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Abstract—With the increasing number of services and their
homogenization, the use of Quality of Service (QoS) for rec-
ommendations has become necessary. However, existing QoS
prediction solutions have limitations in solving the noise and
label imbalance problems of dataset, which greatly limit the
improvement of QoS prediction accuracy. In this paper, we
propose FSNet that contains a feature distribution smoothing
module and an improved W-Huber loss function. The feature
distribution smoothing module mitigates the effect of noise
problem by fitting potential Gaussian distribution of known
features with a supervised feedforward neural network. W-Huber
loss function mitigates the impact of label imbalance problem on
QoS prediction by reweighting the two components of Huber
loss function. We conduct extensive experiments on real large-
scale QoS dataset, and the results demonstrate that the proposed
FSNet method outperforms existing QoS prediction methods.

Index Terms—Service recommendation, Noisy data, Label
imbalance, Feature distribution smoothing, QoS prediction

I. INTRODUCTION

In recent years, the popularity of Software Oriented Archi-
tecture (SOA), Internet of Services (IoS), and cloud computing
technologies has resulted in a significant increase in the
number of their core components, Web services. According
to ProgrammableWeb.com, a Web services repository, there
were more than 24,000 Web services maintained as of October
2022. With the exponential growth of Web services, a sig-
nificant number of them become homogenized, i.e., multiple
services share the same or similar functional characteristics.
Therefore, it is an urgent problem for users to choose the most
suitable one from these homogeneous Web services. Quality
of service (QoS), which is judged by service availability,
response time, and throughput [1] [2], is a non-functional
characteristic of Web services that can effectively assist users
in service selection [3]. The quality of service is largely
influenced by the context of Web services, i.e., for the same
service, the QoS values are likely to differ significantly when
invoked by different users [4]. Therefore, it is necessary to
obtain personalized QoS values to adapt different users in
performing service recommendation. Considering the time cost
and resource overhead, it is impractical for users to invoke all
services one by one to obtain the corresponding QoS values
[5]. Weighing the merits, predicting unknown QoS values
based on existing QoS information is thus more feasible.
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However, predicting QoS faces many challenges. The first
one is the problem of noisy data. Existing QoS prediction
research is based on the infirmative assumption that the
information collected about users and available services is
true and reliable. Due to lack of effective monitoring and
verification mechanisms in data collection process, some noise
will inevitably appear, which can adversely affect prediction
accuracy. To mitigate the impact of this problem, Chen it
et al. propose a structured noise complementation algorithm
(OSMCSN) based on operator splitting techniques to identify
and remove noisy data [6]. Wu it et al. propose MSDDAE, a
new multilayer noise reduction autoencoder model to obtain
more accurate QoS prediction results [7]. However, these
studies only consider the noise in QoS values and neglet noise
in other information about users and services.

Secondly, label imbalance problem with QoS data is also
worth to be reckoned with. QoS dataset obtained from real
world generally have an unbalanced data distribution, resulting
in a long-tail effect on the label distribution. For example,
when response times are used as labels, since most service in-
vocations complete properly, they usually have short response
times, causing most labels to be distributed in intervals with
small values. However, in a few cases, due to unstable network
conditions or other reasons, the response time of some service
invocations becomes longer, making a few labels distributed
in intervals with larger values. In this case, some researchers
have proposed various approaches in the field of QoS. Suomi
it et al. detect the imbalanced parts of the dataset and address
them using a QoS preprocessing matrix called OffDQ [8]. Li
it et al. mitigate the effect of imbalanced data on the model
by using a more robust Huber loss function [9]. In contrast,
Mhedhbi it et al. use importance sampling to obtain data with
lower imbalance [10]. However, it can be drawn from these
researches that some are only generalized methods to cope
with the label imbalance problem, which makes them not
targeted enough for QoS prediction; and other methods can
only be applied to scenarios that improve the correctness of
the judgment of outliers in QoS data, while have do no work
on overall accuracy of QoS prediction. In addition, methods
like sampling not only destroy distribution of the original
dataset, but also reduce data utilization and exacerbate QoS
data sparsity.

In response to above challenges, in this paper we propose



a feature distribution smoothing QoS prediction method based
on Gaussian distribution, namely FSNet. For the noise prob-
lem, FSNet invites a feature distribution smoothing module,
which is capable of learning potential Gaussian distribution
of features through a supervised feedforward neural network
and resampling the features. This module can eliminate the
interference data in dataset and obtain sampled features that
better represent the real data. With respect to the label im-
balance problem, the W-Huber loss function is proposed in
this paper. The W-Huber loss function is an improved Huber
loss function that reweights the linear and nonlinear parts
of original Huber loss function, respectively, to mitigate the
effect of label imbalance by strengthening the nonlinear part.
Overall, FSNet firstly learns the potential Gaussian distribution
of features and resamples from the distribution to obtain
sampled features. Then, it obtains latent features through the
latent state learning algorithm in Study [11]. Finally, FSNet
combines sampled features and latent features to feed into
a multilayer fully connected network for high accuracy QoS
prediction. Throughout the process, W-Huber loss function is
applied as the loss function of FSNet.

In summary, the main contributions of this paper are as
follows:

a) We propose a QoS prediction method FSNet that includes
a feature distribution smoothing module to effectively
mitigate the effect of noise in features and improve the
QoS prediction accuracy.

b) We propose an improved W-Huber loss function that
reweights the linear and nonlinear parts of original Huber
loss function to effectively mitigate the effect of label
imbalance problem on QoS prediction.

c) We conduct extensive experiments on real large-scale
QoS dataset, and the results show that our approach sig-
nificantly outperforms on both MAE and RMSE metrics
compared to all baseline methods.

The remainder of this paper is organized as follows. The
general framework of FSNet is given in Section 2, which
details the feature distribution smoothing module and the
improved W-Huber loss function. Section 3 describes the
specific setup of the experiments, including the experimental
environment, dataset, evaluation criteria and baseline method.
Section 4 gives the experimental results and analysis. Section
5 reviews the related work. Finally, the full text is summarized
in Section 6.

II. APPROACH

This section will describe our proposed QoS prediction
method in detail. The overall framework of FSNet is illustrated
in Fig. 1. It comprises three modules: supervised feature
distribution smoothing, latent features generation and QoS
prediction. We apply the improved W-Huber loss function as
the loss function of FSNet.

A. Supervised Feature Distribution Smoothing

This module fits the potential Gaussian distribution in fea-
tures by means of a supervised feedforward neural network to

smooth out the noise in features. Specifically, it can eliminate
the interference data in dataset and obtain more realistic and
reasonable sampled features.

Before performing feature distribution smoothing, we first
preprocess the features. Considering that the embedding opera-
tion can encode the objects with low-dimensional vectors and
preserve their meanings, we input user known features and
service known features into the Embedding layer of Keras.
This step is responsible for converting the high-dimensional
sparse feature vector into a dense low-dimensional feature
vector, which alleviates the effect of deep learning not being
good at handling sparse feature vectors.

Then, the obtained embedding vectors are used to construct
known user feature map and known service feature map
separately. The factors taken into known user feature map(Ku)
are user ID vector(Iku), user AS information vector(Asku) and
user country information vector(Ck

u). Similarly, known service
feature map(Ks) includes factors of service ID vector(Iks ),
service AS information vector(Asks ) and service country infor-
mation vector(Ck

s ). Therefore, the size of both known feature
maps will be 1× 3.

Ku =
[
Iku , Asku, C

k
u

]
(1)

Ks =
[
Iks , Asks , C

k
s

]
(2)

After that, we do feature distribution smoothing on Ku and
Ks mentioned above respectively. Specifically, Ku and Ks

are approximated as multivariate Gaussian distributions, which
roughly consists of three steps. In the following, we use Ku

as an example to illustrate.
First, Ku is put into feedforward neural network based

on fully connected layers to obtain the nonlinear relationship
between the features.

K ′
u = f [2v,2v−1](Ku;WKu) (3)

where f [2v,2v−1,1] denotes the fully connected layers and
numbers, such as 2v mean the number of neurons in this layer.

Then, K ′
u is divided into two halves, and the mean and

variance of it are calculated.

µu = fµu
(K ′

u;Wµu
) (4)

σu = fσu(K
′
u;Wσu) (5)

Third, we sample the distribution constructed from the mean
and variance.

Su = fS {fM (µu, σu)} (6)

where fM means the MultivariateNormalDiag layer in Ten-
sorflow and fS means sampling from the distribution.

Similarly, we have

Ss = fS {fM (µs, σs)} (7)

The result S of feature distribution smoothing can finally
be obtained by concatenating and flattening Su and Ss. The
specific operations are as follows:

S = F (Ss)⊕ F (Su) (8)



Fig. 1. The framework of FSNet. Supervised feature distribution smoothing: learns the variance and expectation of known features by a feedforward neural
network and resamples features; Latent feature generation: generates user latent features and service latent features; QoS prediction: accomplish high accuracy
QoS prediction through encoder, decoder and a multilayer fully connected network.

where F denotes the flatten operation and ⊕ denotes the
concatenate operation by concatenate of Keras.

As shown in Fig. 1, we also connect several linear layers to
S and apply the result as the second output of our network.
Although this output is also a prediction of service quality,
it is not the final prediction result of the entire network.
Instead, we use the other output of the network to represent
the final prediction of our method and calculate the evaluation
value. The output of this sub-network can be used to adjust
the parameters of the feedforward neural network for a more
accurate predictions. The specific steps are shown as follows

P = f [2v,2v−1,1](S;WS) (9)

where f [2v,2v−1,1] denotes the fully connected layers, numbers
in these layers such as 2v mean the number of neurons in this
layer, and P means the prediction value.

B. Latent Features Generation

To alleviate the effect of data sparsity and make fuller use
of known information, we use the method in the Study [11] to
generate latent features. The study can extract latent features
from known features in two steps, latent states generation and
parameter estimation. We generate the user latent features Lu

and the service latent features Ls, respectively.

Then, Lu and Ls are fed into the Embedding layer of
Keras and finally the latent feature map L is constructed with
obtained results.

C. Qos Prediction

First, the latent feature map is passed through the encoder
and decoder modules. The encoder module compresses the
feature map to obtain compressed information, which is then
decoded by the decoder module. This process results in a better
representation of latent features compared to the original L.
The specific steps of this process are shown below:

E = f [2v,2v−1](F (L);WL) (10)

L′ = f [2v−1,2v](E;WE) (11)

where F denotes the flatten operation , f [2v,2v−1] denotes the
fully connected layers and the numbers such as 2v denote the
number of neurons in this fully connected layer.

Then,the sampled known features is connected with the
latent features as follows:

X = F (S)⊕ F (L′) (12)

In the end,we feed the obtained fused feature map X into
a multilayer fully connected network for prediction:

R = f [2v,2v−1,10,1](X;WX) (13)



where the output R denotes the final QoS prediction value of
FSNet.

D. Improved W-Huber Loss Function

As the most frequently used loss function in the Qos pre-
diction problem, MAE has both advantages and disadvantages.
It makes the target close to the median and thus be robust to
outliers, but at the same time its property of always constant
update gradient is likely to make it miss the minima. In this
case, Huber loss that combines the advantages of MAE and
MSE is more applicable. It is defined as follows:

Huberloss(yi, ŷi) =

{
1
2 (yi − ŷi)

2 |y − ŷ|abs < δ.
δ|yi − ŷi|abs − 1

2δ
2 else.

(14)
where yi represents the real value and the ŷi represents
the predicted value. δ is the hyperparameter in Huber loss
function, which plays a selection role. When the prediction
deviation is less than δ, the squared error is used; when the
prediction deviation is greater than δ, the linear error is used.

As stated in Section 1, the dataset for QoS prediction
generally suffer from severe label imbalance and we choose
to alleviate the impact of this problem by using the improved
W-Huber loss function, which turns out quite effective To be
more specific, a factor is added to both the linear and nonlinear
components of Huber loss as a weight to form a new loss
function, W-Huber.

The W-Huber loss function is defined as follows:

W −Huberloss(yi, ŷi) =

{
γ 1
2 (yi − ŷi)

2 |y − ŷ|abs < δ.
β(δ|yi − ŷi|abs − 1

2δ
2) else.

(15)
where γ is the hyperparameters of the linear component and
β is the hyperparameters of the nonlinear component.

In determining the values of γ and β, as an attempt to reduce
the impact of outliers, we set a smaller value for the parameter
of the component whose predicted value differs more from the
true value(i.e., β). Correspondingly, to increase the effect of
normal values, we set a bigger value for the parameter of the
component whose predicted value differs less from the true
value (i.e., γ) .

III. EXPERIMENTAL SETUP

In this section, we design experiments to answer the fol-
lowing research questions (RQs):

• Does our proposed method outperform state-of-the-art
QoS prediction methods?

• What is the impact of feature distribution smoothing?
• What is the impact of W-Huber loss function?

A. Experimental Environment

All our experiments were performed on a server equipped
with two 2.4GHz Intel Xeon cpus and 16-GB of RAM and
running Ubuntu 16.04. Our methods and all baseline methods
were implemented using Python version 3.6 and TensorFlow
version 2.5.0.
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Fig. 2. QoS distribution of datasets

B. Dataset

To verify the effectiveness of our method in real-world, we
conduct extensive experiments on the QoS dataset known as
WS-Dream [12], which has been widely used in the field of
QoS prediction. The dataset consists of two subsets, one with
response time (rtdata) and the other with throughput (tpdata)
, both being quality of service metrics, and the former subset
is chosen as experimental dataset. This dataset, collected
and maintained by Zheng et al., contains 5,825 services,
339 users, and 1,974,675 QoS call records. Each of these
records contains the corresponding user and service location
information. Additionally, we perform outlier processing using
the isolated forest approach, following the method described
in Study [13]. Outliers are identified and assigned a score of
0.1.

The missing value count is performed on the rtdata subset,
and the result shows that there are 100,837 missing values
in it. In addition to the missing values, there are also some
timeout response times that are captured as 20 due to collec-
tor limitations. Excluding above mentioned observable noise,
there are also some unobservable noises in dataset. Fig. III-B
shows the label distribution of rtdata subset. It can be clearly
observed that the QoS dataset is significant label imbalance.

In real world, there is often little known data that can be
used for network learning when making QoS predictions due
to issues such as cost or privacy. In order to better simulate
the data sparsity problem encountered in realistic scenarios,
we randomly remove the interaction entries with different
densities from the QoS matrix. For example, density = 2%
means 2% QoS interaction elements are selected as training
set to predict the remaining 98% QoS elements.



TABLE I
PREDICTION RESULTS OF BASELINES AND FSNET ON WS-DREAM DATASET

Method 2% 4% 6% 8% 10%
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

UPCC 0.542 1.022 0.466 0.820 0.428 0.787 0.389 0.754 0.555 1.317
IPCC 0.520 1.121 0.473 0.900 0.437 0.838 0.427 0.829 0.596 1.342

UIPCC 0.506 1.075 0.462 0.878 0.427 0.820 0.415 0.808 0.584 1.329
HMF 0.349 0.674 0.277 0.579 0.261 0.551 0.256 0.532 0.256 0.526
LDCF 0.349 0.987 0.279 0.794 0.247 0.751 0.240 0.711 0.213 0.692
CMF 0.327 0.657 0.294 0.605 0.250 0.536 0.231 0.496 0.205 0.461

HSA-Net 0.182 0.558 0.159 0.495 0.128 0.470 0.128 0.448 0.126 0.442
PLRes 0.174 0.524 0.143 0.461 0.135 0.424 0.125 0.409 0.122 0.407
FSNet 0.149 0.481 0.128 0.433 0.118 0.392 0.114 0.379 0.109 0.363

C. Evaluation Metrics

AS QoS prediction is a regression problem, in our experi-
ments, mean absolute error (MAE) and root mean square error
(RMSE) are to measure the accuracy of QoS prediction of all
methods.

MAE is defined as follows:

MAE =
(
∑

i,j |ri,j − r̂i,j |abs)
N

(16)

where ri,j is the real value , r̂i,j is the value predicted by
a trained model, and N is the total number of samples to
be predicted in QoS records. From the definition of MAE,
it is known that when the gap between ri,j and r̂i,j becomes
smaller, the value of MAE also becomes smaller, which means
lower value of MAE stands for higher accuracy of QoS
prediction.

RMSE is defined as follows:

RMSE =

√
(
∑

i,j(ri,j−r̂i,j)
2)

N (17)

Similarly, the lower value of RMSE means the more accu-
rate prediction we have.

D. Baseline Methods

To evaluate the effectiveness of our method, we compare it
with the following eight methods:

IPCC [14]: It is a classical item-based collaborative filtering
algorithm.

UPCC [15]: Unlike item-based IPCC, UPCC is a user-based
collaborative filtering algorithm.

UIPCC [12]: It is a hybrid method that combines predicted
results of UPCC and IPCC for higher accuracy prediction.

HMF [16]: It is a context-based collaborative filtering al-
gorithm. HMF clusters users and services using their location
information and then predicts missing QoS values by using
a global QoS matrix and several local location-based QoS
matrices generated by user-service clusters.

LDCF [17]: It is a deep learning algorithm based on
collaborative filtering using location information. It also uses
a similarity adaptive corrector to correct the prediction results.

CMF [13]: It is a QoS prediction method with outlier
resilience. This algorithm uses the Corsi loss to measure
difference between true QoS value and predicted value and
considers temporal information.

HSA-Net [11]: It is a LDA-based QoS prediction method.
First, it performs hidden state generation by LDA, and then
performs hidden state perception and completes QoS predic-
tion using neural networks.

PLRes [18]: This approach uses ResNet in QoS prediction
to reuse the historical call probability distributions and location
features of users and services.

IV. RESULTS

A. RQ1: Does our proposed method outperform to state-of-
the-art QoS prediction methods?

We experiment the proposed FSNet with above baseline
methods in same experimental settings and compare all results.
To ensure high quality and continuous stability of this experi-
ment, we run each baseline method 10 times and calculate its
average value to represent the effect of this method.

In terms of fixed settings and parameters, our method uses
Nadam as the model optimizer and ReLU as the activation
function; training batch size is set to 256 and learning rate of
FSNet is set to 0.001. In addition, we set the parameter δ in W-
Huber loss function to 0.3 and the number of generated latent
features of users and services to 5. To find the optimal variable
parameters mentioned above, we run experiments with differ-
ent variable parameters on the dataset with density = 2% and
density = 4% and carry out 40 iterations. The parameters of
each baseline method are set as the default parameters in the
references.

The experimental results are shown in Table 1. Accord-
ing to the Table, the following observations can be drawn:
a) In general, simple memory-based methods(e.g., IPCC,
UPCC) are significantly less effective than other methods.
HMF achieves higher accuracy than them because it is a
context-based method that takes into account the inclusion
of location information for modeling while using collabora-
tive filtering algorithm. b) DL-based methods perform better
than other methods in terms of RMSE and MAE. Among
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Fig. 3. The results of FSNet with and without feature distribution smoothing

all baseline methods, HSA-Net and PLRes, which have a
clear advantage in prediction accuracy, are both DL-based
methods. The result confirms that neural network models
provide powerful modeling capabilities for QoS prediction.
c) Among all methods, FSNet performs best results on both
MAE and RMSE metrics. Compared with PLRes, which is the
most effective neural network-based baseline methods, FSNet
improves MAE performance by 14.37%, 10.49%, 12.59%,
8.80%, and 10.66%, RMSE by 8.21%, 6.07%, 7.55%, 7.33%,
and 10.81%, respectively, on dataset at density of 2%, 4%,
6%, 8%, and 10%.

In summary, it is safe to say that our method outperforms
the state-of-the-art QoS prediction methods.

B. RQ2: What is the impact of feature distribution smoothing?

To better validate the effect of feature distribution smoothing
to improve prediction accuracy by reducing the impact of
noise, we generate a new dataset with 10% noise added to
training set in the original dataset. Specifically, we randomly
select 10% country code and AS code from the training set
and reassign them to random values in the range of values
taken.

Then, we design three comparison experiments. The first
named FSNet uses the complete network structure with feature
distribution smoothing module. The second named FSNet W/O
FDS uses the network structure without feature distribution
smoothing module. The last, named FSNet W/O N, uses the
same complete network structure as FSNet with feature dis-
tribution smoothing module. Among them, FSNet and FSNet
W/O FDS run on the new dataset, while FSNet W/O N runs
on the original dataset.

According to Fig. 3, the following conclusions can be
drawn: a)There is no significant difference between FSNet
and FSNet W/O N in terms of MAE and RMSE in dataset
of all density. This result indicates that the complete FSNet
model is virtually immune to noisy data. b)FSNet W/O FDS
underperformed significantly compared with FSNet in both
MAE and RMSE metrics in dataset of all density. This result
indicates that the model with feature distribution smoothing
module removed is susceptible to noisy data and thus degrades
QoS prediction accuracy.
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Fig. 5. The results of FSNet with different δ

In conclusion, we can claim that the feature distribution
smoothing module can improve QoS prediction accuracy by
mitigating the effect of noise.

C. RQ3: What is the impact of W-Huber loss function?

In verification of the effectiveness of W-Huber loss function,
we design four comparison experiments. These experiments
set the loss functions of our method as MAE, MSE, Huber
loss function and W-Huber loss function, respectively. Among
them, W-Huber loss function has two hyperparameters γ and
β that are added to reweight the two components of Huber
loss function. According to experimental results in the later
section , we set γ to 1.5 and set β to 0.05. Default values are
used and kept consistent for all other parameters involved in
the experiments.

Fig. 5 reveals that MSE performs the worst among all loss
functions, and Huber loss function combining MSE and MAE
produces poorer results than MAE. However delight to see that
effect of the W-Huber loss function is significantly improved
compared with the Hubers loss function. Conclusively speak-
ing, W-Huber loss function performs the best among all loss
functions. The experimental results show that W-Huber loss
function can effectively alleviate the impact of label imbalance
and thus improve the QoS prediction accuracy.

D. The impact of hyperparameters in W-Huber Loss

1) The impact of δ in W-Huber Loss
Because W-Huber loss is obtained by adding two hyperpa-

rameters to Huber loss for re-weighting, it has a hyperparam-
eter δ to determine whether to use linear loss or mean square
loss, just like Huber loss. The hyperparameter δ determines
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Fig. 6. The results of FSNet with different γ and β

how sensitive the model is to data outliers. Specifically, the
MAE loss is used when the predicted value is near the true
value δ interval, otherwise the MSE loss is used. To discuss
the impact of δ on QoS prediction performance, we set up
four comparison experiments with δ set to 0.1, 0.3, 0.5 and
0.7, respectively. Except the δ, all parameters involved in the
experiments were used with default values and kept consistent.

Fig. 5 shows that when δ is 0.3, MAE and RMSE achieve
the minimum value on each density dataset, implying the best
prediction performance. Therefore, 0.3 is set as the default
value of δ for all experiments in this paper.

2) The impact of γ and β in W-Huber Loss
In order to obtain better values of the parameter settings,

we determine optimal values of individual parameters before
combining these parameters. We firstly add γ and β separately
to obtain the optimal values of them. Then we combine the
two optimal values and adjust the parameter values according
to experimental results.

To show the impact of γ and β on the prediction accuracy,
we design five comparison experiments with γ and β set to
1.5/0.05, 1.5/0.005, 1.5/0.5, 0.15/0.05 and 15/0.05, respec-
tively.

Fig. 6 shows that when γ is set to 1.5 and β is set to 0.05,
MAE and RMSE achieve the minimum value on each density
dataset. Therefore, the default values of γ and β are set to 1.5
and 0.05, respectively, for all experiments in this paper.

V. RELATED WORKS

Existing work about QoS prediction can be generally
grouped into two categories: collaborative filtering (CF)-based
QoS prediction and deep learning (DL)-based QoS prediction.
In this section, we overview the works that are closely related
to these categories.

CF-Based QoS Prediction. The collaborative filtering algo-
rithm is one of the most successful and widely used methods
in the field of QoS prediction. It can be broadly classified
into three types: memory-based CF methods, model-based CF
methods and context-based CF methods. Traditional memory-
based CF methods use only the user-service QoS matrix and
make predictions by the similarity of users or services [19].
For example, Chen et al. used the similarity of users to predict
QoS values [20] . The model-based CF algorithm uses all QoS
values in the user service matrix to construct a global model

for making QoS value predictions. Commonly used models
include clustering, matrix factorization and time series [21].
For instance, He et al. used K-means clustering algorithm to
cluster services and users, and then used matrix factorization
method to predict QoS values [22]. Amin et al. combined
ARIMA and GARCH models to propose a time series-based
approach which can make a more accurate prediction of QoS
values [23]. Tang et al. proposed a collaborative filtering
approach to predict the QoS of mobile services based on
factorization machines [24]. The context-based CF approach
takes into account contextual information, such as location or
time, in addition to users and services, to effectively improve
the accuracy of QoS prediction. For example, Liu et al.
significantly enhanced the data sparsity and cold start problems
by adding the user’s national geographic information and the
service’s web geographic information to the original user and
service information [9]. Yang et al. proposed a novel method
to predict QoS values based on factorization machine, which
leveraged not only QoS information of users and services but
also the user and service neighbor’s information [25].

DL-Based QoS Prediction. Compared with CF-based
methods, DL-based methods have been increasingly used in
QoS prediction in recent years because of their ability to
extract nonlinear features. White et al. added memory to the
recurrent neural network to form an LSTM network and made
predictions about service by using historical data of the service
[26]. Li et al. proposed a topology-aware neural (TAN) model
for collaborative QoS prediction. It projected the features of
users, services, and intermediate nodes on the communication
path as input features to a shared potential space [27]. In
addition, some researchers made attempts to improve the
accuracy of QoS prediction by mining more information from
known features. For example, Wang et al. proposed HSA-Net,
which could mine latent features of users and services through
an LDA-based pretraining process [11]. There are also some
researchers who focus on better predicting abnormal QoS
values. Mhedhbi et al. improved the percentage of abnormal
data in the training set through a sampling framework and then
used the proposed (M,K)-NN algorithm for QoS prediction to
detect outliers [10].

VI. CONCLUSION

In this paper, we start with pointing out shortcomings of
existing QoS prediction methods in coping with the noise
problem and label imbalance problem. Thus, we propose a
QoS prediction method FSNet to mitigate the effect of above
problems. FSNet reduces the effect of noise problem through
a feature distribution smoothing module, which can eliminate
the interference data in dataset and obtain more realistic and
reasonable sampled features. As for alleviating the impact of
label imbalance, we propose W-Huber loss function, which
strengthens the linear part of the Huber loss function and
weakens the non-linear part. To evaluate the effectiveness of
our method, we conduct extensive experiments on real large-
scale QoS dataset. The results show that compared to state-
of-the-art baselines, FSNet improves MAE performance by



14.37%, 10.49%, 12.59%, 8.80%, and 10.66%, RMSE by
8.21%, 6.07%, 7.55%, 7.33%, and 10.81%, respectively, on
dataset at density of 2%, 4%, 6%, 8%, and 10%.
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