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ABSTRACT
Software vulnerabilities represent one of the most pressing threats
to computing systems. Identifying vulnerabilities in source code is
crucial for protecting user privacy and reducing economic losses.
Traditional static analysis tools rely on experts with knowledge
in security to manually build rules for operation, a process that
requires substantial time and manpower costs and also faces chal-
lenges in adapting to new vulnerabilities. The emergence of pre-
trained code language models has provided a new solution for auto-
mated vulnerability detection. However, code pre-training models
are typically based on token-level large-scale pre-training, which
hampers their ability to effectively capture the structural and de-
pendency relationships among code segments. In the context of
software vulnerabilities, certain types of vulnerabilities are related
to the dependency relationships within the code. Consequently,
identifying and analyzing these vulnerability samples presents a
significant challenge for pre-trained models.

In this paper, we propose a data flow embedding technique to
enhance the performance of pre-trained models in vulnerability de-
tection tasks, named DFEPT, which provides effective vulnerability
data flow information to pre-trained models. Specifically, we parse
data flow graphs (DFG) from function-level source code, and use the
data type of the variable as the node characteristics of the DFG. By
applying graph learning techniques, we embed the data flow graph
and incorporate relative positional information into the graph em-
bedding using sine positional encoding to ensure the completeness
of vulnerability data flow information. Our research shows that

∗Meng Yan is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Internetware 2024, July 24–26, 2024, Macau, Macao
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0705-6/24/07
https://doi.org/10.1145/3671016.3671388
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1 INTRODUCTION
In recent times, software vulnerabilities have emerged as a pivotal
concern within the realm of software security [25, 47]. Due to se-
curity vulnerabilities, the personal information of many internet
users has been compromised, with common reports exposing in-
cidents involving millions of data breaches [2]. Furthermore, the
Common Vulnerabilities and Exposures (CVE) reports from 2016 to
2021 [1] indicate that the number and variety of vulnerabilities are
growing at an alarmingly rapid rate. These cybersecurity attacks
have brought incalculable harm and losses to the economy and so-
ciety [12, 34]. Consequently, it’s imperative to create effective tools
for detecting vulnerabilities, aiming to pinpoint potential security
flaws in the source code.

Early methods [25, 27] of vulnerability detection rely on the
prior knowledge of domain experts [29]. Experts have to manually
review large amount of source code and set specific rules or man-
ually extract features for detection. These approaches are costly
and inefficient because manually setting rules and extracting fea-
tures requires a significant amount of time and effort. Moreover,
these rules need constant maintenance and updating to adapt to
all the vulnerabilities in a codebase, which is not feasible with the
traditional approach.

The rapid development of artificial intelligence has driven soft-
ware companies to invest in vulnerability detection tools based on
deep learning [24, 46]. These tools have achieved commendable
performance, even surpassing traditional static analysis methods
[3, 9, 22]. Currently, deep learning-based vulnerability detection
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tools mainly fall into two categories: (1) Graph-based Models: These
approaches seek to utilize static analysis to uncover different types
of dependency relationships within source code, including Abstract
Syntax Trees (AST), Control Flow Graphs (CFG), Data Flow Graphs
(DFG), and Program Dependence Graphs (PDG). These techniques
employ graph learning to integrate both structural and semantic
insights derived from the source code for detection. For example,
Devign [47] uses a Programming Language (PL) parser to extract
multifaceted graph information for classification. DeepWukong [5]
first generates Program Dependence Graphs by considering control
flow and data dependencies, then extracts subgraphs, named XFGs,
from system API calls or operators, and finally inputs XFG to train
slice-level vulnerability detection models. (2) Sequence-based Mod-
els: These methods treat source code as sequences akin to natural
language, employing prevalent natural language processing tech-
niques to identify vulnerabilities [24]. The emergence of pre-trained
and fine-tuning techniques has become a popular learning paradigm
[8]. Inspired by models like BERT [8], researchers sequentially pro-
pose pre-trained models such as CodeBERT [11], GraphCodeBERT
[16], UniXcoder [15], and LineVul [12]. These models have succes-
sively demonstrated good performance in vulnerability detection
tasks [31].

However, in practical applications, the aforementioned methods
usually exhibit several limitations: (1) During the embedding pro-
cess, the node features of the graph are typically slice-level code
segments. Unfortunately, text or token information unrelated to
vulnerabilities, such as variable names and function names, is also
embedded, introducing additional noise and interference [30]. (2)
The relative position of nodes in the code structure graph is critical
to the emergence of vulnerabilities. The same code segment may
be marked with different security statuses in different contexts
[26]. However, graph learning overlooks the relative position of
nodes. (3) When detecting vulnerabilities, it is challenging for these
models to understand the semantics of vulnerabilities in the code
[30, 40]. While pre-trained models can be adapted for particular
tasks, focusing solely on textual analysis hampers their ability to
grasp the code’s intrinsic structure, like data flow and control flow.

To overcome the aforementioned limitations, we propose DFEPT,
a data flow embedding technique designed to enhance the perfor-
mance of pre-trainedmodels in vulnerability detection tasks. DFEPT
provides pre-trained models with the semantic information of data
flows in code structures and the relative position information of
nodes, thereby achieving better performance. Specifically, DFEPT
utilizes open-source code parsing tools to extract ASTs, and then
parses data flow graphs from the ASTs. To accurately identify each
specific data flow, we use only the data types of variables to initialize
node features, avoiding the introduction of extraneous information.
To incorporate the relative position features of nodes, we adopt the
sinusoidal positional encoding from the Transformer [38] architec-
ture to encode graph embeddings, providing the classifier with a
larger receptive field. We concatenate the extracted data flow infor-
mation with the output of the pre-trained model and input them
into the classifier for detection. This not only ensures the strong
performance of pre-trained models in vulnerability detection but
also supplements the models with effective vulnerability semantics,
enhancing their performance and effectively addressing the three
issues mentioned above.

We evaluate the performance of DFEPT combined with four
pre-trained models: CodeBERT [11], GraphCodeBERT [16], CodeT5
[41], and UniXcoder [15], on two popular datasets, Devign and
Reveal, and compare it with seven state-of-the-art methods. The
experimental results show that the performance of all pre-trained
models are significantly improved when combined with DFEPT,
demonstrating its generalizability. Furthermore, integrating CodeT5
with DFEPT results in superior performance, achieving an accuracy
of 64.53% and an F1-Score of 61.22% on the Devign dataset, along
with an accuracy of 92.92% and an F1-Score of 47.9% on the Reveal
dataset, outperforming all comparative baseline approaches. We
also study the impact of different data flow graph embedding and
pooling methods on DFEPT’s performance. The results show that
DFEPT performs the best when using Graph Convolutional Neural
Networks and united pooling (a combination of sum pooling and
max pooling). Even with the least effective embedding methods,
DFEPT still provides valuable information to pre-trained models to
enhance vulnerability detection performance.

In summary, the main contributions of this paper are as follows:
• Approach.We propose a data flow embedding technique, which
uses the data types of variables to identify data flows and applies
graph learning and sine positional encoding to generate effec-
tive semantic information and relative positional information
about vulnerabilities. This enables pre-trained models to capture
semantics and data flow patterns in vulnerabilities.

• Study. We assess DFEPT’s effectiveness using two datasets and
four pre-trained models, benchmarking it against seven baseline
strategies. Additionally, we perform ablation studies to confirm
the essential role of each DFEPT component. The findings reveal
that, compared to merely fine-tuned pre-trained models, DFEPT’s
insights enhance the models’ ability to identify vulnerabilities,
with a performance improvement ranging from 1.96% to 17.23%.
Each component of DFEPT contributes valuable information.

• Open Science.We combine DFEPT with common pre-trained
models to create high-performing and efficient vulnerability de-
tection models. By combining with CodeT5 [41], we surpass the
most advanced vulnerability detection performance. The source
code of DFEPT is publicly available1.

2 PRELIMINARIES
2.1 Data Flow Graph
A data flow graph represents a structural code graph that depicts the
dependencies and interactions among variables. Its nodes represent
variables, and the edges indicate the sources of these variables. For
source code that implements the same functionality, different ASTs
might be parsed due to variations in programmer preferences and
naming conventions. However, these pieces of code will have the
same data flows. Moreover, data flow can identify long-distance
dependencies arising from the use of the same variables or functions
in lengthy codes.

Data flow graphs are not only helpful in understanding the struc-
ture and data dependencies of a program, but they are also crucial
for vulnerability detection. By mapping the flow and interaction of
variables within a program, data flow graphs can reveal potential
security vulnerabilities such as buffer overflows, injection attacks,

1https://github.com/GCVulnerability/DFEPT
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4   x = b; 
5  else 
6   x = a; 
7  return x; 
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Figure 1: Overview of DFEPT.

or unauthorized data access. Security analysts can use these dia-
grams to trace the flow of untrusted input data, thereby identifying
weaknesses that could be exploited by attackers to compromise
program security. Therefore, data flow graphs have become an in-
dispensable tool in software security analysis, making the detection
of vulnerabilities more intuitive and efficient.
2.2 Graph Reachability and Graph Learning
In graph theory, graph reachability is one of the most important
characteristics of a graph, which measures whether there is a path
between any two nodes. The commonly used representationmethod
of reachability is the reachability matrix, which can be regarded as
starting from an initial node and gradually aggregating reachability
information to neighboring nodes. When calculating the reachabil-
ity matrix, we incorporate information aggregated from neighbor
nodes each time to update the reachability matrix state. Graph
learning has similar characteristics. Graph learning starts from the
representation of initial nodes, executes a specific message prop-
agation algorithm [13] and propagates node information through
a fixed number of iterations. In each iteration, each node aggre-
gates the feature vectors of neighboring nodes and then updates
the hidden state. Their similar state equations are as follows:

reachability matrix: 𝑃 (0) = A0 𝑃 (𝑛) = 𝑃 (𝑛−1) ∨ A (𝑛−1)

graph learning: 𝐻 (0) = X 𝐻 (𝑛) = 𝐺𝑁𝑁 (𝐻 (𝑛−1) ,A)
where A is the reachability matrix of the graph. X is the node
feature embedding of the graph. 𝑃 and 𝐻 represent the intermedi-
ate state of the reachability matrix and the hidden state in graph
learning respectively.

Some software vulnerabilities are closely related to the reachabil-
ity of data flow graphs, such as controlling pointer dereferences and
using uninitialized variables [3]. These vulnerabilities are partly
caused by the incorrect data flow reaching the target variable node
or the correct data flow being unreachable. Therefore, using graph
learning to perform reachability analysis on data flow graphs is
helpful for vulnerability detection.

3 METHODOLOGY
In this section, we will introduce DFEPT, a novel data flow em-
bedding technique designed to enhance vulnerability detection in

pre-trained models, aimed at determining the vulnerability status of
function-level code. The complete workflow of DFEPT is shown in
Figure 1. DFEPT initially constructs data flow graphs from function-
level source code as described in Section 3.1. Then, the constructed
data flow graph nodes and structures are embedded as detailed
in Section 3.2. Subsequently, the embedded graph feature vectors
are applied with the sinusoidal positional encoding introduced in
Section 3.3. Finally, after concatenation with the code sequence
embedding presented in Section 3.4, they are fed into an Multilayer
Perceptron (MLP) for classification and detection.
3.1 Data Flow Graph Construction
As is shown in Figure 2, for the source code given in Figure 1, repre-
sented as 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑛}, we first utilize a standard source code
parsing tool, tree-sitter 2, to construct the AST of 𝐶 . Subsequently,
we identify a sequence of variables V = {𝑣1, 𝑣2, ...𝑣𝑛} from the leaf
nodes of the AST and use them as nodes for the DFG. We then
extract relationships between nodes from the AST and construct
directed edges 𝑒 =

〈
𝑣𝑖 , 𝑣 𝑗

〉
, indicating that the value of the j-th

variable originates from the i-th variable. We represent the set of
directed edges as E = {𝑒1, 𝑒2, ...𝑒𝑛}. The graph G(𝐶) = (V, E)
represents the data flow graph of the source code C.

1 int max(int a1, int b2){ 
2  int x3 = 04; 
3  if (b5 > a6) 
4   x7 = b8; 
5  else 
6   x9 = a10; 
7  return x11; 
8 }

a1

a6a10

b2

b5 b8 x3

x9 x7

x11

04

Variable Sequence Variable Relation

Tree-sitter

Extract Relation

Figure 2: The process of building a data flow graph.

3.2 Data Flow Embedding
For a given DFG G, an important question is how to form a code
graph embedding that encapsulates the rich semantic information
of G. We divide the data flow graph embedding process into three
parts: node embedding, graph neural network embedding, and
pooling.

2https://github.com/tree-sitter/tree-sitter
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3.2.1 Node Embedding. To accurately and conveniently identify
different data flows on the same Data Flow Graph, and to extract
code structure information without affecting the judgment of the
code sequence, we opt to use the variable type (e.g. int, float etc.)
on the node instead of the variable name as the node feature for
embedding. Specifically, we initialize the embedding layer using
the weights of an embedding layer from a pre-trained model that
will be used in section 3.4. Then, we tokenize the node features
and utilize the embedding layer to obtain the word vector corre-
sponding to the data type of the node. Assuming that the data type
corresponding to the variable on node 𝑣 is 𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒 , then the node
feature embedding 𝐸 (𝑣) for node 𝑣 is as follows:

𝐸 (𝑣) = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝐿𝑎𝑦𝑒𝑟 (𝑇𝑜𝑘𝑒𝑛𝑖𝑧𝑒 (𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒)) (1)

It’s important to note that for the same node, using different pre-
trained models may yield different embeddings. This variation is
due to the fact that different pre-trained models often correspond
to different tokenizers and embedding layers.

3.2.2 Data Flow Reachability Extraction. Graph Neural Networks
(GNNs) stand out for their effective information propagation mech-
anisms, where they iteratively consolidate feature vectors from
adjacent nodes to refine each node’s features [21]. Given a data
flow graph, denoted as G, withA representing its adjacency matrix
andX the matrix of node features post-embedding, the fundamental
operational formula for a GNN is outlined below:

H(0) = X (2)

H(𝑘+1) = 𝐺𝑁𝑁 (A,H(𝑘 ) ) (3)
where H(𝑘 ) is the matrix representation of nodes at the k-th itera-
tion.

Recent studies have proposed various GNNs and their variants.
We employ Graph Convolutional Neural Networks (GCNs) and
Gated Graph Neural Networks (GGNNs) to aggregate node features,
thereby generating the embedding vectors for the data flow graph.
Formally, GCN used in our method can be presented as follows:

h(𝑘+1)𝑣 = 𝑅𝑒𝐿𝑈 (
∑︁

𝑎𝑣,𝑢W(𝑘 )h(𝑘 )𝑢 ), ∀𝑣 ∈ V (4)

In this formula, 𝑎𝑣,𝑢 represents the edge constant between nodes
𝑣 and 𝑢 within the Laplacian re-normalized adjacency matrix
D− 1

2 AD
1
2 , where D is the diagonal matrix denoting the degree

of nodes in A, andW(𝑘 ) is a matrix of weights associated with the
edges.

The Gated Graph Neural Network applies the gating concept of
GRUs (Gated Recurrent Units) [6] to graph networks. It recursively
updates states over a fixed number of time steps. The principle of
the GGNN we use is as follows:

a(𝑘+1)𝑣 =
∑︁

𝑎𝑣,𝑢h
(𝑘 )
𝑢 (5)

z(𝑘+1)𝑣 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (W𝑧a(𝑘+1)𝑣 + U𝑧h(𝑘 )𝑣 ) (6)

r(𝑘+1)𝑣 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (W𝑟 a(𝑘+1)𝑣 + U𝑟h(𝑘 )𝑣 ) (7)

h̃(𝑘+1)𝑣 = 𝑅𝑒𝐿𝑈 (W𝑜a(𝑘+1)𝑣 + U𝑜 (r(𝑘+1)𝑣 ⊙ h(𝑘 )𝑣 )) (8)

h(𝑘+1)𝑣 = (1 − z(𝑘+1)𝑣 ) ⊙ h(𝑘 )𝑣 + z(𝑘+1)𝑣 ⊙ h̃(𝑘+1)𝑣 (9)
where z and r are the update and reset gates and ⊙ is the element-
wise multiplication.

3.2.3 Pooling. By employing GCN or GGNN, we can derive the
hidden state representation for each node within the Data Flow
Graph. Before performing classification tasks, it is necessary to
aggregate the learned graph features into a single feature vector.
First, we use a soft attention mechanism on the nodes to generate
the final feature vector e𝑣 for node 𝑣 . Then, we utilize a united
pooling method proposed by Nguyen et al. [26] to generate the
embedding e𝑔 for the data flow graph. The united pooling method
combines the advantages of sum pooling and max pooling. It uses
max pooling to leverage more information about node represen-
tations and employs sum pooling to generate more precise graph
classification performance [43]. The generation equations for e𝑔
are as follows:

e𝑣 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (W𝑇 h(𝑘 )𝑣 + b) ⊙ 𝑅𝑒𝐿𝑈 (Wh(𝑘 )𝑣 + b) (10)

e𝑔 =
∑︁
𝑣∈V

e𝑣 ⊙ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙{e𝑣} (11)

3.3 Sinusoidal Position Encoding
To better adopt the information of the relative positions of nodes
in the data flow graph of lengthy codes, we treat the pooled graph
vector as a sequence and then use sinusoidal positional encoding
to provide the classifier with fundamental information about the
arrangement of elements. Sinusoidal positional encoding is first
applied in the Transformer [38] model, where it integrates the
position information of the sequence into the original sequence.
This method of enhancing the model’s input by injecting word
order has achieved good performance in semantic understanding.
The sinusoidal positional encoding is generated according to the
following formula: {

𝑝𝑜𝑠2𝑖 = 𝑠𝑖𝑛( 𝑝𝑜𝑠

100002𝑖/𝑑 )
𝑝𝑜𝑠2𝑖+1 = 𝑐𝑜𝑠 ( 𝑝𝑜𝑠

100002𝑖/𝑑 )
(12)

where 𝑖 is the position within the sequence, 𝑑 is the dimension of
the sinusoidal encoding, and 𝑝𝑜𝑠𝑖 corresponds to the sinusoidal
encoding of the i-th token.

By summing sinusoidal positional encoding, we obtain the final
embedding vector of the data flow graph, which encompasses code
structural information, code semantic information, and relative
positional information. This will provide the pre-trained model
with more effective information for its processing.

3.4 Code Sequence Embedding
The core of Code Sequence Embedding is to treat code segments
as natural language sequences and to generate embedding vectors
for the entire code block using a pre-trained model. Initially, we
tokenize the code segment and feed each token into the pre-trained
model to generate word embedding vectors. Subsequently, utilizing
various pre-trained model architectures, these word embedding
vectors are transformed into sentence vectors that encapsulate the
semantic essence of the entire code segment. Finally, we concatenate
the generated sentence vectors with the data flow embeddings
produced in Section 3.3, input them into a classifier with two fully
connected layers, and construct a vulnerability detection model by
minimizing the cross-entropy [47] loss function.

Assuming the pre-trained model we use is referred to as𝑀𝑜𝑑𝑒𝑙 ,
the representation of Code Sequence Embedding e𝑐 for the source
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code sequence 𝐶 is as follows:

e𝑐 = 𝑀𝑜𝑑𝑒𝑙 (𝐶) (13)

4 EXPERIMENT SETUP
We carry out comprehensive experiments to evaluate DFEPT’s
efficacy. The dataset utilized in the study will be detailed in Section
4.1, while Section 4.2 will cover the baseline methods used for
comparison. Section 4.3 will describe the metrics employed for
performance evaluation, and Section 4.4 will outline the research
questions we aim to address. DFEPT is implemented using Python
3.9.18 [37] and PyTorch 2.1.0 [35]. All testing is conducted on an
Ubuntu 20.04.1 LTS server equipped with 4 Nvidia Geforce RTX
3090 GPUs, a 32-core CPU, and 256GB of RAM.

4.1 Dataset
To verify the effectiveness of DFEPT, we fine-tune the pre-trained
model on two widely used vulnerability datasets, including Devign
[47] and Reveal [4]. Each data set has been used in the State of the
art research [4, 24, 31]. The overview of the dataset and split details
are shown in Table 1.

Devign. Devign is constructed by Zhou et al. [47], extracting
27318 manually labeled function fragments as vulnerable or non-
vulnerable from two large popular open-source C language projects,
QEMU and FFmpeg. This dataset consists of diverse function frag-
ments. Then, Lu et al. [24] merges these projects and split them
into a 8:1:1 training set, validation set, and test set.

Reveal. Reveal, constructed by Chakraborty et al. [4], extracts
data from two large real-world C language open-source projects:
Linux Debian Kernel and Chromium. The dataset has an imbalanced
label distribution, with the number of non-vulnerable code snippets
significantly exceeding the number of vulnerable code snippets. We
also evenly divide Reveal into a training set, a validation set, and a
test set in an 8:1:1 ratio.

Table 1: Overview of the dataset.
Dataset Devign Reveal

Description Diverse vulnerability data constructed
from FFmpeg and Qemu.

Real-world dataset constructed from
Linux Debian Kernel and Chromium.

Train 21854 18187
Valid 2732 2773
Test 2732 2774
Total 27318 22734

Vul 12460 2240
Non-Vul 14858 20494

4.2 Baseline Methods
In our evaluation, we compare DFEPT with seven state-of-the-art
methods. CodeBERT[11] stands as a bimodal pre-trained model
designed for the nuanced processing of both natural and program-
ming languages. It excels in crafting versatile representations that
are well-suited for a broad spectrum of tasks across natural lan-
guage and programming domains, including code comprehension,
clone identification, among others. GraphCodeBERT[16] extends
the work of CodeBERT [11] by incorporating code’s data flow infor-
mation into the Transformer architecture through encoding tech-
niques. It is pre-trained with this integration, achieving improve-
ments over the baselines set by CodeBERT. CodeT5[28] is built
upon the T5 [28] architecture, functioning as an encoder-decoder
model. It introduces an innovative identifier-aware pre-trained

task, empowering the model to distinguish and restore obscured
identifiers, thereby enhancing its understanding and processing
of code. Additionally, it proposes a bimodal code generation task,
achieving better alignment between natural language and program-
ming language. UniXcoder[15] expands upon the functionalities
of models like CodeBERT [11], integrating a comprehensive under-
standing of code’s syntax and semantics. This enhancement boosts
the model’s performance in downstream tasks such as code sum-
marization, translation, and completion. ReGVD[26] proposes two
novel techniques for constructing source code as graph structures,
utilizing the embedding layer of GraphCodeBERT [16] for graph
classification. VulBERTa[17] is a specialized pre-trained model for
vulnerability detection, based on the RoBERTa [23] architecture. It
is suitable for multi-class vulnerability detection tasks. CSGVD[33]
proposes the use of pre-trained models and BiLSTM [14] for dual
embedding of Control Flow Graphs. Additionally, it introduces a
dual affine pooling layer and employs GCNs to classify source code.

4.3 Performance Metrics
We apply four widely recognized metrics in the software testing
and analysis field [47] to evaluate DFEPT.

Accuracy. This metric represents the proportion of correctly
classified samples to the total samples. It can be calculated as:
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 , where TP, TN, FP, FN represent the
number of true positives, true negatives, false positives, false nega-
tives.

Recall. This metric represents the proportion of correctly classi-
fied positive samples to actual positive samples. It can be calculated
as: 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃+𝐹𝑁
Precision. This indicator quantifies the proportion of samples

that are predicted to be positive among the samples that are actually
positive. It can be calculated as: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃+𝐹𝑃
F1-Score. F1-Score is the harmonic mean of recall and precision,

which reveals the robustness of the model. It can be calculated as:
𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

4.4 Research Questions
We establish the following three research questions (RQs) for eval-
uation.

RQ1: Can DFEPT improve the performance of pre-trained
models?

In RQ1, we verify whether DFEPT can be combined with most
code pre-trained models to enhance the performance of vulnera-
bility detection. We integrate DFEPT with four popular code pre-
trained models, using their embedding layers for node embedding
and GCN for data flow embedding. We fine-tune both the original
pre-trained models and the models combined with DFEPT on two
datasets mentioned in Section 4.1 . These models are then applied
to vulnerability detection tasks. We report the performance metrics
and the proportion of performance improvement for each model.

RQ2: Can DFEPT outperform existing vulnerability detec-
tion methods?

In RQ2, we verify whether DFEPT can effectively detect vul-
nerabilities. For parsing source code into AST representations, we
employ the open-source tool tree-sitter [18]. Then, we extract the
data flow from the AST and employ a GCN for embedding, thereby
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Table 2: Comparison of vulnerability detection results after combining different pre-trained models with DFEPT.
Dataset Devign Reveal

Model Accurancy F1 Precision Recall Accuracy F1 Precision Recall

CodeBERT 0.6332 0.471 0.698 0.3554 0.9085 0.3659 0.6122 0.2609
GraphCodeBERT 0.6384 0.4822 0.7044 0.3665 0.9156 0.4074 0.7021 0.287

UniXcoder 0.6369 0.5466 0.6409 0.4765 0.9094 0.408 0.6017 0.3087
CodeT5 0.6336 0.5988 0.6024 0.5952 0.9265 0.4698 0.7048 0.3524

CodeBERT+DFEPT 0.6475 0.5523 0.6162 0.5004 0.9125 0.3801 0.6703 0.2652
GraphCodeBERT+DFEPT 0.6296 0.5645 0.6137 0.5227 0.9265 0.4261 0.7654 0.2952

UniXcoder+DFEPT 0.6497 0.5726 0.6514 0.5108 0.9182 0.4464 0.7075 0.3261
CodeT5+DFEPT 0.6453 0.6122 0.615 0.6096 0.9292 0.479 0.7475 0.3524

facilitating a deeper analysis and understanding of the code’s struc-
ture and semantics. We report the best performance achieved by
DFEPT and compare it with seven other baseline methods.

RQ3: How do different graph embedding or pooling meth-
ods affect model performance?

In RQ3, we investigate the impact of different data flow embed-
ding methods on the performance of DFEPT. For this study, we use
UniXcoder as the base model. During the node feature aggregation
stage, we employ both GCN and GGNN for graph embedding. In
the pooling stage, we apply four pooling methods: max pooling,
average pooling, sum pooling, and united pooling [26], each in
combination with GCN and GGNN. We compare the effects of dif-
ferent embedding methods on vulnerability detection and report
the performance metrics.

In addition, we conduct ablation studies on DFEPT to under-
stand the impact of each component on the overall performance.
We set up three sets of ablation experiments for DFEPT using UniX-
coder as the base model to verify the necessity of each module.
We remove the pre-trained model, data flow embedding, and sinu-
soidal positional encoding separately and observe the changes in
the performance of the final model.

5 EXPERIMENT RESULTS
This section provides the experimental results and analyzes the
performance of DFEPT, answering the research questions set in
Section 4.4.

5.1 RQ1:Can DFEPT improve the performance
of pre-trained models?

Table 2 lists the accuracy, recall, precision and F1-Score of DFEPT
combined with four pre-trained models. Table 3 lists the relative im-
provement obtained by DFEPT compared with the only fine-tuned
model. Compared with most baselines, DFEPT achieves higher ac-
curacy and F1-Score on all datasets. This shows that DFEPT can
provide effective code structure information and data flow infor-
mation to pre-trained models, thereby helping them better detect
vulnerabilities.

When DFEPT is combined with CodeT5, we obtain the best F1
scores on both datasets, which shows that the embedding layers ini-
tialized by different pre-trained models have a greater impact on the
data flow embedding of DFEPT. Concurrently, it has been observed
that DFEPT offers limited enhancements to more advanced baseline
methods. This may be attributed to the fact that superior baseline
models employ more sophisticated pre-training techniques and pos-
sess larger parameter sizes, resulting in a diminished proportion of
effective data flow information that DFEPT can provide. It is worth

Table 3: Vulnerability detection accuracy and F1-Score im-
provement percentage after different pre-trained models are
combined with DFEPT.

Dataset Devign Reveal

Models compared Acc imp.(%) F1 imp.(%) Acc imp.(%) F1 imp.(%)

CodeBERT vs.
CodeBERT+DFEPT 2.26 17.26 0.44 3.88

GraphCodeBERT vs.
GraphCodeBERT+DFEPT -1.38 17.07 1.19 4.59

UniXcoder vs.
UniXcoder+DFEPT 2.01 4.76 0.97 9.41

CodeT5 vs.
CodeT5+DFEPT 1.85 2.24 0.29 1.96

noting that when DFEPT is combined with GraphCodeBERT, the ac-
curacy on Devign decreases. This may be because GraphCodeBERT
has already used data flow information once during pre-trained,
and repeated data flow information aggravates the overfitting of the
model. DFEPT can improve the F1-Score of all pre-trained models
to a certain extent, which proves that the model combined with
DFEPT has stronger robustness.

Answer to RQ1: DFEPT can be combined with most pre-trained
models to steadily improve the accuracy and robustness of vul-
nerability detection. The degree of improvement is affected by
the pre-trained model itself and the embedding layer.

5.2 RQ2: Can DFEPT outperform existing
vulnerability detection methods?

As is shown in Table 4, we compare the results of CodeT5+DFEPT
with the remaining seven baseline methods on two datasets. The
results in Table 4 show that on the Devign dataset, DFEPT leads all
baseline methods with an accuracy of 64.53% and an F1-Score of
61.22%. This shows that DFEPT has the most balanced performance
and strongest robustness in correctly identifying vulnerabilities,
and does not tend to over-predict and over-conservative prediction
situations. On the Reveal dataset, DFEPT again exceeds all baselines
with an accuracy of 92.92% and an F1-Score of 47.9%. This shows
that DFEPT has the excellent generalization ability.

The performance improvement of DFEPT on Reveal is sometimes
less than that of Devign. We believe this is due to the imbalance
of the Reveal dataset. Due to the limited quantity and diversity of
vulnerable codes in Reveal, many data flow information containing
vulnerabilities have not been fully learned. As a result, it cannot
provide sufficient semantic information for vulnerability detection.

Compared to sequence-based models, sequence-based models
generally have poorer predictive performance due to their inability
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Table 4: Comparison of performance metrics DFEPT and other baselines.

Dataset Devign Reveal

Model Accuracy F1 Precision Recall Accuracy F1 Precision Recall

CodeBERT 0.6332 0.471 0.698 0.3554 0.9085 0.3659 0.6122 0.2609
GraphCodeBERT 0.6384 0.4822 0.7044 0.3665 0.9156 0.4074 0.7021 0.287

UniXcoder 0.6369 0.5466 0.6409 0.4765 0.9094 0.408 0.6017 0.3087
CodeT5 0.6336 0.5988 0.6024 0.5952 0.9265 0.4698 0.7048 0.3524
ReGVD 0.6285 0.5955 0.5957 0.5952 0.9015 0.3946 0.5214 0.3174

VulBERTa 0.6413 0.6045 0.6124 0.5968 0.8646 0.4597 0.3853 0.5696
CSGVD 0.6446 0.6039 0.6187 0.5899 0.9008 0.3297 0.5114 0.2432

DFEPT 0.6453 0.6122 0.615 0.6096 0.9292 0.479 0.7475 0.3524

to effectively perceive and utilize the structured information of
code, such as control flows and data flows, resulting in insufficient
vulnerability features. In contrast, directly using Graph Neural
Networks to aggregate node features can lead to the loss of the
model’s ability to perceive the contextual environment. Therefore,
the practice of using data flow embedding to provide additional
effective features for sequence-based models results in higher and
more balanced overall performance in vulnerability detection.

Answer to RQ2: DFEPT outperforms all baseline methods. It
effectively provides semantic information to pre-trained models,
achieving higher performance in vulnerability detection tasks
under various experimental conditions.

5.3 RQ3: How do different graph embedding or
pooling methods affect model performance?

As shown in Table 5, we use UniXcoder [15] as the base model.
The choice of UniXcoder is due to its ability to efficiently fine-
tune with fewer samples, and its encoder mode, which facilitates
better integration of data flow embedding vectors [15]. We apply
both GCN and GGNN for graph embedding and use four common
pooling methods, resulting in a total of eight combinations. The
results indicate that regardless of the combination of data flow
embedding, each can effectively embed data flow to enhance the
performance of the vulnerability detection model.
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Figure 3: Accuracy with different settings of DFEPT.

We plot bar graphs of the model accuracy achieved with dif-
ferent graph embedding and pooling methods on the Devign and
Reveal datasets, respectively. As shown in Figure 3, the fluctuation
in accuracy exhibits similar trends on both datasets. Under max
pooling and average pooling, the performance achieved with GCN
embedding and GGNN embedding of the data flow is not signifi-
cantly different. United pooling combined with GCN yields the best
performance on Devign. Under sum pooling and united pooling,

the performance achieved with GCN embedding is higher than
with GGNN embedding. This is because united pooling combines
the advantages of sum pooling, which allows GNN to access all
available information, leading to a more effective embedding result
[26, 43]. Additionally, GGNN aggregates information from neigh-
boring nodes through a gating mechanism, which is effective in
capturing long-term dependencies. However, since vulnerabilities
are typically focused on a specific data flow or a local data feature,
GGNN’s ability to embed data flows is not as effective as GCN’s.

Answer to RQ3: Regardless of the combination used for data
flow embedding, it can provide effective data flow information
for the pre-trained model. When DFEPT uses GCN with united
pooling for data flow embedding, the vulnerability detection
model achieves the state-of-the-art performance.

5.4 Ablation Study
In order to comprehensively understand the impact of each module
in our proposed model, we conduct an ablation experiment using
UniXcoder as the basemodel. The ablation experiment aims to study
the contribution of the three components of pre-trained model,
GNN, and sinusoidal position encoding to the overall performance
of the vulnerability detection model. We test the performance of
the model on two datasets, Devign and Reveal, and the results are
shown in Table 6.

GNN. GNN is an indispensable component for processing data
flow graphs. Without GNN, data flow information cannot be input
into the model, causing it to revert to a mere pre-trained model. On
the Devign dataset, the accuracy and F1-Score of the model decrease
by 1.28% and 2.6%, respectively. Similar declines are observed on
Reveal, with reductions of 0.88% and 3.84%. This indicates that GNN
is effective and necessary for aggregating graph features.

Pre-trained model. DFEPT relies on the pre-trained model for
vulnerability detection. Removing the pre-trained model results
in a decrease of 10.39% in accuracy and 27.97% in F1-Score on
Devign, and a decline of 1.93% and 40.47% on Reveal. This drastic
drop highlights the excellent ability of the pre-trained model in
sequence processing and also points out the limitations of DFEPT
as a supplementary model to the pre-trained model, namely that it
cannot independently complete the task of vulnerability detection.

Sinusoidal position encoding. Sinusoidal position encoding
is intended to provide the position information of the data flow
itself to the vulnerability detection model. When this positional
information is removed, the model’s performance only suffers a
minor decline. On Devign, the accuracy and F1-Score decrease by
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Table 5: Performance of DFEPT under different settings.

Dataset Devign Reveal

Accuracy F1 Precision Recall Accuracy F1 Precision Recall

GGNN-sum 0.6274 0.6005 0.5916 0.6096 0.9099 0.3653 0.6344 0.2565
GCN-sum 0.6402 0.6165 0.604 0.6295 0.9195 0.4404 0.7423 0.313

GGNN-max 0.6391 0.6216 0.5996 0.6454 0.9116 0.3927 0.6436 0.2826
GCN-max 0.638 0.6171 0.6002 0.6351 0.9103 0.4205 0.6066 0.3217

GGNN-mean 0.6369 0.619 0.5975 0.6422 0.9116 0.3186 0.7231 0.2043
GCN-mean 0.6354 0.5193 0.6585 0.4287 0.9103 0.3818 0.63 0.2739

GGNN-uni 0.6318 0.6221 0.5885 0.6598 0.9085 0.3918 0.5982 0.2913
GCN-uni 0.6497 0.5726 0.6514 0.5108 0.9182 0.4464 0.7075 0.3261

Table 6: Ablation study evaluated on the test dataset.
Model Accuracy F1 Precision Recall

DFEPT w/o GNN 0.6369 0.5466 0.6409 0.4765
DFEPT w/o pre-trained Model 0.5458 0.2929 0.514 0.2048
DFEPT w/o Sin. Encoding 0.6417 0.5305 0.6663 0.4406D

ev
ig
n

DFEPT 0.6497 0.5726 0.6514 0.5108

DFEPT w/o GNN 0.9094 0.408 0.6017 0.3087
DFEPT w/o pre-trained Model 0.8989 0.0417 0.5 0.0217
DFEPT w/o Sin. Encoding 0.9164 0.4412 0.6818 0.3261Re

ve
al

DFEPT 0.9182 0.4464 0.7075 0.3261

0.8% and 4.21%, respectively, and on Reveal, the decrease is 0.18%
and 0.52%. This suggests that while sinusoidal position encoding can
provide effective vulnerability information, it is not as indispensable
as GNN.

6 DISCUSSION
In this section, we will discuss the reason why DFEPT work and
threats to validity.

6.1 Why does DFEPT Work?
DFEPT achieves remarkable performance in aggregating data flow
information without using segmented statement-level text or token
information, such as assignment statements. This success is likely
because, in the data flow graph structure, the key to generating
vulnerabilities lies in determining the direction of data flow and the
process of variable transition, rather than variable naming or as-
signment statements. Therefore, using simple data types to identify
different data flows within a code segment effectively accomplishes
semantic and structural embedding crucial for vulnerability detec-
tion.

When combined with pre-trained models, DFEPT achieves the
highest performance, indicating that pre-trained models relying
solely on textual information may not sufficiently learn data flows.
Thus, DFEPT supplements the necessary information for vulnerabil-
ity detection. DFEPT integrates well with most pre-trained models
because it does not depend on potential text-level spurious features,
such as variable and function names. These features are not directly
related to the generation of vulnerabilities, so including them as a
part of the input might lead to model errors.

DFEPT uses sinusoidal positional encoding, proposed in Trans-
former structures for extracting sequence position, to embed data
flow structures. This approach is not only to match the sequence-
based training mode of pre-trained models but also to input features
like the positional and directional information of data flows. This is
because the same data flow in different positions of a code segment

could lead to different outcomes. For example, figure 4 presents a
specific code fragment that exhibits a vulnerability due to derefer-
encing of a null pointer. Specifically, within the data flow A high-
lighted in the figure, a pathway exists wherein a null pointer, not
assigned anymemory, is directly utilized (𝑁𝑈𝐿𝐿 → 𝑠𝑡𝑟13 → 𝑠𝑡𝑟19).
Through graph learning, the semantic representation of this vulner-
ability is embedded into the graph vector. Further, the data flow B,
also annotated in figure 4, bears a striking resemblance to data flow
A but does not contain the vulnerability, attributed to the initial
assignment of 𝑠𝑡𝑟2 not being 𝑁𝑈𝐿𝐿. Sinusoidal positional encod-
ing furnishes the resultant graph vector with relative positional
information, thereby distinguishing between data flows A and B.
The data flow semantic information provided by DFEPT enables the
pre-trained model to effectively identify vulnerabilities propagated
through data flow. Thus, leveraging the data flow semantic informa-
tion furnished by DFEPT, the pre-trained model can efficaciously
recognize vulnerabilities resulting from data flow propagation.

1      int main(int argc1, char **argv2){
2      char *str13 = NULL;
3      char *str24 = "Hello";
4      if (argc5 > 1){
5          str16 = malloc(5 * argc7);
6          str28[1] = '1';
7          }
8      str19[0] = '0';
9      str210[0] = '0';
10    }

argc1

argc5

argc7

str13

NULL

str24

str16

str210str19

argvHello

str28

Source code snippet 
 with null pointer dereference

Part of the data flow
graph for the code

A B

Figure 4: An example explaining the effectiveness of how
DFEPT works.

6.2 Threats to Validity
6.2.1 Internal Validity. The main threats to internal validity come
from the choice of pre-trained models and different code graph
structures. The performance of pre-trained models affects DFEPT’s
performance because DFEPT uses the embedding layer of pre-
trained models when embedding and encoding data flows. Different
pre-trained models have distinct pre-trained tasks, and their embed-
ding layers might be more biased towards generative tasks rather
than classification.

DFEPT only uses a single data flow graph as input, which may
limit the performance of DFEPT. Abstract syntax trees, control flow
graphs and program dependency graphs also play an extremely
important role in code analysis and may contain structural infor-
mation that data flow graphs do not have. Moreover, one possible
reason for DFEPT’s inefficacy is that data flow analysis cannot
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identify all types of vulnerabilities, as some are not generated by
code data flows, such as insufficient authentication (CWE-287).
6.2.2 External Validity. We primarily evaluate DFEPT on the De-
vign [47] and Reveal [4] datasets because all baseline models sup-
port these datasets. These datasets are derived from open-source
projects coded in the C language. It’s important to note that when
extending vulnerability detection to projects developed in other
programming languages, potential discrepancies in syntax and key-
words could introduce extraneous noise, affecting the detection
process. Additionally, in real-world vulnerability detection scenar-
ios, we often face extremely imbalanced data, characterized by a
small proportion of vulnerable samples and a diversity of vulnera-
bility types. This imbalance may prevent DFEPT from extracting
sufficiently representative data flow features, thus failing to obtain
effective structural information.
7 RELATEDWORK
In this section, we will introduce the existing approaches for soft-
ware vulnerability detection, including traditional detection tech-
niques, deep learning-based approaches, and pre-trained model-
based approaches.
7.1 Traditional Vulnerability Detection
Traditional software vulnerability detection primarily relies on do-
main expertsmanually creating extensive rule libraries [7, 36] for de-
tection. By applying semi-automatic techniques such as taint track-
ing [20], symbolic execution [39], fuzzing [10], and code similarity-
based matching [32], the efficiency of detection is enhanced. Al-
though theses approaches achieve vulnerability detection, they
suffer from a lack of complete automation and high rule formu-
lation costs. Additionally, it may lead to increased rates of false
positives and false negatives [44].
7.2 Deep Learning-Based Vulnerability

Detection
The success of Deep Learning (DL) technologies in various fields has
motivated researchers to apply DL techniques for automated vul-
nerability detection [4]. Existing DL-based vulnerability detection
models primarily fall into two categories: sequence-based models
and models based on code graph structures.

Sequence-based models treat code as natural language sequences
for modeling, extracting vulnerability features from code snippets
to achieve vulnerability detection. For instance, Li et al. [22] define
"code gadgets" from the perspective of code slicing, and they ex-
tract and assemble library/API function calls. They then apply a
Bidirectional Long Short-Term Memory (BiLSTM) [14] model for
detection.

Graph-based methods model the source code using graph data
structures, followed by the utilization of Graph Neural Networks
(GNNs) for vulnerability detection. Commonly used code graph
structures include ASTs, CFGs, DFGs, and PDGs, among others.
Recently, Nguyen et al. [26] propose two graph construction tech-
niques: unique token-focused and index-focused construction. They
construct graphs from source code sequences and implement vul-
nerability detection using Residual Graph Convolutional Networks.
Tang et al. [33] perform graph node feature embedding of CFGs by
using pre-trained model and BiLSTM. These embedded features are
then inputted into a graph convolutional layer for detection.

7.3 Pre-trained Model-Based Vulnerability
Detection

In recent times, the integration of pre-trained language models into
diverse application contexts has seen a notable uptick, with scholars
investigating how these models can be leveraged to improve the
precision in identifying vulnerabilities [31]. The core concept of
pre-trained models involves initially conducting pre-trained on a
vast amount of source code data, followed by fine-tuning for specific
downstream tasks [19].

Feng et al. [11] propose CodeBERT, which combines the process-
ing capabilities of natural language and programming language,
specifically designed for understanding and generating source code.
Wang et al. [41] present CodeT5, an encoder-decoder model based
on the T5 [28] architecture, which exhibits enhanced code structure
perception capabilities. Hanif et al. [17], building on the RoBERTa
[23] architecture, conduct retraining to develop VulBERTa, a pre-
trained model specifically for vulnerability detection, achieving
precise detection of vulnerabilities.

Furthermore, researchers has explored some methods of pro-
viding code structure information to pre-trained models, such as
methods based on program execution paths [45] and distribution
based on the number of vulnerabilities [42].

Zhang et al. [45] achieve CodeBERT’s understanding of the code
structure by providing CodeBERT with program execution path
information on CFG. Wen et al. [42] observe the long-tail distribu-
tion characteristics of vulnerability types and implement adaptive
learning of the difference between head and tail classes.

8 CONCLUSION AND FUTUREWORK
We propose DFEPT, an efficient data flow embedding technique
designed to enhance vulnerability detection in models based on
pre-trained models. Our data flow embedding starts from two core
aspects: structural information and positional information, aiming
to uncover potential vulnerability formation patterns and character-
istics. We use data types to identify different data flows within the
same code segment, where each data flow could potentially capture
the cause of a vulnerability. DFEPT combines graph embedding
and sinusoidal positional encoding with transformer architecture
pre-trained models for vulnerability detection and is applicable to
most pre-trained models. Our experimental results demonstrate
that DFEPT is highly effective, improving the vulnerability detec-
tion performance of all pre-trained models, and outperforming all
baseline methods. We also investigate the impact of different graph
embedding methods on DFEPT, finding that all embedding meth-
ods enhance the vulnerability detection performance of pre-trained
models. In the future, we plan to extend DFEPT to ASTs, CFGs, and
PDGs to explore graph embedding methods that can provide more
effective information. We also intend to explore the application of
interpretability tools to precisely locate the lines of code where
vulnerabilities arise and assess the efficacy of our technique across
different programming languages.
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