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Abstract—Bug reports are widely used by developers to fix
bugs. Due to the lack of experience, reporters may submit
numerous invalid bug reports. Manually determining valid bug
reports is a laborious task. Automatically identifying valid bug
reports can save time and effort for bug analysis. In this paper, we
propose a deep learning-based approach to determine and explain
valid bug reports using only textual information i.e., summaries
and descriptions of bug reports. Convolutional neural network
(CNN) is applied to capture their contextual and semantic
features. Moreover, by analy zing the spatial structure of CNN, we
backtrack the trained CNN model to get phrases that can explain
valid bug reports determination. After inspecting the phrases
manually, we summarize some valid bug report patterns. We
evaluate our approach on five large-scale open-source projects
containing a total of 540491 bug reports. On average, across
the five projects, our approach achieves 0.85, 0.80, 0.69 and
improves the state-of-the-art approach by 8.97%, 9.59%, 9.52%
in terms of AUC, F1-score for valid bug reports, and F1-score for
invalid bug reports, respectively. From the summarized patterns,
we can find that determining valid bug reports is mainly due
to three categories of patterns: Attachment, Environment, and
Reproduce.

Index Terms—Valid Bug Report, Deep Learning, Model Ex-
plainability, Software Quality Assurance

I. INTRODUCTION

Large-scale software systems use bug tracking systems
(such as Bugzilla and JIRA) to report and manage bug reports
[1]. Developers, testers or end-users submit bug reports when
they encounter bugs. Bug reports can help to guide software
maintenance and repair activities [2], [3]. In the process of
fixing bugs, bug triagers first manually determine the validity
of a bug report. If this bug report is valid, it is assigned to
an appropriate fixer. A valid bug is defined as a real bug
that contains complete information and can be reproduced [4].
For large software projects with many users, hundreds of bug
reports are submitted to the bug tracking system every day [5].
However, many of these bug reports are invalid. For example,
in Eclipse, about 70% of bug reports are invalid [4]. Manually
determining the validity of so many bug reports is a laborious
and challenging task. Approaches to automatically determine
the validity of bug reports early can significantly reduce the
cost of software management and maintenance.

Every bug report has a resolution. The resolution of a
bug report can be DUPLICATE (i.e., a bug that has been

reported by other reporters), INVALID (i.e., a bug that is not
a software defect), WORKSFORME (i.e., a bug that cannot be
reproduced), INCOMPLETE (i.e., a bug that lacks necessary
information), FIXED (i.e., a bug that has been successfully
fixed), or WONTFIX (i.e., a real bug that has not been fixed).
Following prior study [4], we consider a bug report whose
resolution is FIXED or WONTFIX as a valid bug report, and
we consider a bug report whose resolution is DUPLICATE,
INVALID, WORKSFORME or INCOMPLETE as an invalid
bug report.

In the literature, several approaches have been proposed
to address this issue. Zanetti et al. [6] focused on the links
between reporters. They used collaborative networks on bug
reports from open-source projects. Based on ASSIGN (i.e.,
assigned fixer of bug report) and CC (i.e., email address of
fixer) relationship of bug reports, they built a collaboration
network. And then, they extracted nine features from this
network and applied a support vector machine (SVM) classifier
to determine whether a bug report is valid. In comparison
with Zanetti et al., Fan et al. [4] extracted 33 features from
bug reports, including the collaboration network, reporter
experience, completeness, readability, and text. Based on these
features, they used a random forest (RF) classifier to identify
valid bug reports.

Fig. 1: A newly reported bug report.
These approaches are based on feature engineering, which

transforms the original data into features and then feeds these
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Fig. 2: The framework of our approach.

features into classifiers. However, there are some problems in
extracting these features. For example, a newly reported bug
report does not contain complete fields to help extract various
features. Figure 1 shows an example of a bug report in Eclipse.
When we found this bug report, it had been reported for three
days. The CC field required by Zanetti et al. was not yet
available. In practice, we hope to identify the validity of a bug
report as soon as possible after it is reported. And this newly
reported bug report had not been commented by others. Thus,
Fan et al.’s approach cannot extract the relevant features of
the collaborative network. Therefore, the approaches based on
feature engineering may not be able to determine the validity
of a newly reported bug report in time.

However, as can be seen from Figure 1, a newly reported
bug report always includes a summary and a description.
Moreover, the experimental results of Fan et al. showed that
text-based features are beneficial [4]. Motivated by these
observations, we explore the idea of using only textual in-
formation to identify valid bug reports. In recent years, many
studies have shown that convolutional neural network (CNN)
has excellent performance in text classification [7], [8]. We
attempt to employ a CNN model to extract the contextual and
semantic features from the textual information of bug reports.

Related researches show that high-quality bug reports usu-
ally contain some specific descriptions, such as additional
attachments and steps to reproduce [9]. Due to the high
correlation between the validity of a bug report and its quality,
we suspect that a valid bug report may contain some valid
patterns that can be used to identify valid bug reports. A
model based on deep learning is usually considered as a black
box [10]–[12], and its performance is generally excellent but
difficult to explain. However, this black box can be opened. In
this paper, we use the spatial structure of CNN to locate some
key phrases that make bug reports determined to be valid in
a layer-by-layer backtracking strategy, and finally summarize
some valid bug report patterns. To the best of our knowledge,
this is the first study to explore valid bug report patterns.

The main contributions of this paper are as follows:

1) We propose a deep learning-based approach using only
textual information to determine and explain the validity
of bug reports. We use CNN to capture the contextual
and semantic features of bug reports without manually
identifying features. We experiment on five large open-
source projects containing a total of 540,491 bug reports,
and the experimental results show that our approach
outperforms the state-of-the-art valid bug reports deter-
mination approach.

2) By backtracking CNN, we first extract valid bug report
key phrases. We inspect these key phrases manually and
then summarize valid bug report patterns from three
aspects of Attachment, Environment, and Reproduce.
Finally, based on these patterns and some related statis-
tics, we provide reporters with suggestions on describing
valid bug reports.

This paper is organized as follows. Section II presents our
approach in detail. In section III, we describe the datasets used
and the evaluation metrics adopted. Section IV presents the
experimental results and analysis. In Section V, we discuss the
similarities and differences between good bug report patterns
and valid bug report patterns. Section VI presents the related
work. Section VII summarizes the main threats of our study.
The conclusion is presented in Section VIII.

II. APPROACH

Figure 2 presents the overall framework of our approach
which contains three phases: model training, valid bug report
prediction, and valid patterns summarization. In the modeling
training phase, all the bug reports we collect are divided into a
training set and a testing set in chronological order. These data
in the training set are fed into a CNN to learn to determine
whether bug reports are valid or invalid. In the valid bug report
prediction phase, given a future bug report, the trained model is
used to predict the valid/invalid label. The trained model is also
used in the valid patterns summarization phase. In this phase,
we backtrack the trained model to extract the key phrases from
the input bug reports. These key phrases are contributing most
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Fig. 3: The architecture of the Convolutional Neural Network.

to determining whether a bug report is valid. By inspecting
these key phrases manually, we summarize some valid bug
report patterns.

A. Valid Bug Reports Determination by Convolutional Neural
Network

1) Data Extraction and Preprocessing: We first separately
extract textual information from summaries, descriptions, and
comments added by the reporter himself within fifteen min-
utes. These comments are usually supplements to bugs [4].
Thus, we add descriptions and comments as new descriptions.
Zimmermann et al. [6] analyzed the comments within 15
minutes after the creation of bug reports. They found that this
information was important for valid bug report detection. Fan
et al. followed this study and considered the comments within
15 minutes, and so did we. The descriptions that appear in the
following paper refer to the sum of the original descriptions
and the comments within fifteen minutes. Then, we perform
typical preprocessing steps, including tokenization, stop word
removal, and case conversion. To maintain the readability of
these texts, we do not perform word stemming.

2) Word Embedding: The preprocessed words must be
embedded into vectors before fed into the CNN model. The
skip-gram model of word2vec is adopted to transform words
in summaries and descriptions into vectors. The output of
word2vec is a dictionary containing word vectors of all words
in the vocabulary V , and we denote it as W ∈ Rd×|V |, where
d is the dimension of word vectors and |V | is the capacity of
V . A text with n words can be represented as a n× d matrix
m = v1 ⊕ v2 ⊕ · · · ⊕ vn, where vi can be looked up in W
and ⊕ denotes vector concatenation. Matrix m can be fed as
a input to the CNN model.

3) Model Construction: We use CNN to obtain the clas-
sification results in this paper. Figure 3 presents the overall
workflow of our CNN model.

Convolution Layer. The inputs of the convolution layer are
two matrices, i.e., the matrix of summary ms and the matrix
of description md. In Figure 3, the summary is represented as
a 4 × 6 matrix and the description is represented as a 6 × 6
matrix. Then, two independent CNNs are used to extract the
features of the two inputs, respectively. The filters f of these
two CNNs are h × w matrices. One row of the input matrix
represents a word, so the width of the filter must be equal to the
width of the input matrix. To get different features of inputs,

we set different filters by varying the height of the filters.
Different heights h of filters indicate that the convolution layer
can extract various h-gram features of the inputs. As shown
in Figure 3, for the input matrix of summary, we set filters of
size 1×d, 2×d, and 3×d to capture 1-gram, 2-gram, and 3-
gram features, respectively. The convolution layer processing
description is similar to the convolution layer of processing
summary, except that its filters extract 2-gram, 3-gram, and
4-gram features of description. The convolution layer that
processes the summary contains filters that extract 1-gram
features, while the convolution layer that processes description
does not. Since the summary is usually much shorter than the
description and one word in the summary may also contain
crucial information.

Pooling Layer. As seen in Figure 3, we get a lot of feature
maps by convolution. These feature maps can be viewed as
column feature vectors of different lengths. Pooling is used to
reduce the number of features, alleviate the phenomenon of
overfitting, and finally get vectors of the same length. In this
paper, we use max-pooling to get the most important feature
captured by each filter, that is, the maximum value in each
feature map. Then, the values selected from the feature maps
corresponding to the same size of filters are concatenated to
form new feature vectors. In Figure 3, we end up with six
three-dimensional feature vectors in the pooling layer.

Fully-connected Layer. We concatenate the feature vectors
obtained from the pooling layer to form a vector X =
[x0, x1, ..., xk], which is the input of the fully-connected layer.
We expect the model to output a value ypredict that indicates
how likely a bug report is to be valid. Larger values tend
to indicate that a bug report is more likely to be valid. This
value ranges from 0 to 1, thus we use a linear classifier
and sigmoid activation function. Assuming the weight vector
W = [w0, w1, ..., wk] and the bias is b, then ypredict can be
calculated as follows:

ypredict =
1

1 + e−(
∑k

i=1 wixi+b)
. (1)

In this paper, we use binary classification cross-entropy as
the loss function:

loss =− (

n∑
i=1

yrealilog(ypredicti)+

(1− yreali)log(1− ypredicti))

(2)

where n denotes the total number of bug reports.
4) Validity Prediction: We feed a new bug report into the

trained model, and get a value that indicates how likely this
bug report is to be valid. When this value is greater than or
equal to the threshold, this bug report is classified as valid,
otherwise it is invalid. In this paper, we set the threshold as
0.5 (according to the characteristic of sigmoid function).

B. Valid Bug Report Patterns Summarization by Backtracking
the Trained CNN Model

1) Key Phrase Extraction: We hope to find effective pat-
terns from bug reports, which can provide useful suggestions
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Fig. 4: Backtracking the trained CNN model to obtain key
phrases.

for bug reporters. In this paper, the spatial structure of CNN
is used to locate phrases for determining valid bug reports. As
shown in Figure 4, any features in the fully-connected layer
can backtrack to a h-gram phrase in the inputs. The whole
process of finding such phrases through backtracking can be
broken down into the following steps:

1) We feed a bug report to the trained model and get
the parameters in the fully-connected layer, including
the feature vectors X = [x0, x1, ..., xk] and the weight
vectors W = [w0, w1, ..., wk]. For xi(1 ≤ i ≤ k) in X,
we use a sigmoid function to calculate the probability p
of xi to be valid: p = 1

1+e−wixi
. If p is greater than or

equal to 0.5 (according to the characteristic of sigmoid
function), we consider that the phrase corresponding to
xi is a key phrase for this bug report to be determined
as valid, and call xi a prominent feature. In Figure 4,
features circled by the red frame in the fully-connected
layer are prominent features.

2) The feature vector X is obtained by sequentially con-
catenating the outputs of the pooling layer. Therefore,
when the index i of the prominent feature xi is known,
we can find which pooling layer it corresponds to. As
seen in Figure 4, prominent feature x1 corresponds to
the second feature of the first pooling layer.

3) Because we use max-pooling in the pooling layer, each
feature in the pooling layer is the maximum value of
the output of its corresponding convolution layer. Then,
for the feature in the pooling layer, we look up the
maximum value in its corresponding convolution layer
and get the index j of this maximum value.

4) The index j obtained in step 3) can be view as the start
index of the key phrase in the input. According to the
value of h in the h-gram extracted by the different filters,
the entire phrase can be determined as vj:j+h−1, where
vj indicates the jth word vector in the input matrix.
Finally, we look up the word vectors corresponding to
these words in the dictionary to get a readable key
phrase. At the same time, we save the probability p
calculated in step 1), and use this probability to indicate
how likely the key phrase is determined to be valid.

2) Manual Inspecting: For all the bug reports in the training
set, we extract the key phrase as described above. For each
key phrase, we record such triples during the calculation:
(key phrase, count, pavg), where count denotes the number

of bug reports in which this key phrase is found, and pavg
denotes the average probability that the phrase is determined
to be valid.

For all the key phrases, we sort them in descending order
according to their pavg . Then we divide them into several parts
based on count: 50-200, 200-400, 400-600, 600-800, 800-
1000, and >1000. For the first 200 key phrases of each part,
we inspect them manually and then summarize some valid bug
report patterns.

III. STUDY SETUP

A. Research Questions

First, we answer a research question (RQ1) to discuss
the performance of our approach. Second, we develop two
research questions (RQ2 and RQ3) to discuss the patterns
summarized in our approach.

RQ1: Can we determine the validity of a bug report more
effectively?

To evaluate the performance of our approach, we compare
our approach with the state-of-the-art approach proposed by
Fan et al. [4].

RQ2: What patterns can we summarize from valid bug
reports determination?

In this research question, we summarize some patterns by
backtracking the trained CNN model and manually inspecting
key phrases. When a bug report has these patterns, it is more
likely to be considered as a valid bug report.

RQ3: What can we learn from the distribution of the sum-
marized patterns in each project?

To verify the validity of the patterns proposed in RQ2, for
each valid bug report in each dataset, we check whether it
contains these patterns. Then we give the statistical results
and analyze the distributions of these patterns.

B. Datasets

We collect all fields of bug reports and the full history of
bug report updates stored in the Bugzilla system of Eclipse,
Netbeans, Mozilla, Firefox, and Thunderbird. Table I shows
the statistics of our datasets.

We divided the training and testing set in a time-aware
setting for simulating the usage of our approach in the practical
bug handling process (i.e., predicting future data based on
historical data). In particular, we sort the bug reports in our
dataset in chronological order and then divide them into ten
folds. The prior nine folds are the training set, and the last
fold is the testing set.

We can see from Table I that the class distributions in
different projects are different, and they are imbalanced to
some extend. For example, in Eclipse, the valid bug reports
account for 78%, while in Thunderbird, the valid bug reports
only account for 21%.

C. Implement Details

1) Text Preprocessing: For the summary and description
extracted from the original bug reports, we only tokenize and
remove stop words. In order to make the phrases obtained by
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TABLE I: Statistics of our datasets.

Project Time Period # Bug Report # Valid # Invalid
Eclipse 2010.1-2014.12 119832 93946(78%) 25886(22%)

Net Beans 2010.1-2014.12 53642 32981(61%) 20661(39%)
Mozilla 2013.1-2014.12 222361 154212(69%) 68149(31%)
Firefox 2002.4-2014.12 112830 20794(18%) 92036(82%)

Thunderbird 2000.1-2014.12 31826 6661(21%) 25165(79%)
Total 540491 308594(57%) 231897(43%)

backtracking the trained CNN model readable, we do not stem
them. Python’s NLTK package is used to tokenize, remove
stop words, and converse case.

2) Word Embedding: We use word2vec to convert the
words to vectors. The word dimension is set to 200. The
window size is 5. We filter words that appear less than five
times. Skip-gram is selected as the training algorithm for
word2vec.

3) CNN Model:
Input Layer: To unify the length of the input, we adopt a

truncation strategy, which preserves the first n words of the
input. If there are more than n words in a piece of text, the
extra parts are discarded, and if there are less than n words,
the zero vectors are used to make up to n words. We set n to
10 for summary and set n to 50 for description.

Convolution Layer: The model has two separate convolu-
tion layers for dealing with the summary and description (re-
call Figure 3). For the convolution layer involved in processing
summaries, we set three types of kernels whose lengths are 1,
2, 3, respectively, and the width is 200. For the convolution
layer involved in processing descriptions, we set three types of
kernels whose lengths are 2, 3, 4, respectively, and the width
is 200. For each type of kernel, we set their number to 128.
What’s more, the stride is set to 1, there is no padding, and
the activation function is rectified linear unit (RELU).

Pooling Layer: In the pooling layer, global max-pooling is
adopted, and there is also no padding.

Fully-connected Layer: In this layer, the output dimension
is 1, and the activation function is sigmoid. We use adam as
the optimizer and set the learning rate to 0.0001. An early
stop strategy is adopted to stop the training. When the loss no
longer drops within four epochs, the model stops training.

D. Evaluation Metrics

For each bug report in the testing set, it has four possible
prediction results: a bug report that is predicted to be valid
and it is truly valid (true positive, TP); a bug report that is
predicted to be valid and it is truly invalid (false positive,
FP); a bug report that is predicted to be invalid and it is truly
invalid (true negative, TN); and a bug report that is predicted
to be invalid and it is truly valid (false negative, FN). Based
on these four prediction results, we calculate valid and invalid
precision, recall and F1-score to evaluate the performance of
our approach and baseline. In addition, we also calculate AUC
as another very important evaluation metric.

Valid Precision: it is the proportion of bug reports that are
correctly predicted as valid to all bug reports that are predicted
as valid. Valid Precision P(v) is calculated as TP

TP+FP .

Valid Recall: it is the proportion of bug reports that are
correctly predicted as valid to all bug reports that are truly
valid. Valid Recall R(v) is calculated as TP

TP+FN .
Invalid Precision: it is the proportion of bug reports that

are correctly predicted as invalid to all bug reports that are
predicted as invalid. Invalid Precision P(inv) is calculated as

TN
TN+FN .

Invalid Recall: it is the proportion of bug reports that are
correctly predicted as invalid to all bug reports that are truly
invalid. Invalid Recall R(inv) is calculated as TN

FP+TN .
F1-score: it is a comprehensive evaluation of recall and

precision, and it is the harmonic mean of them. It evaluates
if an increase in precision (or recall) outweighs a reduction
in recall (or precision), respectively and provides a balanced
view of precision and recall. Valid F1-score F1(v) is calculated
as 2×P (v)×R(v)

P (v)+R(v) , while Invalid F1-score F1(inv) is calculated

as 2×P (inv)×R(inv)
P (inv)+R(inv) .

AUC: it is the Area Under the Curve (AUC) of Receiver
Operator Characteristic (ROC). The AUC is a robust evaluation
metric when the class imbalance problem occurs, and it is the
main evaluation metric of our approach. The AUC is computed
by plotting the ROC curve. By computing the true positive
rate (TPR) and false positive rate (FPR) across all thresholds,
the ROC curve is obtained. In our approach, the model first
outputs a likelihood score for a bug report to be valid. Then
this likelihood score is compared with a set threshold (a value
ranging from 0 to 1). If the likelihood score is higher than the
set threshold, the bug report is determined as valid. Otherwise,
it is determined as invalid.

Baseline Method: the baseline of our approach is proposed
by Fan et al. [4]. It is the state-of-the-art approach, which
has outperformed the approach proposed by Zanetti et al.
on the same dataset with ours. Therefore, we believe that
comparing with the state-of-the-art approach is sufficient. In
order to determine whether a bug report is valid, Fan et al.
extract 33 features of the bug report. These 33 features can
be grouped into five dimensions: reporter experience, collab-
oration network, completeness, readability, and text. Based
on these features, Fan et al. use the random forest to build
a classifier to determine whether a bug report is valid. The
baseline can be referred to [4].

IV. EXPERIMENTAL RESULTS

A. RQ1: Can we determine the validity of a bug report more
effectively?

Motivation. The key task of our work is to propose a more
effective approach for determining valid bug reports. Our
baseline relies on a large number of fields in bug reports to
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TABLE II: The results of our approach compared with the baseline.

Project Approach AUC Valid Invalid
F1(v) P(v) R(v) F1(inv) P(inv) R(inv)

Eclipse Baseline 0.71 0.89 0.84 0.95 0.40 0.60 0.30
Ours 0.88 0.86 0.79 0.95 0.65 0.88 0.60

Net Beans Baseline 0.64 0.79 0.72 0.87 0.33 0.47 0.26
Ours 0.71 0.79 0.74 0.84 0.53 0.60 0.46

Mozilla Baseline 0.80 0.86 0.86 0.85 0.59 0.58 0.60
Ours 0.87 0.88 0.84 0.92 0.63 0.74 0.55

Firefox Baseline 0.93 0.75 0.77 0.74 0.89 0.89 0.90
Ours 0.86 0.72 0.66 0.78 0.72 0.87 0.79

Thunderbird Baseline 0.82 0.36 0.67 0.25 0.92 0.91 0.98
Ours 0.91 0.75 0.76 0.74 0.92 0.91 0.92

Average Baseline 0.78 0.73 0.77 0.73 0.63 0.69 0.61
Ours 0.85 0.80 0.76 0.85 0.69 0.80 0.66

extract features. However, some features may not work or be
incalculable, and we also found a summary and a description
are always available for each bug report. Therefore, we extract
summaries and descriptions from bug reports, and then use a
CNN as a classifier to determine valid bug reports. To evaluate
the performance of our approach and the baseline, we calculate
the AUC, Precision, Recall, and F1-score for valid and invalid
bug reports across five open-source projects. Table II shows
the AUC, Precision, Recall, and F1-score for valid and invalid
bug reports and the average values for the five projects.
Results. On Eclipse, our approach improves the baseline by
23.94%, 62.5% in terms of AUC, F1(inv), respectively. On
Netbeans, our approach improves the baseline by 10.94%,
60.61% in terms of AUC, F1(inv), respectively. On Mozilla,
our approach improves the baseline by 8.75%, 2.32%, 6.78%
in terms of AUC, F1(v), F1(inv), respectively. On Thunderbird,
our approach improves the baseline by 10.98%, 108.33% in
terms of AUC, F1(v), respectively. On Firefox, the perfor-
mance of the baseline is better than our approach. But on
average, across the five projects, our approach achieves 0.85,
0.80, 0.69 in terms of AUC, F1(v), F1(inv), respectively.
Compared with the baseline, our approach improves 8.97%,
9.59%, 9.52% in terms of AUC, F1(v), F1(inv), respectively.

Compared to the 33 features of Fan’s model, we just use
summaries and descriptions as inputs. Although using less
information, our approach achieves better results. It shows
that summaries and descriptions have great potential to help
determine the validity of bug reports. Our method does not
outperform the baseline on Firefox. From a feature point of
view, only the text of the bug report was used in our approach.
For Firefox, the approach of Fan et al. showed very good
classification performance, which meant that there were good
discriminative features that are not from the text. In their
experiments, it was also shown that on Firefox, features from
Reporter Experience and Collaboration Network performed
well. However, it is not easy to extract these features from
each project. Although our approach does not achieve optimal
performance on all projects, the data is easy to obtain and
process.

Only using the textual information, our approach achieves
0.85, 0.80, and 0.69 and improves the state-of-the-art

approach by 8.97%, 9.59%, 9.52% in terms of AUC,
F1(v), and F1(inv) respectively.

B. RQ2: What patterns can we summarize from valid bug
reports determination?

Motivation. In order to provide reporters with suggestions on
how to describe a valid bug report, we expect to find valid
patterns of bug reports from the historical bug reports. Deep
learning models are usually considered as black box models,
but we can observe that CNN has a spatial structure. Using
this spatial structure, we can backtrack from back to front to
get some key phrases. These phrases are the basis for CNN to
determine a valid bug report. After checking a large number
of phrases, we summarize some valid bug report patterns. To
the best of our knowledge, this is the first study to investigate
the patterns that affect the validity of bug reports.
Results. Our inputs consist of two parts: summary and descrip-
tion. The summary is usually a short sentence that contains a
small amount of information, but focuses on key points. The
description is usually a long text, which contains precious
information, but the content is complicated. Therefore, the
patterns we summarize are explained from these two aspects,
respectively.

Table III presents the patterns summarized from the de-
scriptions. In general, for all projects, their valid patterns
are classified into three categories, including Attachment,
Environment, and Reproduce. The Attachment category
contains specific patterns such as Patch, Screenshot, Log,
Test case, Code, and Stack trace. With these attachments,
fixers can fix bugs more efficiently. Figure 5 shows a bug
report with attachments. Usually, if the reporter attaches an
attachment to the bug report, he will start his description with
“Created attachment”, and then write the type and role of the
attachment. For example, in the bug report shown in Figure 5,
in this way, the reporter expresses that I submit an attachment,
and it is a patch for IOS documentation updating.

The patterns of Reproduce can help fixers understand the
full picture of a bug when they fix it. Figure 6 shows a bug
report with these patterns. The reporters remind the readers
with “Steps to reproduce:”. And then, they itemize how to
reproduce this bug. There are some reporters who describe
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TABLE III: The valid bug report patterns extracted from descriptions.

Project Categories Valid Patterns

Eclipse
Attachment Created attachment, Patch, Screenshot, Error log, Test case, Code, Stack trace
Reproduce Reproducible: always, Steps to reproduce, Actual/Expected result

Environment Java Version, JVM Properties, SVN Client, Build Identifier

Netbeans
Attachment Stack trace, IDE log, NPS snapshot, Server log
Reproduce Steps to reproduce

Environment Build, VM, OS

Mozilla
Attachment Screen/Screenshot, Patch, Stack

Reproduce Repro steps/Steps to reproduce/Reproduction steps, Repro frequency/Reproduction
frequency, Actual/Expected (result)

Environment Environmental Variables, User Agent

Thunderbird
Attachment Patch, Fix, Screen/screenshot
Reproduce Reproducible: always, Steps to reproduce, Actual/Expected results

Environment User Agent, Build Identifier

Firefox
Attachment Patch, Fix, Screen/screenshot
Reproduce Reproducible: always, Steps to reproduce, Actual/Expected results

Environment User Agent, Build Identifier

Fig. 5: An example of a bug report which contains attachment.
Bug ID: 437114. Project: Eclipse.

“Reproduce steps:” or other phrases with the same meaning. A
considerable number of reporters write “Actual result(s):” and
“Expected result(s):”. The pattern Actual result(s) represents
the software behavior seen by the reporters, and the pattern
Expected result(s) represents the software behavior expected
by the reporters. These patterns are also used to help the fixers
understand the bugs, so they are divided into the category
Reproduce. What’s more, some reporters omit “result(s)” and
write “Actual/Expected:” directly.

Fig. 6: An example of a bug report which contains reproduce.
Bug ID: 889428. Project: Mozilla.

Patterns in Environment remind readers that the following
contents indicate the software or hardware environmental
information of the project when a bug occurs. Figure 7
shows a bug report with patterns representing environmental
information. In this bug report, the reporters first use “Envi-
ronmental Variables:” to indicate that the following content is
the project-related environmental variables and then describe

the content in detail. There are many versions of open-source
projects which are deployed on various software and hardware
environments. When a bug occurs, providing its environmental
information to the fixers can help them quickly find the causes
and solutions. Different projects require various environmental
information. For integrated development environments such
as Eclipse, reporters usually indicate the configuration of
the Java virtual machine. For browsers such as Firefox and
Thunderbird, the user agent and browser version are usually
provided by reporters.

Fig. 7: An example of a bug report which contains environ-
ment. Bug ID: 1009939. Project: Mozilla.

The summary is different from the description. It is usually
a short description of the bug. Therefore, in a summary,
there are almost no patterns related to completeness. In the
summary, reporters usually use some words or phrases to
summarize the content of this bug. For example, in Eclipse,
the summary of bug report 364813 is “[Sequence Diagram]
- Part decompositions and combined fragments”, the summary
of bug report 407414 is “[compiler][null] Incorrect warning on
a primitive type being null”, and the summary of the bug report
is “NPE in faces config editor”. We find that in the summary
of valid bug reports, reporters usually describe the unit where
the bug occurs or the basic type of the bug. At the same time,
the reporters use brackets to surround some keywords so that
readers can more accurately understand the bugs.

For each project, we summarize some patterns to help
determine bug reports as valid from three aspects of
Attachment, Reproduce, and Environment.
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C. RQ3: What can we learn from the distribution of the
summarized patterns in each project?

Motivation. In RQ2, we state the valid bug report patterns
summarized by manually inspecting key phrases which are
obtained by backtracking the trained CNN model. In this
research question, we present some statistics to analyze the
distributions of these patterns. We first set up some regular
expressions according to the types and related phrases of valid
bug report patterns. Then for each valid bug report, we use it
to match regular expressions. Finally, for each valid bug report
pattern, we get the number of valid bug reports that contain
it.
Results. Table IV shows the statistical results. Since the
category Attachment contains many specific items, we gather
not only the statistics for pattern Attachment, but also the
statistics for its specific items. Besides, we classify Result and
Steps to Reproduce patterns to Reproduce. Usually, in the bug
reports, “Actual/Expected result:” is written independently of
“Steps to reproduce:”. Therefore, we also gather the statistics
of the two separately. In Table IV, the bold items represent
specific patterns summarized for each project (recall Table III).

According to the overall situation of the statistical results,
for ease of explanation, we roughly define the inclusion rate
greater than 20% as high and inclusion rate greater than 5%
and less than 20% as medium. For Eclipse, the pattern with
high inclusion rate is Environment, and those with medium
inclusion rate are Attachment, Code, Patch, Result, Stack
Trace, and Steps to Reproduce. For Netbeans, the patterns
with high inclusion rates are Attachment, Environment and
Stack Trace, and those with medium inclusion rates are Result,
Screen, and Steps to Reproduce. For Mozilla, the pattern with
high inclusion rate is Attachment, and those with medium in-
clusion rates are Patch, Result, Screen, and Steps to Reproduce.
For Thunderbird, the patterns with high inclusion rates are
Attachment, Environment, Result and Steps to Reproduce, and
those with medium inclusion rates are Patch and Screen. For
Firefox, the patterns with high inclusion rates are Attachment,
Environment, Result and Steps to Reproduce, and the those
with medium inclusion rates are Patch and Screen.

Based on these statistics horizontally and vertically, we have
the following interesting findings:

(1) For each project, the inclusion rates of the patterns we
summarized in RQ2 (i.e., bold items in Table IV) are much
higher than those of patterns that were not summarized. It
shows that inspecting the key phrase manually to summarize
valid bug report patterns is effective.

(2) For all the projects, the inclusion rate of Attachment is
high. Furthermore, for Log, Code, and Stack Trace patterns,
the inclusion rates in Eclipse and Netbeans are significantly
higher than those in Mozilla, Thunderbird, and Firefox. This
is related to their project type. Eclipse and Netbeans are
both integrated development environments, and the other three
projects are browsers. Of course, in the bug reports of the
integrated development environment, there are more patterns
related to code, log, and stack trace. Therefore, our first

suggestion is: when submitting a bug report, reporters should
submit as many attachments as possible related to the bug
according to the type of current project.

(3) For most projects, the inclusion rate for pattern Envi-
ronment is high. Since there are usually many versions for an
open-source project, and the environments in which users use
a project are different. This may cause trouble for bug fixers.
Therefore, our second suggestion is: when submitting a bug
report, reporters should submit as much information about the
environment of the project as possible, such as the version of
the project and the version of the operating system.

(4) For all projects, Result and Steps to Reproduce patterns
are highly included, especially for Thunderbird and Firefox.
This shows that when a bug fixer fixes a bug, he/she usually
needs to reproduce the bug and fully understand the process
of this bug occurring to find a solution. Therefore, our third
suggestion is: when submitting a bug report, reporters should
recall and record the process of the bug occurring as detailedly
as possible.

In different projects, the distributions of valid bug report
patterns are different. But for each project, its distribution
is basically consistent with the patterns we summarized
in RQ2. Based on the statistical results, we give reporters
suggestions on describing valid bug reports in the three
aspects of Attachment, Environment, and Reproduce.

V. DISCUSSION

A good bug report refers to a high-quality bug report, which
usually contains adequate and correct information [9]. A valid
bug report refers to a bug report which points to a real bug
and contains a complete description and can be reproduced [4].
Both good bug reports and valid bug reports are related to the
quality of bugs and the information contained in them. In this
section, we discuss the similarities and differences between
good bug report patterns investigated by Zimmermann et al.
and the valid bug report patterns proposed in this paper.

We first focus on the similarities. Zimmermann et al. [9]
did a survey. They sent questionnaires (some factors expected
to affect the quality of the bug report are listed) to developers,
aiming to understand what information in the bug reports is
most commonly used and what information is most impor-
tant to developers when they fix bugs. Zimmermann et al.
investigated the quality of bug reports from the perspective of
developers. Their survey results showed that the previously
used items were steps to reproduce, observed and expected
behavior, stack traces, and test cases. In addition, their survey
results showed that the most important items were steps to
reproduce, test cases, observed behavior, and screenshots for
GUI errors. In this paper, we summarize valid bug report
patterns from the perspective of data (i.e., bug reports). It is
interesting that the survey results from developers and patterns
from data (recall Table III) overlap to a large extent. The
feature engineering-based approach [4], [6] and questionnaire
have one thing in common: they both need to list factors that
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TABLE IV: Statistics of valid bug reports which contain valid bug report patterns. Exclusion indicates the number of bug
reports which do not contain a certain pattern, while inclusion indicates the number of bug reports which contain a certain
pattern. The bold items indicate the information of patterns we have summarized in Table III for each project.

Project Distribution
Pattern Attachment Code Log Patch Test Case Screen Stack Trace Step to Reproduce Result Environment

Eclipse
Exclusion 76322 89244 92531 86846 93066 90854 85072 76686 86612 74406
Inclusion 17624 4702 1415 7100 880 3092 8874 17260 7334 19540
Inclusion Rate 18.76% 5.01% 1.51% 7.56% 0.94% 3.29% 9.45% 18.37% 7.81% 20.80%

Netbeans
Exclusion 17461 31412 32113 32546 32814 29648 23335 29362 30715 17946
Inclusion 15520 1569 868 435 167 3333 9646 3619 2266 15035
Inclusion Rate 47.06% 4.76% 2.63% 1.32% 0.51% 10.11% 29.25% 10.97% 6.87% 45.59%

Mozilla
Exclusion 115096 153065 154507 143421 152102 145428 153443 134359 127699 148291
Inclusion 39116 1147 155 10791 2110 8784 769 19853 26513 5921
Inclusion Rate 25.37% 0.74% 0.10% 7.00% 1.37% 5.70% 0.50% 12.87% 17.19% 3.84%

Thunderbird
Exclusion 15481 20683 20784 18734 20638 19271 20767 12530 13924 15073
Inclusion 5313 111 10 2060 156 1523 27 8264 6870 5721
Inclusion Rate 25.55% 0.53% 0.05% 9.91% 0.75% 7.32% 0.13% 39.74% 33.04% 27.51%

Firefox
Exclusion 4579 6642 6654 5538 6652 6194 6645 4023 4344 4621
Inclusion 2082 19 7 1126 9 467 16 2638 2317 2040
Inclusion Rate 31.26% 0.29% 0.11% 16.90% 0.14% 7.01% 0.24% 39.60% 34.78% 30.63%

may affect the quality or validity of the bug report in advance.
Our approach does not need to set the expected factors. We
use CNN to automatically extract the features from text and
find the factors that really affect the validity by backtracking.

Next, we discuss the differences. As shown in Table III, we
have summarized some patterns about environmental informa-
tion for each project, and as shown in Table IV, many valid bug
reports contain this environmental information. However, this
is inconsistent with the results of Zimmermann et al [4]. The
feedback they received indicates that fields such as version, op-
erating system, product, and hardware are less important than
expected. Nonetheless, they suggested to treat this result with
caution. In the experiment, we have found that a considerable
number of the bug reports that have been determined to be
valid contain this information. Therefore, when reporters can
provide this environmental information, we still recommend to
submit them together. They are not irrelevant information, and
may still be useful in understanding, reproducing, or triaging
bugs.

Compared with the questionnaire, the patterns we summa-
rize are more specific because they are obtained from the bug
reports. There are some descriptions that exactly exist in the
bug report. Some useful details may not be reflected in the
options in the questionnaire. For example, as shown in Table
III, we summarize a pattern “Reproducible: Always”. There
is a case where the reporters may have written the steps to
reproduce, but when the fixer follows the process to reproduce
the bug, it fails. If the reporter has specified that this bug can
always be reproduced, bug triagers can more quickly deter-
mine its validity before assigning the bug to the appropriate
fixer. The feedback provided by experienced developers is
undoubtedly valuable. We summarize some interesting patterns
from the perspective of data, supporting and supplementing the
developer’s experience.

VI. RELATED WORK

In this section, we describe the related studies on valid bug
report detection and bug report quality.

A. Valid Bug Reports Determination

In the literature, few approaches have been proposed for
valid bug report detection. To the best of our knowledge,

Zanetti et al. [6] were the first to study valid bug report
detection. They used collaborative networks on open source
projects to detect valid bug reports. First, they built a collab-
orative network based on ASSIGN and CC relations of bug
reports. Then they extracted nine features from this network.
Finally, these features are applied to the model to determine
whether a bug report is valid or not. Fan et al. [4] considered
more features. They extracted features not only from the
collaborative network, but also from the other four dimensions,
including reporter experience, completeness, readability, and
text. From these five dimensions, they extracted a total of 33
features. They built models using random forest and support
vector machine, and then, applied the extracted 33 features to
the models. Experimental results showed that their method
significantly improved the performance compared with the
method of Zanetti et al.

A common limitation of these two approaches is that they
are highly dependent on handcrafted features. However, for a
newly reported bug report, some fields may not be available
yet. Thus, some features that depend on these fields can not
be extracted. As a result, the validity of this new bug report
can not be determined in time. In addition, the performance of
these two approaches is limited by these handcrafted features.
Fan et al. found that although all features were useful for
detecting valid bug reports, features extracted from the texts
were particularly important. Based on this finding, we extract
the texts of bug reports, i.e., summaries and descriptions, and
then use the neural network to determine the validity of bug
reports.

B. Bug Report Quality
The quality of bug reports affects the efficiency of bug

management [13]–[18], bug location [19]–[23], and bug fix
[24]–[27]. There have been many studies on bug report quality.

Bettenburg et al. [28] were aware of the quality of the
information in the bug reports. They conducted a survey
among developers to determine the information of bug reports
that developers widely used and the problems developers
frequently encounter. They also built a prototype of a tool to
determine the quality of bug reports by scanning the contents
of bug reports. But their investigation was conducted only in
Eclipse’s developers. Zimmermann et al. [9] added the Apache
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and Mozilla projects to the survey. They also proposed a
model called CUEZILLA, which could automatically analyze
the quality of bug reports and could classify bug reports into
five levels varying from very bad to very good. Their research
was carried out in the form of questionnaires, which is from
the perspective of developers. In this paper, we explore factors
that affect the validity of bug reports based on historical bug
reports (i.e., the perspective of data). In addition, we have
experimented on more projects and more bug reports.

Several approaches have been proposed for predicting the
quality of bug reports. Hooimeijer et al. [29] proposed a
descriptive model to determine the quality of bug reports
and predict whether bug reports are triaged in a given time.
Bhattacharya et al. [30] focused on the fix time of bug reports.
They used univariate and multivariate regression to show how
previous models fail, and then built a more accurate model for
predicting bug fix time of bugs. Linstead et al. [31] used latent
dirichlet allocation (LDA) to predict the quality of bug reports,
which modeled the bug report content in an unsupervised way.
Their experimental results showed that applying statistical text
mining algorithms had great potential for predicting the quality
of bug reports. Aversano et al. [32] extracted some factors that
might affect the quality of bug reports. In particular, they used
the reporter’s reputation.

There are also some studies focused on improving the
quality of bug reports. Weimer et al. [33] stated that the
patches in bug reports were important. Thus, they proposed
an algorithm that could automatically generate patches in bug
reports. In addition, they found that reports with patches were
fixed three times faster than reports without patches. Schroter
et al. conducted an empirical study in the developers of Eclipse
about the use of stack traces in bug reports. Their study
provided evidence of the importance of stack traces in bug
reports. In addition, they emphasized the need to introduce
stack traces to the bug reports. Lotufo et al. [34] investigated
the use of game mechanics in Stack Overflow. They found
that this method of motivating contributors could improve
the quality of contributions. Therefore, they introduced game
mechanics to the bug tracking system. Zhang et al. [35] found
that more than 70% of bug reports in Eclipse contained no
more than 100 words. Therefore, they proposed a sentence
ranking algorithm to enrich the content of bug reports. Their
experimental results showed that enhanced bug reports could
improve the performance of automated fixer recommendation.
Chaparro et al. [36] found that steps to reproduce with
low quality could make bug fixing difficult. Therefore, they
proposed an approach called Euler, which could automatically
identify steps to reproduce with low quality and feedback to
reporters, and then reporters could modify it to improve the
quality of bug reports.

VII. THREATS TO VALIDITY

In this section, we investigate some potential facts that may
threaten the validity of our approach.

Internal Validity. The threat to internal validity is the po-
tential errors in our experimental implementation. In order to

reduce errors in the code, we double-check our code ourselves,
and ask an experienced deep learning developer to recheck
our code again until no errors were found. Another threat to
internal validity is the baseline replication. To mitigate this
threat, we use the source code provided by the author.

External Validity. The threats to external validity relate
to the generalizability of our experimental results. We have
evaluated our approach on five public open-source projects.
The whole datasets contain 540491 bug reports and have
different distributions.

Construct Validity. The threat to construct validity is the
suitability of our evaluation measure. In this paper, we use
AUC and F1-score as the main evaluation measure. Moreover,
we calculate F1-scores for valid bug reports and invalid bug
reports, respectively (i.e., F1(v) and F1(inv)). These measures
have been adopted in our baseline [4]. In this way, we have
reduced the threat to construct validity by a lot.

VIII. CONCLUSION

In this paper, we propose a deep learning-based approach
for determining and explaining valid bug reports. We extract
the texts (i.e., summaries and descriptions) from bug reports,
and use a CNN model to extract the contextual and semantic
features. We evaluate the performance of our approach on
five public open-source projects, including Eclipse, Netbeans,
Mozilla, Thunderbird, and Firefox. Our approach achieves
0.85, 0.80, 0.69, which improves the approach proposed by
Fan et al. [4] by 8.97%, 9.59%, 9.52% in terms of average
AUC, F1(v), and F1(inv) respectively. In order to explain
the performance of our approach and give reporters some
suggestions on how to submit valid bug reports, we backtrack
the CNN model to obtain some phrases that make the model
determine bug reports as valid. Then, we manually inspect
these phrases and summarize some valid bug report patterns
by category (Attachment, Environment, and Reproduce)
for each project. For each pattern, we also count the valid
bug reports that include it. In summary, our conclusion is as
follows:

1) Our approach improves the baseline proposed by Fan et
al. [4] in the case of using only textual information of
bug reports.

2) Through backtracking the trained CNN model and man-
ual inspecting, we summarize some patterns that facili-
tate the valid bug report determination by category.

3) We make statistics for each pattern, and the results prove
that the patterns we summarize are indeed useful.

4) Based on valid bug report patterns and statistics, we
provide reporters with some suggestions on submitting
valid bug reports.
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