
Received: 27 February 2021 - Revised: 23 May 2021 - Accepted: 14 June 2021 - IET Software
DOI: 10.1049/sfw2.12040

OR I G INAL RE SEARCH PA PER

A compositional model for effort‐aware Just‐In‐Time defect
prediction on android apps

Kunsong Zhao1,2 | Zhou Xu1,3 | Meng Yan1,3 | Lei Xue4 | Wei Li5 |
Gemma Catolino6

1Key Laboratory of Dependable Service Computing in Cyber Physical Society (Chongqing University), Ministry of Education, Chongqing, China
2School of Computer Science, Wuhan University, Wuhan, China
3School of Big Data and Software Engineering, Chongqing University, Chongqing, China
4Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China
5School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
6Jheronimus Academy of Data Science, Tilburg University, Tilburg, The Netherlands

Correspondence

Zhou Xu and Meng Yan, Key Laboratory of
Dependable Service Computing in Cyber Physical
Society (Chongqing University), Ministry of
Education, Chongqing, China.
Email: zhouxullx@cqu.edu.cn (Z.X.) and
mengy@cqu.edu.cn (M.Y.)

Funding information

National Key Research and Development Project,
Grant/Award Number: 2018YFB2101200; China
Postdoctoral Science Foundation, Grant/Award
Number: 2020M673137; Special Funds for the
Central Government to Guide Local Scientific and
Technological Development, Grant/Award
Number: YDZX20195000004725; Chongqing
Technology Innovation and Application
Development Project, Grant/Award Number:
cstc2019jscx‐mbdxX0064; Natural Science
Foundation of Chongqing in China, Grant/Award
Number: cstc2020jcyj‐bshX0114; National Natural
Science Foundation of China, Grant/Award
Numbers: 62002034, 62002306; HKPolyU Start‐up
Fund, Grant/Award Number: ZVU7; European
Commission grant, Grant/Award Number: 825040

Abstract
Android apps have played important roles in daily life and work. To meet the new re-
quirements from users, the apps encounter frequent updates, which involves a large
quantity of code commits. Previous studies proposed to apply Just‐in‐Time (JIT) defect
prediction for apps to timely identify whether the new code commits can introduce
defects into apps, aiming to assure their quality. In general, high‐quality features are
benefits for improving the classification performance. In addition, the number of
defective commit instances is much fewer than that of clean ones, that is the defect data
is class imbalanced. In this study, a novel compositional model, called KPIDL, is pro-
posed to conduct the JIT defect prediction task for Android apps. More specifically,
KPIDL first exploits a feature learning technique to preprocess original data for
obtaining better feature representation, and then introduces a state‐of‐the‐art cost‐
sensitive cross‐entropy loss function into the deep neural network to alleviate the class
imbalance issue by considering the prior probability of the two types of classes. The
experiments were conducted on a benchmark defect data consisting of 15 Android apps.
The experimental results show that the proposed KPIDL model performs significantly
better than 25 comparative methods in terms of two effort‐aware performance indicators
in most cases.

KEYWORD S
fault tolerance, software performance evaluation, software quality

1 | INTRODUCTION

Software has already become an indispensable part of people’s
daily life and work. However, the existing software products
unavoidably contain defects due to the increasing software

scale and complexity [1]. The defects can result in a series of
negative effects, which are unexpected. Since developing
software products without defects is impossible, it is vital to
propose suitable techniques to detect defects at the earliest.
Software defect prediction emerges to employ different

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2021 The Authors. IET Software published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Soft. 2021;1–20. wileyonlinelibrary.com/journal/sfw2 - 1

https://doi.org/10.1049/sfw2.12040
https://orcid.org/0000-0003-3307-2994
mailto:zhouxullx@cqu.edu.cn
mailto:mengy@cqu.edu.cn
https://orcid.org/0000-0003-3307-2994
http://wileyonlinelibrary.com/journal/sfw2

techniques, such as machine learning methods, to predict
defective code regions, which attract many researchers to
contribute to it for software quality assurance [2, 3].

Recently, apps, especially Android apps, have become
fashionable. It has the advantage that once the developers
release the update of apps, the users can download them
immediately from App Stores [4]. Apps are usually frequently
updated to meet the functional requirements of users. This
characteristic is inevitable to introduce defects into the new
versions of apps, which hinder the app quality. Thus, the early
detection of defects is an urgent issue during the process of
development and maintenance for apps.

Many previous studies [5, 6] for defect prediction were
based on the class level, which was a lack of immediate feed-
back for defective‐prone codes. To overcome this drawback,
researchers proposed Just‐In‐Time (JIT) defect prediction,
which is at the commit level [7, 8]. JIT defect prediction aims at
identifying whether a new code commit introduces defects,
which can offer timely feedback for developers to detect the
defects at the earliest. Considering this advantage, it is appro-
priate to apply JIT defect prediction to software with the
characteristic of frequent updates (such as apps), which in-
volves a large number of code commits. If a new commit
instance introduces defects into the app, this instance is
regarded as defective, otherwise, clean. Catolino et al. [9, 10]
took the first attempt to build JIT defect prediction models for
Android apps based on features derived from the commit
information.

In general, the feature representation quality, to a large
extent, impacts the classification performance. Thus, learning
the high‐level feature representation has the potential to pro-
mote the performance of the defect prediction model. One
alternative solution for this purpose is to make full use of the
feature engineering techniques, such as the typical Principal
Component Analysis (PCA) technique. PCA learns the linear
combinations of the original features in a new space [11, 12].
However, PCA holds that the data for learning should be
linearly separable and with the Gaussian distribution, which is
impractical for the real‐world data that consist of complicated
structures and is difficult to simplify it into a linear subspace
[13]. To overcome this shortage, we employ the non‐linear
enhanced version of PCA, that is, Kernel‐based PCA
(KPCA) technique [14]. It introduces the non‐linear kernel
function to map the raw features of the commit instances into
a latent high‐dimensional space, in which the ability of
handling complicated structures is strengthened and the fea-
tures can be operated linearly. In addition, we can select a part
of the mapped features in the new space to mitigate the
negative impact of noise data. Previous studies have already
indicated that KPCA is superior to PCA method for software
engineering tasks [15–17].

Moreover, for the defect data, the number of defective
commit instances is much fewer than those of clean ones. In
other words, the defect data is class imbalanced. Since the data
imbalance characteristic usually deteriorates the performance
of the classification model [17], it is crucial to deal with this
issue for performance improvement. In this study, we propose

a novel Imbalanced Deep Learning method, short for IDL, to
address the class imbalanced issue. More specifically, as the
deep learning method usually shows excellent performance for
classification task, we use the Deep Neural Network (DNN)
model to construct an effective classifier on the mapped defect
data of Android apps to identify the defective commit in-
stances. However, since the traditional cross‐entropy loss
function in the DNN model holds that the losses of two
classes have the same impact on the total loss, it is not suitable
for the imbalanced defect data. To overcome this drawback, we
introduce a novel cost‐sensitive cross‐entropy (CSCE) loss
function into DNN. This loss function takes the prior prob-
ability of the two kinds of classes into consideration when
calculating the cross‐entropy loss [18]. In other words, it uses
the weighting technique to compensate the class imbalance
between the defective and clean commit instances.

In this study, we propose a novel JIT defect prediction
model, called KPIDL, which is a compositional framework
that incorporates the abovementioned two methods, that is,
KPCA for feature representation learning and IDL for classi-
fication model construction. More specifically, KPIDL first
exploits the KPCA technique to transform the original data
into a new space to learn more representative features towards
commit instances. Then, with the transformed features of
commit instances, KPIDL employs our proposed IDL method
to construct a classification model for handling the inherent
class imbalanced problem of the defect data.

As the confusion matrix‐based performance indicators
used in previous defect prediction studies, such as Precision,
Recall, and F‐measure, assume that the test efforts of de-
velopers are always enough, it is unrealistic in the real‐world
app quality assurance activities. The reason is that apps have
quick update iteration with a short development cycle, this
causes the availability of only limited testing resources for code
inspection. Thus, the classical performance indicators seem to
be out of its depth. Arisholm et al. [19] proposed to take code
inspection efforts into account for performance evaluation,
termed effort‐aware indicators, for defect prediction on
traditional software projects. It is more appropriate for prac-
tical activities. Due to the above advantages, in this study, we
fasten the effort‐aware performance evaluation of our pro-
posed JIT defect prediction method for Android apps.

To evaluate the prediction performance of our proposed
JIT defect prediction framework KPIDL, in this study, we
conduct experiments on a benchmark dataset that includes 15
Android apps and employ Effort‐Aware Recall (EARecall) and
Effort‐Aware F‐measure (EAF‐measure) as performance in-
dicators. Across the 15 apps, our KPIDL method achieves the
average EARecall and EAF‐measure values of 0.627 and 0.475,
respectively. KPIDL obtains average improvements by 32.1%,
8.7%, 18.3%, 17.3% in terms of EARecall while by 27.6%,
17.1%, 26.9%, and 10.6% in terms of EAF‐measure, compared
with its five variants, six sampling‐based methods, five
ensemble‐based methods, and nine cost‐sensitive based
methods, individually. The statistic test results show that our
KPIDL method significantly outperforms 24 out of 25
comparative methods in terms of two effort‐aware indicators.

2 - ZHAO ET AL.

This study extends our previous study published as a
conference paper [20]. The four main differences between the
two studies are highlighted as follows: (1) We take feature
learning into account to reduce the impact of noise data and
obtain high‐quality feature representation to improve the
performance of our JIT defect prediction model, which is
ignored in the conference version; (2) We replace the original
performance measurement with the effort‐aware indicators to
evaluate our proposed method, which is better to simulate the
practical activities in which the code inspection efforts are al-
ways limited; (3) We add 5 methods for comparison to verify
the effectiveness of our JIT defect prediction framework for
Android apps; (4) We extend data by adding 4 real‐world apps
to enhance the generalisation of our model and make more in‐
depth analysis towards our experimental results.

The main contributions of this study are summarised as
follows:

(1) To the best of our knowledge, we are the first to consider
both the feature learning and class imbalance issue
simultaneously for JIT defect prediction on Android apps.

(2) We develop a novel compositional model KPIDL for JIT
defect prediction towards Android apps. Our proposed
model introduces the KPCA method to learn more
representative feature representation and then a novel
deep learning‐based model IDL is developed to relieve the
negative impact of class imbalance of the defect data by
employing a weighted cross‐entropy‐based loss function.

(3) We evaluate our KPIDL model on the defect data con-
sisting of 15 Android apps and conduct the statistic test to
analyse the experimental results. The results show that our
method significantly outperforms 25 comparative methods
in most cases.

The remainder of this study is organised as follows. The
next section introduces the related work. Section 3 describes
our KPIDL model in detail. We introduce the experimental
setup and illustrate the performance evaluation in Section 4
and 5, respectively. The threats to the validity of our study are
discussed in Section 6. Finally, we conclude this study and
present future work in Section 7.

2 | RELATED WORK

2.1 | Feature learning in defect prediction

The process of feature representation learning usually applies
some feature engineering methods to preprocess the raw
feature set, making the new feature set better reveal the
characteristics of the defect data. The widely used feature en-
gineering methods include the feature selection methods and
feature extraction methods [21]. The former ones select a part
of features to replace the original feature set. The classic
methods include filter‐based feature ranking methods and
wrapper‐based feature subset selection methods. The latter
ones transform the raw features into a new space in which the

new feature form can well represent the defect data. The
classic methods include the PCA and its kernel version KPCA.

Liu et al. [22] proposed a clustering and ranking‐based
feature selection method FECAR that first applied the sym-
metric uncertainty measure to cluster the original features into
multiple groups and then used three relevance measures to
obtain more relevant features from each group. The experi-
mental results on Eclipse and NASA datasets demonstrated
that FECAR was more effective in choosing the relevant fea-
tures. Xu et al. [21] empirically assessed the impact of 32
feature selection techniques on defect prediction performance.
Their experiments on the three datasets showed that the
principal component analysis technique performed the worst
among all the methods. Shivaji et al. [23] assessed the impact of
filter‐based and wrapper‐based feature preprocess techniques
on the performance of defect prediction. Their experiments on
11 projects showed that only using 10% of the original feature
could still improve the defect prediction. Chen et al. [24]
proposed a method MOFES that regarded the feature selection
as a multi‐objective optimisation issue, aiming at minimising
the feature number and maximising the prediction perfor-
mance simultaneously. They conducted experiments on
PROMISE dataset and the results indicated that MOFES
selected less features but obtained better prediction perfor-
mance. Ghotra et al. [25] empirically investigated the impact of
30 feature selection methods applied to 21 classification
models on the performance of defect prediction. They con-
ducted experiments on NASA and PROMISE datasets and
found that the correlation‐based feature subset selection
method with the best‐first search strategy was more suitable
for the defect prediction task compared with other baseline
methods. Ni et al. [26] developed a novel cluster‐based method
FeSCH that used a density‐based clustering technique and then
proposed three different heuristic ranking strategies to select
the useful features for cross‐project defect prediction. Their
experimental results on ReLink and AEEEM datasets showed
the effectiveness of FeSCH.

Different from the above studies that took feature pre-
process into account for defect prediction in traditional soft-
ware projects, we simultaneously consider both feature learning
and class imbalanced learning for JIT defect prediction on
Android apps.

2.2 | Class imbalanced learning in defect
prediction

Since most of defect data have an inherent class imbalance
property, that is the defective instances are usually far fewer
than those of the non‐defective ones. The purpose of class
imbalanced learning methods is to address the adverse impacts
of this issue on the classification models. The widely used class
imbalanced learning methods include sampling‐based methods,
ensemble‐based methods, and cost‐sensitive‐based methods
[27]. The former ones make the instance number of two classes
the same by increasing or removing some instances. The
middle ones combine several weak classifiers to get a better

ZHAO ET AL. - 3

and more comprehensive classifier with strong ability. The
latter ones introduce the concept of misclassification cost to
minimise the misclassification errors.

Liu et al. [28] proposed to apply the cost information in
both feature selection and classification phases and developed
three novel cost‐sensitive feature selection methods for soft-
ware defect prediction. They conducted experiments on NASA
dataset and the results showed that the proposed cost‐sensitive
feature selection algorithms obtained promising prediction
performances compared with the traditional methods that only
considered cost information in classification. Siers et al. [29]
proposed two decision tree‐based cost‐sensitive methods to
minimise the classification cost for software defect prediction.
They conducted experiments on six projects and the results
illustrated that their techniques performed better than six
comparative methods. Bennin et al. [30] empirically explored
the statistical and practical effects of six sampling methods on
five classification models for the defect prediction task. They
conducted experiments on 10 open source projects and the
results found that the investigated sampling methods had sig-
nificant and practical effects in terms of performance in-
dicators Pd, Pf, and G‐mean but had no impact on AUC.
Bennin et al. [31] empirically assessed the impacts of the per-
centage of fault‐prone modules on seven sampling methods
applied to five classification models for defect prediction. They
conducted experiments on 10 static metric projects and the
results demonstrated that the performance of these classifica-
tion models could be largely impacted by this parameter except
for AUC. Tantithamthavorn et al. [32] empirically investigated
the impact of four popularly used sampling‐based class reba-
lancing techniques on the performance of 10 widely used in-
dicators and explored the impact of these sampling methods
on the interpretation of defect prediction models. Their large‐
scale experiments with 101 systems showed that sampling‐
based class rebalancing methods were not helpful to inter-
pret the defect prediction models. Bennin et al. [33] proposed a
novel synthetic oversampling approach MAHAKIL that
treated two different sub‐classes as parents and produced a
new sample that inherited traits from both parents to enhance
the diversity of data distribution. They conducted experiments
on PROMISE dataset and the results indicated that MAHA-
KIL was superior to the baseline methods.

Different from the above studies that focussed on relieving
the class imbalanced issue with machine learning‐based ap-
proaches for traditional software defect prediction, we design a
deep learning model incorprating a novel cost‐sensitive loss
function to deal with this issue for JIT defect prediction on
Android apps.

2.3 | JIT defect prediction for traditional
software

Kamei et al. [7] applied some factors derived from character-
istics of the software changes to predict JIT defects. They
conducted a large‐scale empirical study on 11 projects from
different domains and the experimental results showed that

their method effectively detected the most risky changes.
Fukushima et al. [34] employed a JIT cross‐project model to
alleviate the issues of demand for a large amount of training
data during the development stages. Their results on 11 open
source projects showed that ensemble learning methods using
historical data achieved better performance. Kamei et al. [35]
explored a cross‐project model for JIT defect prediction on 11
projects and the results showed that the cross‐project model
provided an alternative way for projects with limited historical
data. McIntosh et al. [36] conducted experiments to address
whether the important properties of fix‐inducing changes were
consistent with system evolution on two software systems with
37,524 changes. Their results showed that fluctuations derived
from the system evolution impacted on the consistency. Yang
et al. [37] proposed a method, called TLEL, which combined
ensemble techniques with random forests to predict JIT de-
fects. They conducted experiments on six open source projects
with two indicators and the results showed that TLEL could
discover over 70% of defects by reviewing only 20% of the
code lines. Pascarella et al. [38] explored to what extent the
commits were defective and proposed a fine‐grained model for
JIT defect prediction. Their experiments on 10 open source
projects showed that their method could obtain better pre-
diction performance in terms of the AUC indicator. Cabral
et al. [39] conducted the first study to take class imbalance into
consideration for JIT defect prediction. The experimental re-
sults on 10 projects from GitHub repository showed that their
method performed better than baseline methods in terms of
the g‐mean indicator. Kondo et al. [40] defined the context
metrics to perform the JIT defect prediction task. They con-
ducted experiments on six open source projects and the results
showed that the composites of two extended context metrics
performed significantly better than those of the other metrics
in terms of MCC and AUC indicators.

Different from the above studies that only conducted ex-
periments on traditional software, in this study, we focus on
JIT defect prediction for Android apps.

2.4 | Defect prediction for android apps

Ortu et al. [41] analysed defect characteristics from the logs of
traditional software and mobile apps using natural language
text classification techniques. Their experimental results
showed that the High‐Priority and Low‐Priority defects in the
domains of traditional and mobile software were different.
Khomh et al. [42] proposed three metrics to capture the pat-
terns of failure occurrences for defect prediction. They con-
ducted experiments on 18 versions of an enterprise app and
the results showed that these metrics predicted defects with a
shorter time. Scandariato et al. [43] employed a Support Vector
Machine (SVM) model to identify and analyse vulnerable
components of apps using source code metrics. They analyzsd
a popular application in the Android Market and the results
showed that their model achieved higher accuracy and preci-
sion. Kaur et al. [44] compared the defect prediction perfor-
mance using static code‐based metrics and process‐based

4 - ZHAO ET AL.

metrics. They conducted experiments on an open source app
with seven machine learning methods and the results showed
that process metrics‐based models achieved better perfor-
mance for defect prediction on apps. Ricky et al. [45] proposed
an SVM method to predict defects on apps. Their experimental
results on five datasets showed that their SVM method ach-
ieved better performance than that of the decision trees.
Malhotra et al. [46] proposed a framework for identifying
defective classes using object‐oriented metrics. They con-
ducted experiments on seven widely used Android apps and
the results showed that there existed performance differences
among 18 classification models. Kaur et al. [47] explored
process metrics for defect prediction on an open source app.
Their experimental results showed that the models with pro-
cess metrics achieved better performance than those with code
metrics.

Since the timely feedback is a characteristic of JIT defect
prediction, it is especially suitable for frequently updated apps.
However, there are few studies for identifying JIT defects on
apps. Catolino et al. [9, 10] took the first attempt to explore the
JIT defect prediction for apps and then compared the impacts
of multiple machine learning methods and ensemble learning
techniques. They extracted the defect data of apps from the
COMMIT GURU platform as a benchmark dataset and their
experimental results showed that Naive Bayes performed
significantly better than other classifiers.

Different from most previous studies that focussed on the
traditional mobile software at the class level, in this work, we
study JIT defect prediction at the code change or commit level.
Different from [9, 10] that explored the traditional machine
learning classifiers for JIT defect prediction on apps, we pro-
pose a novel method to learn effective feature representation
for this task.

2.5 | Deep learning in defect prediction

Yang et al. [8] proposed Deeper, which employed a deep belief
network for defect prediction. Their experimental results on
six projects with 137,417 changes showed significantly better
performance than those of Kamei et al.’s approach on most
projects. Li et al. [48] proposed a method that extracted fea-
tures from ASTs and then employed Convolutional Neural
Networks (CNNs) for feature representation learning. They
conducted experiments on seven open source projects and the
results showed significant performance improvement of their
method. Phan et al. [49] learned semantic features employing
directed graph‐based CNNs for defect prediction. They con-
ducted experiments on four projects and the results showed
the significant superiority compared with the six baseline
methods. Manjula et al. [50] proposed a novel method that
employed the genetic algorithm and the deep neural network
for feature representation learning and classification. Their
experimental results on PROMISE dataset showed better ac-
curacy than comparative methods. Xu et al. [51] proposed a
method, called LDFR, which employed the deep neural
network with a cross‐entropy loss function for predicting

defective modules. They conducted experiments on 27 project
versions and the results showed that LDFR presented signifi-
cant superiority.

Different from above studies that used deep learning
techniques for defect prediction on traditional software pro-
jects, we take the first attempt to introduce the deep learning
technique into JIT defect prediction on Android apps by
considering both feature representation learning and class
imbalance learning.

3 | METHODOLOGY

Figure 1 depicts the overview of our proposed KPIDL model,
which mainly includes two stages. The first stage is the KPCA‐
based feature representation learning process and the second
stage is the IDL‐based classification model construction pro-
cess. The details of the two stages are described as follows:

3.1 | Feature representation learning with
KPCA

In the first stage, we transform the raw features of commit
instances with kernel function‐based mapping into a latent
space to learn more representative features. Here, we present
how to transform the original feature set into a new space

Z-score Normalization

Feature Transformation with Kernel-based Principal
Component Analysis

Commit Instances

Mapped Features

F
ea

tu
re

 L
ea

rn
in

g
C

la
ss

 R
eb

al
an

ci
ng

Model Training and Classification

Cost-Sensitive Cross-Entropy Loss Calculating

F I GURE 1 The overview of our KPIDL Framework

ZHAO ET AL. - 5

using the KPCA method to learn more representative
features.

Assume that the commit instance set of apps is defined
as S ¼ fðX;Y ÞjX ∈ Rn�m;Y ∈ Rng, where X ¼ ½x1; x2;
…; xn� is the feature set, xi ¼ ½xi1; xi2;…; xim� is the feature
set of the i‐th commit instance, and Y ¼ fyiji¼ 1; 2;…;ng
is the corresponding label set. The goal of feature learning is
to obtain the high quality feature representation that has a
more powerful ability to prompt the classification perfor-
mance. For this purpose, in this study, we first use the
Kernel‐based Principal Component Analysis (KPCA) tech-
nique to acquire more representative features for each
commit instance. KPCA employs the non‐linear mapping
function Φ to transform the original features into a new
feature space F [2, 17, 52, 53]. Assume that the centralised
projection point of xi is defined as ΦðxiÞ, the covariance
matrix C is formulised as follows:

C ¼
1
n

Xn

i¼1
ΦðxiÞΦT ðxiÞ ð1Þ

We execute the linear principal component analysis trans-
formation by diagonalising the covariance matrix C, which can
solve the eigenvalue problem in eigenspace F and is formulised
as follows:

λV ¼ CV ð2Þ

where λ denotes the eigenvalues (λ ≥ 0) and V denote the
corresponding eigenvectors of covariance matrix C.

Since all eigenvectors V are within the scope of the cen-
tralised projection points Φðx1Þ, Φðx2Þ, …, and ΦðxnÞ, we
multiply both sides of Equation (2) by ΦðxlÞ

T (l ¼ 1; 2;…; n),
which is formulised as follows:

λΦðxlÞ
TV ¼ΦðxlÞ

TCV ð3Þ

Then, the eigenvector V is formulised as follows:

V ¼
Xn

j¼1
αjΦðxjÞ ð4Þ

where the coefficient αj can be treated as the linear expression
of ΦðxjÞ.

Since it is unrealistic to appoint a specific form of Φ, we
introduce the kernel function κðxi; xjÞ, which is formulised as
follows:

κðxi; xjÞ ¼ΦðxiÞTΦðxjÞ ð5Þ

By incorporating Equations (2), (4), and (5), we can obtain
the following formula:

Kα¼ nλα ð6Þ

where K is the kernel matrix (with size n� n) corresponding
to κ, Kij ¼ κðxi; xjÞ, and α¼ ½α1; α2;…;αn�

T .

For a given commit instance xins, we extract the non‐linear
projection of k‐th kernel component, which is formulised as
follows:

VkΦðxinsÞ ¼
Xn

i¼1
αk
iΦðxiÞΦðxinsÞ ¼

Xn

i¼1
αk
i κðxi; xinsÞ

ð7Þ

To perform the non‐linear mapping, in this study, we apply
the Gaussian Radial Basic Function (RBF) as the basic kernel
function, which is formulised as follows:

κðxi; xjÞ ¼ exp −
‖xi − xj‖2

2δ2

� �

ð8Þ

where ‖⋅‖ and 2δ2 signify the L2 norm and the width of the
RBF function, respectively.

After employing theKPCA technique for our defect data, we
can obtain the transformed data set S0 ¼ fðX 0;Y Þ|X 0

∈Rn�p;Y ∈ Rng, where p is the dimension of the new feature
space.

3.2 | Classification model construction with
IDL

In the second stage, we propose a novel deep learning‐based
method to build the classification model, which has the ability
to deal with the class imbalanced issue. As our KPIDL frame-
work incorporates an improved cross‐entropy loss function into
a DNN method, we first introduce the original cross‐entropy
loss function, then detail its improved version, that is, the
CSCE loss function, and last illustrate the DNN method.

3.2.1 | Cross‐entropy loss function

The goal of label classification is to make the output labels of
the commit instances generated by an unknown learning
function f ðxÞ as close as possible to the real labels. Here, we
define a generalised model f ðx|θÞ to obtain the output, where
θ is a parameter set of the model. The parameter θ can be
estimated by the cross‐entropy loss function which is a convex
function. The formula is defined as follows:

ℓðθÞ ¼
1
n

Xn

i¼1
½−yilogðŷiÞ − ð1 − yiÞ logð1 − ŷiÞ� ð9Þ

where ŷi ¼ f ðxi|θÞ is the output of model corresponding to
the i‐th commit instance. When yi ¼ 0, ℓðθÞ is equal to
−logð1 − ŷiÞ, and when yi ¼ 1, ℓðθÞ is equal to −logðŷiÞ. The
ŷi tends to yi with the loss decreasing logarithmically [18].

On the balanced data, the losses from −logðŷiÞ and
−logð1 − ŷiÞ account for half of the total loss for a specific
model output ŷi, individually. However, for the imbalanced
data, the loss from the instances in the majority class has larger

6 - ZHAO ET AL.

impacts on the total loss ℓðθÞ. The reason is that it ignores
which class the instances causing the loss belong to when
calculating the total loss.

3.2.2 | Cost‐sensitive cross‐entropy loss function

From the above analysis, it is found that the traditional
cross‐entropy loss function could not work well on the
imbalanced data. To alleviate the class imbalanced issue, the
key point lies in assigning weights to the two kinds of losses,
that is, −yilogðŷiÞ and −ð1 − yiÞ logð1 − ŷiÞ.

Since the prior probability ratio, such as the ratio of the
number of defective commit instances to the total number of
commit instances, is helpful to achieve a balance between
different classes, in this work, we introduce this term into the
cross‐entropy loss function, called CSCE loss function, to
compensate the imbalance of the commit defect data, which is
formulised as follows:

ℓðθÞ ¼
1
n

Xn

i¼1

½−λyilogðŷiÞ − ð1 − λÞð1 − yiÞ logð1 − ŷiÞ� ð10Þ

where λ¼M=N is the percentage of defective instances, M is
the number of commit instances with the defective label
(yi ¼ 1), and N is the total number of the commit instances.
The previous study [18] has proved that the CSCE loss rate
was almost constant when the prior probability was taken into
account. This would lead to a balance between the two
different classes.

3.2.3 | Deep neural network

Deep Neural Network consists of three kinds of network
layers, including the input layer, the hidden layer, and the
output layer [54]. In general, the first layer is the input layer
with many units, which receives the input feature vectors. The
last layer is the output layer, which outputs the results
generated by the DNN model. The hidden layer consists of

one or more layers. Different from the basic multi‐layer per-
ceptron that only has one unit in the output layer, DNN ex-
tends the network structure with many hidden layers and the
output layer with one or more units, which improves the
ability of representation learning. In DNN structure,
the network units between layers are fully connected and the
network units in the same layer are not connected. There
are two main steps in the training process of DNN. The first
step is the forward propagation, in which each layer takes the
original vectors, weighted coefficient matrix, and bias vectors
as inputs, and then outputs the results of the linear operation.
In the second step, the back propagation algorithm is applied
to optimise the model parameters in each layer. The aim is to
make the model output values as close as possible to the real
labels.

Given a set of commit instances in apps, we input feature
vectors of these mapped instances into the first layer of DNN.
After the hidden layers and the output layer processing, the
model calculates the total loss between the predicted labels and
the true labels for commit instances using the CSCE loss
function. Then, back propagation is employed to obtain the
optimal parameters. These two processes terminate until the
total loss attains a certain threshold. The training procedure of
DNN is illustrated in Figure 2.

4 | EXPERIMENTAL SETUP

4.1 | Research Questions

To evaluate our proposed KPIDL method, in this study, we
design the following four Research Questions (RQs).

RQ 1: Is our KPIDL method superior to its variants?

Our proposed KPIDL framework consists of two parts,
that is KPCA method for feature learning and IDL method for
relieving the class imbalance issue, in which KPCA is the
improved version of original linear feature learning method
PCA and IDL is the weighted advance of original Deep

F I GURE 2 The iterative process of Deep Neural Network (DNN)

ZHAO ET AL. - 7

Learning (DL) model. This question is designed to explore
whether our KPIDL method is more effective than these
technical combinations to enhance JIT defect prediction per-
formance on Android apps.

RQ 2: Is our KPIDL method superior to sampling‐based
imbalanced learning methods?

Sampling‐based methods relieve the class imbalance issue
by adjusting the number of positive and negative samples. This
question is designed to explore whether our imbalanced
learning method IDL is superior to the sampling‐based
methods for JIT defect prediction on Android apps.

RQ 3: Does our KPIDL method perform better than ensemble‐
based imbalanced learning methods?

Ensemble learning methods deal with the imbalanced data
by creating multiple base models and then integrating the
predictions of these base models to improve the overall per-
formance. This question is designed to explore whether our
IDL method achieves better performance than that of the
ensemble learning methods on imbalanced defect data of
Android apps.

RQ 4: How effective is our IDL method compared with cost‐
sensitive‐based imbalanced learning methods?

Cost‐sensitive‐based methods alleviate the class imbalance
issue by assigning higher misclassification costs with instances
in the minority class and seeking to minimise the high cost
errors. This question is designed to explore whether our IDL
method is more effective than the cost‐sensitive‐based imbal-
ance learning methods to improve the JIT defect prediction
performance on Android apps.

4.2 | Benchmark dataset

In order to evaluate the performance of our IDL method, in
this study, we employ a benchmark dataset with 15 Android
apps denoted by a recent study [10]. Here, we briefly describe
these apps. Android Firewall is a powerful firewall app based
on Linux iptables, which allows users to control which apps
can access the networks. Alfresco is a business office app,
which ensures the corporate documents are accessed securely.
Android Sync is an Android synchronisation manager, which
transmits data between the Android device and PC only using
USB. Android Wallpaper provides a variety of high‐quality
wallpapers by using manual checking and sorting. Any-
SoftKeyboard provides the support of multiple languages and
privacy protection for screen keyboard in Android mobile
devices. Apg introduces email encryption into the Android
devices for privacy protection. Chat Secure provides users with
a secure communication app based on open standards, such as
XMPP/Jabber and OTR encryption. Kiwix is a lightweight
piece of an app, which allows users to read and download files

(e.g., Wikipedia, Wiktionary, and TED talks) when the internet
connection is unusable. Own Cloud Android provides a cloud
storage platform to synchronise the personal privacy files.
Page Turner provides an ebook reader, which can maintain
the same reading process between multiple devices. Notify
Reddit allows users to acquire the favourite notifications from
their Android wearable. Android Universal Image Loader
provides synchronous and asynchronous image loading.
Observable Scroll View provides the listening for scrolling
status and can interact with the Toolbar easily. Applozic
Android SDK is an in‐app solution that makes real time chat
in apps to be more convenient. Delta Chat is an email‐based
instant messaging tool that relieves the tracking or central
control. As we can see from the above descriptions, these apps
come from various domains.

Table 1 summarises the basic information of these apps,
including lines of the code (# LOC), the total number of
commit instances (# TC), the number of defective instances (#
DC), the number of clean instances (# CC), and the ratio of
defective instances (% DR). If a new commit instance in-
troduces the defects, this instance is deemed as defective,
otherwise, clean. The code lines of these apps are between
9506 and 275,637, which means that these apps have different
scales. The commit instances of the apps in the benchmark
dataset are characterised by a feature set from different scopes,
such as Diffusion, Size, Purpose, History, and Experience. We
follow the original work [10] to use the widely used 14 features
that have been proved to be the most useful ones to identify
defective commit instances in the context of JIT defect pre-
diction for Android apps. Table 2 presents the brief de-
scriptions of the 14 features.

TABLE 1 The basic information of the 15 apps

Project # LOC # TC # DC # CC %DR

Firewall 77,243 1025 414 611 40.4%

Alfresco 152,047 1004 214 790 21.3%

Sync 275,637 209 62 147 29.7%

Wallpaper 35,917 588 94 494 16.0%

Keyboard 114,784 2971 819 2152 27.6%

Apg 151,204 3780 1304 2476 34.5%

Secure 98,768 2579 853 1726 33.1%

Kiwix 32,598 1373 350 1023 25.5%

Cloud 115,169 3700 830 2870 22.4%

Turner 30,943 164 23 141 14.0%

Reddit 9506 222 60 162 27.0%

Image 16,530 875 141 734 16.1%

Scroll 27,836 250 54 196 21.6%

Applozic 87,662 946 143 803 15.1%

Delta 96,971 2465 185 2280 7.5%

8 - ZHAO ET AL.

4.3 | Performance indicators

Traditional confusion matrix‐based indicators, such as Preci-
sion, Recall, and F‐measure, assume that during the testing
process, the efforts for reviewing the distinct code snippets are
the same and the test sources for code inspection are always
enough. Nevertheless, it is impractical to ignore the availability
of sufficient test resources and inspecting different code
snippets will expend inconsistent efforts. To overcome the
aforementioned weaknesses, in this study, we evaluate the
performance of our proposed KPIDL method by effort‐aware
indicators that take code reviews efforts into account for
practical simulation. In this study, we regard the sum of fea-
tures LA and LD as the substitute to code inspection efforts.
In addition, the accessible test resources are deemed as 20% of
all the efforts, following the previous studies [55, 56]. Below,
we briefly depict how to calculate the effort‐aware indicators.

Following the previous studies [2, 51], we first train a
classification model using our IDL method with the trans-
formed features of commit data by the KPCA technique to
predict the commit instances from test set as two groups (i.e.,
defective and clean). Then, the commit instances from each
group are ranked in the ascending order via their code in-
spection efforts, respectively. Next, the ranked commit in-
stances are merged as candidates in which those predicted to
be defective are put in the front. After that, we simulate the
practitioners to inspect the candidate instances from high to
low. This inspection activity continues until the accumulative
effort accounts for 20% of all efforts and we can obtain the
following statistical information corresponding to the inspec-
ted commit instances to calculate the effort‐aware indicators.

� Nd refers to the total number of defective commit instances
in candidate set.

� Ni refers to the total number of reviewed commit instances
in candidate by inspecting 20% of efforts.

� Nid refers to the total number of reviewed defective commit
instances by inspecting 20% of efforts.

Based on the above statistics, the first effort‐aware indi-
cator is Effort‐Aware Recall (EARecall) that is defined as the
percent of reviewed defective commit instances to the whole
defective commit instances in candidate set. EARecall is
denoted as follows:

EARecall¼ Nid=Nd ð11Þ

Effort‐Aware Precision (EAPrecision) refers to the percent
of reviewed defective commit instances to the whole instances
in the candidate set, which is denoted as EAPrecision¼
Nid=Ni.

The second effort‐aware indicator EAF‐measure resembles
the traditional F‐measure, which is the weighted harmonic
average considering EARecall and EAPrecision. EAF‐measure
is denoted as follows:

EAF ‐ measure¼
ð1þ θ2Þ � EAPrecision� EARecall

θ2 � EAPrecisionþ EARecall
ð12Þ

where θ is a trade‐off parameter and is set as 2 following the
previous studies [2, 51, 57].

4.4 | Data partition

In this study, we employ the stratified sampling method to
generate the training set and test set to ensure that the two sets
have the same instance ratio of the two kinds of labels. More

TABLE 2 The brief descriptions of
features

Name Scope Definition

NS Diffusion Number of modified subsystems involved in the current change

ND Number of modified directories involved in the current change

NF Number of modified files involved in the current change

Entropy Distribution of modified code across files involved in the current change

LA Size Lines of code added by the current change

LD Lines of code deleted by the current change

LT Lines of code in a file before the current change

FIX Purpose Whether or not the current change is a bug fix

NDEV History Number of developers changing the files

AGE Average time interval since the last change

NUC Number of unique change to modified files

EXP Experience Developer experience

REXP Recent developer experience

SEXP Developer experience on a subsystem

ZHAO ET AL. - 9

specifically, for each app, we take the data that merges half of
the defective commit instances and half of the clean commit
instances as the training set and the remainder as the test set to
run our KPIDL method and the comparative methods. After
that, we exchange the training set and test set and then run
these methods again. For each data partition, we can obtain
two results. To reduce the negative impacts of the random
partition on our experimental results, we repeat this procedure
25 times. Thus, we obtain a total of 25 � 2 = 50 indicator
values. In this study, we report the average value and the
corresponding standard deviation for each performance
indicator.

4.5 | Parameter settings

To obtain more representative features with the KPCA tech-
nique, in the feature learning stage, we set the kernel param-
eters of KPCA following the default settings in Scikit‐learn
library. Also, we specify the transformed data dimension p as
14. In the model construction stage, we set the structure of
DNN as one input layer and two hidden layers with 32 hidden
units, following with one output layer with one unit. For the
hyper parameters, we set the batch size as 16 and the iterations
as 2000. Moreover, we apply the RMSProp algorithm [58] to
optimise our DNN model. In each iteration, we set the
learning rate as 0.01 with the decay rate as 0.99. In addition, we
employ the exponential moving average model [58] with the
decay rate as 0.99 for the learning rate. When calculating the
loss, the L2 regularisation is applied to reduce the overfitting.
The training process is automatically terminated until the total
loss is less than 0.05.

4.6 | Statistic test

In this study, we apply a state‐of‐the‐art method, namely
Scott‐Knott Effect Size Difference (SKESD) test [59], to
analyse the significant differences between our IDL method
and the comparative methods. The original Scott‐Knott test
uses a cluster analysis algorithm to divide all the methods with
significant differences into different groups. However, this
test method requires the data with normal distribution and
cannot well handle the groups with the negligible effect size
of significant differences. To overcome these two limitations,
Tantithamthavorn et al. [59] proposed an improved version,
called SKESD test that applied log transforming to prepro-
cess the results of the performance indicator and quantified
the effect size by applying Cohen's delta. In this study, we
perform the SKESD test with two stages to conduct the
significant analysis. The process of SKESD test is demon-
strated in Figure 3. In the first stage, we take all the perfor-
mance indicator values of each method on each app as inputs
to the SKESD test and obtain the output of the corre-
sponding rank list of each method on each app. In the second
stage, we take the output results from the previous processing
as inputs and then get the final rank of each method across all

apps. The lower ranking value of a method means that it
obtains better performance.

5 | PERFORMANCE EVALUATION

5.1 | Answer to RQ1: the prediction
performance of our KPIDL method and its
variants

Methods: To answer this question, we first treat the IDL
combining PCAmethod (short for PIDL) and IDL without any
feature preprocess (i.e., IDL) as baseline methods to investigate
how effective is IDL when using non‐linear KPCA, linear PCA,
and no feature learning. In addition, we compare KPIDL with
the baseline methods that combine the traditional DL method
with KPCA, PCA, and no feature learning (short for KPDL,
PDL, and DL, individually) to investigate the prediction per-
formance when not considering the class imbalance.

Results: Tables 3 and 4 report the average EARecall and
EAF‐measure values and the corresponding standard de-
viations of our KPIDL method and the five comparative
variants, individually. In these tables, the values in bold denote
the best performance for each app or the best average value
across all apps. Figure 4 visualises the statistic test results of
SKESD for our KPIDL method and the five baseline methods
in terms of two effort‐aware indicators. Different colours
indicate that the methods belong to different groups with
significant differences. From these tables and the figure, the
following findings can be drawn.

First, in terms of EARecall, our KPIDL method obtains
better performance on 6 out of 15 apps compared with the five
baseline methods. The average EARecall value by our KPIDL
method over all apps achieves improvements by 38.7%, 27.4%,
21.5%, 9.0%, and 63.7% compared with those of DL, PDL,
KPDL, IDL, and PIDL, individually. Our KPIDL method
obtains the best average EARecall value and achieves an
average improvement by 32.1%.

Second, in terms of EAF‐measure, our KPIDL method
obtains better performance on 9 out of 15 apps compared with
the five baseline methods. The average EAF‐measure value by
our KPIDL method over all apps achieves improvements by
43.1%, 36.9%, 11.8%, 3.7%, and 42.6% compared with those
of DL, PDL, KPDL, IDL, and PIDL, individually. Our
KPIDL method obtains the best average EAF‐measure value
and achieves an average improvement by 27.6%.

Third, our KPIDL method ranks the first and has signif-
icant differences compared with its five variants in terms of all
two effort‐aware indicators.

Summary: Different from its variants that only take either
the feature learning or the imbalanced learning into consider-
ation, our KPIDL method that combines the KPCA technique
and IDL model has the advantages to learn representative
features and deal with the class imbalance problem simulta-
neously. Our KPIDL method is more effective in obtaining
significantly better performance than that of its five variants
for predicting JIT defects on Android apps.

10 - ZHAO ET AL.

5.2 | Answer to RQ2: the prediction
performance of our KPIDL method and the
sampling‐based imbalanced learning methods

Methods: To answer this question, we choose six sampling
methods as the baseline methods, including Random Over‐
Sampling (ROS), Random Under‐Sampling (RUS), The Syn-
thetic Minority Over‐sampling Technique (SMOT), SMOT

with Tomek links (SMOTT), SMOT with Borderline samples
(SMOTB), and over‐sampling using ADAptive SYNthetic
sampling (ADASYN). We also use random forest as the basic
classifier, which is widely used in software defect prediction
tasks [60–63].

Results: Tables 5 and 6 report the average EARecall and
EAF‐measure values and the corresponding standard de-
viations of our KPIDL method and six comparative sampling‐

TABLE 3 The average Effort‐Aware
Recall of our KPIDL method and its variants

Project DL PDL KPDL IDL PIDL KPIDL

Firewall 0.489 � 0.24 0.377� 0.07 0.446� 0.14 0.658� 0.21 0.455� 0.13 0.530� 0.14

Alfresco 0.326� 0.20 0.300� 0.26 0.573� 0.30 0.662� 0.28 0.271� 0.10 0.714� 0.24

Sync 0.375� 0.17 0.356� 0.12 0.399� 0.11 0.444� 0.17 0.288� 0.12 0.466� 0.16

Wallpaper 0.593� 0.19 0.578� 0.17 0.341� 0.15 0.525� 0.17 0.297� 0.15 0.532� 0.12

Keyboard 0.505� 0.34 0.681� 0.31 0.785� 0.30 0.580� 0.27 0.289� 0.11 0.822� 0.28

Apg 0.428� 0.27 0.478� 0.28 0.526� 0.18 0.604� 0.20 0.468� 0.24 0.545� 0.24

Secure 0.543� 0.25 0.532� 0.28 0.656� 0.30 0.796� 0.16 0.406� 0.14 0.926� 0.04

Kiwis 0.587� 0.30 0.504� 0.32 0.781� 0.19 0.607� 0.23 0.289� 0.10 0.860� 0.05

Cloud 0.260� 0.07 0.439� 0.22 0.410� 0.15 0.589� 0.24 0.293� 0.12 0.636� 0.23

Turner 0.315� 0.23 0.689� 0.12 0.531� 0.17 0.198� 0.21 0.498� 0.26 0.503� 0.37

Reddit 0.430� 0.18 0.369� 0.18 0.425� 0.12 0.492� 0.19 0.326� 0.15 0.486� 0.17

Image 0.288� 0.16 0.379� 0.25 0.344� 0.12 0.510� 0.21 0.240� 0.14 0.456� 0.15

Scroll 0.582� 0.34 0.587� 0.29 0.568� 0.25 0.470� 0.24 0.233� 0.11 0.517� 0.24

Applozic 0.379� 0.25 0.372� 0.19 0.524� 0.31 0.798� 0.11 0.467� 0.38 0.776� 0.11

Delta 0.684� 0.35 0.738� 0.32 0.425� 0.21 0.686� 0.38 0.925� 0.23 0.630� 0.26

Average 0.452� 0.12 0.492� 0.13 0.516� 0.14 0.575� 0.14 0.383� 0.17 0.627� 0.15

Note: The best performance values among these methods achieved on each app are shown in bold.

F I GURE 3 The operational process of Scott‐Knott Effect Size Difference (SKESD) test

ZHAO ET AL. - 11

based imbalanced learning methods, individually. Figure 5 vi-
sualises the statistic test results of SKESD for our KPIDL
method and the six baseline methods in terms of two effort‐
aware indicators. From these tables and the figure, we can
draw the following observations.

First, in terms of EARecall, our KPIDL method obtains
better performance on 9 out of 15 apps compared with the

six baseline methods. The average EARecall value by our
KPIDL method over all apps achieves improvements by
10.0%, 16.1%, 4.3%, 8.5%, 9.4%, and 4.2% compared with
those of ROS, RUS, SMOT, SMOTT, SMOTB, and ADA-
SYN, individually. Our KPIDL method obtains the best
average EARecall value and achieves an average improvement
by 8.7%.

TABLE 4 The average Effort‐Aware F‐
measure of our KPIDL method and its
variants

Project DL PDL KPDL IDL PIDL KPIDL

Firewall 0.449� 0.16 0.386� 0.05 0.451� 0.12 0.600� 0.11 0.461� 0.12 0.520� 0.09

Alfresco 0.290� 0.10 0.253� 0.12 0.434� 0.12 0.471� 0.10 0.278� 0.08 0.507� 0.06

Sync 0.336� 0.12 0.326� 0.09 0.397� 0.09 0.424� 0.11 0.308� 0.13 0.443� 0.10

Wallpaper 0.353� 0.08 0.340� 0.08 0.293� 0.13 0.357� 0.06 0.255� 0.08 0.360� 0.04

Keyboard 0.388� 0.19 0.493� 0.16 0.545� 0.16 0.503� 0.13 0.312� 0.12 0.580� 0.13

Apg 0.385� 0.16 0.420� 0.16 0.494� 0.12 0.540� 0.13 0.438� 0.19 0.495� 0.14

Secure 0.460� 0.15 0.446� 0.17 0.521� 0.17 0.649� 0.05 0.409� 0.13 0.674� 0.02

Kiwis 0.425� 0.16 0.379� 0.17 0.544� 0.08 0.492� 0.09 0.306� 0.10 0.576� 0.02

Cloud 0.252� 0.04 0.353� 0.11 0.384� 0.12 0.477� 0.08 0.307� 0.13 0.503� 0.05

Turner 0.201� 0.10 0.340� 0.06 0.393� 0.09 0.174� 0.14 0.315� 0.08 0.252� 0.17

Reddit 0.349� 0.10 0.323� 0.10 0.423� 0.07 0.464� 0.11 0.350� 0.17 0.461� 0.10

Image 0.198� 0.07 0.250� 0.12 0.309� 0.08 0.394� 0.07 0.247� 0.14 0.377� 0.06

Scroll 0.400� 0.16 0.396� 0.16 0.427� 0.11 0.399� 0.12 0.245� 0.11 0.418� 0.11

Applozic 0.256� 0.12 0.239� 0.10 0.525� 0.32 0.675� 0.22 0.480� 0.39 0.649� 0.20

Delta 0.242� 0.06 0.256� 0.05 0.236� 0.08 0.248� 0.07 0.277� 0.04 0.310� 0.07

Average 0.332� 0.09 0.347� 0.07 0.425� 0.09 0.458� 0.13 0.333� 0.08 0.475� 0.12

Note: The best performance values among these methods achieved on each app are shown in bold.

(a)

(b)

F I GURE 4 Scott‐Knott Effect Size Difference test for KPIDL method and its variants. (a) EARecall, (b) EAF‐measure

12 - ZHAO ET AL.

Second, in terms of EAF‐measure, our KPIDL method
obtains better performance on 12 out of 15 apps compared with
the six baseline methods. The average EAF‐measure value by
our KPIDL method over all apps achieves improvements by

18.5%, 21.8%, 14.5%, 17.9%, 17.3%, and 12.8% compared with
those of ROS, RUS, SMOT, SMOTT, SMOTB, and ADASYN,
individually. Our KPIDLmethod obtains the best average EAF‐
measure value and achieves an average improvement by 17.1%.

TABLE 5 The Average Effort‐Aware Recall of our KPIDL method and sampling‐based methods

Project ROS RUS SMOT SMOTT SMOTB ADASYN KPIDL

Firewall 0.756� 0.24 0.804� 0.17 0.791� 0.20 0.571� 0.24 0.762� 0.20 0.939� 0.12 0.530� 0.14

Alfresco 0.690� 0.21 0.671� 0.21 0.632� 0.25 0.649� 0.23 0.668� 0.23 0.642� 0.15 0.714� 0.24

Sync 0.417� 0.20 0.437� 0.15 0.429� 0.16 0.435� 0.14 0.41� 0.15 0.461� 0.16 0.466� 0.16

Wallpaper 0.490� 0.15 0.479� 0.13 0.493� 0.11 0.485� 0.10 0.426� 0.15 0.468� 0.14 0.532� 0.12

Keyboard 0.769� 0.27 0.613� 0.27 0.770� 0.27 0.817� 0.21 0.731� 0.17 0.686� 0.26 0.822� 0.28

Apg 0.593� 0.23 0.571� 0.22 0.607� 0.32 0.675� 0.30 0.585� 0.30 0.614� 0.29 0.545� 0.24

Secure 0.714� 0.12 0.614� 0.13 0.808� 0.16 0.635� 0.11 0.794� 0.16 0.650� 0.10 0.926� 0.04

Kiwis 0.581� 0.24 0.429� 0.19 0.703� 0.21 0.677� 0.24 0.576� 0.24 0.737� 0.15 0.860� 0.05

Cloud 0.535� 0.12 0.455� 0.15 0.529� 0.19 0.561� 0.21 0.524� 0.17 0.546� 0.21 0.636� 0.23

Turner 0.542� 0.28 0.337� 0.12 0.498� 0.32 0.498� 0.32 0.527� 0.28 0.500� 0.32 0.503� 0.37

Reddit 0.435� 0.22 0.467� 0.16 0.432� 0.17 0.436� 0.16 0.421� 0.14 0.430� 0.16 0.486� 0.17

Image 0.432� 0.11 0.414� 0.10 0.510� 0.09 0.453� 0.11 0.438� 0.06 0.506� 0.12 0.456� 0.15

Scroll 0.390� 0.19 0.461� 0.14 0.498� 0.13 0.456� 0.11 0.461� 0.13 0.544� 0.16 0.517� 0.24

Applozic 0.369� 0.10 0.427� 0.10 0.391� 0.10 0.385� 0.14 0.381� 0.12 0.381� 0.10 0.776� 0.11

Delta 0.830� 0.25 0.926� 0.17 0.927� 0.20 0.930� 0.20 0.898� 0.24 0.925� 0.21 0.630� 0.26

Average 0.570� 0.15 0.540� 0.16 0.601� 0.16 0.578� 0.15 0.573� 0.16 0.602� 0.16 0.627� 0.15

Note: The best performance values among these methods achieved on each app are shown in bold.

TABLE 6 The average Effort‐Aware F‐measure of our KPIDL method and sampling‐based methods

Project ROS RUS SMOT SMOTT SMOTB ADASYN KPIDL

Firewall 0.629� 0.15 0.663� 0.10 0.650� 0.12 0.514� 0.147 0.635� 0.13 0.738� 0.09 0.520� 0.09

Alfresco 0.464� 0.08 0.461� 0.09 0.434� 0.10 0.438� 0.09 0.452� 0.10 0.459� 0.06 0.507� 0.06

Sync 0.368� 0.14 0.381� 0.11 0.377� 0.11 0.387� 0.10 0.368� 0.10 0.403� 0.11 0.443� 0.10

Wallpaper 0.322� 0.06 0.323� 0.08 0.325� 0.05 0.327� 0.04 0.296� 0.07 0.311� 0.06 0.360� 0.04

Keyboard 0.549� 0.13 0.472� 0.14 0.551� 0.13 0.578� 0.09 0.550� 0.07 0.512� 0.14 0.580� 0.13

Apg 0.503� 0.13 0.498� 0.12 0.495� 0.19 0.542� 0.18 0.487� 0.19 0.508� 0.17 0.495� 0.14

Secure 0.594� 0.08 0.548� 0.10 0.636� 0.07 0.556� 0.08 0.634� 0.07 0.562� 0.06 0.674� 0.02

Kiwis 0.433� 0.14 0.359� 0.11 0.492� 0.11 0.476� 0.13 0.431� 0.13 0.522� 0.07 0.576� 0.02

Cloud 0.401� 0.06 0.346� 0.10 0.418� 0.08 0.426� 0.08 0.409� 0.08 0.434� 0.08 0.503� 0.05

Turner 0.291� 0.10 0.207� 0.06 0.253� 0.14 0.254� 0.14 0.282� 0.10 0.254� 0.14 0.252� 0.17

Reddit 0.359� 0.14 0.390� 0.11 0.368� 0.11 0.372� 0.11 0.367� 0.11 0.370� 0.11 0.461� 0.10

Image 0.267� 0.04 0.284� 0.06 0.313� 0.06 0.283� 0.06 0.281� 0.04 0.307� 0.07 0.377� 0.06

Scroll 0.298� 0.13 0.332� 0.11 0.365� 0.09 0.344� 0.08 0.343� 0.09 0.386� 0.10 0.418� 0.11

Applozic 0.271� 0.07 0.302� 0.06 0.274� 0.06 0.270� 0.08 0.272� 0.08 0.273� 0.07 0.649� 0.20

Delta 0.266� 0.05 0.282� 0.02 0.279� 0.03 0.279� 0.03 0.275� 0.04 0.278� 0.03 0.310� 0.07

Average 0.401� 0.12 0.390� 0.12 0.415� 0.12 0.403� 0.11 0.405� 0.12 0.421� 0.13 0.475� 0.12

Note: The best performance values among these methods achieved on each app are shown in bold.

ZHAO ET AL. - 13

Third, our KPIDL method ranks the first and has signif-
icant differences compared with the six sampling‐based
imbalanced learning methods in terms of all two effort‐aware
indicators.

Summary: Different from the sampling‐based methods
which need change the distribution of commit instances to
balance the defect data, our KPIDL method uses the weights
strategy to deal with the imbalanced issue. To sum up, our
KPIDL method performs significantly better than the
comparative sampling‐based methods for predicting JIT de-
fects on Android apps.

5.3 | Answer to RQ3: the prediction
performance of our KPIDL method and the
ensemble‐based imbalanced learning methods

Methods: To answer this question, we choose five ensemble
methods for comparison, including Balanced Random Forest
(BRF), EasyEnsemble (EasyEn), Bagging (Bag), Balanced
Bagging (BBag), and Adaptive Boost (AdaB).

Results: Tables 7 and 8 report the average EARecall and
EAF‐measure values and the corresponding standard de-
viations of our KPIDL method and the five comparative
ensemble‐based imbalanced learning methods, individually.
Figure 6 visualises the statistic test results of SKESD for our
KPIDL method and the five baseline methods in terms of two
effort‐aware indicators. From these tables and the figure, the
following findings can be drawn.

First, in terms of EARecall, our KPIDL method obtains
better performance on six out of 15 apps compared with the
five baseline methods. The average EARecall value by our
KPIDL method over all apps achieves improvements by

21.0%, 10.6%, 2.6%, 31.2%, and 25.9% compared with those
BRF, EasyEn, Bag, Bbag, and AdaB, individually. Our KPIDL
method obtains the best average EARecall value and achieves
an average improvement by 18.3%.

Second, in terms of EAF‐measure, our KPIDL method
obtains better performance on 10 out of 15 apps compared
with the five baseline methods. The average EAF‐measure
value by our KPIDL method over all apps achieves improve-
ments by 25.3%, 18.5%, 23.7%, 31.9%, and 34.9% compared
with those of BRF, EasyEn, Bag, Bbag, and AdaB, individually.
Our KPIDL method obtains the best average EAF‐measure
value and achieves an average improvement by 26.9%.

Third, our KPIDL method ranks the first and has signif-
icant differences compared with the five ensemble‐based
imbalanced learning methods in terms of all two effort‐aware
indicators except for the Bag method with EARecall indicator.

Summary: Different from the ensemble‐based methods,
which combine the outputs of multiple classification models,
our KPIDL method uses feature representation learning for
performance improvement. In summary, our KPIDL method
is more effective in obtaining significantly better performance
than ensemble‐based methods for predicting JIT defects on
Android apps.

5.4 | Answer to RQ4: the prediction
performance of our KPIDL method and the
cost‐sensitive‐based imbalanced learning
methods

Methods: To answer this question, we employ three cost‐
sensitive‐based methods, including the Systematically devel-
oped Forest of multiple decision trees (SF) [64], Cost‐sensitive‐

(a)

(b)

F I GURE 5 Scott‐Knott Effect Size Difference test for our KPIDL method and sampling‐based methods. (a) EARecall, (b) EAF‐measure

14 - ZHAO ET AL.

based decision Forest (CF) [29], and Balanced cost‐sensitive
decision Forest (BF) [29]. To construct the trees, three
voting‐based strategies are applied to these methods, including

cascading‐and‐Sharing‐based Voting (SV) [65], maximally
Diversified multiple decision tree‐based Voting (DV) [66], and
Cost‐sensitive Voting (CV) [29]. After combining each cost‐

TABLE 7 The average Effort‐Aware
Recall of our KPIDL method and ensemble‐
based methods

Project BRF EasyEn Bag BBag AdaB KPIDL

Firewall 0.752� 0.25 0.696� 0.20 0.289� 0.10 0.387� 0.06 0.493� 0.30 0.530� 0.14

Alfresco 0.693� 0.14 0.598� 0.08 0.959� 0.01 0.494� 0.03 0.680� 0.34 0.714� 0.24

Sync 0.401� 0.13 0.448� 0.18 0.405� 0.21 0.369� 0.10 0.357� 0.17 0.466� 0.16

Wallpaper 0.512� 0.07 0.523� 0.11 0.631� 0.10 0.400� 0.06 0.380� 0.19 0.532� 0.12

Keyboard 0.473� 0.12 0.549� 0.22 0.516� 0.40 0.609� 0.24 0.740� 0.32 0.822� 0.28

Apg 0.560� 0.16 0.642� 0.23 0.526� 0.34 0.549� 0.19 0.467� 0.13 0.545� 0.24

Secure 0.582� 0.10 0.770� 0.20 0.583� 0.38 0.406� 0.02 0.389� 0.03 0.926� 0.04

Kiwis 0.497� 0.18 0.534� 0.26 0.733� 0.28 0.441� 0.08 0.528� 0.25 0.860� 0.05

Cloud 0.515� 0.08 0.589� 0.19 0.690� 0.10 0.430� 0.03 0.475� 0.34 0.636� 0.23

Turner 0.186� 0.18 0.461� 0.36 0.720� 0.13 0.628� 0.17 0.562� 0.11 0.503� 0.37

Reddit 0.413� 0.16 0.454� 0.13 0.421� 0.24 0.426� 0.10 0.448� 0.22 0.486� 0.17

Image 0.398� 0.08 0.486� 0.14 0.582� 0.15 0.376� 0.06 0.365� 0.21 0.456� 0.15

Scroll 0.523� 0.11 0.507� 0.12 0.551� 0.24 0.464� 0.25 0.364� 0.17 0.517� 0.24

Applozic 0.419� 0.07 0.443� 0.11 0.569� 0.21 0.439� 0.08 0.362� 0.21 0.776� 0.11

Delta 0.843� 0.21 0.801� 0.23 0.993� 0.05 0.746� 0.27 0.865� 0.29 0.630� 0.26

Average 0.518� 0.16 0.567� 0.11 0.611� 0.18 0.478� 0.11 0.498� 0.15 0.627� 0.15

Note: The best performance values among these methods achieved on each app are shown in bold.

TABLE 8 The Average Effort‐Aware F‐
measure of our KPIDL method and
ensemble‐based methods

Project BRF EasyEn Bag BBag AdaB KPIDL

Firewall 0.622� 0.16 0.604� 0.13 0.302� 0.08 0.388� 0.05 0.446� 0.20 0.520� 0.09

Alfresco 0.472� 0.04 0.427� 0.03 0.563� 0.01 0.403� 0.03 0.444� 0.15 0.507� 0.06

Sync 0.361� 0.10 0.387� 0.12 0.346� 0.14 0.344� 0.09 0.323� 0.12 0.443� 0.10

Wallpaper 0.348� 0.04 0.343� 0.05 0.362� 0.05 0.299� 0.05 0.267� 0.10 0.360� 0.04

Keyboard 0.407� 0.09 0.458� 0.12 0.385� 0.23 0.478� 0.11 0.530� 0.16 0.580� 0.13

Apg 0.487� 0.10 0.533� 0.13 0.437� 0.21 0.479� 0.10 0.428� 0.08 0.495� 0.14

Secure 0.506� 0.06 0.581� 0.13 0.457� 0.24 0.38� 0.02 0.372� 0.02 0.674� 0.02

Kiwis 0.396� 0.10 0.408� 0.15 0.494� 0.16 0.378� 0.04 0.408� 0.14 0.576� 0.02

Cloud 0.402� 0.05 0.405� 0.10 0.448� 0.06 0.354� 0.02 0.309� 0.20 0.503� 0.05

Turner 0.111� 0.10 0.226� 0.17 0.356� 0.05 0.319� 0.06 0.354� 0.04 0.252� 0.17

Reddit 0.351� 0.11 0.381� 0.09 0.334� 0.15 0.372� 0.07 0.369� 0.13 0.461� 0.10

Image 0.280� 0.06 0.323� 0.07 0.328� 0.07 0.277� 0.04 0.248� 0.09 0.377� 0.06

Scroll 0.377� 0.09 0.37� 0.09 0.357� 0.13 0.350� 0.15 0.280� 0.09 0.418� 0.11

Applozic 0.297� 0.05 0.295� 0.06 0.302� 0.11 0.322� 0.06 0.242� 0.10 0.649� 0.20

Delta 0.269� 0.03 0.268� 0.03 0.287� 0.01 0.261� 0.04 0.267� 0.05 0.310� 0.07

Average 0.379� 0.12 0.401� 0.11 0.384� 0.08 0.360� 0.06 0.352� 0.08 0.475� 0.12

Note: The best performance values among these methods achieved on each app are shown in bold.

ZHAO ET AL. - 15

sensitive‐based method and each voting‐based strategy, we
totally have nine comparative methods, short for SFSV, SFDV,
SFCV, CFSV, CFDV, CFCV, BFSV, BFDV, and BFCV,
respectively.

Results: Tables 9 and 10 report the average EARecall and
the corresponding standard deviations of our KPIDL method
and the nine cost‐sensitive‐based imbalanced learning
methods, individually. Figure 7 visualises the statistic test

(a)

(b)

F I GURE 6 Scott‐Knott Effect Size Difference test for our KPIDL method and ensemble‐based methods. (a) EARecall, (b) EAF‐measure

TABLE 9 The average EARecall of our KPIDL method and cost‐sensitive‐based methods

Project SFSV SFDV SFCV CFSV CFDV CFCV BFSV BFDV BFCV KPIDL

Firewall 0.519� 0.24 0.495� 0.23 0.684� 0.25 0.610� 0.32 0.629� 0.32 0.567� 0.29 0.525� 0.29 0.497� 0.29 0.535� 0.29 0.530� 0.14

Alfresco 0.389� 0.12 0.404� 0.13 0.597� 0.20 0.461� 0.21 0.462� 0.23 0.554� 0.19 0.558� 0.25 0.559� 0.24 0.590� 0.20 0.714� 0.24

Sync 0.377� 0.09 0.381� 0.09 0.411� 0.09 0.311� 0.10 0.297� 0.10 0.392� 0.11 0.360� 0.11 0.363� 0.11 0.388� 0.10 0.466� 0.16

Wallpaper 0.478� 0.23 0.455� 0.20 0.482� 0.14 0.519� 0.20 0.536� 0.19 0.495� 0.17 0.498� 0.18 0.476� 0.18 0.518� 0.13 0.532� 0.12

Keyboard 0.527� 0.25 0.480� 0.21 0.681� 0.22 0.524� 0.29 0.577� 0.31 0.597� 0.24 0.718� 0.30 0.700� 0.30 0.585� 0.28 0.822� 0.28

Apg 0.560� 0.31 0.541� 0.28 0.600� 0.36 0.642� 0.31 0.639� 0.35 0.579� 0.33 0.512� 0.33 0.511� 0.35 0.524� 0.32 0.545� 0.24

Secure 0.625� 0.27 0.576� 0.26 0.675� 0.28 0.673� 0.25 0.682� 0.27 0.680� 0.26 0.716� 0.29 0.707� 0.28 0.563� 0.28 0.926� 0.04

Kiwis 0.450� 0.16 0.461� 0.18 0.691� 0.17 0.513� 0.24 0.452� 0.24 0.548� 0.20 0.609� 0.27 0.605� 0.26 0.609� 0.24 0.860� 0.05

Cloud 0.431� 0.11 0.430� 0.11 0.609� 0.15 0.414� 0.11 0.377� 0.11 0.512� 0.14 0.505� 0.19 0.527� 0.19 0.559� 0.15 0.636� 0.23

Turner 0.332� 0.20 0.332� 0.20 0.327� 0.19 0.534� 0.20 0.530� 0.20 0.447� 0.22 0.559� 0.20 0.523� 0.21 0.500� 0.22 0.503� 0.37

Reddit 0.464� 0.12 0.446� 0.12 0.515� 0.11 0.447� 0.12 0.436� 0.12 0.528� 0.11 0.493� 0.12 0.499� 0.12 0.520� 0.14 0.486� 0.17

Image 0.302� 0.09 0.320� 0.09 0.425� 0.08 0.303� 0.09 0.296� 0.09 0.369� 0.08 0.344� 0.09 0.354� 0.09 0.460� 0.10 0.456� 0.15

Scroll 0.453� 0.13 0.462� 0.14 0.536� 0.15 0.419� 0.16 0.398� 0.16 0.599� 0.16 0.440� 0.14 0.430� 0.13 0.510� 0.15 0.517� 0.24

Applozic 0.649� 0.17 0.649� 0.17 0.649� 0.17 0.645� 0.17 0.622� 0.17 0.649� 0.17 0.649� 0.17 0.649� 0.17 0.649� 0.17 0.776� 0.11

Delta 0.844� 0.29 0.809� 0.33 0.661� 0.29 0.891� 0.20 0.877� 0.22 0.812� 0.28 0.922� 0.14 0.906� 0.17 0.914� 0.15 0.630� 0.26

Average 0.493� 0.13 0.483� 0.12 0.57� 0.11 0.527� 0.15 0.521� 0.15 0.555� 0.11 0.56� 0.14 0.554� 0.14 0.562� 0.11 0.627� 0.15

Note: The best performance values among these methods achieved on each app are shown in bold.

16 - ZHAO ET AL.

results of SKESD for our KPIDL method and the nine
baseline methods in terms of two effort‐aware indicators.
From these tables and the figure, the following observations
can be drawn.

First, in terms of EARecall, our KPIDL method obtains
better performance on 7 out of 15 apps compared with the
nine baseline methods. The average EARecall value by our
KPIDL method over all apps achieves improvements by

TABLE 10 The Average EAF‐measure of our KPIDL method and cost‐sensitive‐based methods

Project SFSV SFDV SFCV CFSV CFDV CFCV BFSV BFDV BFCV KPIDL

Firewall 0.503� 0.18 0.487� 0.17 0.610� 0.15 0.532� 0.23 0.542� 0.22 0.521� 0.21 0.480� 0.21 0.462� 0.21 0.497� 0.21 0.520� 0.09

Alfresco 0.396� 0.09 0.398� 0.09 0.497� 0.08 0.42� 0.09 0.403� 0.09 0.491� 0.09 0.441� 0.10 0.447� 0.10 0.496� 0.09 0.507� 0.06

Sync 0.378� 0.08 0.384� 0.08 0.380� 0.07 0.311� 0.08 0.308� 0.09 0.369� 0.07 0.352� 0.08 0.356� 0.09 0.359� 0.06 0.443� 0.10

Wallpaper 0.301� 0.11 0.309� 0.10 0.372� 0.08 0.314� 0.08 0.322� 0.07 0.344� 0.06 0.332� 0.08 0.326� 0.08 0.378� 0.07 0.360� 0.04

Keyboard 0.480� 0.16 0.461� 0.15 0.594� 0.13 0.448� 0.17 0.470� 0.17 0.524� 0.14 0.530� 0.15 0.524� 0.15 0.501� 0.16 0.580� 0.13

Apg 0.487� 0.22 0.478� 0.19 0.497� 0.22 0.519� 0.20 0.511� 0.23 0.495� 0.22 0.437� 0.22 0.431� 0.22 0.458� 0.21 0.495� 0.14

Secure 0.543� 0.16 0.515� 0.15 0.577� 0.15 0.569� 0.15 0.558� 0.16 0.580� 0.16 0.557� 0.17 0.553� 0.17 0.499� 0.17 0.674� 0.02

Kiwis 0.444� 0.11 0.439� 0.11 0.597� 0.09 0.436� 0.12 0.391� 0.13 0.494� 0.12 0.466� 0.13 0.464� 0.13 0.510� 0.14 0.576� 0.02

Cloud 0.441� 0.07 0.426� 0.06 0.537� 0.08 0.423� 0.08 0.375� 0.07 0.495� 0.08 0.434� 0.10 0.444� 0.08 0.505� 0.07 0.503� 0.05

Turner 0.234� 0.10 0.228� 0.10 0.264� 0.11 0.294� 0.07 0.292� 0.07 0.291� 0.09 0.299� 0.09 0.297� 0.08 0.316� 0.09 0.252� 0.17

Reddit 0.472� 0.09 0.458� 0.10 0.524� 0.09 0.439� 0.10 0.431� 0.09 0.516� 0.08 0.490� 0.10 0.498� 0.10 0.498� 0.09 0.461� 0.10

Image 0.314� 0.07 0.320� 0.06 0.386� 0.05 0.309� 0.07 0.294� 0.07 0.375� 0.06 0.341� 0.07 0.343� 0.07 0.413� 0.06 0.377� 0.06

Scroll 0.437� 0.11 0.425� 0.10 0.505� 0.11 0.372� 0.10 0.361� 0.10 0.531� 0.10 0.418� 0.11 0.412� 0.11 0.481� 0.11 0.418� 0.11

Applozic 0.546� 0.30 0.546� 0.30 0.546� 0.30 0.545� 0.30 0.530� 0.30 0.546� 0.30 0.546� 0.30 0.546� 0.30 0.547� 0.30 0.649� 0.20

Delta 0.258� 0.07 0.251� 0.08 0.296� 0.06 0.268� 0.04 0.266� 0.04 0.261� 0.06 0.273� 0.03 0.271� 0.03 0.275� 0.03 0.310� 0.07

Average 0.416� 0.10 0.408� 0.09 0.479� 0.11 0.413� 0.10 0.404� 0.10 0.456� 0.10 0.426� 0.10 0.425� 0.09 0.449� 0.08 0.475� 0.12

Note: The best performance values among these methods achieved on each app are shown in bold.

(a)

(b)

F I GURE 7 Scott‐Knott Effect Size Difference (SKESD) test for our KPIDL method and cost‐sensitive‐based methods. (a) EARecall, (b) EAF‐measure

ZHAO ET AL. - 17

27.2%, 29.8%, 10.0%, 19.0%, 20.3%, 13.0%, 12.0%, 13.2%,
and 11.6% compared with those of SFSV, SFDV, SFCV, CFSV,
CFDV, CFCV, BFSV, BFDV, and BFCV, individually. Our
KPIDL method obtains the best average EARecall value and
achieves an average improvement by 17.3%.

Second, in terms of EAF‐measure, our KPIDL method
obtains better performance on 5 out of 15 apps compared with
the nine baseline methods. The average EAF‐measure value by
our KPIDL method over all apps achieves improvements by
14.2%, 16.4%, 15.0%, 17.6%, 4.2%, 11.5%, 11.8%, and 5.8%
compared with those of SFSV, SFDV, CFSV, CFDV, CFCV,
BFSV, BFDV, and BFCV, individually, while obtains nearly the
same EAF‐measure value as SFCV. Our KPIDL method ob-
tains the best average EAF‐measure value and achieves an
average improvement by 10.6%.

Third, our KPIDL method ranks the first and has signif-
icant differences compared with those of the nine cost‐
sensitive‐based imbalanced learning methods in terms of all
two effort‐aware indicators except for the SFCV method in
terms of EAF‐measure.

Summary: Different from the above methods which
introduce the cost‐sensitive strategy into the construction of
trees without performing feature transformation, our KPIDL
method integrates the weight strategy into feature representa-
tion learning. Our KPIDL method significantly outperforms
the comparative cost‐sensitive‐based methods for predicting
JIT defects on Android apps.

6 | THREATS TO VALIDITY

6.1 | Threats to external validity

The generalisation of the experimental results threatens the
external validity of this study. We conduct experiments on a
publicly available benchmark dataset consisting of 15 Android
mobile apps developed in the Java programing language. We
need to further explore whether our method is suitable for the
mobile apps developed in other languages, such as Kotlin. In
addition, since we only investigate Android‐based mobile apps,
it is necessary to investigate IOS‐based mobile apps to verify
the generalisation of our KPIDL method.

6.2 | Threats to internal validity

The implementation mistakes of the methods in our experi-
ments threaten the internal validity of our study. In this study,
we carefully implement the KPCA technique, CSCE loss
function, and the DNN structure based on Scikit‐learn, Ten-
sorFlow, and Python. As we specify multiple parameters
empirically, the selection of the more optimal parameter set-
tings needs to be explored in the future. As the code of cost‐
sensitive‐based baseline methods were released by authors, we
carefully integrate it into our experiments. In addition, for
other comparative methods, we implement them based on
third‐part libraries with the default parameter settings.

6.3 | Threats to construct validity

The rationality of the used performance evaluation indicators
and statistical test methods threatens the construct validity of
our study. In this study, we employ two effort‐aware indicators,
that is EARecall and EAF‐measure, which take the code in-
spection efforts into consideration when calculating, to eval-
uate the performance of our KPIDL method for JIT defect
prediction on Android apps. In addition, to make our results
more convincing, we apply a state‐of‐the‐art statistic test
method, that is SKESD, for the significant difference analysis
between multiple methods.

7 | CONCLUSION

In this study, we propose a novel JIT defect prediction
model, called KPIDL, for Android apps, which incorporates
a feature learning stage and a classification model construc-
tion stage. More specifically, the KPCA technique used in the
first stage is helpful to obtain high‐quality feature represen-
tation for the defect data. Then, the improved version of
DNN is able to alleviate the issue of class imbalance of the
defect data by taking the prior probability of classes into
account to compensate the imbalance between defective and
clean commit instances when calculating the total loss. To
evaluate the effectiveness of our KPIDL method, we conduct
experiments on 15 Android apps and employ two effort‐
aware indicators for performance evaluation. The experi-
mental results demonstrate that, in term of each indicator,
our KPIDL method performs better than 24 out of 25
comparative methods, including its five variants, six sampling‐
based, five ensemble‐based, and nine cost‐sensitive‐based
methods.

In the future, we plan to collect more data from Android‐
based apps and IOS‐based apps developed in other languages
to enhance our experiments. In addition, our method will be
adapted to cross‐project scenarios for JIT defect prediction on
apps.

ACKNOWLEDGEMENTS
This study was supported in part by the National Key
Research and Development Project (No.2018YFB2101200),
the National Natural Science Foundation of China
(Nos.62002034, 62002306), the Fundamental Research Funds
for the Central Universities (Nos.2020CDCGRJ072,
2020CDJQY‐A021, and JUSRP121073), China Postdoctoral
Science Foundation (No.2020M673137), the Special Funds
for the Central Government to Guide Local Scientific and
Technological Development (No.YDZX20195000004725),
the Natural Science Foundation of Chongqing in China (No.
cstc2020jcyj‐bshX0114), the Key Project of Technology
Innovation and Application Development of Chongqing
(No.cstc2019jscx‐mbdxX0020), HKPolyU Start‐up Fund
(No.ZVU7), CCF‐Tencent Open Research Fund (No.
ZDCK), and the European Commission grant (No.825,040)
RADON.

18 - ZHAO ET AL.

CONFLICT OF INTEREST
Authors have no conflict of interest to declare.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly
available in Github at https://github.com/sepine/IET‐2021.

ORCID
Zhou Xu https://orcid.org/0000-0003-3307-2994

REFERENCES
1. Zhang, T., et al.: A literature review of research in bug resolution: tasks,

challenges and future directions. Comput. J. 59(5), 741–773 (2016)
2. Xu, Z., et al.: Cross version defect prediction with representative data via

sparse subset selection. In: Proceedings of the 26th International Con-
ference on Program Comprehension (ICPC), pp. 132–143 (2018)

3. Xu, Z., et al.: Cross project defect prediction via balanced distribution
adaptation based transfer learning. J. Comput. Sci. Technol. 34(5),
1039–1062 (2019)

4. McIlroy, S., Ali, N., Hassan, A.E.: Fresh apps: an empirical study of
frequently‐updated mobile apps in the google play store. Empir. Software
Eng. 21(3), 1346–1370 (2016)

5. Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes
to learn defect predictors. IEEE Trans. Software Eng. 33(1), 2–13 (2006)

6. Scanniello, G., et al.: Class level fault prediction using software clus-
tering. In: Proceedings of the 28th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE). (IEEE), pp. 640–645
(2013)

7. Kamei, Y., et al.: A large‐scale empirical study of just‐in‐time quality
assurance. IEEE Trans. Software Eng. 39(6), 757–773 (2012)

8. Yang, X., et al.: Deep learning for just‐in‐time defect prediction. In:
Proceedings of the 15th IEEE International Conference on Software
Quality, Reliability and Security (QRS). (IEEE), pp. 17–26 (2015)

9. Catolino, G.: Just‐in‐time bug prediction in mobile applications: the
domain matters! In: Proceedings of the 4th IEEE/ACM International
Conference on Mobile Software Engineering and Systems (MOBILE-
Soft). (IEEE), pp. 201–202 (2017)

10. Catolino, G., Di.Nucci, D., Ferrucci, F.: Cross‐project just‐in‐time bug
prediction for mobile apps: an empirical assessment. In: Proceedings of
the 6th IEEE/ACM International Conference on Mobile Software En-
gineering and Systems (MOBILESoft). (IEEE), pp. 99–110 (2019)

11. Liu, F., et al.: Software defect prediction model based on pca‐isvm.
Computer Simulation. 31(3), 397–401 (2014)

12. Cao, H., Qin, Z., Feng, T.: A novel pca‐bp fuzzy neural network model
for software defect prediction. Adv. Sci. Lett. 9(1), 423–428 (2012)

13. Shepperd, M., et al.: Data quality: some comments on the nasa
software defect datasets. IEEE Trans. Software Eng. 39(9), 1208–1215
(2013)

14. Schölkopf, B., Smola, A., Müller, K.R.: Kernel principal component
analysis. In: International conference on artificial neural networks.
(Springer), pp. 583–588 (1997)

15. Kim, K.I., Franz, M.O., Scholkopf, B.: Iterative kernel principal
component analysis for image modeling. IEEE Trans. Pattern Anal.
Mach. Intell. 27(9), 1351–1366 (2005)

16. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as
a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

17. Xu, Z., et al.: Software defect prediction based on kernel pca and
weighted extreme learning machine. Inf. Software Technol. 106, 182–200
(2019)

18. Aurelio, Y.S., et al.: Learning from imbalanced data sets with weighted
cross‐entropy function. Neural Process. Lett. 50(2), 1937–1949 (2019)

19. Arisholm, E., Briand, L.C., Fuglerud, M.: Data mining techniques for
building fault‐proneness models in telecom java software. In: Pro-
ceedings of the 18th IEEE International Symposium on Software Reli-
ability (ISSRE). (IEEE), pp. 215–224 (2007)

20. Zhao, K., et al.: Just‐in‐time defect prediction for android apps via
imbalanced deep learning model. In: Proceedings of the 36th Annual
ACM Symposium on Applied Computing. pp. 1447–1454. (2021)

21. Xu, Z., et al.: The impact of feature selection on defect prediction per-
formance: an empirical comparison. In: Proceedings of the 27th IEEE
International Symposium on Software Reliability Engineering (ISSRE).
(IEEE), pp. 309–320 (2016)

22. Liu, S., et al.: A feature selection framework for software defect pre-
diction. In: Proceedings of the 38th IEEE Annual Computer Software
and Applications Conference (COMPSAC). (IEEE), pp. 426–435 (2014)

23. Shivaji, S., et al.: Reducing features to improve code change‐based bug
prediction. IEEE Trans. Software Eng. 39(4), 552–569 (2012)

24. Chen, X., et al.: Applying feature selection to software defect prediction
using multi‐objective optimization. In: Proceedings of the 41st IEEE
Annual Computer Software and Applications Conference (COMPSAC).
(IEEE), 2, pp. 54–59 (2017)

25. Ghotra, B., McIntosh, S., Hassan, A.E.: A large‐scale study of the impact
of feature selection techniques on defect classification models. In: Pro-
ceedings of the 14th IEEE/ACM International Conference on Mining
Software Repositories (MSR). (IEEE), pp. 146–157 (2017)

26. Ni, C., et al.: A cluster based feature selection method for cross‐project
software defect prediction. J. Comput. Sci. Technol. 32(6), 1090–1107
(2017)

27. Song, Q., Guo, Y., Shepperd, M.J.: A comprehensive investigation of the
role of imbalanced learning for software defect prediction. IEEE Trans.
Software Eng. 45(12), 1253–1269 (2019)

28. Liu, M., Miao, L., Zhang, D.: Two‐stage cost‐sensitive learning for
software defect prediction. IEEE Trans. Reliab. 63(2), 676–686 (2014)

29. Siers, M.J., Islam, M.Z.: Software defect prediction using a cost sensitive
decision forest and voting, and a potential solution to the class imbalance
problem. Inf. Syst. 51, 62–71 (2015)

30. Bennin, K.E., et al.: The significant effects of data sampling approaches
on software defect prioritization and classification. In: 2017 ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM). (IEEE), pp. 364–373 (2017)

31. Bennin, K.E., Keung, J., Monden, A.: Impact of the distribution
parameter of data sampling approaches on software defect prediction
models. In: 2017 24th Asia‐Pacific Software Engineering Conference
(APSEC). (IEEE), pp. 630–635 (2017)

32. Tantithamthavorn, C., Hassan, A.E., Matsumoto, K.: The impact of class
rebalancing techniques on the performance and interpretation of defect
prediction models. IEEE Trans. Software Eng. 46(11), 1200–1219 (2018)

33. Bennin, K.E., et al.: Mahakil: diversity based oversampling approach to
alleviate the class imbalance issue in software defect prediction. IEEE
Trans. Software Eng. 44(6), 534–550 (2017)

34. Fukushima, T., et al.: An empirical study of just‐in‐time defect prediction
using cross‐project models. In: Proceedings of the 11th Working Con-
ference on Mining Software Repositories (MSR). pp. 172–181 (2014)

35. Kamei, Y., et al.: Studying just‐in‐time defect prediction using cross‐
project models. Empir. Software Eng. 21(5), 2072–2106 (2016)

36. McIntosh, S., Kamei, Y.: Are fix‐inducing changes a moving target? a
longitudinal case study of just‐in‐time defect prediction. IEEE Trans.
Software Eng. 44(5), 412–428 (2017)

37. Yang, X., et al.: Tlel: a two‐layer ensemble learning approach for just‐in‐
time defect prediction. Inf. Software Technol. 87, 206–220 (2017)

38. Pascarella, L., Palomba, F., Bacchelli, A.: Fine‐grained just‐in‐time defect
prediction. J. Syst. Software. 150, 22–36 (2019)

39. Cabral, G.G., et al.: Class imbalance evolution and verification latency in
just‐in‐time software defect prediction. In: Proceedings of the 41st
IEEE/ACM International Conference on Software Engineering (ICSE).
(IEEE), pp. 666–676 (2019)

40. Kondo, M., et al.: The impact of context metrics on just‐in‐time defect
prediction. Empir. Software Eng. 25(1), 890–939 (2020)

41. Ortu, M., et al.: Measuring high and low priority defects on traditional
and mobile open source software. In: Proceedings of the 7th Interna-
tional Workshop on Emerging Trends in Software Metrics, pp. 1–7
(2017)

ZHAO ET AL. - 19

https://github.com/sepine/IET%2D2021
https://orcid.org/0000-0003-3307-2994
https://orcid.org/0000-0003-3307-2994
https://orcid.org/0000-0003-3307-2994

42. Khomh, F., et al.: Predicting post‐release defects using pre‐release field
testing results. In: Proceedings of the 27th IEEE International Confer-
ence on Software Maintenance (ICSM). (IEEE), pp. 253–262 (2017)

43. Scandariato, R., Walden, J.: Predicting vulnerable classes in an android
application. In: Proceedings of the 4th International Workshop on Se-
curity Measurements and Metrics, pp. 11–16 (2012)

44. Kaur, A., Kaur, K., Kaur, H.: An investigation of the accuracy of code
and process metrics for defect prediction of mobile applications. In:
Proceedings of the 4th International Conference on Reliability, Infocom
Technologies and Optimization. (IEEE), pp. 1–6 (2015)

45. Ricky, M.Y., Purnomo, F., Yulianto, B.: Mobile application software
defect prediction. In: 2016 IEEE Symposium on Service‐Oriented Sys-
tem Engineering. (IEEE), pp. 307–313 (2016)

46. Malhotra, R.: An empirical framework for defect prediction using ma-
chine learning techniques with android software. Appl. Soft Comput. 49,
1034–1050 (2016)

47. Kaur, A., Kaur, K., Kaur, H.: Application of machine learning on
process metrics for defect prediction in mobile application. In: Infor-
mation Systems Design and Intelligent Applications. (Springer), pp.
81–98 (2016)

48. Li, J., et al.: Software defect prediction via convolutional neural network.
In: Proceedings of the 17th IEEE International Conference on Software
Quality, Reliability and Security (QRS). (IEEE), pp. 318–328 (2017)

49. Phan, A.V., Le.Nguyen, M., Bui, L.T.: Convolutional neural networks
over control flow graphs for software defect prediction. In: Proceedings
of the 29th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI). (IEEE), pp. 45–52 (2017)

50. Manjula, C., Florence, L.: Deep neural network based hybrid approach
for software defect prediction using software metrics. Cluster Comput.
22(4), 9847–9863 (2019)

51. Xu, Z., et al.: Ldfr: learning deep feature representation for software
defect prediction. J. Syst. Software. 158, 110402 (2019)

52. Li, S.Z., et al. Kernel machine based learning for multi‐view face
detection and pose estimation. In: Proceedings of the 8th IEEE Inter-
national Conference on Computer Vision. ICCV 2001. (IEEE), 2,
pp. 674–679 (2001)

53. Huang, J., Yan, X.: Relevant and independent multi‐block approach for
plant‐wide process and quality‐related monitoring based on kpca and
svdd. ISA (Instrum. Soc. Am.) Trans. 73, 257–267 (2018)

54. Li, W., et al.: On improving the accuracy with auto‐encoder on
conjunctivitis. Appl. Soft Comput. 81, 105489 (2019)

55. Yan, M., et al.: File‐level defect prediction: unsupervised vs. supervised
models. In: Proceedings of the 11th International Symposium on

Empirical Software Engineering and Measurement (ESEM). (IEEE),
pp. 344–353 (2017)

56. Huang, Q., Xia, X., Lo, D.: Revisiting supervised and unsupervised
models for effort‐aware just‐in‐time defect prediction. Empir. Software
Eng. 24(5), 2823–2862 (2019)

57. Xu, Z., et al.: Tstss: a two‐stage training subset selection framework for
cross version defect prediction. J. Syst. Software. 154, 59–78 (2019)

58. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. The MIT Press
(2016)

59. Tantithamthavorn, C., et al.: An empirical comparison of model valida-
tion techniques for defect prediction models. IEEE Trans. Software Eng.
43(1), 1–18 (2016)

60. Guo, L., et al.: Robust prediction of fault‐proneness by random forests.
In: Proceedings of the 15th International Symposium on Software
Reliability Engineering (ISSRE). (IEEE), pp. 417–428 (2004)

61. Catal, C., Diri, B.: Investigating the effect of dataset size, metrics sets, and
feature selection techniques on software fault prediction problem. Inf.
Sci. 179(8), 1040–1058 (2009)

62. Xia, X., et al.: Cross‐project build co‐change prediction. In: Pro-
ceedings of the 22nd IEEE International Conference on Software
Analysis, Evolution, and Reengineering (SANER). (IEEE), pp. 311–320
(2015)

63. Magal, R.K., Gracia, J.S.: Improved random forest algorithm for software
defect prediction through data mining techniques. Int. J. Comput. Appl.
117(23), 18–22 (2015)

64. Islam, M.Z., Giggins, H.: Knowledge discovery through sysfor ‐ a sys-
tematically developed forest of multiple decision trees. In: Proceedings of
the 9th Australasian Data Mining Conference, AusDM, pp. 195–204
(2011)

65. Li, J., Liu, H.: Ensembles of cascading trees. In: Proceedings of the 3rd
IEEE International Conference on Data Mining (ICDM). pp. 585–588
(2003)

66. Hu, H., et al.: A maximally diversified multiple decision tree algorithm for
microarray data classification. In: Proceedings of the 2006 Workshop on
Intelligent Systems for Bioinformatics. 73, pp. 35–38 (2006)

How to cite this article: Zhao, K., et al.: A
compositional model for effort‐aware Just‐In‐Time
defect prediction on android apps. IET Soft. 1–20
(2021). https://doi.org/10.1049/sfw2.12040

20 - ZHAO ET AL.

https://doi.org/10.1049/sfw2.12040

	A compositional model for effort‐aware Just‐In‐Time defect prediction on android apps
	1 | INTRODUCTION
	2 | RELATED WORK
	2.1 | Feature learning in defect prediction
	2.2 | Class imbalanced learning in defect prediction
	2.3 | JIT defect prediction for traditional software
	2.4 | Defect prediction for android apps
	2.5 | Deep learning in defect prediction

	3 | METHODOLOGY
	3.1 | Feature representation learning with KPCA
	3.2 | Classification model construction with IDL
	3.2.1 | Cross‐entropy loss function
	3.2.2 | Cost‐sensitive cross‐entropy loss function
	3.2.3 | Deep neural network

	4 | EXPERIMENTAL SETUP
	4.1 | Research Questions
	4.2 | Benchmark dataset
	4.3 | Performance indicators
	4.4 | Data partition
	4.5 | Parameter settings
	4.6 | Statistic test

	5 | PERFORMANCE EVALUATION
	5.1 | Answer to RQ1: the prediction performance of our KPIDL method and its variants
	5.2 | Answer to RQ2: the prediction performance of our KPIDL method and the sampling‐based imbalanced learning methods
	5.3 | Answer to RQ3: the prediction performance of our KPIDL method and the ensemble‐based imbalanced learning methods
	5.4 | Answer to RQ4: the prediction performance of our KPIDL method and the cost‐sensitive‐based imbalanced learning methods

	6 | THREATS TO VALIDITY
	6.1 | Threats to external validity
	6.2 | Threats to internal validity
	6.3 | Threats to construct validity

	7 | CONCLUSION
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

