
Received: 14 March 2022 - Revised: 7 July 2022 - Accepted: 30 August 2022 - IET Software
DOI: 10.1049/sfw2.12073

OR I G INAL RE SEARCH

An unsupervised cross project model for crashing fault residence
identification

Xiao Liu1,2 | Zhou Xu1,2 | Dan Yang1,2 | Meng Yan1,2 | Weihan Zhang2 |
Haohan Zhao2 | Lei Xue3 | Ming Fan1,4

1Key Laboratory of Dependable Service Computing in Cyber Physical Society, Ministry of Education, Chongqing University, Chongqing, China
2School of Big Data and Software Engineering, Chongqing University, Chongqing, China
3School of Cyber Science and Technology, Sun Yat‐Sen University, Shenzhen, China
4Ministry of Education Key Laboratory of Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, Shaanxi, China

Correspondence

Zhou Xu and Meng Yan, Key Laboratory of
Dependable Service Computing in Cyber Physical
Society, Ministry of Education, Chongqing
University, Chongqing 400044, China.
Email: zhouxullx@cqu.edu.cn and mengy@cqu.edu.
cn

Funding information

Open Foundation of Key Laboratory of Dependable
Service Computing in Cyber Physical Society,
Ministry of Education of China, Grant/Award
Number: CPSDSC202004; National Key Research
and Development Project, Grant/Award Number:
2021YFB1714200; National Nature Science
Foundation of China, Grant/Award Number:
62002034; Fundamental Research Funds for the
Central Universities, Grant/Award Numbers:
2022CDJKYJH001, xxj022019001, xzy012020009;
Natural Science Foundation of Chongqing, Grant/
Award Number: cstc2021jcyj‐msxmX0538

Abstract
It is a critical quality assurance activity to effectively detect the root cause of faults causing
the software crashes (i.e. crashing faults). Previous studies extracted features to charac-
terise crash instances and built models to identify whether the residences of crashing
faults locate inside the stack traces. These models all belong to supervised learning
methods which require labelled crash data to be involved. In this study, the introduction
of an unsupervised model, called Transfer Spectral Clustering (TSC), for the task of
crashing fault residence identification under the unlabelled data scenario is proposed.
Unlike traditional unsupervised methods which are applied to individual project data, TSC
transfers the knowledge of auxiliary unlabelled data from the source project to assist the
clustering task on the unlabelled data from the target project. TSC is an unsupervised
transfer learning method, and simultaneously considers the data manifold information of
the individual project and feature manifold information across projects to facilitate the
clustering effect. Extensive experiments are conducted on a benchmark dataset containing
seven software projects. Five indicators were chosen for performance evaluation. The
results show that TSC achieves better performance than four clustering based unsuper-
vised methods, and competitive performance compared with eight supervised cross‐
project methods.

1 | INTRODUCTION

As the coming of information modernisation, software plays
an essential role in our daily life with the rapid popularity of
computer and mobile devices. However, in the process of
software development and maintenance, programmers usually
encounter software faults due to the surging complexity of
modern software or some unanticipated factors [1]. The faults
may cause the software to crash which is a kind of unexpected
interruption of software [2]. In this case, it will take pro-
grammers a large amount of efforts to deal with the crashes
through finding their root cause, which is a time and labour

consuming process. Fortunately, some crash‐related report
information, such as stack traces recorded by the crash
reporting system that most modern software is equipped with,
is able to help programmers or testers to find out faults causing
the crashes (short for crashing faults). Effectively identifying
the residences of crashing faults is a critical software quality
assurance activity which could facilitate the process of fixing
the faulty source code and save time. In a previous study [3],
this process is called Identification of Crashing Fault Resi-
dence (ICFR).

Recently, the information from stack traces is used to
locate the residence of crashing faults. The reason is that the

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. IET Software published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Soft. 2022;1–17. wileyonlinelibrary.com/journal/sfw2 - 1

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12073, W
iley O

nline L
ibrary on [10/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1049/sfw2.12073
https://orcid.org/0000-0003-3307-2994
https://orcid.org/0000-0002-9538-9121
mailto:zhouxullx@cqu.edu.cn
mailto:mengy@cqu.edu.cn
mailto:mengy@cqu.edu.cn
https://orcid.org/0000-0003-3307-2994
https://orcid.org/0000-0002-9538-9121
https://ietresearch.onlinelibrary.wiley.com/journal/17518814

stack traces contain a wealth of information, such as the type
of crash exception as well as the function invocation sequence,
which are associated with the crashing faults. In other words,
the information provided by the stack traces can help find the
root cause or residence of the crashing faults. As the most
relevant and earliest study towards our work, Gu et al. [2]
proposed an automatic crashing fault localisation method
called CraTer which first extracted a set of self‐defined features
from the stack traces and source code, and then conducted a
binary classification task based on these features and collected
labels. Their goal is to predict whether new‐submitted crashing
faults locate in the stack traces. More specifically, the task is to
determine whether the faulty code causing the crash matches
one of code snippets of the code call sequence in the stack
trace. If the crashing fault residence locates inside the stack
trace, programmers only need to check the related code
recorded in the stack trace. In this case, it will greatly improve
the efficiency of debugging software for developers. If the
crashing fault residence locates outside the stack trace, pro-
grammers need to check the function call sequence. In this
case, it involves in examining a large amount of code to find
the root cause of the crashing fault. This will waste a mass of
limited test resources, which seriously hinders the debugging
efficiency. Following Gu et al.'s work and using their shared
dataset, Xu et al. [3] and Zhao et al. [4] proposed a series of
methods to improve the residence identification performance
for the crashing fault. By analysing these existing methods, they
can roughly fall into two categories. One is within project
identification, in which the training set and test set are from the
crash data of the same project. The other one is cross‐project
identification, in which the training set comes from the crash
data of external projects. However, the methods in these two
scenarios all belong to supervised learning methods which
need labelled crash data as the training set to participate the
model construction process.

Nevertheless, the collection process of label information
for the crash data is time‐consuming, labour‐intensive, and
error‐prone, but the unlabelled data are easily available. This
inspires us to come up with a way to conduct ICFR on the
unlabelled crash data. Previous studies used unsupervised
learning methods, such as clustering algorithm or ranking
models, to fulfil some tasks in the software engineering
domain, such as defect prediction [5, 6] and test suite reduction
[7]. However, these unsupervised methods are all applied to
individual projects. This basic idea is simple, that is, using a
clustering algorithm to group the unlabelled data from a
project into two or multiple clusters. However, for software
engineering tasks, considering the unlabelled data from other
projects when applying the unsupervised methods to the
unlabelled data from the at‐hand project has not yet been
explored.

In this work, we make a first attempt to explore whether
the unlabelled data from the external project (aka the source
project) can help promote the performance of unsupervised
learning method when it is performed on the unlabelled data
from the current project (aka the target project) for the ICFR
task. In other words, this work aims at proposing a novel

unsupervised methods for the ICFR task by combining the
unlabelled data from not only the target project but also the
source project, expecting better performance than this method
alone on the unlabelled data from the target project. In this
work, we introduce a novel unsupervised method based on the
transfer learning strategy called Transfer Spectral Clustering
(TSC) [8] for this purpose. This method transfers the knowl-
edge of auxiliary unlabelled crash data from the source project
to augment the clustering effect on the unlabelled crash data
from the target project. The advantage of the used TSC
method is that it simultaneously considers the data manifold
information of the ICFR task on the crash data of individual
projects, and the feature manifold information of the shared
ICFR task on the crash data across two projects. Therefore, the
TSC method can not only alleviate the widespread scarcity
problem of the data labels, but also can take advantage of the
knowledge of unlabelled data from other projects with the
same task to further improve clustering performance. In view
of the merits of the TSC method, we select it as our unsu-
pervised cross‐project ICRF model.

To verify the effectiveness of the TSC method, we design
two research questions as follows. RQ1: Does our TSC method
perform better than the unsupervised learning models over
single project for ICFR task? This question focuses on
exploring whether our unsupervised learning method TSC can
achieve better performance than other unsupervised learning
methods for ICFR task. RQ2: Is our TSC method superior to
some classic supervised cross‐project models for ICFR task?
This question is to investigate whether our unsupervised cross‐
project model can acquire similar or even better performance
compared to the supervised cross‐project models for this task.

To verify the effectiveness of the TSC method for ICFR
task under both unlabelled data and the cross‐project scenario,
we conduct experiments on a publicly available benchmark
dataset [2] consisting of crash data from seven open source
software projects. This dataset simulates software crashes
through seeding faults with program mutation since collecting
and reproducing real‐word crashes is not a trivial matter. We
compare the TSC method with four clustering based unsu-
pervised learning baseline methods which use only the unla-
belled crash data from the target project and eight supervised
cross‐project baseline models which work on the assumption
that the labels of crash data from the source project are known.
Five performance indicators are carefully selected to compre-
hensively evaluate the effectiveness of our TSC based ICFR
method and the 12 baseline methods. The detailed experi-
mental results show that our TSC method achieves improve-
ment of 23.8%, 27.8%, 17.6%, 12.3%, and 26.9% in terms of
F‐measure, G‐measure, g‐mean, Balance, and MCC compared
with the best corresponding indicators of the four unsuper-
vised baseline methods respectively. In addition, our TSC
method achieves better performance than the eight supervised
cross‐project baseline models in terms of F‐measure and g‐
mean, and competitive performance in terms of G‐measure
and Balance compared with one baseline method, but lower
performance in terms of MCC than one baseline method.
Overall, our TSC method utilising information of auxiliary

2 - LIU ET AL.

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12073, W
iley O

nline L
ibrary on [10/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

unlabelled crash data indeed performs better than the unsu-
pervised learning methods which are applied only to unlabelled
crash data of the individual project without auxiliary infor-
mation. Besides, although our unsupervised cross‐project TSC
method is not fully superior to the supervised cross‐project
models, it is still competitive since it does not require any
labelled crash data. In that sense, the performance results of
the TSC method are not so unsatisfactory, that is, the results
are acceptable.

In summary, we have the following main contributions for
this work:

(1) In this work, we were the first to study the ICFR problem
under the completely no label scenario using a unsuper-
vised cross‐project model to address the label scarcity
issue, in which the labelled crash data are not always
available for both the external project and the current
project.

(2) By introducing an advanced TSC method which in-
corporates the transfer learning and clustering algorithm,
we utilise the auxiliary unlabelled crash data from the
source project to make the unlabelled crash data from the
target project produce more effective clustering results. To
the best of our knowledge, TSC is the first unsupervised
cross‐project model for the ICFR task.

(3) We evaluate the effectiveness of the used unsupervised
cross‐project ICFR model (i.e. TSC) on seven open‐source
software projects with five indicators. The experimental
results show that TSC achieves promising performance
over four unsupervised non‐cross‐project baseline
methods on individual project and acceptable performance
over eight supervised cross‐project models.

The remainder of this paper is organised as follows. Sec-
tion 2 briefly introduces the related work. Section 3 introduces
the fundamentals of our work. Section 4 describes the details
of our TSC based cross‐project ICFR method. Section 5
presents our experimental setup. Section 6 reports and analyses
the experimental results. Section 7 lists the potential threats to
validity of our work. Finally, Section 8 concludes our work.

2 | RELATED WORK

2.1 | Stack trace analysis

Crash, a serious software failure, is an event when the program
itself stops or aborts unexpectedly. It is usually caused by faults
in the software. Modern software generally equips the crash
reporting system which can automatically generate the crash
report when a crash occurs. The crash report mainly contains
the stack trace information of the crash, that is, function
invocation sequences when software executing. As the stack
traces can be utilised to reproduce the crash, it can help to
understand the root causes of crashes [9].

The stack trace is composed of a set of frame objects, that
is, an initial frame object which describes the exception of

crash and other frame objects which include the function call
sequences. The top one is called the first frame and the bottom
one is called the last frame in this work. Each frame except for
the initial frame mainly consists of the class name, function
name, and the code line number which describes the location
of the execution point. Some frames also contain information
about the function arguments.

Previous studies analysed stack traces for various tasks, for
example, crash report clustering [10, 11], crash reproduction [9,
12–14], and crash residence identification [2, 15].

2.2 | Crash fault residence identification

Gu et al. [2] were the first to explore this issue by proposing an
automatic method CraTer. They constructed a training data
based on known crashes by extracting a set of features for
instance representation. They used sampling strategy to relief
the class imbalanced issue and employed six classifiers as the
classification model. The built model is used to identify the
residence of the newly‐submitted crashes. By utilising this
collected benchmark dataset, Xu et al. [3] extended Gu et al's
work to cross‐project scenario by utilising a state‐of‐the‐art
feature embedding based transfer learning model to alleviate
the data distribution difference across projects and also
considering their corresponding weights. Then, they further
extended their own work by adding a feature selection stage to
preprocess the crash data before performing the feature
embedding [15]. Zhao et al. [4] employed a two‐step frame-
work for ICFR task by first using a consistency based feature
selection method to obtain a reduced feature set, then intro-
ducing a simplified deep forest method to construct classifi-
cation model. Xu et al. [16] applied an advanced imbalanced
metric learning method to address the class imbalanced issue
of the crash data. Zhao et al. [17] conducted a comprehensive
investigation to explore the impact of 24 feature selection
methods on 21 classification models for the ICFR task.

Though these studies focussed on the same task as our
work, that is, identifying whether the residence of crashing
fault falls in the stack traces or not, the difference between
them and our study is that the proposed models in these work
all belong to the supervised within project or supervised cross‐
project model while our method is an unsupervised cross‐
project model. To our best knowledge, our work was the
first to introduce such a model to solve the ICFR task.

2.3 | Root cause analysis via machine
learning techniques

Lal et al. [18] proposed a machine learning based approach to
find the root cause of bugs in newly developed software. They
conducted experiments on Eclipse and the results showed the
effectiveness of the proposed method. Kahles et al. [19]
employed the machine learning technique to automatically
analyse the root cause in agile software test environments.
They extracted 188 relevant features from totally 1271 failed

LIU ET AL. - 3

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12073, W
iley O

nline L
ibrary on [10/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

test cases for experiments and the results illustrated that the
model obtained an accuracy of 88.9%. Ma et al. [20] developed
a big data‐driven system that employed the supervised machine
learning technique for enhancing the performance of root
cause analysis. They first employed the data mining technique
to build a feature‐based model to represent the distinct types
of quality issues and then utilised the machine learning model
to predict the root causes. The experimental results showed the
proposed data‐driven model can reduce the prediction time
and cost. Hangal et al. [21] developed a new model called
DIDUCE that could instrument programs and observe their
runtime behaviours. It began with the strongest hypothesises
and could gradually weaken the hypothesis to explore the new
rare behaviours that might damage the program operation.
Based on such information, they found that DIDUCE is
effective in detecting software bugs. Abdelrahman et al. [22]
first employed seven anomaly detection models with two
performance indicators followed by the Boosting technique to
detect the anomalies. Then, they used a statistical root cause
analysis on such anomalies to visualise the possible causes.
Their experimental results demonstrated the effectiveness of
their proposed method. Soldani et al. [23] surveyed the existing
techniques for anomaly detection and root cause analysis in
multi‐service applications, including log‐based methods,
visualisation‐based methods, distributed tracing‐based, and
monitoring‐based methods. They further summarised the
setup, accuracy, explainability, and countermeasures of these
methods.

Different from previous studies that focussed on analysing
the root causes of quality deviations or bugs in software, our
aim is to identify whether the software crashes located in the
stack trace or not because the information derived from stack
traces is more helpful for developers to locate the bug lines
with fewer efforts.

2.4 | Software defect prediction via
unsupervised learning techniques

Nam et al. [24] proposed the novel CLA and CLAMI ap-
proaches for software defect prediction task. The approaches
automatically classified the unlabelled dataset by means of the
magnitude of metric values. Their experimental results showed
the effective performance compared with the supervised
learning techniques. Liu et al. [25] proposed the CCUM
method that employed the code churn features to construct an
unsupervised learning model for software defect prediction.
They conducted experiments with three settings including
cross‐validation, time‐wise cross‐validation, and cross‐project
prediction, and the results demonstrated the effectiveness of
the CCUM model. Yan et al. [26] conducted an empirical study
that explored the prediction performance of supervised and
unsupervised learning techniques under effort‐aware file‐level
defect prediction models. The experimental results showed
the effectiveness of unsupervised learning techniques under
cross‐project scenarios. Fan et al. [27] analysed the prediction
performance of the CLIFF&MORPH model for cross‐

company defect prediction task. Their experimental results
illustrated that the unsupervised ManualDown technique ob-
tained better performance. Huang et al. [28] conducted a
replication exploration of Yang et al.’s work [29] that proposed
an unsupervised method called LT. Their results found that LT
needed partitioners to check many code changes involving a
large number of code context. Chang et al. [30] proposed a
novel approach called CISC for software defect prediction
task. It first incorporated spectral clustering with Ng‐Jordan‐
Weiss technique to obtain a low dimensional unlabelled data-
set. Then, the chaotic and immune clone selection method was
employed and the layer chaotic mutation was developed to
improve the variety of antibody. Their experimental results
demonstrated the effectiveness of the CISC method. Li et al.
[31] empirically investigated the performance of 49 unsuper-
vised learning techniques for software defect prediction task.
They grouped these unsupervised models into 14 categories
and adopted the Matthews Correlation Coefficient as the basic
indicator. Their experimental results illustrated the inconsistent
and insufficient of the published experimental results in orig-
inal papers.

Although previous studies adopted unsupervised learning
techniques for software defect prediction task, to the best of
our knowledge, we are the first to introduce such model for
ICFR task, that is, identifying whether the crashing faults
located in the stack trace under the cross‐project scenario.

2.5 | Summary

In this section, we discuss the related work of our study from
four aspects. First, we introduce the knowledge of crash and
stack trace analysis as the background of our work. Then, we
present how existing studies deal with the same ICFR task and
explain the differences between this work and other studies. In
addition, we discuss the related topics such as root cause
analysis and software defect prediction, and compare them
with ours.

3 | FUNDAMENTALS

In this section, we introduce the used corpora for the exper-
iments in our work, which is an public available benchmark
dataset shared by Gu et al. [2]. This dataset consists of crashing
fault instances from seven open‐source and real‐world soft-
ware projects, that is, Apache Commons Codec, Apache
Commons Collections, Apache Commons IO, Jsoup,
JSqlParse,Mango andOrmlite‐Core. Table 1 lists some basic
information of this dataset, including the selected version for
each project (number in parentheses), the total number of
crashing fault instance (# Crash), the number of crashing fault
instances whose residences locate outside the stack traces (#
OutTrace), and the number and proportion of crashing fault
instances whose residences locate inside the stack traces (#
InTrace and % InTrace). The construction of this dataset
mainly consists of three steps: that is, generating crashes,

4 - LIU ET AL.

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12073, W
iley O

nline L
ibrary on [10/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

extracting features, and labelling each crash instance. The op-
erations for each step are briefly described below:

3.1 | Generating crashes

Generating program mutants by mutation operation. Gu
et al. [2] used the mutation techniques to seed faults into the
seven software projects to simulate the real crashes following
previous work [32, 33]. More specifically, they used seven
default mutation operation in a state‐of‐the‐art mutation
testing system to generate program mutants by making a
single‐point change on the corresponding program.

Removing useless mutants. The program mutants that
do not lead to the software crashes need to be discarded. The
deletion rules are that the ones which can pass all the test cases
and the ones whose stack traces only include AssertionFaile-
dError, ComparisonFailure, or test cases are filtered out. The
remained mutants are treated as the crashing fault instances.

3.2 | Feature extraction

In order to characterise the crashing fault instances, Gu et al.
[2] extracted a total of 89 features for representation. The
feature extraction is done with the help of a static program
analysis framework, called Spoon, which is an open‐sourced
and extensible Java compiler and designed for analysing,
rewriting, transforming, and compiling Java source code [34].
The 89 features are derived from a total of five families:

� 11 features are related to the stack traces, which character-
ises the difficulty of dealing with corresponding crashes. For
convenience, the names of these 11 feature2 are abbreviated
{ST1, ST2, …, ST11}.

� 23 features are extracted from the function and class in the
first frame, which represents the program state messages
when the program crashes. The names of these 23 feature
are abbreviated {FF1, FF2, …, FF23}.

� 23 features are mined from the function and class in the last
frame, which shows the information of the initial function
call. The names of these 23 feature are abbreviated {LF1,
LF2, …, LF23}.

� 16 features are gained via normalising the 16 features related
to the top function in the first frame with LOC (Lines Of
Code). The names of these 16 feature are abbreviated
{NFF1, NFF2, …, NFF16}.

� features are obtained by normalising the 16 feature related
to the bottom function in the last frame with LOC. The
names of these 16 feature are abbreviated {NLF1, NLF2, …,
NLF16}.

The details for each feature can be found in Table 2.

3.3 | Rules of label assignment

In general, the contained main items of each frame in the stack
traces can be treated as a triplet, that is, [the class name, the
function name, line number of the code]. When the informa-
tion of a crashing fault instance exactly matches a triple of one
frame in the stack trace, the label of the corresponding instance
is assigned as InTrace, that is, the residence of the crashing
fault is identified as inside the stack trace. Otherwise, the label
of the instance is identified as OutTrace, that is, the residence
of the crashing fault is identified as outside the stack trace.

4 | METHOD

4.1 | Notations

Our TSC based cross‐project ICFR model involves two pro-
jects, that is, the source project and the target project. We
define the data from the source project as the data matrix
S ¼ ½s1;…; sn1� containing n1 crashing instances with nf fea-
tures, where si ∈ Rnf�n1 . Similarly, the data from the target
project is defined as the data matrix T ¼ ½t1;…; tn2� containing
n2 crashing instances with nf features, where tj ∈ Rnf�n2 .

4.2 | Transfer Spectral Clustering (TSC)

In the context of unsupervised cross‐project ICFR task,
TSC clusters one project data with the help of another
project data. TSC is expected to achieve better performance
on both project data than clustering them separately. For
this purpose, it needs to find the low dimensional embed-
dings for the two project data to enable they are not only
smooth on the data manifold, but also maximise the task
relationship [35]. In the obtained low dimensional embed-
dings, both project data can be partitioned into the desired
number of groups. Assuming that G(s) and G(t) are defined
as the k nearest neighbour graphs generated on each project
data, the corresponding affinity matrices M(s) and M(s) are
denoted as follows:

MðsÞij ¼
�
1; if si ∈ nei

�
sj
�
or sj ∈ neiðsiÞ

0; otherwise
ð1Þ

TABLE 1 Basic statistics of the used seven projects

Projects # Crashes # OutTrace # InTrace % InTrace

Codec (1.1) 610 433 177 29.02 %

Collections (4.1) 1350 1077 273 20.22 %

IO (2.5) 686 537 149 21.72 %

Jsoup (1.11.1) 601 481 120 19.97 %

JSqlParser (0.9.7) 647 586 61 9.43 %

Mango (1.5.4) 733 680 53 7.23 %

Ormlite (5.1) 1303 977 326 25.02 %

LIU ET AL. - 5

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12073, W
iley O

nline L
ibrary on [10/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

TABLE 2 The detailed information of 89 features

Feature Description

ST Features related to the stack trace

ST1 The type of the exception in the crash

ST2 The frame number in the stack trace

ST3 The class number in the stack trace

ST4 The function number in the stack trace

ST5 Whether there is an overloaded function in the stack trace

ST6 The name length in the top class

ST7 The name length in the top function

ST8 The name length in the bottom class

ST9 The name length in the bottom function

ST10 The Java file number in the project

ST11 The class number in the project

FF (and LF) Features related to the First Frame (FF) and the Last Frame (LF)

FF1 (LF1) The local variable number in the top/bottom class

FF2 (LF2) The field number in the top/bottom class

FF3 (LF3) The function number (except constructor functions) in the top/bottom class

FF4 (LF4) The imported package number in the top/bottom class

FF5 (LF5) Whether the top/bottom class is inherited from others

FF6 (LF6) The comment LOC in the top/bottom class

FF7 (LF7) The top/bottom function LOC

FF8 (LF8) The parameter number in the top/bottom function

FF9 (LF9) The local variable number in the top/bottom function

FF10 (LF10) The if‐statement number in the top/bottom function

FF11 (LF11) The loop number in the top/bottom function

FF12 (LF12) The for statement number in the top/bottom function

FF13 (LF13) The for‐each statement number in the top/bottom function

FF14 (LF14) The while statement number in the top/bottom function

FF15 (LF15) The do‐while statement number in the top/bottom function

FF16 (LF16) The try block number in the top/bottom function

FF17 (LF17) The catch block number in the top/bottom function

FF18 (LF18) The finally block number in the top/bottom function

FF19 (LF19) The assignment statement number in the top/bottom function

FF20 (LF20) The function call number in the top/bottom function

FF21 (LF21) The return statement number in the top/bottom function

FF22 (LF22) The unary operator number in the top/bottom function

FF23 (LF23) The binary operator number in the top/bottom function

NFF (and NLF) Features normalised by LOC from FF (NFF) and LF (NLF)

NFF1 (NLF1) FF8/FF7 (LF8/LF7)

NFF2 (NLF2) FF9/FF7 (LF9/LF7)

NFF3 (NLF3) FF10/FF7 (LF10/LF7)

6 - LIU ET AL.

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12073, W
iley O

nline L
ibrary on [10/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

MðtÞij ¼
�
1; if ti ∈ nei

�
tj
�
or tj ∈ neiðtiÞ

0; otherwise
ð2Þ

where nei(sj) and nei(tj) denote the neighbour sets of sj and tj
respectively. Then we need to obtain the low dimensional
embeddings that are smooth on the graphs. We define
EðsÞ ∈ Rn1�k and EðtÞ ∈ Rn2�k as embeddings of the two
project data in which each row represents an embedding for
the corresponding crash instance. In this case, the smoothness
of the E(s) over G(s) is measured as:

1
2

Xn1

i;j¼1

MðsÞij

�
�
�
�
�
�
�

1
ffiffiffiffiffiffiffiffi

DðsÞii
q EðsÞi −

1
ffiffiffiffiffiffiffiffi

DðsÞjj
q EðsÞj

�
�
�
�
�
�
�

2

ð3Þ

whereEðsÞi is the i‐th rowof theE(s) andD(s) = diag(M(s)1) and 1 is
the vector 1. This formula can be simplified into the following

form tr
�
EðsÞ

T
�
I − MðsÞN

�
EðsÞ
�
, where MðsÞN ¼DðsÞ

−1
2MðsÞDðsÞ

−1
2.

If we add the following constraint EðsÞ
T
EðsÞ ¼ I , the smoothness

of E(s) over G(s) can be further measured as follows:

tr
�
EðsÞ

T
MðsÞN EðsÞ

�
ð4Þ

The greater value means smoother of the embedding on the
data manifold, that is, on the corresponding graph. Similarly, the
smoothness of E(t) on G(t) can also be measured as follows:

tr
�
EðtÞ

T
MðtÞN EðtÞ

�
ð5Þ

where MðtÞN ¼DðtÞ
−1
2MðtÞDðtÞ

−1
2 and D(t) = diag(M(t)1).

As mentioned above, in addition to seeking for the
smoothness on the graph, TSC also aims to maximise the task
relationship, that is, the embedding obtained over one project
data can promote the acquisition of the embedding over
another project data. This goal can be treated as a graph co‐
clustering issue which aims to find minimum cut partitions
in a bipartite graph, in which the graph nodes contain the
information of crash instances and features [36]. We define a
data matrix A ∈ Rd�n, where d and n denote the number of
features and crash instances respectively. The corresponding
affinity matrix of graph is defined as follows:

W ¼
�

0 A
AT 0

�

ð6Þ

The graph Laplacian derived from the above formula is
defined as

L¼
�

D1 −A
−AT D2

�

ð7Þ

where D1 = diag(A1) and D2 ¼ diag
�
AT1

�
. Then, we get the

objective function of graph co‐clustering as follows:

min
z

zTLz

s:t:

(

xTD1x¼ 1;
yTD2y¼ 1:

ð8Þ

where x and y denote the embeddings for features and crash

instances respectively, and z¼
�
x
y

�

. The objective function

can be equivalent to the following formula:

max
x;y

xTAy

s:t:

(

xTD1x¼ 1;
yTD2y¼ 1:

ð9Þ

According to the graph co‐clustering theory, the objective
function can be rewritten as follows:

Φ
�
EðsÞ;EðtÞ;Eðf Þ

�
¼ tr

�
Eð f Þ

T
SEðsÞ

�
þ tr

�
Eð f Þ

T
TEðtÞ

�
ð10Þ

where E(s) and E(t) are the embeddings for the crash instances
of two projects as mentioned above, and E(f) denotes the
embeddings for features. A larger Φ value means better co‐
clustering effect on the two project data.

Therefore, in order to pursue better smoothness on the
data manifold and maximise the task relationship, the final
objective function combines the above three formulas simul-
taneously as follows:

g
�
EðsÞ;EðtÞ;Eðf Þ

�
¼ max

EðsÞ;EðtÞ;Eðf Þ
tr
�
EðsÞ

T
MðsÞN EðsÞ

�

þ tr
�
EðtÞ

T
MðtÞN EðtÞ

�
þ λ
�
tr
�
Eð f Þ

T
SNEðsÞ

�

þ tr
�
Eð f Þ

T
TNEðtÞ

��
s:t:

8
>><

>>:

EðsÞ
T
EðsÞ ¼ I;

EðtÞ
T
EðtÞ ¼ I;

Eðf Þ
T
Eð f Þ ¼ I ;

TAB LE 2 (Continued)

Feature Description

… …

NFF15 (NLF15) FF22/FF7 (LF22/LF7)

NFF16 (NLF16) FF23/FF7 (LF23/LF7)

LIU ET AL. - 7

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12073, W
iley O

nline L
ibrary on [10/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

where SN ¼ diagðS1Þ−
1
2 SdiagðS⊺1Þ−

1
2 is the normalised version

of S, and TN ¼ diagðT1Þ−
1
2 Tdiag

�
TT1

�−1
2
is the normalised

version of T. MðsÞN and MðtÞN are the affinity matrices corre-
sponding to the normalised versions of S andT respectively. The
λ (λ > 0) is a trade off parameter between the two goals (i.e. the
smoothness on the data manifold and the co‐clustering effect).

4.3 | Solution process for TSC

Here, we describe the process of solving the TSC method. It is
not feasible to give a global optimal solution for the above
objective function as it is a non‐convex optimisation. Thus, we
can only obtain a local solution. In order to solve this
constraint function, E(s) and E(t) are first initialised with the top
k eigenvectors of MðsÞN and MðTÞN , respectively, while E(f) is
initialised with the top k left singular vectors of the matrix [SN
TN]. The solution of this objective function can be obtained by
updating E(s), E(t), and E(f) which can lead the increase in the
value of the objective function. More specifically, the update
formulas are based on the partial derivatives of g (i.e. g(E(s), E(t),
E(f))) with respect to E(s), E(t), and E(f) as follows:

EðsÞiþ1 ¼Ψ
�

EðsÞi þ t
∂g

∂EðsÞ
=

�
�
�
�

�
�
�
�

∂g
∂EðsÞ

�
�
�
�

�
�
�
�

�

ð11Þ

EðtÞiþ1 ¼Ψ
�

EðtÞi þ t
∂g

∂EðtÞ
=

�
�
�
�

�
�
�
�

∂g
∂EðtÞ

�
�
�
�

�
�
�
�

�

ð12Þ

Eðf Þiþ1 ¼Ψ
�

Eðf Þi þ t
∂g

∂Eðf Þ
=

�
�
�
�

�
�
�
�

∂g
∂Eðf Þ

�
�
�
�

�
�
�
�

�

ð13Þ

where t is the iteration step length, Ψ(Z) = UIn,mV T is the
projection of a matrix Z ∈ Rn�m on Stiefel manifold, in
which the singular value decomposition of Z is Z = U∑V T

[37]. In the singular value decomposition formula, U is a m
� m matrix, ∑ is the semi‐positive definite diagonal matrix
with the size of m � n and the corresponding elements on
the diagonal are singular values of Z, and V is a n � n
matrix. In addition, U and V are unitary matrices, that is,
U TU = I and V TV = I [38].

The updating process terminates until achieving the
convergence. At last, the crash data of the two projects are
grouped into pre‐designated clusters. In our ICFR task, the
cluster number is set to 2 since our crashing fault instance only
have two types of labels, that is, the crashing fault locates inside
the stack trace (with label InTrace) or outside the stack trace
(with label OutTrace). We have released the source code of our
TSC‐based cross‐project ICFR method at https://github.com/
sepine/TSC so that other researchers could easily reproduce
our experiments in the future.

5 | EXPERIMENTAL SETUP

5.1 | The overall framework

Figure 1 provides an overview of the framework of this study.
First, the unlabelled crash instances from the source project
and the target project are input into the used TSC method, and
the output are two clusters of the target project data. The
empirical labelling strategy is used to label the instances in the
two clusters. According to the clustering results, a set of in-
dicators are calculated to evaluate the performance of our used
TSC method. Finally, a statistic test method is employed to
significantly analyse the performance results of both our TSC
methods and the baseline methods.

5.2 | Performance indicators

As the goal of our ICFR task is to identify whether the resi-
dences of crash instances is inside or outside the stack trace
under the unsupervised scenario, it can be treated as a binary
clustering problem, that is, performing clustering on binary
data. As stated in a previous study [39], a work also for a typical
software engineering task, the performance indicators
commonly‐used for the binary classification task can also be
applied to measure the effectiveness of binary clustering task.
In this work, we carefully choose the same five indicators as
that in the work of Xu et al. [3] which proposed a supervised
cross‐project model for ICFR task. The five indicators
including F‐measure, G‐measure, g‐mean, Balance, and

F I GURE 1 An overall of our experimental framework

8 - LIU ET AL.

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12073, W
iley O

nline L
ibrary on [10/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/sepine/TSC
https://github.com/sepine/TSC

Matthews correlation coefficient (MCC) allow us to do a
comprehensive performance evaluation for our TSC based
unsupervised ICFR model. We will introduce how to calculate
these indicators below.

First, we give four types of output results of the unsu-
pervised models:

� a crash instance whose true label is InTrace is identified as
InTrace by the model.

� a crash instance whose true label is InTrace is identified as
OutTrace by the model.

� a crash instance whose true label is OutTrace is identified as
OutTrace by the model.

� a crash instance whose true label is OutTrace is identified as
InTrace by the model.

The number of corresponding crash instances under
above four output results are defined as the following terms:
True Positive (TP), False Negative (FN), True Negative
(TN), and False Positive (FP). Note that, in this work, we
treat the crash instances with label InTrace as the positive
instances since we always want to detect as many of these
types of instances as possible to speed up the efficiency of
fault localisation and avoid wasting resources reviewing
irrelevant code. The reason for this refers to the studies of
defect prediction which treat the faulty code instances as
positive ones since the developers and testers want to detect
as many of such instances as possible to allocate test re-
sources appropriately [40].

Based on the above terms, three basic transitional in-
dicators are calculated as follows. Precision¼ TP

TP þ FP, that is,
the ratio of crash instances with true labelled InTrace that are
identified as InTrace to the total number of crash instances
that are identified as InTrace. Recall ¼ TP

TP þ FN, that is, the
ratio of crash instances with true label InTrace that are
correctly identified to the total number of crash instances
whose true labels are InTrace. Recall is also called PD
(Probability of Detection). Probability of False alarm
�
PF ¼ FP

FP þ TN

�
, that is, the ratio of crash instances with true

label InTrace that are incorrectly identified to the total
number of crash instances whose true labels are InTrace.

Based on the above items, the used five performance in-
dictors in this work are calculated as follows:

F‐measure is a harmonic mean of Precision and Recall:

F ‐ measure¼
2� Precision� Recall

Precisionþ Recall
ð14Þ

G‐measure is a harmonic mean of PD and (1‐PF):

G ‐ measure¼
2� PD� ð1 − PFÞ

PDþ ð1 − PFÞ
ð15Þ

g‐mean is a geometric mean of PD and (1‐PF):

g ‐ mean¼
ffi
PD� ð1 − PFÞ

p
ð16Þ

Balance is a trade‐off between PF and Recall:

Balance ¼ 1 −

ffi

ð0 − PFÞ2 þ ð1 − RecallÞ2

2

s

ð17Þ

MCC is essentially a correlation coefficient describing
actual and output results:

MCC ¼
TP � TN − FP � FN

ffi
ðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p

ð18Þ

The first four indicators range from 0 to 1, while the last
indicator ranges from −1 to 1. Larger values for all five in-
dicators imply better performance. When MCC = 1, it mani-
fests the perfect identification. When MCC = 0, it denotes that
the identification results is worse than that of random guess.
When MCC = −1, it means that the identification results is
completely inconsistent with the actual ones.

5.3 | Labelling scheme for clusters

The output of the TSC method is two clusters, and we can
know which crash instances belong to the same cluster. But
this method does not tell us which group of crash instances is
labelled as InTrace. Inspired by the heuristic from a defect
prediction study [5] which assigned label to the cluster based
on the feature values of each cluster, in this work, we first
calculate the average feature values of the obtained two clus-
ters, and assign the label InTrace (OutTrace) to the crash in-
stances whose cluster has the lower (larger) average feature
values. The rationale for this setting is explained in the
Section 7.

5.4 | Significance analysis

In order to analyse the significance differences between our
TSC based ICFR model and the baseline methods, we choose
to use Friedman test with an improved Nemenyi test for sta-
tistic significant analysis as suggested by Herbold et al. [41].
Friedman is a commonly‐used test to compare the overall
performance of a set of methods over multiple project data.
However, this test only gives a conclusion on whether there
exists a difference between the performance among these
methods based on a p value. If so (i.e. the p value is lower than
0.05), a post‐hoc test (such as the used Nemenyi test) is needed
to find out which methods have statistically significant

LIU ET AL. - 9

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12073, W
iley O

nline L
ibrary on [10/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

differences in performance. The Nemenyi test is applicable to
the scenario when all methods are compared to each other.
The Nemenyi test compares the difference of average ranking
of each method with a Critical Difference (CD) which is

calculated as CD¼ qα

ffiffiffiffiffiffiffiffiffiffiffiffi
rðr þ 1Þ

6h

q

, where r and h are the number
of methods and project data respectively, and qα is a critical
value related to significant level α (usually α = 0.05) and r [42].
If the ranking difference between two methods is greater that
CD, it indicates that the method with the high average ranking
is statistically superior to the method with the low average
ranking. Otherwise, there is no statistical difference between
the two methods. The reason of using the improved version of
the Nemenyi test in this work is to avoid generating overlapped
groups after dividing these methods. The output of the
improved Nemenyi test is a CD diagram as depicted in
Figure 2, in which the methods (such as method 1, method 2,
and method 3 or method 1, method 3, and method 4) with
significant differences are drawn in different colours while the
methods (such as method 2 and method 4) without significant
differences are drawn in the same colour.

6 | EXPERIMENTAL RESULTS

6.1 | RQ1: does our TSC method perform
better than the unsupervised learning models
over single project for ICFR task?

Motivation: Since our TSC based ICFR method does not
involve any labelled crash data, thus, in essence, it belongs to a
kind of unsupervised learning model. We design this question
to investigate whether our unsupervised TSC method could
achieve better performance than other unsupervised learning
methods for the ICFR task. In addition, our TSC method is
applied to two unlabelled project data. In this question, we also
set experiment applying methods to single project data to
observe their performance for the ICFR task. If our TSC
method wins out, it implies that the information provided by
auxiliary unlabelled crash data indeed have the potential to help
improve the performance of unsupervised methods.

Methods: As far as we know, no researchers have pro-
posed to use unsupervised methods for the ICFR task yet,
either under within or cross‐project scenarios. Therefore, we
cannot find baseline methods from previous studies for per-
formance comparison. In this case, we choose some typical
clustering algorithm based unsupervised learning methods
which are applied to single project for comparison. Finally, we
employ 4 clustering methods, including Mini Batch k‐Means
(MBM) [43], Balanced iterative reducing and clustering using
hierarchies (Birch) [44], Spectral BiClustering (SBC) [45], and
Gaussian Mixture Model (GMM) using Expectation Max-
imisation algorithm [46]. According to a family classification
summarised in a previous study [39], the used four baseline
unsupervised methods come from different family. More
specifically, MBM, Birch, SBC, and GMM belong to the
partition based, hierarchy based, graph‐theory‐based, and

model based clustering families respectively. The brief
description of the four baseline methods are below.

� MBM: an improved k‐means. It reduces the computational
cost via exploiting a fixed size subset of whole dataset.

� Birch: a clustering method generally for large datasets. It
uses a single scan to gain high quality clustering results and
improves performance with following scans.

� SBC: It assumes that the input data matrix has a hidden
checkerboard structure, and divides the rows and columns
so that the corresponding blockwise‐constant checkerboard
matrix can well approximate the original matrix.

� GMM: It is a parametric probability density function which
assumes that the input data obey the mixture Gaussian
distribution in clustering task.

Note that the baseline method SBC is a spectral clustering
method being only applied to single project data (i.e. the target
project data) which does not involve data from the source
project. From this point of view, it can be treated as a non‐cross‐
project version of TSC, that is, TSC without auxiliary data.

Results: In the experiments, for our TSC method, each
project is treated as the target project once while other projects
are treated as the source projects in turn. For the four
comparative unsupervised baseline methods, they are only
applied to the target project. In Figure 3, we report the radar
charts of the average performance values of the five indicators
for our TSC methods and four unsupervised baseline methods
on the cross‐project pairs of each project being treated as the
target project from Figure 3a–g as well as across all projects in
Figure 3h. Table 3 reports the average performance of the five
indicators for these five methods across all projects. Figure 4
visualises the analysis results of Friedman test with Nemenyi
test on the performance of our TSC method and four unsu-
pervised baseline methods. From Figure 3, Figure 4, and Ta-
ble 3, we have the following observations:

First, from Figure 3a to Figure 3g, we can observe that, in
terms of F‐measure, our TSC method achieves better perfor-
mance than all four unsupervised baseline methods on projects
Codec, Collection, IO, and JSqlParser when they are individ-
ually treated as the target project; in terms of G‐measure, our
TSC method performs better than all four unsupervised
baseline methods on projects Collection and IO when they are
individually treated as the target project; in terms of g‐mean
and Balance, our TSC method performs better than four
other baseline methods on projects Collection, IO and
JSqlParser as well; in terms of MCC, our TSC method per-
forms better than four other baseline methods on projects
Codec, Collection, IO and JSqlParser.

F I GURE 2 An example of the CD diagram

10 - LIU ET AL.

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12073, W
iley O

nline L
ibrary on [10/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

F I GURE 3 Radar charts of average values of five indicators on the cross‐project pairs of each project and across all projects in terms of TSC and four
unsupervised baseline methods. (a) Radar charts of five indicators when Codec is treated as the target project. (b) Radar charts of five indicators when
Collections is treated as the target project. (c) Radar charts of five indicators when IO is treated as the target project. (d) Radar charts of five indicators when
Jsoup is treated as the target project. (e) Radar charts of five indicators when JSqlParser is treated as the target project. (f) Radar charts of five indicators when
Mango is treated as the target project. (g) Radar charts of five indicators when Ormlite‐Core is treated as the target project. (h) Radar charts of five indicators
across all project when each one is treated as the target project

LIU ET AL. - 11

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12073, W
iley O

nline L
ibrary on [10/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

Second, from Figure 3h, we can find that in terms of all
five indicators, our TSC methods achieves the best average
performance compared with all four unsupervised baseline
methods across all projects when they are individually treated
as the target project in turn. Combining the specific perfor-
mance values given in Table 3, by comparing with the best
indicator values among the four baseline methods, our TSC
achieves improvements by 23.8% in terms of F‐measure, by
27.8% in terms of G‐measure, by 17.6% in terms of g‐mean,
by 12.3% in terms of Balance, and by 26.9% in terms of MCC.

Third, from Figure 4 which visualises the corresponding
statistic test results for the five methods in terms of the five
indicators, we can observe that the p‐values of Friedman test
(all less than 0.05) indicate that there exist statistically significant
performance differences among the five methods in terms of all
indicators. The CD diagrams show that our TSC method be-
longs to the top ranking group in terms of all indicators and
achieves the best average ranking on four indicators except for
F‐measure. However, our TSC method has no significant dif-
ferences compared with two baseline methods (i.e. GMM and
MBM) in terms of F‐measure and MCC, and one baseline
method (i.e. GMM) in terms of other three indicators. Although
the performance differences between our TSC and GMM are
not statistically significant over all five indicators, in terms of
the specific average values of the our TSC method and GMM
across all project (i.e. F‐measure 0.349‐vs‐0.282, G‐measure
0.542‐vs‐0.418, g‐mean 0.560‐vs‐0.460, Balance 0.558‐vs‐

0.497, and MCC 0.118‐vs‐0.093), the performance value of our
TSC method is still much better than GMM. Therefore, when
the need of better performance is the primary consideration for
ICFR in practical applications and unlabelled data of other
projects are available, our TSC method is still recommended
over GMM. In addition, the performance of GMM is affected
by whether input data obeys mixture Gaussian distribution.
While the performance of our TSC method is not affected by
this constraint. Thus, when the distribution of crash data is not
satisfied, our TSC method is preferred over GMM.

Answer to RQ1

Our TSC‐based unsupervised method with the aid of
unlabelled crash data from external projects indeed
shows the performance superiority to the typical un-
supervised methods without auxiliary data. This im-
plies that it is possible to utilise auxiliary unlabelled
crash data to improve performance for the ICFR task.

6.2 | RQ2: is our TSC method superior to
some classic supervised cross‐project models
for ICFR task?

Motivation: Since our TSC based ICFR method involves two
projects, that is, the source project and target project, to put it
another way, it belongs to a cross‐project model. Nevertheless,
unlike traditional cross‐project models that have been pro-
posed for other software engineering tasks, our TSC method
does not require the source project data to have labels. We set
this question to explore whether our unsupervised cross‐
project model can achieve similar or even better results
compared with the supervised cross‐project models as the
traditional ones. If our TSC method wins out, it implies that
our TSC method has great competitiveness towards the su-
pervised cross‐project models.

TABLE 3 Average performance for the five methods across all
projects

Indicators SBC Birch MBM GMM TSC

F‐measure 0.234 0.186 0.274 0.282 0.349

G‐measure 0.340 0.336 0.424 0.418 0.542

g‐mean 0.385 0.403 0.476 0.460 0.560

Balance 0.409 0.435 0.486 0.497 0.558

MCC −0.053 −0.015 0.054 0.093 0.118

Note: The bold values means the best prediction performance in terms of each
indicators.

(a) (b) (c)

(e)(d)

F I GURE 4 Visualised results of statistical test for our TSC method and four unsupervised methods in terms of five indicators. (a) Statistical test results for
F‐measure. (b) Statistical test results for G‐measure. (c) Statistical test results for g‐mean. (d) Statistical test results for Balance. (e) Statistical test results for MCC

12 - LIU ET AL.

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12073, W
iley O

nline L
ibrary on [10/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

Methods: Researchers have proposed different supervised
cross‐project models for software engineering tasks. For this
question, we choose eight existing methods as our baseline
methods. These methods could be divided into three types:
four instance filtering based models (i.e. NN‐Filter [47], Peter‐
Filter [48], Yu‐Filter [49], and HISNN [50]), two transfer
learning‐based models (i.e. TCA+ [51] and TNB [52]) and two
classifier combination‐based models (i.e. CODEP [53] and
ASCI [54]). The brief descriptions of these methods are below:

� NN‐Filter: for each crash instance in the target project,
NN‐filter finds its nearest neighbour from the source
project.

� Peter‐Filter: it first clusters the mixed source and target
project data, and then conducts the NN‐filter operation in
each clusters.

� Yu‐Filter: it first clusters the mixed source and target
project data, and then reserves the crash data of the source
project in such clusters which contain as least one crash
instance from the target project.

� HISNN: a hybrid instance selection method by learning
both local and global knowledge.

� TCA+: it uses a component analysis method to relief the
distribution difference between source and target projects.

� TNB: an improved naive Bayes method by considering the
weighting information of the crash data in the source
project.

� CODEP: it combines outputs of different classifiers, which
is superior to the performance of all stand‐alone classifiers.

� ASCI: it uses a strategy to adaptively choose the optimal
classifier which can better predict the class.

Results: For the eight comparative supervised baseline
methods, the only difference with our TSC method is that they
assume that the labels of the source project data are known. In
Figure 5, we report the box‐plots of the performance values of
five indicators for our TSC methods and eight supervised
baseline methods across all 42 cross‐project pairs from
Figure 5a to Figure 5e. Table 4 reports the average perfor-
mance of the five indicators for these nine methods across all
projects. Figure 6 visualises the corresponding analysis results
of Friedman test with Nemenyi test on the performance. From
Figure 5, Table 3, and Figure 6, we have the following findings:

First, from Figure 5a to Figure 5e, we can observe that, in
terms of the median F‐measure, our TSC method performs the
best compared with all eight supervised baseline methods; in
terms of the median G‐measure, g‐mean, and Balance, our
TSC methods achieves nearly the same performance as two
supervised baseline methods, that is, Yu‐Filter and TCA+,
while achieves better performance than the other six super-
vised baseline methods; in terms of the median MCC, our TSC
method achieves a little lower performance than three super-
vised baseline methods, that is, TCA+, CODEP, and ASCI,
but higher performance than the other five baseline methods.

Second, according to the specific performance values given
in Table 4, compared with the best indicator values among the
eight baseline methods, our TSC achieves improvements by

7.4% in terms of F‐measure, by 7.1% in terms of g‐mean, and
by 0.5% in terms of Balance. Overall, the improvement is
slight. In addition, our TSC method is 0.2% lower than the
best performance achieved by TCA+ in terms of G‐measure,
and 19.7% lower than the best performance achieved by ASCI
in terms of MCC.

Third, from Figure 6, we can find that the p‐values of
Friedman test (all less than 0.05) demonstrate that there exist
statistically significant performance differences among the nine
methods in terms of all indicators. The CD diagrams show that
our TSC method belongs to the top ranking group in terms of
all indicators and achieves the second best or third best average
rankings on all indicators. Besides, our TSC method has sig-
nificant differences compared with four supervised baseline
methods in terms of F‐measure, with three supervised baseline
methods in terms of G‐measure and MCC, and with two su-
pervised baseline methods in terms of g‐mean and Balance.

Answer to RQ2

Although our unsupervised cross‐project method
TSC does not perform the best in all of performance
indicators, it can slightly outperform all baseline su-
pervised cross‐project models on some indicators.
Since our TSC method does not need to involve in
any labelled data, it is highly competitive for the ICFR
task in the scenario where labelled data are extremely
scarce.

7 | THREATS TO VALIDITY

Threats to External Validity: The generalisation of the
experimental results is the main threat to the external validity
of our work. In order to alleviate such threat, we use an open‐
source benchmark dataset which is commonly used in previous
studies [2–4, 15–17]. Nevertheless, the projects in the used
dataset were developed with Java language. Thus, additional
experiments need to be done to verify whether our TSC
method can also work well on other projects developed with
programming languages like C, C++ or Python for the ICFR
task. Another threat lies in that the crashes in the used dataset
were simulated using mutation technology, nevertheless, pre-
vious researches have proved that the crashes by mutation can
be considered as alternative to the real ones in software testing
[55]. In this work, we assume that the source and target pro-
jects have the same features, this is, we only focus on the cross‐
project ICFR task under the homogeneous scenario. This will
threat the general adaptation of our methods. Considering the
heterogeneous ICFR task will be our follow‐up work.

Threats to Internal Validity: This kind of threats come
from the possible faults during implementing the code for our
method and the baseline methods. To minimise this threat, we

LIU ET AL. - 13

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12073, W
iley O

nline L
ibrary on [10/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

(a) (b) (c)

(d) (e)

F I GURE 5 Box‐plots of TSC and eight supervised baseline methods in terms of five indicators. (a) Box‐plots of TSC and eight supervised baseline
methods in terms of F‐measure. (b) Box‐plots of TSC and eight supervised baseline methods in terms of G‐measure. (c) Box‐plots of TSC and eight supervised
baseline methods in terms of g‐mean. (d) Box‐plots of TSC and eight supervised baseline methods in terms of Balance. (e) Box‐plots of TSC and eight
supervised baseline methods in terms of MCC

TABLE 4 Average performance of all
indicators for TSC and the eight supervised
cross project methods across all projects

Indicators NN‐Filter Peter‐Filter Yu‐Filter HISNN TCA+ TNB CODEP ASCI TSC

F‐measure 0.272 0.284 0.267 0.244 0.315 0.325 0.298 0.314 0.349

G‐measure 0.459 0.465 0.441 0.392 0.543 0.289 0.445 0.479 0.542

g‐mean 0.471 0.471 0.445 0.424 0.428 0.351 0.497 0.523 0.560

Balance 0.478 0.491 0.493 0.446 0.555 0.420 0.499 0.524 0.558

MCC 0.006 0.026 0.091 −0.013 0.105 0.069 0.135 0.147 0.118

Note: The bold values means the best prediction performance in terms of each indicators.

(a) (b)

(d) (e)

(c)

F I GURE 6 Visualised results of statistical test for our TSC method and eight supervised cross‐project methods in terms of five indicators. (a) Statistical test
results for F‐measure. (b) Statistical test results for G‐measure. (c) Statistical test results for g‐mean. (d) Statistical test results for Balance. (e) Statistical test results
for MCC

14 - LIU ET AL.

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12073, W
iley O

nline L
ibrary on [10/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

have double‐checked the code manually, and try to use the off‐
the‐shelf methods in the third‐party libraries or the ones with
existing source code for comparison.

Threats to Construct Validity: Such threats focus on the
suitability of the evaluation indicators, statistic test methods and
the used labelling strategy. We carefully choose five compre-
hensive indicators to give a thorough appraisal of the perfor-
mance and make the result analysis more persuasive. Besides,
we use an improved Nemenyi post‐hoc test to generate more
reasonable method division without overlapping. As mentioned
in Subsection 5.3, we set the label of the cluster with smaller
average feature values as InTrace. We analyse the benchmark
dataset and count the average feature values for the crash in-
stances with label InTrace and OutTrace respectively for each
project as showed in Table 5. We can observe that the average
feature values for crash instances with label InTrace is lower
than that with label OutTrace over all projects, and the dif-
ference on several projects is clear. From this point of view, our
labelling strategy for the clusters is rational.

Threats to Conclusion Validity: This kind of threats
focus on the experimental results and the conclusion of our
work. As the proposed TSC model is an unsupervised
learning method, we thus compare it with four unsupervised
learning techniques to show its effectiveness. In addition, as
our TSC model has the potential to use the unlabelled data
from source project to promote the clustering effect in target
project, we also compare it with eight classic supervised cross‐
project techniques. The experimental results illustrate the su-
periority of our TSC method for ICFR task. More detailed
analysis of other supervised and unsupervised learning tech-
niques for ICFR task are also important and we leave it as the
future work.

8 | CONCLUSION

If crash defects can be identified in the stack traces, only a
small amount of code needs to be reviewed to find the root
cause of the crashing faults, which greatly improves testing
efficiency and reduces the fault localisation efforts. As the
process of label collection is cumbersome and error‐prone,
using unsupervised models would be an alternative way to
assist in software quality assurance activities. In this work, we
were the first to introduce a both unsupervised and cross‐
project model for identifying the residence of crashing fault.
This model, called TSC, transfer knowledge from auxiliary
unlabelled crash data of other projects to facilitate more
effective cluster results on unlabelled crash data of the project
we care about. TSC aims to obtain a feature embedding that
can link different clustering tasks from multiple project data
and hence improve the clustering performance of each other.

The experimental results over a benchmark dataset consisting
of seven open‐source projects show that our TSC method
outperforms four typical clustering‐based unsupervised
methods in terms of five indicators and also performs well in
terms of several indicators compared with eight supervised
cross‐project models.

In future, we plan to extend our TSC method to other
software engineering tasks, such as defect prediction and
software change prediction. In addition, we try to incorporate
the solution of class imbalanced issue into the TSC method to
make it more effective.

AUTHOR CONTRIBUTIONS
Xiao Liu: Writing – original draft, Data curation, Software.
Zhou Xu: Methodology, Supervision. Dan Yang: Project
administration. Mang Yan: Methodology, Conceptualisa-
tion, Writing – review & editing. Weihan Zhang: Visualisation.
Haohan Zhao: Formal analysis. Lei Xue: Writing – review &
editing. Ming Fan: Writing – review & editing.

ACKNOWLEDGEMENTS
This work was supported in part by theOpen Foundation ofKey
Laboratory ofDependable Service Computing in Cyber Physical
Society, Ministry of Education of China (No. Grant
CPSDSC202004), the National Key Research and Development
Project (No. 2021YFB1714200), the National Nature Science
Foundation of China (No.62002034), the Fundamental Research
Funds for the Central Universities (No. 2022CDJKYJH001), the
Natural Science Foundation of Chongqing (No. cstc2021jcyj‐
msxmX0538), and the Fundamental Research Funds for the
Central Universities (xxj022019001, xzy012020009).

CONFLICT OF INTEREST
The authors have no Conflict of Interest.

DATA AVAILABILITY STATEMENT
Data available on request from the authors.

PERMISSION TO REPRODUCE MATERIALS
FROM OTHER SOURCES
None.

ORCID
Zhou Xu https://orcid.org/0000-0003-3307-2994
Meng Yan https://orcid.org/0000-0002-9538-9121

REFERENCES
1. Shin, Y., Williams, L.: An empirical model to predict security vulnera-

bilities using code complexity metrics. In: Proceedings of the Second
ACM‐IEEE International Symposium on Empirical Software Engi-
neering and Measurement (ESEM), pp. 315–317 (2008)

TABLE 5 Average feature values for
crash instances with different labels

Label Codec Collections IO Jsoup JSqlParser Mango Ormlite

OutTrace 10.04 20.11 21.22 10.76 17.89 14.60 11.97

InTrace 9.64 19.91 18.80 10.30 8.42 13.36 10.63

LIU ET AL. - 15

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12073, W
iley O

nline L
ibrary on [10/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0003-3307-2994
https://orcid.org/0000-0003-3307-2994
https://orcid.org/0000-0002-9538-9121
https://orcid.org/0000-0002-9538-9121
https://orcid.org/0000-0003-3307-2994
https://orcid.org/0000-0002-9538-9121

2. Gu, Y., et al.: Does the fault reside in a stack trace? assisting crash
localization by predicting crashing fault residence. J. Syst. Software. 148,
88–104 (2019). https://doi.org/10.1016/j.jss.2018.11.004

3. Xu, Z., et al.: Identifying crashing fault residence based on cross project
model. In: 2019 IEEE 30th International Symposium on Software
Reliability Engineering (ISSRE), pp. 183–194. IEEE (2019)

4. Zhao, K., et al.: Predicting Crash Fault Residence via Simplified Deep
Forest Based on a Reduced Feature Set. arXiv preprint arXiv:
210401768, (2021)

5. Zhang, F., et al.: Cross‐project defect prediction using a connectivity‐
based unsupervised classifier. In: 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pp. 309–320. IEEE (2016)

6. Fu, W., Menzies, T.: Revisiting unsupervised learning for defect predic-
tion. In: Proceedings of the 11th Joint Meeting on Foundations of
Software Engineering (FSE), pp. 72–83 (2017)

7. Coviello, C., Romano, S., Scanniello, G.: Poster: cuter: Clustering‐based
test suite reduction. In: 2018 IEEE/ACM 40th International Confer-
ence on Software Engineering: Companion (ICSE‐Companion), pp.
306–307. IEEE (2018)

8. Jiang, W., Chung, F.l.: Transfer spectral clustering. In: Joint European
Conference on Machine Learning and Knowledge Discovery in Data-
bases, pp. 789–803. Springer (2012)

9. Xuan, J., Xie, X., Monperrus, M.: Crash reproduction via test case mu-
tation: let existing test cases help. In: Proceedings of the 10th Joint
Meeting on Foundations of Software Engineering (FSE), pp. 910–913
(2015)

10. Dang, Y., et al.: Rebucket: a method for clustering duplicate crash reports
based on call stack similarity. In: 2012 34th International Conference on
Software Engineering (ICSE), pp. 1084–1093. IEEE (2012)

11. Dhaliwal, T., Khomh, F., Zou, Y.: Classifying field crash reports for fixing
bugs: a case study of Mozilla firefox. In: 2011 27th IEEE International
Conference on Software Maintenance (ICSM), pp. 333–342. IEEE
(2011)

12. Chen, N., Kim, S.: Star: stack trace based automatic crash reproduction
via symbolic execution. IEEE Trans. Software Eng. 41(2), 198–220
(2014). https://doi.org/10.1109/tse.2014.2363469

13. Nayrolles, M., et al.: A bug reproduction approach based on directed
model checking and crash traces. J. Softw.: Evolution and Process (JSEP),
29(3), e1789 (2017). https://doi.org/10.1002/smr.1789

14. Nayrolles, M., et al.: Jcharming: a bug reproduction approach using crash
traces and directed model checking. In: 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengineering
(SANER), pp. 101–110. IEEE (2015)

15. Xu, Z., et al.: Feature selection and embedding based cross project
framework for identifying crashing fault residence. Inf. Software Technol.
131, 106452 (2021). https://doi.org/10.1016/j.infsof.2020.106452

16. Xu, Z., et al.: Imbalanced metric learning for crashing fault residence
prediction. J. Syst. Software. 170, 110763 (2020). https://doi.org/10.
1016/j.jss.2020.110763

17. Zhao, K., et al.: A Comprehensive Investigation of the Impact of Feature
Selection Techniques on Crashing Fault Residence Prediction Models.
Information and Software Technology (IST), 106652, (2021)

18. Lal, H., Pahwa, G.: Root cause analysis of software bugs using machine
learning techniques. In: 2017 7th International Conference on Cloud
Computing, Data Science & Engineering‐Confluence, pp. 105–111.
IEEE (2017)

19. Kahles, J., et al.: Automating root cause analysis via machine learning in
agile software testing environments. In: 2019 12th IEEE Conference on
Software Testing, Validation and Verification (ICST), pp. 379–390. IEEE
(2019)

20. Ma, Q., Li, H., Thorstenson, A.: A big data‐driven root cause analysis
system: application of machine learning in quality problem solving.
Comput. Ind. Eng. 160, 107580 (2021). https://doi.org/10.1016/j.cie.
2021.107580

21. Hangal, S., Lam, M.S.: Tracking down software bugs using automatic
anomaly detection. In: Proceedings of the 24th International Conference
on Software Engineering (ICSE), pp. 291–301. IEEE (2002)

22. Abdelrahman, O., Keikhosrokiani, P.: Assembly line anomaly detection
and root cause analysis using machine learning. IEEE Access. 8,
189661–189672 (2020). https://doi.org/10.1109/access.2020.3029826

23. Soldani, J., Brogi, A.: Anomaly detection and failure root cause analysis in
(micro) service‐based cloud applications: a survey. ACM Comput. Surv.
55(3), 1–39 (2022). https://doi.org/10.1145/3501297

24. Nam, J., Kim, S.: Clami: defect prediction on unlabeled datasets (t). In:
2015 30th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pp. 452–463. IEEE (2015)

25. Liu, J., et al.: Code churn: a neglected metric in effort‐aware just‐in‐time
defect prediction. In: 2017 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), pp. 11–19.
IEEE (2017)

26. Yan, M., et al.: File‐level defect prediction: unsupervised vs. supervised
models. In: 2017 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), pp. 344–353. IEEE
(2017)

27. Fan, Y., et al.: The utility challenge of privacy‐preserving data‐sharing in
cross‐company defect prediction: an empirical study of the cliff&morph
algorithm. In: 2017 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pp. 80–90. IEEE (2017)

28. Huang, Q., Xia, X., Lo, D.: Supervised vs unsupervised models: a holistic
look at effort‐aware just‐in‐time defect prediction. In: 2017 IEEE In-
ternational Conference on Software Maintenance and Evolution
(ICSME), pp. 159–170. IEEE (2017)

29. Zimmermann, T., et al.: Cross‐project defect prediction: a large scale
experiment on data vs. domain vs. process. In: Proceedings of the 7th
Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of Software Engi-
neering (FSE), pp. 91–100. ACM (2009)

30. Chang, R., et al.: A novel method for software defect prediction in the
context of big data. In: 2017 IEEE 2nd International Conference on Big
Data Analysis (ICBDA), pp. 100–104. IEEE (2017)

31. Li, N., Shepperd, M., Guo, Y.: A systematic review of unsupervised
learning techniques for software defect prediction. Inf. Software Technol.
122, 106287 (2020). https://doi.org/10.1016/j.infsof.2020.106287

32. Zhang, L., Zhang, L., Khurshid, S.: Injecting mechanical faults to localize
developer faults for evolving software. ACM SIGPLAN Not. 48(10),
765–784 (2013). https://doi.org/10.1145/2544173.2509551

33. Moon, S., et al.: Ask the mutants: mutating faulty programs for fault
localization. In: Proceedings of the 2014 IEEE Seventh International
Conference on Software Testing, Verification and Validation, pp.
153–162. IEEE (2014)

34. Pawlak, R., Noguera, C., Petitprez, N.: Spoon: Program Analysis and
Transformation in Java. Inria (2006)

35. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an
algorithm. In: Advances in Neural Information Processing Systems, pp.
849–856 (2002)

36. Dhillon, I.S.: Co‐clustering documents and words using bipartite spectral
graph partitioning. In: Proceedings of the 7th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp.
269–274 (2001)

37. Manton, J.H.: Optimization algorithms exploiting unitary constraints.
IEEE Trans. Signal Process. 50(3), 635–650 (2002). https://doi.org/10.
1109/78.984753

38. Baker, K.: Singular Value Decomposition Tutorial, pp. 24. The Ohio
State University (2005)

39. Xu, Z., et al.: A comprehensive comparative study of clustering‐based
unsupervised defect prediction models. J. Syst. Software 172, 110862
(2021). https://doi.org/10.1016/j.jss.2020.110862

40. Xu, Z., et al.: Ldfr: learning deep feature representation for software
defect prediction. J. Syst. Software. 158, 110402 (2019). https://doi.org/
10.1016/j.jss.2019.110402

41. Herbold, S., Trautsch, A., Grabowski, J.: A comparative study to
benchmark cross‐project defect prediction approaches. IEEE Trans.
Software Eng. 44(9), 811–833 (2017). https://doi.org/10.1109/tse.2017.
2724538

16 - LIU ET AL.

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12073, W
iley O

nline L
ibrary on [10/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.jss.2018.11.004
https://doi.org/10.1109/tse.2014.2363469
https://doi.org/10.1002/smr.1789
https://doi.org/10.1016/j.infsof.2020.106452
https://doi.org/10.1016/j.jss.2020.110763
https://doi.org/10.1016/j.jss.2020.110763
https://doi.org/10.1016/j.cie.2021.107580
https://doi.org/10.1016/j.cie.2021.107580
https://doi.org/10.1109/access.2020.3029826
https://doi.org/10.1145/3501297
https://doi.org/10.1016/j.infsof.2020.106287
https://doi.org/10.1145/2544173.2509551
https://doi.org/10.1109/78.984753
https://doi.org/10.1109/78.984753
https://doi.org/10.1016/j.jss.2020.110862
https://doi.org/10.1016/j.jss.2019.110402
https://doi.org/10.1016/j.jss.2019.110402
https://doi.org/10.1109/tse.2017.2724538
https://doi.org/10.1109/tse.2017.2724538

42. Pohlert, T.: The pairwise multiple comparison of mean ranks package
(pmcmr). 27, 9 (2019)

43. Béjar Alonso, J.: K‐Means vs Mini Batch k‐Means: A Comparison (2013)
44. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: an efficient data clustering

method for very large databases. ACM Sigmod Record. 25(2), 103–114
(1996). https://doi.org/10.1145/235968.233324

45. Bolla, M.: Spectral Clustering and Biclustering: Learning Large Graphs
and Contingency Tables. John Wiley & Sons (2013)

46. Reynolds, D.A.: Gaussian mixture models. Encyclopedia of biometrics
741, 659–663 (2009). https://doi.org/10.1007/978‐0‐387‐73003‐5_196

47. Turhan, B., et al.: On the relative value of cross‐company and within‐
company data for defect prediction. Empir. Software Eng. 14(5),
540–578 (2009). https://doi.org/10.1007/s10664‐008‐9103‐7

48. Peters, F., Menzies, T., Marcus, A.: Better cross company defect pre-
diction. In: 2013 10th Working Conference on Mining Software Re-
positories (MSR), pp. 409–418 (2013)

49. Yu, X., et al.: A data filtering method based on agglomerative clustering.
In: Proceedings of the 29th International Conference on Software En-
gineering and Knowledge Engineering (SEKE), pp. 392–397 (2017)

50. Ryu, D., Jang, J.I., Baik, J.: A hybrid instance selection using nearest‐
neighbor for cross‐project defect prediction. J. Comput. Sci. Technol.
30(5), 969–980 (2015). https://doi.org/10.1007/s11390‐015‐1575‐5

51. Nam, J., Pan, S.J., Kim, S.: Transfer defect learning. In: 2013 35th In-
ternational Conference on Software Engineering (ICSE), pp. 382–391.
IEEE (2013)

52. Ma, Y., et al.: Transfer learning for cross‐company software defect pre-
diction. Inf. Software Technol. 54(3), 248–256 (2012). https://doi.org/
10.1016/j.infsof.2011.09.007

53. Panichella, A., Oliveto, R., De.Lucia, A.: Cross‐project defect prediction
models: L’union fait la force. In: Proceedings of the 2014 Software
Evolution Week ‐ IEEE Conference on Software Maintenance, Reen-
gineering, and Reverse Engineering (CSMR‐WCRE), pp. 164–173 (2014)

54. Di Nucci, D., Palomba, F., De Lucia, A.: Evaluating the adaptive selection
of classifiers for cross‐project bug prediction. In: Proceedings of the
IEEE/ACM 6th International Workshop on Realizing Artificial Intelli-
gence Synergies in Software Engineering (RAISE), pp. 48–54. IEEE
(2018)

55. Just, R., et al.: Are mutants a valid substitute for real faults in software
testing?. In: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE), pp. 654–665
(2014)

How to cite this article: Liu, X., et al.: An
unsupervised cross‐project model for crashing fault
residence identification. IET Soft. 1–17 (2022). https://
doi.org/10.1049/sfw2.12073

LIU ET AL. - 17

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12073, W
iley O

nline L
ibrary on [10/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1145/235968.233324
https://doi.org/10.1007/978-0-387-73003-5_196
https://doi.org/10.1007/s10664-008-9103-7
https://doi.org/10.1007/s11390-015-1575-5
https://doi.org/10.1016/j.infsof.2011.09.007
https://doi.org/10.1016/j.infsof.2011.09.007
https://doi.org/10.1049/sfw2.12073
https://doi.org/10.1049/sfw2.12073

	An unsupervised cross project model for crashing fault residence identification
	1 | INTRODUCTION
	2 | RELATED WORK
	2.1 | Stack trace analysis
	2.2 | Crash fault residence identification
	2.3 | Root cause analysis via machine learning techniques
	2.4 | Software defect prediction via unsupervised learning techniques
	2.5 | Summary

	3 | FUNDAMENTALS
	3.1 | Generating crashes
	3.2 | Feature extraction
	3.3 | Rules of label assignment

	4 | METHOD
	4.1 | Notations
	4.2 | Transfer Spectral Clustering (TSC)
	4.3 | Solution process for TSC

	5 | EXPERIMENTAL SETUP
	5.1 | The overall framework
	5.2 | Performance indicators
	5.3 | Labelling scheme for clusters
	5.4 | Significance analysis

	6 | EXPERIMENTAL RESULTS
	6.1 | RQ1: does our TSC method perform better than the unsupervised learning models over single project for ICFR task?
	6.2 | RQ2: is our TSC method superior to some classic supervised cross‐project models for ICFR task?

	7 | THREATS TO VALIDITY
	8 | CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT
	PERMISSION TO REPRODUCE MATERIALS FROM OTHER SOURCES

