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Abstract—Software defect prediction helps developers focus on 
defective modules for efficient software quality assurance. A 
common goal shared by existing software defect prediction 
methods is to attain low classification error rates. These 
proposals suffer from two practical problems: (i) Most of the 
prediction methods rely on a large number of labeled training 
data. However, collecting labeled data is a difficult and 
expensive task. It is hard to obtain classification labels over new 
software projects or existing projects without historical defect 
data. (ii) Software defect datasets are highly imbalanced. In
many real-world applications, the misclassification cost of 
defective modules is generally several times higher than that of 
non-defective ones. In this paper, we present a misclassification 
Cost-sensitive approach to Software Defect Prediction (CSDP). 
The CSDP approach is novel in two aspects: First, CSDP 
addresses the problem of unlabeled software detect datasets by 
combining an unsupervised sampling method with a domain 
specific misclassification cost model. This preprocessing step 
selectively samples a small percentage of modules through 
estimating their classification labels. Second, CSDP builds a 
cost-sensitive support vector machine model to predict defect-
proneness of the rest of modules with both overall classification 
error rate and domain specific misclassification cost as quality 
metrics. CSDP is evaluated on four NASA projects.

Experimental results highlight three interesting observations: (1) 
CSDP achieves higher Normalized Expected Cost of 
Misclassification (NECM) compared with state-of-art 
supervised learning models under imbalanced training data 
with limited labeling. (2) CSDP outperforms state-of-art semi-
supervised learning methods, which disregards classification 
costs, especially in recall rate. (3) CSDP enhanced through
unsupervised sampling as a preprocessing step prior to training 
and prediction outperforms the baseline CSDP without the 
sampling process.

Keywords-software defect prediction; cost-sensitive; semi-
supervised; unsupervised sampling

I. INTRODUCTION 

Software defect prediction is the process of predicting 
whether software modules have defects or not, and it is used 
as an effective means for software quality assurance. High 
quality software typically contains less defect-prone software 
modules. However, as the size and complexity of the software 
system continue to increase, it becomes difficult if not 
impossible to manually test and track all the paths of possible 
failures under a tight project schedule. Thus, automatically 
and accurately predicting whether a software module contains 
defects may help to guide software developers focus quality 

on software defect-prone modules, which reduces the test time, 
and improves the quality of software systems.

Most of the existing work for software defect prediction
adopt statistical and machine learning methods, such as 
association rule mining [1], support vector machine (SVM)
[2], neural networks [3], and decision tree [3]. However, these 
studies have not considered two critical and yet software 
defect specific challenges. First, the training dataset used in 
these studies lacks of well-labeled data about software 
modules for a number of reasons. Collecting labeled software 
data is an expensive task given limited time and limited 
resources for software testing. It is also difficult to collect 
labeled data for new projects or projects with limited 
development history. The problem of lacking well-labeled 
software defect modules is considered a barrier of adopting 
defect prediction in industry [5]. Second, the datasets of 
software modules are highly imbalanced with respect to the 
defect v.s. non-defect classification. The number of defect 
modules is usually much less than the number of non-defect 
ones. At the same time, the misclassification cost of putting 
defect software into non-defect class is much higher than for 
the misclassification cost of putting non-defect software to 
defect class. Such imbalance and the sensitivity of software 
defect prediction to the misclassification cost have been 
observed in many real-world applications and software testing 
practice [12]. We argue that software defect prediction 
methods should use both the overall classification error rates 
and the domain specific misclassification costs as two equally 
important quality metrics to evaluate the effectiveness of 
software defect detection methods.

Software defect prediction using machine learning (ML)
algorithms has attracted much attentions in the last decade,
ranging from semi-supervise learning [6], cross-project defect 
prediction [7], unsupervised learning [8], sampling [9], 
ensemble approaches [10], cost-sensitive [11], feature 
selection [12]. Most of these approaches improves prediction 
accuracy by focusing on addressing either the imbalance of 
labeled data and unlabeled data in the training set or the 
imbalance with respect to the misclassification cost between 
defect class and non-defect class. Few have ever addressed 
both problems under one unifying framework for software 
defect prediction. For instance, existing semi-supervised 
learning approaches focus on improving the ratio of labeled 
data in the training phase by developing class label predictor 
that assign labels to the unlabeled data using sampling 
methods. On one hand, sampling may lead to overfitting if 
provided with only a few labeled instances. Furthermore, most 
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of class-label predictors are only effective when labeled data 
in the non-defective class is increasing and suffer from having
imbalanced classes: a large number of newly labeled non-
defective modules verse very few labeled defect modules. 
Even when more training data are labeled by non-defective 
class, the improvement of training data size is primarily on 
increasing the number of non-defective software modules.
The fact that the actual number of software defect modules is 
significantly less than the number of non-defective software 
modules, makes the matter of imbalance of labeled data and 
unlabeled data even worse. As a result, even the total 
classification accuracy may be increased, the prediction 
model learner remains inefficient and suffering from the 
difficulty and low success rate in finding defective modules. 
Recently, a couple of researchers investigate the class 
imbalanced problem given the total set of labeled training data. 
A semi-supervise machine learning approach is proposed in 
[13], which promotes to employ under-sampling in the 
learning process, and [14] extends the proposal with an 
improved semi-supervised learning approach. Both employ 
random under-sampling technique to resample the original 
training set and updating training set in each round for co-train 
style algorithm. However, both methods consider that all 
classification errors have equal costs, regardless whether 
errors were misclassification of non-defect to defect or 
misclassification of defect to non-defect. They both aim to 
minimize the total expected costs.

In this paper, we highlight two observations: First, in
software detect detection, the cost of misclassification of 
defect to non-defect in prediction is much higher and more 
destructive than that of misclassification of non-defect to 
defect. Thus, the misclassification cost for different classes 
has different effect on the quality of classification based 
prediction and simply using the total classification errors for 
all classes and the total  number of misclassified records alone 
may not be effective measures. Second, the imbalance of 
defective samples v.s. non-defective samples in labeled 
training data may lead to overfitting, causing detrimental 
effect due to increased cost of misclassifying defective 
software into non-defective class. In order to achieve highly 
effective predictions, we need to consider different types of 
imbalance simultaneously and we need to evaluate the quality 
of software defect prediction classifiers using both the total 
classification error and the class-specific misclassification 
cost as the two core quality metrics of equal importance.

With these arguments in mind, we propose a Cost-
sensitive Semi-supervised software Defect Prediction (CSDP) 
model. CSDP combine an unsupervised sampling method 
with a domain specific misclassification cost model. CSDP 
carries out the prediction task in two main phases. In the first 
phase, we adopt an unsupervised sampling method to estimate 
the label of a small percent of instances. The basic idea of
unsupervised sampling is based on the observation that higher 
metric values tend to indicate more defect-proneness [16]. By
obtaining a small percentage of labeled training data from the 
target dataset, these labeled training data may be used to 
construct a defect prediction model with a semi-supervised 
learning as a preprocessing step. In the second phase, CSDP 
builds the prediction model in a misclassification-cost 

sensitive manner by combining a cost-sensitive semi-
supervised Support Vector Machine (CS4VM) [16] with 
software metrics for software defect prediction. We evaluate 
CSDP on four NASA projects. The empirical evaluation 
shows that CSDP is more effective compared with state-of-art 
supervised learning models, for software defect prediction, 
especially under the imbalanced data sets with limited labeling.

II. MOTIVATION

In classic data mining and machine learning, classifiers 
usually focus on minimize the total errors of misclassification 
to achieve high classification accuracy. However, such an
objective function is valid only when the misclassification 
cost of each class is equal. Unfortunately, there exist many 
real-world applications, in which different misclassifications 
are often associated with unequal costs. Table I gives two 
cases of misclassification cost. In Case 1, the cost of 
misclassifying a non-terrorist as terrorist is much lower than 
the cost of misclassifying an actual terrorist who may carry a 
bomb to a flight [25]. Case 2 is a multi-class problem. It is 
obviously that the cost of diagnosing a cancer patient as a 
healthy person is much more serious than erroneously 
diagnosing a healthy person as a cancer patient. The patients 
could lose their life because of a late diagnosis and treatment. 
Similarity, wrongly predicting healthy as cold or cold as a 
lung cancer, has a different cost than the other way around. In 
the context of software defect prediction, there are also two 
types of errors. Type I misclassification occurs when the 
classification model predicts a non-defective module as a 
defective one. Similarly, Type II misclassification may induce
much worse prediction errors, when a defective module is 
wrongly classified as non-defective, because it may steer 
software defect undetected and lead to more serious damages.
Thus, for software defect prediction, we argue that the cost of 
Type II misclassification is much higher than that of Type I 
misclassification. 

Table I. EXAMPLES OF MISCLASSIFICATION

Misclassification Cost
Case 1 Non-Terrorist -> Terrorist Low

Terrorist-> Non-Terrorist High
Case 2 Healthy -> Lung Cancer,  Healthy -> Cold Low

Cold -> Healthy higher
Lung Cancer -> Healthy, Lung Cancer -> Cold highest

Cost-sensitive learning methods consider the varying 
costs of different misclassification types. There are two kinds 
of misclassification cost: class-dependent cost and example-
dependent cost [11]. The former is the costs of misclassifying 
any example in class A into the B class are the same. The 
latter is the costs of classifying different examples in class A 
into B are different even when the error types are the same. 
In practice, it is not easy to get the cost for every training 
example. Comparatively, class-dependent cost is often used 
because it is easier to obtain, which is the focus in this paper.

III. THE CSDP APPROACH 

Software defect prediction is typically modeled as a
binary classification problem. In this paper, we use the cost 
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matrix in Table II for CSDP, where "0” denotes that the cost 
of correct prediction of an instance, “C(-1)” denotes the cost 
of misclassifying a non-defective module to a defective 
module, “C(+1)” denotes the cost of misclassifying a 
defective module to non-defective one. 

Table II. COST MATRIX FOR CSDP

 Actual 
defect-prone 

Actual 
non-defect-prone 

Predict defect-prone 0 C(-1) 
Predict non-defect-prone C(+1) 0 

Figure 1 shows the architecture of the proposed CSDP 
system for software defect prediction. It consists of three 
phases: data preprocessing, unsupervised sampling, and 
training and prediction. We will discuss each of these three 
phases in the next three subsections.

A. Data Preprocessing
We extract software metrics by using static analysis tools

and apply the log transformation to standardize all metrics. 
This step aims to find the optimal feature subset that is 
necessary and sufficient for defect prediction. In most of the 
software datasets, some metrics have missing values, and 
thus the training and validation data input vectors of metrics 
contain null values. For numbercial metric fields, we adopt 
mean substitution, a common method for the situation where 
the size of data set is huge. It applies the mean of metric 
values to replace the null value, followed by  a normalization 

preprocess since the value ranges of the metrics vary widely. 
We compared several commonly used normalization 
algorithms, and our experimental results show that the 
logarithm filtering normalization returned better result. In our 
implementation of CSDP,  we apply a logarithm method for 
minimum value to avoid taking the logarithm of zero. Our 
normalization approach is defined as follows:

ln( 0.000001), 0
( )

ln( ), 0
x x

f x
x x

                (1)

Where x is the value of metrics. For non-numerical metrics, 
we first removed the records that have one or more critical 
metric values unknown. 

B. Unsupervised Sampling
Data imbalance happens in many real-world applications, 

especially those for defect detection, such as in healthcare, 
manufacturing, and software assurance. One extreme of such 
data imbalance may cause no defect samples in some training 
datasets when the datasets are randomly split for training and 
testing [3]. This problem can be aggravated, especially in the 
semi-supervised learning scenarios. Such problem may lead 
to very specific classification rules or missing rules for the 
minority class without sufficient generalization capability for 
future prediction [26].

Figure 1. The procedure of CSDP defect predictor
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To address the problem of lacking labeled software 
instances, especially for new software projects, we propose 
to use a novel unsupervised sampling method to sample a few 
parts of fault modules that have high degree of defect 
indicators as labeled instances, and choose some non-
defective instances randomly from the software repository. 
By putting the small amount of labeled data together with the 
set of unlabeled data examples together to form the training 
dataset, it is expected that the training data does closely 
resemble the original data distribution and may help 
addressing the unbalance distribution of software defect data.

Generally, the defective instances have higher metric 
values than non-defective ones [7]. Based on this observation, 
we propose an unsupervised sampling method to obtain the 
labeled data for training by using the magnitude of metric 
values. The use of the magnitude of metric values as the 
threshold to determine the sampling procedure is inspired by 
[15]. Figure 2 shows an example of this unsupervised 
sampling approach. Assume that we have six metrics 
represented by X1, …, X6 without label content for the seven 
software instances, denoted by I1, …, I7. We set the median 
value as the specific cutoff threshold for each of the six 
metrics. We can determine the samples to select using the 
following steps: 

Step 1: Identifying the higher metric values that are 
greater than the median value. For example, the median of the 
metric X1 is 2 from {2, 3, 0, 1, 2, 1, 3}. The median of X5 is 
4 from {6, 7, 3, 5, 4, 0, 2}. Thus, we identify the higher metric 
values of X1 are those two cells with value {3, 3}, which are
higher than 2 and highlighted. Similarly, the higher metric 
values of X5 are those three cells with value {6, 7, 5}. This 
step is repeated until all other metrics are examined and 
computed.

Step 2 Counting the number of higher metric values
(those highlighted in grey) for each software instance. For 
example, the number of higher metric values is 2 for instance
I1 and 6 for instance I2. This step repeats until the count is 
computed for all instances. 

Step 3: Sorting the instances by their total number (count) 
of higher metric values. 

Step 4: Choosing 2* N previous instances as the 
candidates when assuming the size of labeled data as N . The 
goal is to get an appropriate range to randomly sample 
instances for training. For N=2, 4 instances will be chosen.

Step 5 Randomly sampling N instances to be labeled as 
the training data set from the candidate set.

Figure 2. Illustration of  the phase in unsupervised approach

The goal of computing a candidate set and then randomly 
choose N instances from the candidate set is to select the 
samples from the top of a few candidates as the training set 
since they have higher metric values. As sampling rate affects 
the prediction performance, we set different sampling rates in
the experiments. Then, we randomly sample unlabeled data 
from the whole dataset. The size of unlabeled sets is two 
times as large as labeled sets. Finally, the rest of datasets 
without labels are chosen as the testing data sets.

C. Training and Prediction
We use the training dataset to build the cost-sensitive 

semi-supervised SVM predictor, and then predict the defect-
prone instances from the rest unlabeled instances. Since semi-
supervised learning uses a few labeled data for training, the 
size of the labeled set is an important factor in prediction 
performance. Thus, we use varying sampling rates to model
the different proportions of labeled sets and apply different 
sampling rates in our study. Now we define our cost-sensitive 
software detect based SVM classifier. 

Conventional SVM method is not cost sensitive and thus 
not suitable for the software defect classification. We build 
our CSDP model by employing a cost-sensitive semi-
supervised learning algorithm based on low-density
separation, such as CS4VM [16]. Let {(x1, y1), …(xl, y1)} be
a set of labeled data, and {xl+1, …, xl+u} be a set of unlabeled 
data, where l and u are the total number of labeled samples
and total number of unlabeled samples respectively, and

. We denote Il={1, …, l} and Iu={l+1, …, l+u} as 
the two indices for the labeled and unlabeled instances
respectively. The labels ˆ ˆ ;i uy y i of the unlabeled 
samples are unknown, and are optimized using the following 
objective function:

2
1 2

1 ˆmin (y , ( )) (y , ( ))
2

ˆs. t . sgn( ( )) , y sgn(f(x )), ,
l u

u

i i i iHf
i i

i i i u
i

f C l f x C l f x

f x r i
l uil il

u

,u

(2)

Where H is the reproducing kernel Hilbert space (RKHS). C1
and C2 are the regularization parameters used for trading off 
the complexity and empirical errors on the labeled data and 
unlabeled data. The parameter r is defined by the user, which 
is the balance constraint to avoid the trivial solution that 
assigns all unlabeled instances to the same class. ˆ 1y r ,
where 1 is the all-one vector. ( , ( ))il y f x is the weighted 
hinge loss, which is defined as:

( , ( )) ( ) max 0,1 (x)l y f x C y yf        (3)

Where ( )C y is the cost of misclassifying y class, which 
reflects the cost-sensitive aspect of the CSDP model. To 
compare performance of different methods on defect 
detection, four widely used evaluation measures are used in 
our evaluation of CSDP. They are MR, FPR, FNR, and

Instances X1 X2 X3 X4 X5 X6 Count Instances Count
I1 2 1 3 0 6 2 2 I2 6
I2 3 3 4 3 7 5 6 I4 3 Candidate
I3 0 2 1 0 3 1 0 I1 2 I2 Trianing set
I4 1 0 6 1 5 3 3 I5 2 I4 I4
I5 2 3 2 1 4 8 2 I6 1 I1 I1
I6 1 2 0 2 0 1 1 I7 1 I5
I7 3 2 1 1 2 0 1 I3 0

Median 2 2 2 1 4 2

  The high metric value
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NECM [22]. MR is the misclassification rate that indicates 
the ratio of number of wrongly predicted modules to the total 
number of modules. FPR and FNR denote the false positive 
rate (a non-defective module is misclassified as defect one)
and false negative rate (a defective module is misclassified as 
non-defective one). The three metrics are commonly used 
performance metrics in software defect prediction [11], 
which are shown as follows:

FP FNMR
TP TN FP FN              (4)

FPFPR
TN FP                          (5)    

FNFNR
TP FN                        (6)  

Where TP is the number of true positives, FP is the number 
of false positives, TN is the number of true negatives, and FN
is the number of false negatives. Smaller values of FNR, FPR
and MR represent better performance of models. Considering 
the misclassification costs and defective module rate, the 
Expect Cost of Misclassification (ECM) is generally used as 
a singular measure to compare the performances of different 
classification model. The ECM measure is defined in (7), 
which includes both the prior probabilities of the two classes 
and the misclassification costs. Since it is not practical to 
obtain the individual misclassification costs for the two type 
errors. The ECM is normalized over C(-1). The Normalized 
Expected Cost of Misclassification (NECM) is given in (8).

( 1) ( 1)ndp dpECM C FPR P C FNR P (7)

( 1)
( 1)ndp dp

CNECM FPR P FNR P
C

   (8)

Where Pndp and Pdp are the non-defective rate and defect rate 
of modules in the dataset, C(-1) and C(+1) are the costs of 
false positive rate and false negative rate, respectively.

IV. EXPERIMENTAL DESCRIPTION   

Datasets and Metrics. We evaluate the effectiveness of 
CSDP using the MR, FPR, FNR, and NECM metrics on four 
popular datasets namely CM1, KC1, KC2, PC1 that are 
publicly available from NASA MDP [28]. Each dataset 
consists of several records and each record is composed of 
quality metrics extracted from software module. Table IV
provides a brief description of five datasets. The proportion 

of the defective modules shows the high imbalance 
distribution with data varying from 6.9 to 20.5.

During the process of unsupervised sampling, we first 
label the sample instances according to sampling rate and 
then randomly choose some instances from the remaining 
data. To avoid the bias, this process is repeated 20 times so 
that the partition of dataset is different each time. For each 
performance measure, the mean value is calculated from the
results of these 20 runs. For evaluating, the cost ratio is set 
from 1 to 10. That is, the experiments were run 200 times for 
each dataset.

Comparative Methods. We compared CSDP with three 
cost-sensitive learning models: CSBNN-WU1, CSBNN-
WU2, CSBNN-TM [22], and two semi-supervised learning 
models: ACoForest[9] and S4VM[29]. CSBNN-WU1, 
CSBNN-WU2 and CSBNN-TM are different types of neural 
networks also studied in [8]. CSBNN-WU1 and CSBNN-
WU2 introduce the cost matrix into the weight-updating 
process by making two modifications from the original 
weight-updating process. CSBNN-TM directly applies the
threshold-moving in final output of AdaBoost algorithm.
ACoForest is a sample based prediction model with active
and semi-supervised learning. S4VM is a safe semi-
supervised support machines learning approach. 

The Parameters of CSDP. The cost matrix given in Table 
II is used in the experiments reported in this paper. It is worth 
to note that in practice, such a cost matrix may vary for 
different software projects and various scenarios should be 
considered to define and obtain such a cost matrix. In this 
study, we use the cost ratio ( 1) / ( 1)C C C and vary the 
ratio from 1 to 10 to evaluate the prediction performance. For 
the kernel function of support vector machines, there is no 
commonly agreed-upon standard for choosing it. In our 
experiments, we found that Gaussian kernel performs better 
than linear kernel. Other core parameters and their settings 
are given in Table III. C1 and C2 are the parameters for trading
off the complexity and empirical errors on the labeled and 
unlabeled data. Parameter MaxIter denotes maximal iteration
number of process of estimating the label means for 
unlabeled training data. For each dataset, we sample a small 
portion of modules to be labeled according the sample rate 

, while the remaining instances are unlabeled data for the 
training set and the testing set.

Table III. PARAMETERS OF CSDP ALGORITHM

Parameter Value
Kernel 1-gaussian kernel

C1 300
C2 300

MaxIter 100
0.2

Table IV. SOFTWARE DEFECT DATASETS

Data Set Language System #Modules #defectives %Defect rate
CM1 C Spacecraft instrument 498 49 9.8
KC1 C++ Storage management 2109 326 15.5
KC2 C++ Scientific data processing 522 107 20.5
PC1 C Flight software 1109 77 6.9
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Table V. PERFORMANCE COMPARISON OF CSDP WITH TWO SEMI-SUPERVISED METHODS (SAMPLE RATE U=0.1)

Datasets
u=0.1

MR FPR FNR F-measure
ACoForest S4VM CSDP ACoForest S4VM CSDP ACoForest S4VM CSDP ACoForest S4VM CSDP

cm1 0.128 0.128 0.204 0.047 0.043 0.158 0.877 0.892 0.655 0.136 0.136 0.234
pc1 0.080 0.085 0.264 0.020 0.025 0.243 0.880 0.902 0.595 0.150 0.129 0.154
kc1 0.181 0.164 0.482 0.070 0.060 0.488 0.790 0.731 0.445 0.258 0.332 0.229
kc2 0.195 0.194 0.458 0.070 0.092 0.484 0.669 0.589 0.334 0.381 0.451 0.338

Table VI. PERFORMANCE COMPARISON OF CSDP WITH TWO SEMI-SUPERVISED METHODS (SAMPLE RATE U=0.2)

Datasets
u=0.2

MR FPR FNR F-measure
ACoForest S4VM CSDP ACoForest S4VM CSDP ACoForest S4VM CSDP ACoForest S4VM CSDP

cm1 0.116 0.140 0.236 0.029 0.060 0.207 0.910 0.861 0.568 0.122 0.156 0.232
pc1 0.072 0.079 0.182 0.013 0.022 0.163 0.853 0.858 0.509 0.213 0.191 0.231
kc1 0.173 0.163 0.628 0.060 0.055 0.711 0.789 0.742 0.070 0.270 0.329 0.214
kc2 0.211 0.189 0.324 0.107 0.091 0.342 0.604 0.569 0.218 0.410 0.480 0.432

A. Performance of CSDP 
We first measure and compare the effectiveness of CSDP 

with the other five existing representative methods using the 
NECM metric as it is the most widely used metric for 
software defect prediction evaluation [23]. Figure 3 shows 
the performance comparison results of CSDP with three cost-
sensitive neural network boosting algorithms (CSBNN-WU1, 
CSBNN-WU2, CSBNN-TM) on the four datasets, CM1, PC1, 
KC1, KC2, respectively. We evaluate the prediction 
performance by varying the cost ratio from 1 to 10 and show 
the NECM measurement results in the y-axis by varying cost 
ratios in the x-axis. From the Figure 3, we observe that CSDP 
achieves the lowest NECM in comparison, and is consistently 
lower than that of CSBNN-WU1 and CSBNN-WU2 for all 
four datasets and all cost ratios. This shows that when the data 
sets have highly skewed class distribution, CSDP is more 
effective than the other three methods.

Table V and Table VI show the prediction results of 
CSDP, compared with the two existing representative semi-
supervised learning methods on the four datasets, with two 
different sampling rates, u=0.1 and u=0.2 respectively. The 
performance measurements for each of the three methods in 
comparison are averaged over the total of 20 runs. The cost 
ratio is estimated at 10. For each dataset, CSDP performs the 
best in terms of FNR, and lower FNR indicates that recall of 
defects is higher. This is consistent with the theory of 
Menzies et al. [18]: prediction models with low precision and 
high recall are useful in practice. For the two datasets (cm1 
and pc1), CSDP achieves better performance than ACoForest 
and S4VM in the terms of F-measure. MR and FPR are not 
the lowest indicate the accuracy is compromised to a lesser 
extent as the recall increases. Our results shows that the 
proposed CSDP approach outperforms the ACoForest 
method by 35.7% and 38.2% for average F-measure when the 
sampling rate u is 0.1 and 0.2, respectively. Furthermore, 
CSDP outperforms S4VM by 46.4% and 33.4% in terms of 
average F-measure when the sampling rate u is 0.1 and 0.2, 
respectively. From above experiments, we can see that CSDP 
gives comparable results to CSBNN-WU1, CSBNN-WU2
and CSBNN-TM in MR, FPR, FNR, and NECM. Note that 
CSDP only needs little labeled data while other methods are 
all supervised learning. On the other hand, compared with 
semi-supervised models, CSDP achieves slightly higher 

recall, and it is more effective under the limited imbalance 
labeled data set.

Figure 3. NECM Performance comparison of CSDP with three cost-
sensitive neural networking boosting algorithms for cm1 dataset

B. Effect of cost setting 
Figure 4 shows the performance of CSDP in FPR, FNR 

and MR, which is affected by different settings of C(+1), C(-
1) pairs. As we can see, while the cost of misclassification 
defective modules (C(+1)) increases (higher cost ratio), FNR 
performance decreases. It means that recall performance is 
improved as C(+1) increases. And as the cost of 
misclassification non-defective modules (C(-1)) increases 
(lower cost ratio), the FPR performance decreases.  Since the 
major modules are non-defective modules, the MR 
performance increases with FPR performance increases. 
Lower FPR indicates that less errors in non-defective 
modules prediction. Experiments show that CSDP is 
sensitive to the defect cost.
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Figure 4. Performance of CSDP with different cost setting

C. Effect of unsupervised sample method 
Figure 5 and Figure 6 show the prediction performance of 

model using our proposed unsupervised sampling method 
compared with that of model with random sample method. It 
can be observed that CSDP performs better result in NECM 
and FNR, except for the case that the cost ratio is larger than 
6 and the dataset kc1 is used. However, in that case the PNR 
of CSDP with sample method is lower. Moreover, CSDP 
obtain lower FNR (higher recall) than random sample 
method at most time except for the case that the cost ratio is 
larger than 5 and the dataset kc2 is used. In fact, the lower 
total misclassification cost and higher recall is useful for 
practical application. The experimental results suggest that 
using proposed sample method can improve the performance 
of prediction model.

Figure 5. The NECM performance of the CSDP when uses sample method 
and when uses random sample method

Figure 6. FNR performance of the CSDP when uses sample method and 
when uses random sample method

V. RELATED WORK

Software detect prediction. Typical software defect 
prediction methods include Naïve Bayes [17], logistic 
regression [18], SVM [2], decision tree [1], neural network [3]. 
Some optimizations have also been proposed: [4] used 
multiple kernel ensemble learning classifier to predict 
defective module. [2] applied Convolutional Neural Network 
for feature generation with better performance compared to 
Deep Belief Network and logistic regression. 

Semi-supervised learning describes a class of machine 
learning techniques that make use of a small set of labeled data 
together with a large amount of unlabeled data. [20] present a 
constraint-based semi-supervised clustering method with no
defect data or quality-based class labels. [20] proposed an 
interactive self-training based semi-supervised approach 
named FTF, in which random forest as the base supervised 
learner and repeatedly updates by the labels of originally
unlabeled software modules. [9] presents CoForest and 
ACoForest for sample-based semi-supervised defect 
prediction classifier construction.  

Class-imbalanced learning. To address the class 
imbalanced detection, various techniques have been proposed 
to re-balance the class distribution by resampling, such as 
majority under-sampling and minority over-sampling, and to 
adapt existing classifier to bias towards the small class, such
as cost-sensitive learning [22]. Cost-sensitive learning aims to 
minimize the total expected costs by utilizing the cost 
information. Some studies employed cost-sensitive learning 
methods including cost-sensitive neural network [23], cost-
sensitive decision tree [24], and cost-sensitive boosting [22].
Recently, [11] proposed two-stage cost-sensitive learning 
method, which utilizes cost information in both classification 
stage and feature selection stage. [26] proposed three-way 
decision framework, which takes the uncertainty of two-way 
decisions into consideration and classifies objects based on a
set of criteria. These studies focus solely on one of the two 
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issues for improving performance of predictors. Few have
considered addressing both issues simultaneously. [13]
proposed Rocus, a semi-supervise learning approach, which 
employs under-sampling in learning process to solve the 
class-imbalance problem and did not take into account the 
different cost of misclassifications.

VI. CONCLUSION 

Software defect prediction is important to improve 
software quality of software system. However, software 
datasets lack labeled well-labeled software data and highly 
class imbalanced. To address the two practical challenges, we 
propose a cost-sensitive semi-supervised defect prediction 
(CSDP) approach by exploiting semi-unsupervised SVM and 
incorporating the cost information for better detection. First, 
we employ unsupervised sampling to increase the defect rate 
for semi-supervised SVM. Second, we built a predicting
model with the lowest overall cost after considering the cost 
of different misclassification errors. Experimental results on 
real-world software datasets show that CSDP outperforms
the state of the art semi-supervised learning methods which 
ignores imbalance classification costs, especially in terms of 
F-measure rate. CSDP can achieve comparable performance
compared with the state of the art supervised learning models
when only few labeled data is available.
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