7:51:16
CNN(gpu) 0.48 0.42 0.43 0:26:53

C. RQ3: What is the contribution of san-encoder and joint-
encoder to SALKU??

As shown in table VII, for SALKU, by removing san-

encoder, the Overall Precision, Recall, and F1-score decreases

by 5.17%, 6.78%, and 6.9%; by removing joint-encoder, the

Overall Precision, Recall, and F1-score decreases by 6.9%,

8.47%, and 8.62%. These results show that self-attention has

a powerful representation ability to capture global information,

and joint semantics is beneficial to build the relatedness

between two knowledge units.

TABLE VII
EFFECTIVENESS COMPARISON OF MODELS WITHOUT SAN-ENCODER AND

JOINT-ENCODER RESPECTIVELY IN TERMS OF OVERALL PRECISION,
RECALL AND F1-SCORE

Model Precision Recall F1-score

SALKU 0.58 0.59 0.58
SALKU-san 0.55 0.55 0.54
SALKU-joint 0.54 0.54 0.53

Result 3: Both san-encoder and joint-encoder have a
contribution on the effectiveness of SALKU.

D. RQ4: Which method better predicts linkable knowledge
units, classification or regression?

As shown in table VIII, model based on classification

outperforms than that based on regression for not only SALKU

but also CNN. SALKU-classification outperforms SALKU-

regression by 5.45%, 20.4%, and 16% in terms of Overall

Precision, Recall, and F1-score. CNN-classification outper-

forms CNN-regression by 6.25%, 21.43%, and 13.95% in

terms of Overall Precision, Recall, and F1-score. These results

show that classification is more suitable than regression for

predicting linkable knowledge units.

TABLE VIII
EFFECTIVENESS COMPARISON OF SALKU AND CNN WITH

CLASSIFICATION AND REGRESSION PREDICTION MODULE RESPECTIVELY

IN TERMS OF OVERALL PRECISION, RECALL AND F1-SCORE

Model Precision Recall F1-score

SALKU-classification 0.58 0.59 0.58
SALKU-regression 0.55 0.49 0.50
CNN-classification 0.51 0.51 0.49
CNN-regression 0.48 0.42 0.43

Result 4: Classification outperforms regression for pre-
dicting linkable knowledge units.

E. RQ5: How do the key parameters affect the effectiveness?

Figure 3 shows that the overall Precision, Recall, and F1-

score are in a downward trend with the increase of num-

layers. The best choice of num-layers is 1 for predicting

linkable knowledge units. In Figure 4, we observe that these

metrics reach optimum when the num-heads is set to 2.

Finally, with the increase of h, as shown in Figure 5, SALKU

obtains better effectiveness. Because the longer hidden vector

contains more semantic information. So, we choose 1024 as

the dimensionality of the hidden vector.

Fig. 3. The effectiveness of SALKU with various num-layers.

Fig. 4. The effectiveness of SALKU with various num-heads.

Fig. 5. The effectiveness of SALKU with various h.

Result 5: For SALKU, the best choice for num-layers is
1, and for num-heads is 2, while setting the dimensionality
of hidden vector to 1024 is beneficial to predict linkable
knowledge units.

VI. DISCUSSION

This section first discusses the advantages of the proposed

model SALKU in Section VI-A-VI-C. Then, in Section VI-D,

we make an error Analysis. Finally, we discuss the threats to

validity in Section VI-E.

122

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:34:59 UTC from IEEE Xplore. Restrictions apply.

A. Why does SALKU perform better?
The above experiment results indicate that the proposed

model shows substantial advantages over the baseline models,

which is due to two reasons—global information and joint

semantics.

Global information. As shown in table IX, the first example

is a pair of indirectly linkable knowledge units, which are

talking about “File Upload”. Many common words (i.e., “file”,

“upload”, and “spring”) may cause incorrect classification

result—Duplicate. While a large number of irrelevant words

(i.e., “MVC”, “tutorial”, and “JQery”) may cause incorrect

result—Isolated. As the global information extracted by self-

attention, SALKU can understand that both knowledge units

are related to “File Upload”, but the knowledge unit (id

3577942) focuses on “application” and the knowledge unit

(id 21985856) focuses on “javascript”. So, SALKU correctly

classify the two knowledge units as Directly linkable, rather

than Duplicate or Isolated. Therefore, global information is

beneficial for predicting linkable knowledge.

Joint semantics. Table IX show there are few common words

between the knowledge unit (id 35245857) and the knowledge

unit (id 1038308). If only considering each knowledge unit

individually, the model only understands the knowledge unit

(id 35245857) is about “scan null values”, and the knowledge

unit (id 1038308) is about “get all attributes and values”. The

meanings of the two knowledge units are far apart. The weakly

related information “get values” leads them to be classified as

indirectly linkable by baseline models. However, through joint

semantics, SALKU understand that “for any/all null values”

and “not know what are all the attributes in it at run time” have

the same meanings (unknown values). So, SALKU correctly

classify the two knowledge units as Duplicate. The joint

semantics can well connect two knowledge units because both

knowledge units have fully absorbed each other’s information.

So, each knowledge unit can be better represented. Therefore,

joint semantics can improve the performance of SALKU.

B. Why does SALKU perform faster?
Unlike Tuning SVM and Soft-cos SVM, SALKU only needs

to train and update model parameters by backpropagation,

decreasing many feature extraction time and parameter tuning

time. In addition, SALKU’s key mechanism is self-attention,

which can make parallel computation like CNN [20], [21].

Moreover, we adopt an early stopping on SALKU to save

nearly half of time, as described in IV-E2. Thus, the time cost

is more minor than baseline models.

C. Why does classification surpass regression?
For predicting linkable knowledge units, the difference

between classification and regression is that classification is

based on non-linear transformation, while regression is based

on computing cosine similarity. The non-linear transformation

captures all the elements in two feature vectors and maps

feature vectors to classification space. The cosine similarity

only computes the distance between two feature vectors,

and it does not explicitly refer to classification results. So,

regression-based models need to manually limit the range of

values for each class, such as Duplicate ∈ [0.75, 1], which

is likely to cause misclassification of the critical points. The

classification-based methods are driven by data and learn the

probability of each class, which is equivalent to learning the

range of values for each class. Compared with manual settings,

automatic learning is more reasonable. Experiment results in

V-D also indicate that classification outperforms regression for

predicting linkable knowledge units.

D. Error Analysis
According to the experimental results, we find the number of

cases that all models predict incorrectly is 1049. By sampling

and analyzing 50 cases that all models predict incorrectly, we

find that a large part of them requires code snippets or images

to explain the information, and a small part is due to the

noise of the text. Follow by Xu et al. [7], we remove code

snippets and images during preprocessing. In the future, we

could incorporate code snippets and images into our approach.

E. Threats To Validity
The dataset released by Xu et al. [7] only contains 40000

samples tagged with “java”, which are far less than real data.

And in this dataset, each class has the same number of 10000.

The real condition is that the amount of data is extremely

huge, and the imbalance problem is serious, such as duplicate

knowledge units are much less than isolated knowledge units.

In addition, some parameters like the length of a knowledge

unit and word embedding dimensions are set by experience in

our proposed model. Therefore, SALKU with such parameters

may not perform well in other large and complex datasets.

VII. RELATED WORK

This section provides the related works in three aspects:

Link prediction in complex networks, Duplicate Question

Detection, and Transformer-based model.

A. Link prediction in complex networks

Link prediction can be applied to many fields, such as

physics, biochemical, and computer science communities, pro-

moting related researches [22]–[27]. A link prediction algo-

rithm was proposed using the modularity measure reflecting

the community structure information of the network [28].

Specifically, Mart´ınez et al. [29] applied link prediction tech-

nology in biology to predict previously unknown interactions

between proteins. Wang et al. [30] proposed SHINE to predict

the sign of sentiment links in online social networks. Shao et

al. [31] treated Github as a repository-repository network and

treated academic papers database such as ACM as a paper-

paper network. They used GCN to predict the link path and

recommend repositories for responding papers. Liu et al. [32]

built the trust/distrust relationship on a signed social service

network through link prediction.

B. Duplicate Question Detection

With the rampant growth in the number of duplicated

questions, user experience is declining [33] in Stack Overflow.

To alleviate this phenomenon, Duplicate Questions Detection

becomes a hot issue. Our predicting linkable knowledge units

123

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:34:59 UTC from IEEE Xplore. Restrictions apply.

TABLE IX
PREDICTION RESULTS OF SALKU AND BASELINES

Knowledge unit1 Knowledge unit2 Prediction results

Directly
linkable

Id:3577942 Id: 21985856 SALKU: Directly linkable

CNN: Isolated

Tuning SVM: Isolated

Soft-cos SVM: Duplicate

Title: Spring MVC File Upload Help Title: How to send file using javascript
Body: I have been integrating spring into an applica-
tion, and have to redo a file upload from forms. I am
aware of what Spring MVC has to offer and what I
need to do to configure my controllers to be able to
upload files. I have read enough tutorials to be able
to do this, but what none of these tutorials explain is
correct/best practice methods on how/what is to be done
to actually handle the file once you have it. Below is
some code similar to code found on the Spring MVC
Docs on handling file uploads which can be found at
Spring MVC File Upload ...

Body: I am trying to make an upload page
which takes file to upload. I am using Spring
framework here my query is on Upload button
I am calling a JavaScript method which should
send my file to controller using jQuery AJAX.
Is there any way to pass this through JavaScript?
Following is the code which I am trying.

duplicate
Id:35245857 Id: 1038308 SALKU: Duplicate

CNN: Indirectly linkable

Tuning SVM: Indirectly
linkable

Soft-cos SVM: Indirectly
linkable

Title: Scan Objects for Null Properites Title: How to get the list of all attributes of a
Java object using BeanUtils introspection?

Body: In Java, Is there a way to scan an object for
any/all null values, and set them to a default value, no
matter their Object class? (Longs, Booleans, Strings,
etc). Syntactically I’d imagine it would be similar to
this, or simpler ...

Body: I have method which gets a POJO as
it’s parameter. Now I want to programmatically
get all the attributes of the POJO (because my
code may not know what are all the attributes
in it at run time) and need to get the values
for the attributes also. Finally I’ll form a string
representation of the POJO.

is the further development of Duplicate Questions Detection,

which is a binary classification problem, duplicate or not.

Zhang et al. [34] proposed DupPredictor, an approach to

predict whether a question is a duplicate. DupPredictor was

based on retrieval, using title similarity, description similarity,

topic similarity, and tag similarity to weighted sum. The final

score was to judge whether a question is duplicated. Ahasanuz-

zaman et al. [35] proposed Dupe, which also extracted features

from the question corpus to build a question pair binary

classifier. Wang et al. [36] used CNN, RNN, and LSTM to

predict duplicate questions, respectively. Furthermore, Liang

et al. [37] took full advantage of the semantic information

in the paired answers while alleviating the noise problem

caused by adding the answers to enhance the performance

of duplicate question detection. Zhang et al. [38] modeled

this problem as a two-stage “ranking-classification” problem.

First, they ranked the history data and collected the top-ranked

questions as candidates. Second, to judge whether a question is

a duplicate, they combined the deep learning and information

retrieval techniques to capture both textual similarity and latent

semantics.

C. Transformer-based model
Since self-attention [9] was proposed, transformer-based

models were widely used in many NLP fields [39]–[41],

even computer vision fields [42]–[45], and obtained sig-

nificant successes. Hettiarachchi et al. [46] utilized a pre-

trained transformer to achieve compatible results without any

language-specific processing and resources. Yang et al. [47]

proposed DeepPseudo utilizing both transformer encoder and

code feature extractor to perform encoding for source code.

Then it used a pseudo-code generator to perform decoding,

which can generate the corresponding pseudo-code. Ahmad

et al. [48] explored the transformer model to learn the code

representation for summarization. Pilault et al. [49] presented

a method to produce abstractive summaries of long documents

that exceed several thousand words via neural abstractive

summarization based on the transformer language model.

Han et al. [50] proposed a novel Transformer-iN-Transformer

(TNT) model for modeling both patch-level and pixel-level

representation for computer vision-related tasks.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose a self-attention-based model

named SALKU for predicting linkable knowledge units. Com-

pared with three state-of-the-art approaches (i.e., CNN, Tuning

SVM, and Soft-cos SVM), we overcome the shortcomings

of hardly capturing global information and lack of joint

semantics. Experiment results on an existing dataset shows

that SALKU outperforms the above three approaches by

34.88%, 16.94%, and 13.73% in terms of Overall F1-score,

respectively. Moreover, running SALKU on CPU is 7.1x,

102.7x, and 4.8x faster than them, respectively. Therefore, the

global information and joint semantics extracted by SALKU

are beneficial for predicting linkable knowledge units.

In the future, we have two mainly working directions. First,

we plan to take the link direction into account, which can

clearly show the directed relatedness between two knowledge

units, especially for directly and indirectly linkable knowledge

units. Second, we plan to study large code snippets repre-

sentations that were previously ignored. We aim to extract

additional semantic features from them to enhance the repre-

sentation of each knowledge unit.

ACKNOWLEDGMENT

This work was supported in part by the National Key

Research and Development Project (No.2018YFB2101200),

the Fundamental Research Funds for the Central Universities

(No.2020CDCGRJ037), the National Nature Science Founda-

tion of China (No.62002034) and the National Defense Basic

Scientific Research Program (No.WDZC20205500308).

124

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:34:59 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] D. Ye, Z. Xing, and N. Kapre, “The structure and dynamics of
knowledge network in domain-specific q&a sites: a case study of stack
overflow,” Empirical Software Engineering (ESE), vol. 22, no. 1, pp.
375–406, 2017.

[2] B. Xu, D. Ye, Z. Xing, X. Xia, G. Chen, and S. Li, “Predicting seman-
tically linkable knowledge in developer online forums via convolutional
neural network,” in 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2016, pp. 51–62.

[3] J. Preusse, J. Kunegis, M. Thimm, S. Staab, and T. Gottron, “Structural
dynamics of knowledge networks,” in Proceedings of the International
AAAI Conference on Web and Social Media, vol. 7, no. 1, 2013.

[4] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener, “Graph structure in the web,” in The
Structure and Dynamics of Networks. Princeton University Press, 2011,
pp. 183–194.

[5] W. Fu and T. Menzies, “Easy over hard: A case study on deep learning,”
in Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE), 2017, pp. 49–60.

[6] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[7] B. Xu, A. Shirani, D. Lo, and M. A. Alipour, “Prediction of relatedness
in stack overflow: deep learning vs. svm: a reproducibility study,”
in Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), 2018, pp.
1–10.

[8] D. Charlet and G. Damnati, “Simbow at semeval-2017 task 3: Soft-
cosine semantic similarity between questions for community question
answering,” in Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), 2017, pp. 315–319.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” arXiv preprint
arXiv:1706.03762, 2017.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 770–778.

[11] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Icml, 2010.

[12] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[13] M. Raghothaman, Y. Wei, and Y. Hamadi, “Swim: Synthesizing what i
mean-code search and idiomatic snippet synthesis,” in 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE). IEEE,
2016, pp. 357–367.

[14] H. Nam, J.-W. Ha, and J. Kim, “Dual attention networks for multimodal
reasoning and matching,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017.

[15] S. Su, Z. Zhong, and C. Zhang, “Deep joint-semantics reconstructing
hashing for large-scale unsupervised cross-modal retrieval,” in Proceed-
ings of the IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019.

[16] J. Shuai, L. Xu, C. Liu, M. Yan, X. Xia, and Y. Lei, “Improving
code search with co-attentive representation learning,” in Proceedings of
the 28th International Conference on Program Comprehension (ICPC),
2020, pp. 196–207.

[17] S. Fang, Y.-S. Tan, T. Zhang, and Y. Liu, “Self-attention networks for
code search,” Information and Software Technology (IST), vol. 134, p.
106542, 2021.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[19] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning al-
gorithms,” IEEE Transactions on Knowledge and Data Engineering
(TKDE), vol. 26, no. 8, pp. 1819–1837, 2013.

[20] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Con-
volutional sequence to sequence learning,” in International Conference
on Machine Learning (ICML). PMLR, 2017, pp. 1243–1252.

[21] J. Gehring, M. Auli, D. Grangier, and Y. N. Dauphin, “A convolu-
tional encoder model for neural machine translation,” arXiv preprint
arXiv:1611.02344, 2016.

[22] M. Al Hasan and M. J. Zaki, “A survey of link prediction in social
networks,” in Social network data analytics. Springer, 2011, pp. 243–
275.

[23] A. Clauset, C. Moore, and M. E. Newman, “Hierarchical structure and
the prediction of missing links in networks,” Nature, vol. 453, no. 7191,
pp. 98–101, 2008.

[24] D. M. Dunlavy, T. G. Kolda, and E. Acar, “Temporal link prediction us-
ing matrix and tensor factorizations,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 5, no. 2, pp. 1–27, 2011.

[25] E. Gilbert and K. Karahalios, “Predicting tie strength with social
media,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, 2009, pp. 211–220.

[26] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” Journal of the American Society for Information
Science and Technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[27] L. Lü and T. Zhou, “Link prediction in complex networks: A survey,”
Physica A: statistical mechanics and its applications, vol. 390, no. 6,
pp. 1150–1170, 2011.

[28] D. Caiyan, L. Chen, and B. Li, “Link prediction in complex network
based on modularity,” Soft Computing, vol. 21, no. 15, pp. 4197–4214,
2017.

[29] V. Martı́nez, C. Cano, and A. Blanco, “Prophnet: a generic prioritiza-
tion method through propagation of information,” BMC bioinformatics,
vol. 15, no. 1, pp. 1–13, 2014.

[30] H. Wang, F. Zhang, M. Hou, X. Xie, M. Guo, and Q. Liu, “Shine:
Signed heterogeneous information network embedding for sentiment
link prediction,” in Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining (WSDM), 2018, pp. 592–
600.

[31] H. Shao, D. Sun, J. Wu, Z. Zhang, A. Zhang, S. Yao, S. Liu, T. Wang,
C. Zhang, and T. Abdelzaher, “paper2repo: Github repository recom-
mendation for academic papers,” in Proceedings of The Web Conference
2020 (WWW), 2020, pp. 629–639.

[32] H. Kou, H. Liu, Y. Duan, W. Gong, Y. Xu, X. Xu, and L. Qi, “Building
trust/distrust relationships on signed social service network through
privacy-aware link prediction process,” Applied Soft Computing, vol.
100, p. 106942, 2021.

[33] I. Srba and M. Bielikova, “Why is stack overflow failing? preserving sus-
tainability in community question answering,” IEEE Software, vol. 33,
no. 4, pp. 80–89, 2016.

[34] Y. Zhang, D. Lo, X. Xia, and J.-L. Sun, “Multi-factor duplicate question
detection in stack overflow,” Journal of Computer Science and Technol-
ogy (JCST), vol. 30, no. 5, pp. 981–997, 2015.

[35] M. Ahasanuzzaman, M. Asaduzzaman, C. K. Roy, and K. A. Schneider,
“Mining duplicate questions of stack overflow,” in 2016 IEEE/ACM 13th
Working Conference on Mining Software Repositories (MSR). IEEE,
2016, pp. 402–412.

[36] L. Wang, L. Zhang, and J. Jiang, “Detecting duplicate questions in
stack overflow via deep learning approaches,” in 2019 26th Asia-Pacific
Software Engineering Conference (APSEC). IEEE, 2019, pp. 506–513.

[37] D. Liang, F. Zhang, W. Zhang, Q. Zhang, J. Fu, M. Peng, T. Gui,
and X. Huang, “Adaptive multi-attention network incorporating answer
information for duplicate question detection,” in Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2019, pp. 95–104.

[38] W. E. Zhang, Q. Z. Sheng, J. H. Lau, E. Abebe, and W. Ruan,
“Duplicate detection in programming question answering communities,”
ACM Transactions on Internet Technology (TOIT), vol. 18, no. 3, pp.
1–21, 2018.

[39] A. W. Yu, D. Dohan, M.-T. Luong, R. Zhao, K. Chen, M. Norouzi, and
Q. V. Le, “Qanet: Combining local convolution with global self-attention
for reading comprehension,” arXiv preprint arXiv:1804.09541, 2018.

[40] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention
generative adversarial networks,” in International Conference on Ma-
chine Learning (ICML). PMLR, 2019, pp. 7354–7363.

[41] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang,
“Biobert: a pre-trained biomedical language representation model for
biomedical text mining,” Bioinformatics, vol. 36, no. 4, pp. 1234–1240,
2020.

[42] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European Conference on Computer Vision (ECCV). Springer, 2020,
pp. 213–229.

[43] M. Chen and A. Radford, “Rewon child, jeff wu, heewoo jun, prafulla
dhariwal, david luan, and ilya sutskever. generative pretraining from
pixels,” in Proceedings of the 37th International Conference on Machine
Learning (ICML), vol. 1, 2020, p. 2.

125

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:34:59 UTC from IEEE Xplore. Restrictions apply.

[44] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[45] H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu,
C. Xu, and W. Gao, “Pre-trained image processing transformer,” arXiv
preprint arXiv:2012.00364, 2020.

[46] H. Hettiarachchi and T. Ranasinghe, “Transwic at semeval-2021 task
2: Transformer-based multilingual and cross-lingual word-in-context
disambiguation,” arXiv preprint arXiv:2104.04632, 2021.

[47] G. Yang, X. Chen, K. Liu, and C. Yu, “Deeppseudo: Deep pseudo-code

generation via transformer and code feature extraction,”arXiv preprint
arXiv:2102.06360, 2021.

[48] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A
transformer-based approach for source code summarization,”arXiv
preprint arXiv:2005.00653, 2020.

[49] J. Pilault, R. Li, S. Subramanian, and C. Pal, “On extractive and
abstractive neural document summarization with transformer language
models,” in Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), 2020, pp. 9308–9319.

[50] K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang, “Transformer in
transformer,” arXiv preprint arXiv:2103.00112, 2021.

126

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 22,2022 at 03:34:59 UTC from IEEE Xplore. Restrictions apply.

