
classification Cost-Sensitive Software Defect Prediction

Ling Xu1,2, Bei Wang1,Ling Liu2,Mo Zhou1,Shengping Liao1,Meng Yan3

1School of Software Engineering, Chongqing University, Chongqing, China
2College of Computing, Georgia Institute of Technology, Atlanta, GA, USA

3College of Computer Science and Technology, Zhejiang University, Zhejiang, China
xuling@cqu.edu.cn; 695887391@qq.com; ling.liu@cc.gatech.edu;

{357668386,513167943}@qq.com; mengy@zju.edu.cn

Abstract—Software defect prediction helps developers focus on
defective modules for efficient software quality assurance. A
common goal shared by existing software defect prediction
methods is to attain low classification error rates. These
proposals suffer from two practical problems: (i) Most of the
prediction methods rely on a large number of labeled training
data. However, collecting labeled data is a difficult and
expensive task. It is hard to obtain classification labels over new
software projects or existing projects without historical defect
data. (ii) Software defect datasets are highly imbalanced. In
many real-world applications, the misclassification cost of
defective modules is generally several times higher than that of
non-defective ones. In this paper, we present a misclassification
Cost-sensitive approach to Software Defect Prediction (CSDP).
The CSDP approach is novel in two aspects: First, CSDP
addresses the problem of unlabeled software detect datasets by
combining an unsupervised sampling method with a domain
specific misclassification cost model. This preprocessing step
selectively samples a small percentage of modules through
estimating their classification labels. Second, CSDP builds a
cost-sensitive support vector machine model to predict defect-
proneness of the rest of modules with both overall classification
error rate and domain specific misclassification cost as quality
metrics. CSDP is evaluated on four NASA projects.

Experimental results highlight three interesting observations: (1)
CSDP achieves higher Normalized Expected Cost of
Misclassification (NECM) compared with state-of-art
supervised learning models under imbalanced training data
with limited labeling. (2) CSDP outperforms state-of-art semi-
supervised learning methods, which disregards classification
costs, especially in recall rate. (3) CSDP enhanced through
unsupervised sampling as a preprocessing step prior to training
and prediction outperforms the baseline CSDP without the
sampling process.

Keywords-software defect prediction; cost-sensitive; semi-
supervised; unsupervised sampling

I. INTRODUCTION

Software defect prediction is the process of predicting
whether software modules have defects or not, and it is used
as an effective means for software quality assurance. High
quality software typically contains less defect-prone software
modules. However, as the size and complexity of the software
system continue to increase, it becomes difficult if not
impossible to manually test and track all the paths of possible
failures under a tight project schedule. Thus, automatically
and accurately predicting whether a software module contains
defects may help to guide software developers focus quality

on software defect-prone modules, which reduces the test time,
and improves the quality of software systems.

Most of the existing work for software defect prediction
adopt statistical and machine learning methods, such as
association rule mining [1], support vector machine (SVM)
[2], neural networks [3], and decision tree [3]. However, these
studies have not considered two critical and yet software
defect specific challenges. First, the training dataset used in
these studies lacks of well-labeled data about software
modules for a number of reasons. Collecting labeled software
data is an expensive task given limited time and limited
resources for software testing. It is also difficult to collect
labeled data for new projects or projects with limited
development history. The problem of lacking well-labeled
software defect modules is considered a barrier of adopting
defect prediction in industry [5]. Second, the datasets of
software modules are highly imbalanced with respect to the
defect v.s. non-defect classification. The number of defect
modules is usually much less than the number of non-defect
ones. At the same time, the misclassification cost of putting
defect software into non-defect class is much higher than for
the misclassification cost of putting non-defect software to
defect class. Such imbalance and the sensitivity of software
defect prediction to the misclassification cost have been
observed in many real-world applications and software testing
practice [12]. We argue that software defect prediction
methods should use both the overall classification error rates
and the domain specific misclassification costs as two equally
important quality metrics to evaluate the effectiveness of
software defect detection methods.

Software defect prediction using machine learning (ML)
algorithms has attracted much attentions in the last decade,
ranging from semi-supervise learning [6], cross-project defect
prediction [7], unsupervised learning [8], sampling [9],
ensemble approaches [10], cost-sensitive [11], feature
selection [12]. Most of these approaches improves prediction
accuracy by focusing on addressing either the imbalance of
labeled data and unlabeled data in the training set or the
imbalance with respect to the misclassification cost between
defect class and non-defect class. Few have ever addressed
both problems under one unifying framework for software
defect prediction. For instance, existing semi-supervised
learning approaches focus on improving the ratio of labeled
data in the training phase by developing class label predictor
that assign labels to the unlabeled data using sampling
methods. On one hand, sampling may lead to overfitting if
provided with only a few labeled instances. Furthermore, most

256

2018 IEEE International Conference on Information Reuse and Integration for Data Science

978-1-5386-2659-7/18/$31.00 ©2018 IEEE
DOI 10.1109/IRI.2018.00047

of class-label predictors are only effective when labeled data
in the non-defective class is increasing and suffer from having
imbalanced classes: a large number of newly labeled non-
defective modules verse very few labeled defect modules.
Even when more training data are labeled by non-defective
class, the improvement of training data size is primarily on
increasing the number of non-defective software modules.
The fact that the actual number of software defect modules is
significantly less than the number of non-defective software
modules, makes the matter of imbalance of labeled data and
unlabeled data even worse. As a result, even the total
classification accuracy may be increased, the prediction
model learner remains inefficient and suffering from the
difficulty and low success rate in finding defective modules.
Recently, a couple of researchers investigate the class
imbalanced problem given the total set of labeled training data.
A semi-supervise machine learning approach is proposed in
[13], which promotes to employ under-sampling in the
learning process, and [14] extends the proposal with an
improved semi-supervised learning approach. Both employ
random under-sampling technique to resample the original
training set and updating training set in each round for co-train
style algorithm. However, both methods consider that all
classification errors have equal costs, regardless whether
errors were misclassification of non-defect to defect or
misclassification of defect to non-defect. They both aim to
minimize the total expected costs.

In this paper, we highlight two observations: First, in
software detect detection, the cost of misclassification of
defect to non-defect in prediction is much higher and more
destructive than that of misclassification of non-defect to
defect. Thus, the misclassification cost for different classes
has different effect on the quality of classification based
prediction and simply using the total classification errors for
all classes and the total number of misclassified records alone
may not be effective measures. Second, the imbalance of
defective samples v.s. non-defective samples in labeled
training data may lead to overfitting, causing detrimental
effect due to increased cost of misclassifying defective
software into non-defective class. In order to achieve highly
effective predictions, we need to consider different types of
imbalance simultaneously and we need to evaluate the quality
of software defect prediction classifiers using both the total
classification error and the class-specific misclassification
cost as the two core quality metrics of equal importance.

With these arguments in mind, we propose a Cost-
sensitive Semi-supervised software Defect Prediction (CSDP)
model. CSDP combine an unsupervised sampling method
with a domain specific misclassification cost model. CSDP
carries out the prediction task in two main phases. In the first
phase, we adopt an unsupervised sampling method to estimate
the label of a small percent of instances. The basic idea of
unsupervised sampling is based on the observation that higher
metric values tend to indicate more defect-proneness [16]. By
obtaining a small percentage of labeled training data from the
target dataset, these labeled training data may be used to
construct a defect prediction model with a semi-supervised
learning as a preprocessing step. In the second phase, CSDP
builds the prediction model in a misclassification-cost

sensitive manner by combining a cost-sensitive semi-
supervised Support Vector Machine (CS4VM) [16] with
software metrics for software defect prediction. We evaluate
CSDP on four NASA projects. The empirical evaluation
shows that CSDP is more effective compared with state-of-art
supervised learning models, for software defect prediction,
especially under the imbalanced data sets with limited labeling.

II. MOTIVATION

In classic data mining and machine learning, classifiers
usually focus on minimize the total errors of misclassification
to achieve high classification accuracy. However, such an
objective function is valid only when the misclassification
cost of each class is equal. Unfortunately, there exist many
real-world applications, in which different misclassifications
are often associated with unequal costs. Table I gives two
cases of misclassification cost. In Case 1, the cost of
misclassifying a non-terrorist as terrorist is much lower than
the cost of misclassifying an actual terrorist who may carry a
bomb to a flight [25]. Case 2 is a multi-class problem. It is
obviously that the cost of diagnosing a cancer patient as a
healthy person is much more serious than erroneously
diagnosing a healthy person as a cancer patient. The patients
could lose their life because of a late diagnosis and treatment.
Similarity, wrongly predicting healthy as cold or cold as a
lung cancer, has a different cost than the other way around. In
the context of software defect prediction, there are also two
types of errors. Type I misclassification occurs when the
classification model predicts a non-defective module as a
defective one. Similarly, Type II misclassification may induce
much worse prediction errors, when a defective module is
wrongly classified as non-defective, because it may steer
software defect undetected and lead to more serious damages.
Thus, for software defect prediction, we argue that the cost of
Type II misclassification is much higher than that of Type I
misclassification.

Table I. EXAMPLES OF MISCLASSIFICATION

Misclassification Cost
Case 1 Non-Terrorist -> Terrorist Low

Terrorist-> Non-Terrorist High
Case 2 Healthy -> Lung Cancer, Healthy -> Cold Low

Cold -> Healthy higher
Lung Cancer -> Healthy, Lung Cancer -> Cold highest

Cost-sensitive learning methods consider the varying
costs of different misclassification types. There are two kinds
of misclassification cost: class-dependent cost and example-
dependent cost [11]. The former is the costs of misclassifying
any example in class A into the B class are the same. The
latter is the costs of classifying different examples in class A
into B are different even when the error types are the same.
In practice, it is not easy to get the cost for every training
example. Comparatively, class-dependent cost is often used
because it is easier to obtain, which is the focus in this paper.

III. THE CSDP APPROACH

Software defect prediction is typically modeled as a
binary classification problem. In this paper, we use the cost

257

matrix in Table II for CSDP, where "0” denotes that the cost
of correct prediction of an instance, “C(-1)” denotes the cost
of misclassifying a non-defective module to a defective
module, “C(+1)” denotes the cost of misclassifying a
defective module to non-defective one.

Table II. COST MATRIX FOR CSDP

 Actual
defect-prone

Actual
non-defect-prone

Predict defect-prone 0 C(-1)
Predict non-defect-prone C(+1) 0

Figure 1 shows the architecture of the proposed CSDP
system for software defect prediction. It consists of three
phases: data preprocessing, unsupervised sampling, and
training and prediction. We will discuss each of these three
phases in the next three subsections.

A. Data Preprocessing
We extract software metrics by using static analysis tools

and apply the log transformation to standardize all metrics.
This step aims to find the optimal feature subset that is
necessary and sufficient for defect prediction. In most of the
software datasets, some metrics have missing values, and
thus the training and validation data input vectors of metrics
contain null values. For numbercial metric fields, we adopt
mean substitution, a common method for the situation where
the size of data set is huge. It applies the mean of metric
values to replace the null value, followed by a normalization

preprocess since the value ranges of the metrics vary widely.
We compared several commonly used normalization
algorithms, and our experimental results show that the
logarithm filtering normalization returned better result. In our
implementation of CSDP, we apply a logarithm method for
minimum value to avoid taking the logarithm of zero. Our
normalization approach is defined as follows:

ln(0.000001), 0
()

ln(), 0
x x

f x
x x

 (1)

Where x is the value of metrics. For non-numerical metrics,
we first removed the records that have one or more critical
metric values unknown.

B. Unsupervised Sampling
Data imbalance happens in many real-world applications,

especially those for defect detection, such as in healthcare,
manufacturing, and software assurance. One extreme of such
data imbalance may cause no defect samples in some training
datasets when the datasets are randomly split for training and
testing [3]. This problem can be aggravated, especially in the
semi-supervised learning scenarios. Such problem may lead
to very specific classification rules or missing rules for the
minority class without sufficient generalization capability for
future prediction [26].

Figure 1. The procedure of CSDP defect predictor

258

To address the problem of lacking labeled software
instances, especially for new software projects, we propose
to use a novel unsupervised sampling method to sample a few
parts of fault modules that have high degree of defect
indicators as labeled instances, and choose some non-
defective instances randomly from the software repository.
By putting the small amount of labeled data together with the
set of unlabeled data examples together to form the training
dataset, it is expected that the training data does closely
resemble the original data distribution and may help
addressing the unbalance distribution of software defect data.

Generally, the defective instances have higher metric
values than non-defective ones [7]. Based on this observation,
we propose an unsupervised sampling method to obtain the
labeled data for training by using the magnitude of metric
values. The use of the magnitude of metric values as the
threshold to determine the sampling procedure is inspired by
[15]. Figure 2 shows an example of this unsupervised
sampling approach. Assume that we have six metrics
represented by X1, …, X6 without label content for the seven
software instances, denoted by I1, …, I7. We set the median
value as the specific cutoff threshold for each of the six
metrics. We can determine the samples to select using the
following steps:

Step 1: Identifying the higher metric values that are
greater than the median value. For example, the median of the
metric X1 is 2 from {2, 3, 0, 1, 2, 1, 3}. The median of X5 is
4 from {6, 7, 3, 5, 4, 0, 2}. Thus, we identify the higher metric
values of X1 are those two cells with value {3, 3}, which are
higher than 2 and highlighted. Similarly, the higher metric
values of X5 are those three cells with value {6, 7, 5}. This
step is repeated until all other metrics are examined and
computed.

Step 2 Counting the number of higher metric values
(those highlighted in grey) for each software instance. For
example, the number of higher metric values is 2 for instance
I1 and 6 for instance I2. This step repeats until the count is
computed for all instances.

Step 3: Sorting the instances by their total number (count)
of higher metric values.

Step 4: Choosing 2* N previous instances as the
candidates when assuming the size of labeled data as N . The
goal is to get an appropriate range to randomly sample
instances for training. For N=2, 4 instances will be chosen.

Step 5 Randomly sampling N instances to be labeled as
the training data set from the candidate set.

Figure 2. Illustration of the phase in unsupervised approach

The goal of computing a candidate set and then randomly
choose N instances from the candidate set is to select the
samples from the top of a few candidates as the training set
since they have higher metric values. As sampling rate affects
the prediction performance, we set different sampling rates in
the experiments. Then, we randomly sample unlabeled data
from the whole dataset. The size of unlabeled sets is two
times as large as labeled sets. Finally, the rest of datasets
without labels are chosen as the testing data sets.

C. Training and Prediction
We use the training dataset to build the cost-sensitive

semi-supervised SVM predictor, and then predict the defect-
prone instances from the rest unlabeled instances. Since semi-
supervised learning uses a few labeled data for training, the
size of the labeled set is an important factor in prediction
performance. Thus, we use varying sampling rates to model
the different proportions of labeled sets and apply different
sampling rates in our study. Now we define our cost-sensitive
software detect based SVM classifier.

Conventional SVM method is not cost sensitive and thus
not suitable for the software defect classification. We build
our CSDP model by employing a cost-sensitive semi-
supervised learning algorithm based on low-density
separation, such as CS4VM [16]. Let {(x1, y1), …(xl, y1)} be
a set of labeled data, and {xl+1, …, xl+u} be a set of unlabeled
data, where l and u are the total number of labeled samples
and total number of unlabeled samples respectively, and

. We denote Il={1, …, l} and Iu={l+1, …, l+u} as
the two indices for the labeled and unlabeled instances
respectively. The labels ˆ ˆ ;i uy y i of the unlabeled
samples are unknown, and are optimized using the following
objective function:

2
1 2

1 ˆmin (y , ()) (y , ())
2

ˆs. t . sgn(()) , y sgn(f(x)), ,
l u

u

i i i iHf
i i

i i i u
i

f C l f x C l f x

f x r i
l uil il

u

,u

(2)

Where H is the reproducing kernel Hilbert space (RKHS). C1
and C2 are the regularization parameters used for trading off
the complexity and empirical errors on the labeled data and
unlabeled data. The parameter r is defined by the user, which
is the balance constraint to avoid the trivial solution that
assigns all unlabeled instances to the same class. ˆ 1y r ,
where 1 is the all-one vector. (, ())il y f x is the weighted
hinge loss, which is defined as:

(, ()) () max 0,1 (x)l y f x C y yf (3)

Where ()C y is the cost of misclassifying y class, which
reflects the cost-sensitive aspect of the CSDP model. To
compare performance of different methods on defect
detection, four widely used evaluation measures are used in
our evaluation of CSDP. They are MR, FPR, FNR, and

Instances X1 X2 X3 X4 X5 X6 Count Instances Count
I1 2 1 3 0 6 2 2 I2 6
I2 3 3 4 3 7 5 6 I4 3 Candidate
I3 0 2 1 0 3 1 0 I1 2 I2 Trianing set
I4 1 0 6 1 5 3 3 I5 2 I4 I4
I5 2 3 2 1 4 8 2 I6 1 I1 I1
I6 1 2 0 2 0 1 1 I7 1 I5
I7 3 2 1 1 2 0 1 I3 0

Median 2 2 2 1 4 2

 The high metric value

259

NECM [22]. MR is the misclassification rate that indicates
the ratio of number of wrongly predicted modules to the total
number of modules. FPR and FNR denote the false positive
rate (a non-defective module is misclassified as defect one)
and false negative rate (a defective module is misclassified as
non-defective one). The three metrics are commonly used
performance metrics in software defect prediction [11],
which are shown as follows:

FP FNMR
TP TN FP FN (4)

FPFPR
TN FP (5)

FNFNR
TP FN (6)

Where TP is the number of true positives, FP is the number
of false positives, TN is the number of true negatives, and FN
is the number of false negatives. Smaller values of FNR, FPR
and MR represent better performance of models. Considering
the misclassification costs and defective module rate, the
Expect Cost of Misclassification (ECM) is generally used as
a singular measure to compare the performances of different
classification model. The ECM measure is defined in (7),
which includes both the prior probabilities of the two classes
and the misclassification costs. Since it is not practical to
obtain the individual misclassification costs for the two type
errors. The ECM is normalized over C(-1). The Normalized
Expected Cost of Misclassification (NECM) is given in (8).

(1) (1)ndp dpECM C FPR P C FNR P (7)

(1)
(1)ndp dp

CNECM FPR P FNR P
C

 (8)

Where Pndp and Pdp are the non-defective rate and defect rate
of modules in the dataset, C(-1) and C(+1) are the costs of
false positive rate and false negative rate, respectively.

IV. EXPERIMENTAL DESCRIPTION

Datasets and Metrics. We evaluate the effectiveness of
CSDP using the MR, FPR, FNR, and NECM metrics on four
popular datasets namely CM1, KC1, KC2, PC1 that are
publicly available from NASA MDP [28]. Each dataset
consists of several records and each record is composed of
quality metrics extracted from software module. Table IV
provides a brief description of five datasets. The proportion

of the defective modules shows the high imbalance
distribution with data varying from 6.9 to 20.5.

During the process of unsupervised sampling, we first
label the sample instances according to sampling rate and
then randomly choose some instances from the remaining
data. To avoid the bias, this process is repeated 20 times so
that the partition of dataset is different each time. For each
performance measure, the mean value is calculated from the
results of these 20 runs. For evaluating, the cost ratio is set
from 1 to 10. That is, the experiments were run 200 times for
each dataset.

Comparative Methods. We compared CSDP with three
cost-sensitive learning models: CSBNN-WU1, CSBNN-
WU2, CSBNN-TM [22], and two semi-supervised learning
models: ACoForest[9] and S4VM[29]. CSBNN-WU1,
CSBNN-WU2 and CSBNN-TM are different types of neural
networks also studied in [8]. CSBNN-WU1 and CSBNN-
WU2 introduce the cost matrix into the weight-updating
process by making two modifications from the original
weight-updating process. CSBNN-TM directly applies the
threshold-moving in final output of AdaBoost algorithm.
ACoForest is a sample based prediction model with active
and semi-supervised learning. S4VM is a safe semi-
supervised support machines learning approach.

The Parameters of CSDP. The cost matrix given in Table
II is used in the experiments reported in this paper. It is worth
to note that in practice, such a cost matrix may vary for
different software projects and various scenarios should be
considered to define and obtain such a cost matrix. In this
study, we use the cost ratio (1) / (1)C C C and vary the
ratio from 1 to 10 to evaluate the prediction performance. For
the kernel function of support vector machines, there is no
commonly agreed-upon standard for choosing it. In our
experiments, we found that Gaussian kernel performs better
than linear kernel. Other core parameters and their settings
are given in Table III. C1 and C2 are the parameters for trading
off the complexity and empirical errors on the labeled and
unlabeled data. Parameter MaxIter denotes maximal iteration
number of process of estimating the label means for
unlabeled training data. For each dataset, we sample a small
portion of modules to be labeled according the sample rate

, while the remaining instances are unlabeled data for the
training set and the testing set.

Table III. PARAMETERS OF CSDP ALGORITHM

Parameter Value
Kernel 1-gaussian kernel

C1 300
C2 300

MaxIter 100
0.2

Table IV. SOFTWARE DEFECT DATASETS

Data Set Language System #Modules #defectives %Defect rate
CM1 C Spacecraft instrument 498 49 9.8
KC1 C++ Storage management 2109 326 15.5
KC2 C++ Scientific data processing 522 107 20.5
PC1 C Flight software 1109 77 6.9

260

Table V. PERFORMANCE COMPARISON OF CSDP WITH TWO SEMI-SUPERVISED METHODS (SAMPLE RATE U=0.1)

Datasets
u=0.1

MR FPR FNR F-measure
ACoForest S4VM CSDP ACoForest S4VM CSDP ACoForest S4VM CSDP ACoForest S4VM CSDP

cm1 0.128 0.128 0.204 0.047 0.043 0.158 0.877 0.892 0.655 0.136 0.136 0.234
pc1 0.080 0.085 0.264 0.020 0.025 0.243 0.880 0.902 0.595 0.150 0.129 0.154
kc1 0.181 0.164 0.482 0.070 0.060 0.488 0.790 0.731 0.445 0.258 0.332 0.229
kc2 0.195 0.194 0.458 0.070 0.092 0.484 0.669 0.589 0.334 0.381 0.451 0.338

Table VI. PERFORMANCE COMPARISON OF CSDP WITH TWO SEMI-SUPERVISED METHODS (SAMPLE RATE U=0.2)

Datasets
u=0.2

MR FPR FNR F-measure
ACoForest S4VM CSDP ACoForest S4VM CSDP ACoForest S4VM CSDP ACoForest S4VM CSDP

cm1 0.116 0.140 0.236 0.029 0.060 0.207 0.910 0.861 0.568 0.122 0.156 0.232
pc1 0.072 0.079 0.182 0.013 0.022 0.163 0.853 0.858 0.509 0.213 0.191 0.231
kc1 0.173 0.163 0.628 0.060 0.055 0.711 0.789 0.742 0.070 0.270 0.329 0.214
kc2 0.211 0.189 0.324 0.107 0.091 0.342 0.604 0.569 0.218 0.410 0.480 0.432

A. Performance of CSDP
We first measure and compare the effectiveness of CSDP

with the other five existing representative methods using the
NECM metric as it is the most widely used metric for
software defect prediction evaluation [23]. Figure 3 shows
the performance comparison results of CSDP with three cost-
sensitive neural network boosting algorithms (CSBNN-WU1,
CSBNN-WU2, CSBNN-TM) on the four datasets, CM1, PC1,
KC1, KC2, respectively. We evaluate the prediction
performance by varying the cost ratio from 1 to 10 and show
the NECM measurement results in the y-axis by varying cost
ratios in the x-axis. From the Figure 3, we observe that CSDP
achieves the lowest NECM in comparison, and is consistently
lower than that of CSBNN-WU1 and CSBNN-WU2 for all
four datasets and all cost ratios. This shows that when the data
sets have highly skewed class distribution, CSDP is more
effective than the other three methods.

Table V and Table VI show the prediction results of
CSDP, compared with the two existing representative semi-
supervised learning methods on the four datasets, with two
different sampling rates, u=0.1 and u=0.2 respectively. The
performance measurements for each of the three methods in
comparison are averaged over the total of 20 runs. The cost
ratio is estimated at 10. For each dataset, CSDP performs the
best in terms of FNR, and lower FNR indicates that recall of
defects is higher. This is consistent with the theory of
Menzies et al. [18]: prediction models with low precision and
high recall are useful in practice. For the two datasets (cm1
and pc1), CSDP achieves better performance than ACoForest
and S4VM in the terms of F-measure. MR and FPR are not
the lowest indicate the accuracy is compromised to a lesser
extent as the recall increases. Our results shows that the
proposed CSDP approach outperforms the ACoForest
method by 35.7% and 38.2% for average F-measure when the
sampling rate u is 0.1 and 0.2, respectively. Furthermore,
CSDP outperforms S4VM by 46.4% and 33.4% in terms of
average F-measure when the sampling rate u is 0.1 and 0.2,
respectively. From above experiments, we can see that CSDP
gives comparable results to CSBNN-WU1, CSBNN-WU2
and CSBNN-TM in MR, FPR, FNR, and NECM. Note that
CSDP only needs little labeled data while other methods are
all supervised learning. On the other hand, compared with
semi-supervised models, CSDP achieves slightly higher

recall, and it is more effective under the limited imbalance
labeled data set.

Figure 3. NECM Performance comparison of CSDP with three cost-
sensitive neural networking boosting algorithms for cm1 dataset

B. Effect of cost setting
Figure 4 shows the performance of CSDP in FPR, FNR

and MR, which is affected by different settings of C(+1), C(-
1) pairs. As we can see, while the cost of misclassification
defective modules (C(+1)) increases (higher cost ratio), FNR
performance decreases. It means that recall performance is
improved as C(+1) increases. And as the cost of
misclassification non-defective modules (C(-1)) increases
(lower cost ratio), the FPR performance decreases. Since the
major modules are non-defective modules, the MR
performance increases with FPR performance increases.
Lower FPR indicates that less errors in non-defective
modules prediction. Experiments show that CSDP is
sensitive to the defect cost.

261

Figure 4. Performance of CSDP with different cost setting

C. Effect of unsupervised sample method
Figure 5 and Figure 6 show the prediction performance of

model using our proposed unsupervised sampling method
compared with that of model with random sample method. It
can be observed that CSDP performs better result in NECM
and FNR, except for the case that the cost ratio is larger than
6 and the dataset kc1 is used. However, in that case the PNR
of CSDP with sample method is lower. Moreover, CSDP
obtain lower FNR (higher recall) than random sample
method at most time except for the case that the cost ratio is
larger than 5 and the dataset kc2 is used. In fact, the lower
total misclassification cost and higher recall is useful for
practical application. The experimental results suggest that
using proposed sample method can improve the performance
of prediction model.

Figure 5. The NECM performance of the CSDP when uses sample method
and when uses random sample method

Figure 6. FNR performance of the CSDP when uses sample method and
when uses random sample method

V. RELATED WORK

Software detect prediction. Typical software defect
prediction methods include Naïve Bayes [17], logistic
regression [18], SVM [2], decision tree [1], neural network [3].
Some optimizations have also been proposed: [4] used
multiple kernel ensemble learning classifier to predict
defective module. [2] applied Convolutional Neural Network
for feature generation with better performance compared to
Deep Belief Network and logistic regression.

Semi-supervised learning describes a class of machine
learning techniques that make use of a small set of labeled data
together with a large amount of unlabeled data. [20] present a
constraint-based semi-supervised clustering method with no
defect data or quality-based class labels. [20] proposed an
interactive self-training based semi-supervised approach
named FTF, in which random forest as the base supervised
learner and repeatedly updates by the labels of originally
unlabeled software modules. [9] presents CoForest and
ACoForest for sample-based semi-supervised defect
prediction classifier construction.

Class-imbalanced learning. To address the class
imbalanced detection, various techniques have been proposed
to re-balance the class distribution by resampling, such as
majority under-sampling and minority over-sampling, and to
adapt existing classifier to bias towards the small class, such
as cost-sensitive learning [22]. Cost-sensitive learning aims to
minimize the total expected costs by utilizing the cost
information. Some studies employed cost-sensitive learning
methods including cost-sensitive neural network [23], cost-
sensitive decision tree [24], and cost-sensitive boosting [22].
Recently, [11] proposed two-stage cost-sensitive learning
method, which utilizes cost information in both classification
stage and feature selection stage. [26] proposed three-way
decision framework, which takes the uncertainty of two-way
decisions into consideration and classifies objects based on a
set of criteria. These studies focus solely on one of the two

262

issues for improving performance of predictors. Few have
considered addressing both issues simultaneously. [13]
proposed Rocus, a semi-supervise learning approach, which
employs under-sampling in learning process to solve the
class-imbalance problem and did not take into account the
different cost of misclassifications.

VI. CONCLUSION

Software defect prediction is important to improve
software quality of software system. However, software
datasets lack labeled well-labeled software data and highly
class imbalanced. To address the two practical challenges, we
propose a cost-sensitive semi-supervised defect prediction
(CSDP) approach by exploiting semi-unsupervised SVM and
incorporating the cost information for better detection. First,
we employ unsupervised sampling to increase the defect rate
for semi-supervised SVM. Second, we built a predicting
model with the lowest overall cost after considering the cost
of different misclassification errors. Experimental results on
real-world software datasets show that CSDP outperforms
the state of the art semi-supervised learning methods which
ignores imbalance classification costs, especially in terms of
F-measure rate. CSDP can achieve comparable performance
compared with the state of the art supervised learning models
when only few labeled data is available.

Acknowledgement. This research is partially supported by
National Natural Science Foundation of China (61772093),
and NSF of Chongqing (cstc2015jcyjA40037), and China
Postdoctoral Science Foundation (No.2017M621931), and
Ling Liu’s research is partially supported by USA NSF CISE
SaTC grant No.1564097 and an IBM faculty award.

REFERENCES

[1] Song Q, Shepperd M, Cartwright M, et al. “Software defect association
mining and defect correction effort prediction,”IEEE Transactions on
Software Engineering, vol 32, Feb 2006, pp. 269-82.

[2] F. Xing, P. Guo, Lyu M R, “A novel method for early software quality
prediction based on support vector machine,” IEEE International
Symposium on Software Reliability Engineering (ISSRE 2005).

[3] Ö. F. Arar and K. Ayan, "Software defect prediction using cost-
sensitive neural network," Applied Soft Computing, vol. 33, 2015.

[4] T. M. Khoshgoftaar and N. Seliya, “Tree-based software quality
estimation models for fault prediction,” in Proc. 8th IEEE Symp.
Software Metrics, 2002.

[5] Catal, Cagatay. "Software fault prediction: A literature review and
current trends." Expert systems with applications vol38, Apr 2011.

[6] H. Lu, B. Cukic, and M. Culp, "Software defect prediction using semi-
supervised learning with dimension reduction," 2012 Proceedings of
the 27th IEEE/ACM International Conference on in Automated
Software Engineering (ASE), 2012, pp. 314-317.

[7] F. Zhang, Q. Zheng, Y. Zou, and AE. Hassan, Cross-project defect
prediction using a connectivity-based unsupervised classifier,
International Conference on Software Engineering, 2016.

[8] S. Zhong, TM. Khoshgoftaar, and N. Seliya, “Unsupervised learning
for expert-based software quality estimation,” IEEE International
Symposium on High Assurance Systems Engineering, 2004.

[9] M. Li, H. Zhang, R. Wu, and Z.-H. Zhou, "Sample-based software
defect prediction with active and semi-supervised learning,"
Automated Software Engineering, vol. 19, 2012, pp. 201-230.

[10] Sun Z, Song Q, Zhu X. "Using coding-based ensemble learning to
improve software defect prediction." IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews) vol.42. Jun
2012, pp.1806-1817.

[11] M. Liu, L. Miao, and D. Zhang, "Two-stage cost-sensitive learning for
software defect prediction," Reliability, IEEE Transactions on, vol. 63,
2014, pp. 676-686.

[12] Gao, Kehan, et al. "Choosing software metrics for defect prediction:
an investigation on feature selection techniques." Software: Practice
and Experience vol.41, May 2011, pp. 579-606.

[13] Y. Jiang, M. Li, and Z.-H. Zhou, "Software defect detection with
ROCUS," Journal of Computer Science and Technology, vol. 26,
2011, pp. 328-342.

[14] Ma, Ying, et al. "An improved semi-supervised learning method for
software defect prediction." Journal of Intelligent & Fuzzy Systems,
2014, pp. 2473-2480.

[15] J. Nam and S. Kim, "CLAMI: Defect Prediction on Unlabeled
Datasets," in Proceedings of the 30th IEEE/ACM International
Conference on Automated Software Engineering, 2015, pp. 452-463.

[16] Y.-F. Li, J. T. Kwok, and Z.-H. Zhou, "Cost-sensitive semi-supervised
support vector machine," in Proceedings of the National Conference
on Artificial Intelligence, 2010.

[17] Menzies, Tim, Jeremy Greenwald, and Art Frank. "Data mining static
code attributes to learn defect predictors." IEEE transactions on
software engineering vol.33, Jan 2007, pp: 2-13.

[18] Olague, Hector M., et al. "Empirical validation of three software
metrics suites to predict fault-proneness of object-oriented classes
developed using highly iterative or agile software development
processes." IEEE Transactions on software Engineering vol.33, Jun
2007, pp. 402-419.

[19] N. Seliya and T. M. Khoshgoftaar, "Software quality estimation with
limited fault data: a semi-supervised learning perspective," Software
Quality Journal, vol. 15, 2007, pp. 327-344.

[20] Lu, Huihua, Bojan Cukic, and Mark Culp. "An iterative semi-
supervised approach to software fault prediction." Proceedings of the
7th International Conference on Predictive Models in Software
Engineering. ACM, 2011, p. 15.

[21] Kamei, Yasutaka, et al. "The effects of over and under sampling on
fault-prone module detection." IEEE First International Symposium
on Empirical Software Engineering and Measurement, 2007.

[22] Zheng, Jun. "Cost-sensitive boosting neural networks for software
defect prediction." Expert Systems with Applications vol.37, June
2010, pp. 4537-4543.

[23] Ö. F. Arar and K. Ayan, "Software defect prediction using cost-
sensitive neural network," Applied Soft Computing, vol. 33, 2015.

[24] M. J. Siers and M. Z. Islam, "Software defect prediction using a cost
sensitive decision forest and voting, and a potential solution to the
class imbalance problem," Information Systems, vol. 51, 2015.

[25] Thai-Nghe, Nguyen, Zeno Gantner, and Lars Schmidt-Thieme. "Cost-
sensitive learning methods for imbalanced data." IEEE International
Joint Conference on Neural Networks (IJCNN), 2010.

[26] Li, Weiwei, Zhiqiu Huang, and Qing Li. "Three-way decisions based
software defect prediction." Knowledge-Based Systems. vol.91, 2016,
pp. 263-274.

[27] Y.-F. Li, J. T. Kwok, and Z.-H. Zhou, "Semi-supervised learning
using label mean," in Proceedings of the 26th Annual International
Conference on Machine Learning, 2009, pp. 633-640.

[28] Chapman, M., P. Callis, and W. Jackson. "Metrics data program."
NASA IV and V Facility, http://mdp. ivv. nasa. gov.2004.

[29] Li, Yu-Feng, and Zhi-Hua Zhou. "Towards making unlabeled data
never hurt." IEEE transactions on pattern analysis and machine
intelligence, vol. 37 Jan 2015, pp.175-188.

263

