
Deep Attentive Anomaly Detection for Microservice
Systems with Multimodal Time-Series Data

Yufu Chen1,2, Meng Yan1,2,*, Dan Yang2,*, Xiaohong Zhang1,2, Ziliang Wang1,2

1Key Laboratory of Dependable Service Computing in Cyber Physical Society (Chongqing University),

Ministry of Education, China
2School of Big Data & Software Engineering, Chongqing University, Chongqing, China

Email: {chenyufu, mengy, dyang, xhongz, wangziliang}@cqu.edu.cn

Abstract—Software architecture is undergoing a transition
from monolithic architectures to microservices to achieve re-
silience, agility, and scalability in the software life circle. However,
microservice architecture is not perfect and suffers from inter-
mittent faults, leading to economic and user losses. Therefore, it is
essential to detect anomalies in microservice systems accurately.
The key limitation of current approaches lies in a lack of ability
to detect multitype anomalies, excessive resource overhead, and
requirements of expert knowledge. In this paper, we present a
Deep Attentive anomaly detection approach with Multimodal
data named DAM. With multimodal fusion, attentive LSTM,
and a dynamic threshold selecting algorithm, DAM could detect
anomalies accurately and efficiently in an unsupervised manner.
We evaluate our approach by injecting six types of anomalies on a
widely used microservice system, Train-Ticket. The result shows
that DAM could detect multitype anomalies well, with 80.46%
F-measure, achieving 16.76% and 29.52% improvement over two
state-of-the-art baselines (Donut and DAGMM), respectively.

Index Terms—microservice, anomaly detection, multimodal
data, LSTM, attention network

I. INTRODUCTION

There is an increasing number of applications that adopt

microservice architecture to replace the traditional monolithic

structure in the areas such as IoT (Internet of Things) [1] and

Cloud-Native [2]. A large application is decoupled into fine-

grained services, and independent programmers could develop

them parallelly with unlimited technology stacks. It gives

the microservice systems several superior properties, such

as CI/CD (Continuous Integration, Continuous Delivery) and

language-free.

However, the microservice architecture is not perfect and

also suffers from occasional crashes that lead to tremendous

losses. A survey reported by Statista recently shows that

the average economic loss caused by server outage of mi-

croservices for one hour is between $300,000 and $400,000

[3]. Therefore, system anomalies must be detected quickly

to ensure microservices are running reliably and with high

uptime. Besides, traditional troubleshooting usually requires

the maintenance engineers to look through a large number

of logs or KPI panels, which could be costly and inefficient.

Automatic anomaly detection with a well-trained model could

help alleviate this problem.

*Corresponding author.

Anomaly detection for microservice systems is challenging

due to the following characteristics [4]: 1) Heterogeneous
Multimodal Data: logs, metrics, and traces are three main

kinds of monitoring data in microservice systems that record

the runtime status in different ways. It is difficult to de-

sign a method to dig out the dispersive information from

the heterogeneous data (i.e., texts, numbers, and graphs). 2)
Fast Iteration: microservices are frequently updated to meet

customers’ requirements (e.g., Netflix updates thousands of

times per day [5]). It means that a trained model may be invalid

within several hours. It puts forward higher requirements for

the training efficiency of anomaly detection models.

Researchers have proposed numerous anomaly detection

approaches for microservice systems, including metric-based

approaches [6], [7] and log-based approaches [8], [9]. Metric-

based approaches detect anomalies by learning the periodic

patterns of service KPIs (Key Performance Indicators). And

log-based approaches detect anomalies by extracting log tem-

plates and pointing out unexpected log events. However,

current approaches are limited in the generality of anomaly

detection because they use a single type of monitoring data.

For instance, faults like asynchronous invocations and API

version errors barely affect the metrics. As a result, metric-

based approaches cannot detect these faults even though they

keep causing service quality degeneration. Similarly, log-based

approaches fail to detect faults like resource contentions in

metrics. And approaches that use resource-consuming archi-

tectures such as GAN (Generative Adversarial Networks)

require extensive expert knowledge and take a lot of time to

train.

In this paper, we propose a novel approach named DAM. It

is an application-agnostic and unsupervised approach designed

for container-based microservice environments. The core idea

of DAM is to predict the future values of multimodal monitor-

ing data and label samples that deviate from predictions to be

anomalies. DAM mainly consists of four parts. First, the data

collection, which collects and stores data in chronological or-

der using open-sourced monitoring tools like Prometheus and

Logstash. Second, the multimodal fusion, which normalizes

and aligns multimodal data (logs and metrics) based on log

parsing methods like Drain [10] and standardizing methods

like z-score. Third, the predicting model, which captures

the temporal and interdimensional dependencies with LSTM

373

2022 IEEE International Conference on Web Services (ICWS)

978-1-6654-8143-4/22/$31.00 ©2022 IEEE
DOI 10.1109/ICWS55610.2022.00062

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 W

eb
 S

er
vi

ce
s (

IC
W

S)
 |

97
8-

1-
66

54
-8

14
3-

4/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

W
S5

56
10

.2
02

2.
00

06
2

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 22,2022 at 03:23:27 UTC from IEEE Xplore. Restrictions apply.

and attention mechanism. Last, the anomaly detection with a

dynamic threshold selecting algorithm based on Extreme Value

Theory (EVT) [11].

We evaluate our approach on a widely used microservice

system, Train-Ticket [12] deployed on Kubernetes. The results

show that our approach can effectively detect different kinds

of anomalies, with 80.46% F-measure detecting multitype

anomalies and 99.53% recall at best, outperforming two state-

of-the-art baseline approaches Donut [13] and DAGMM [14].

In conclusion, our contributions could be summarized as

follow:

• We propose a Deep Attentive anomaly detection approach

with Multimodal data named DAM. DAM grasps a com-

prehensive picture of the system runtime by fusing multi-

modal data. With LSTM and attention mechanism, DAM

captures the temporal and interdimensional dependencies

in multimodal data and predicts future values precisely.

And EVT-based dynamic thresholds selecting algorithm

makes DAM detect anomalies accurately without any

expert knowledge.

• We evaluate our approach on a widely used benchmark

system, Train-Ticket. The results show that DAM can

detect anomalies effectively in an unsupervised manner,

improving Donut and DAGMM by 16.76% and 29.52% in

terms of F-measure. Additionally, DAM is more efficient,

making it possible to update the model within a short

interval.

II. APPROACH

This section will describe in detail how DAM detects

anomalies utilizing both logs and metrics. The overall frame-

work of DAM is illustrated in Fig. 1.

A. Data Collection

To characterize the behaviors of the microservice system,

we have to collect some KPIs (e.g., CPU usage, memory

usage, and network transmission rate) and log lines to record

the historical status of the system and discover the latent

relationship across multivariate data. We use Prometheus to

collect KPIs with an interval of one second and store them

in InfluxDB. Meanwhile, Logs are collected by Logstash

and stored in ElasticSearch. We inject six kinds of typical

anomalies in microservice systems during data collection,

and we record the start and end times of each anomaly.

Therefore, logs and KPIs are collected and tagged with service

names, timestamps, and labels. However, we only use labels

during evaluation, and our model is trained in an unsupervised

manner.

B. Multimodal Fusion

We adopt a state-of-the-art log parsing algorithm, Drain,

to extract log templates. The template IDs acquired by Drain

are consecutively sorted by the frequency of occurrence in

descending order. Afterward, template IDs are transferred into

template numbers according to their index in the sorted array.

It means that log lines printed less frequently will have bigger

template numbers. Then we use the maximum value in a

one-second time window, which reveals the most uncommon

system behavior at this point, to represent the original template

number sequence. We do not apply the average value of each

window because the anomaly rate of log events is extremely

low, and the average value represents the majority of the data.

We align metrics and template numbers by timestamps

to deal with the different generation rates between log and

metrics (Prometheus samples metrics every second, but the

log could print 100 or more lines per second). Whereafter, all

dimensions of the aligned data are normalized with z-score

standardization to eliminate the influence of different units of

measurements. We apply sliding windows of length W (W=10)

to get fixed-length sequences which are prerequisites of the

LSTM network.

C. Model Building

Since our model is an unsupervised approach, the model

is built with the collected raw data without any anomaly

labels. DAM aims to capture the temporal patterns and predict

future value precisely. Therefore, we apply some widely used

network structures in the area of time series forecasting.

LSTM is well known for its formidable ability to prioritize

historical information and capture complex temporal depen-

dence between multivariate observations [15]. As a result,

LSTM is widespread in domains including speech recognition

and time series anomaly detection [16]. Therefore, we apply

LSTM to learn the temporal pattern of historical data.

The core idea of the attention mechanism is to distinguish

the task-related importance of different timestamps from a

sequence by computing a weight vector. With enough research

and practice, the attention mechanism has shown its priority in

areas like NLP [17] and image classification [18]. Therefore,

we apply an attention network to further extract temporal and

interdimensional dependencies from multimodal data.

We divide the aligned data into three groups according to the

correlations between dimensions. Group one is load metrics

consisting of CPU usage, memory usage, and average load

index of the service. When a container faces hardware resource

contention, these metrics usually fluctuate dramatically at the

same time. Group two is traffic metrics, including network

transmission/reception in bytes and file read/write in bytes.

These metrics rise simultaneously when a flood of users send

requests consecutively and drop to zero immediately when the

traffic is gone. Group three is log sequences that represent the

events that happened during runtime.

Three groups of data are fed into three LSTM networks to

learn the temporal and intraclass relation. The final hidden

states and final outputs of LSTMs are then concatenated

together to get joint information from the learned hidden

space. Taking the concatenated final output as both key (K)

and value (V) while taking the concatenated final hidden state

as query (Q), we make these joint representations go through

an attention network to further learn the inter-dimensional and

temporal dependencies. Lastly, attention outputs are fed into

a two-layer dense network to predict future values. We apply

374

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 22,2022 at 03:23:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Overview of proposed anomaly detection method

MSE (Mean Square Error) to be the loss function and the AE

(Absolute Error) between the real and predicted values to be

the anomaly score.

D. Anomaly Detection

Anomaly detection in microservice systems requires a fast,

general, and unsupervised approach to determining whether

the observations are anomalous. One simple approach is to

make an assumption that the distribution of multivariate data

to be diagonal Gaussian pθ (x|z) = N (μx, σ
2
xI), where μx

and σx are the means and standard deviations of independent

Gaussian component. But when the data is a stream com-

ing from a rapidly changing environment like microservice

systems, such assumptions are no longer safe enough to be

made. Meanwhile, manually setting a fixed threshold requires

extensive expert knowledge and suffers from a lack of adaptive

capacity. To circumvent the hassle of parameter tuning and

reduce human impact, we apply the EVT-based threshold se-

lecting method POT (Peaks-Over-Thresholds) to dynamically

determine the threshold at a certain point. The key idea of

POT is to fit the tail portion of stream data by a Generalized

Pareto distribution (GPD) with parameters. A clear view of

the theorem can be described as follow:

F̄ (x) = P (th− x > k | X > th) ∼ (1 +
γx

β
)−

1
γ

Where th is the initial threshold of anomaly scores, γ
and β are shape parameters of GPD, X is any value in the

stream data {X1, X2, X3, . . . , Xn}. The initial threshold is

empirically set to a low quantile (e.g., 5%), and the parameters

γ and β are estimated by Maximum Likelihood Estimation

(MLE). The final threshold Th is then computed by:

Th � th− β̂

γ̂

((
qn

Nt

)−γ̂

− 1

)

Where q is the desired probability to observe X < th ,
n is the total number of observations, Nt is the number of

peaks, i.e., the number of Xt s.t. Xt > th. The algorithm is

complicated, but there is only one parameter q that needs to be

tuned. In our context, we traverse q from 10−3 to 4×10−2 with

an interval of 10−3, which means the algorithm automatically

selects the best parameter from 40 possible candidates without

any manual intervention. As a result, the threshold could

change dynamically according to the system’s behavior.

III. EXPERIMENTAL SETUP

In this section, we design experiments to answer the fol-

lowing research questions (RQs):

• How effective is DAM in identifying various kinds of

faults in microservice systems?

• What are the impacts of the attention network and mul-

timodal fusion?

• How efficient is DAM compared with the baseline ap-

proaches?

Datasets and Setup. We conduct experiments based on

a widely-used microservice benchmark system named Train-

Ticket. It consists of 41 microservice implemented by Java,

Python, and Go. We choose Kubernetes (k8s) to manage

containers and configurations.

We conduct our fault injection experiments following the

work in [19]. We use ChaosBlade, a chaos engineering tool

open-sourced by Alibaba, along with Jmeter, a famous stress

test tool, to inject service-level faults and simulate real traffic.

We manually modify the source code of Train-Ticket to inject

business faults and standardize the log formats. Due to the

unmanageable data volume of multiple microservices, we only

monitor the most relevant business service during every fault

injection experiment (e.g., we monitor ts-seat-service when

we simulate seat-reservation traffic and inject faults on it).

We build models for each business-critical service on account

that different services may have different patterns (e.g., load

balancing service is more network-intensive and caching ser-

vice is more memory-intensive). In real systems, we could

deploy multiple models on critical nodes simultaneously for

comprehensive anomaly detection.

To evaluate the effectiveness of the proposed approach, we

inject six types of typical faults into the benchmark system,

i.e., CPU contention, memory contention, thread deadlock,

network transmission abortion, burst traffic, and business

faults. The causes of the faults mentioned above are varied,

including server breakdowns that lead to unbalanced traffic

and resource contention, fast iterations of code that introduce

bugs, changing user behaviors that have the power to overload

375

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 22,2022 at 03:23:27 UTC from IEEE Xplore. Restrictions apply.

TABLE I
DETAILS OF THE DATASET

Samples LogLines Anomalies Anomalies(%) Anomaly type
79,318 2,076,756 8,058 10.16 6

the services in a short time, et al. By detecting these common

faults automatically, DAM could help reduce the manual work

of maintenance engineers and improve the robustness of the

microservice system.

Metrics are sampled by Prometheus with an interval of one

second. Logs are collected and split into lines by Logstash.

And we apply Drain to extract log templates. Through repeated

experiments and evaluations, we set the parameters of Drain

(i.e., the similarity threshold and the depth of leaf nodes) to

be 0.5 and 7, respectively. Each fault injecting experiment

lasts from one hour to eight hours (3600 to 28800 points

with sampling at a one-second interval) in order to get enough

training data. And faults (2 to 5 minutes) are injected randomly

during data collection. It means that there may be anomalies

in the training data, and it is beneficial for verifying the

robustness of each approach.

We ended up with a dataset with six types of faults. And

we inject multi-type faults (e.g., CPU contention and business

fault together) simultaneously for our dataset. The dataset

consists of eight dimensions (i.e., CPU usage, memory usage,

average load index of a container in 10 seconds, network

transmission rate, network reception rate, file write bytes per

second, file read bytes per second, and log sequence). In

the real world, these dimensions are often used to evaluate

service running status and locate root causes after faults occur.

Therefore, they have the capacity to provide a comprehensive

picture of service health. The basic information of the dataset

is reported in Table I. The top 60% of the data is selected as

the training data, and the rest is the testing data. We label the

data by each fault injection’s start and end timestamp. And

labels are used only in testing phases.

Baselines. We compare DAM with two state-of-the-art

unsupervised baseline approaches: DAGMM [13] and Donut
[14]. We implement our method with PyTorch 1.6 and Python

3.6. For Donut and DAGMM, we use the code open-sourced

on GitHub.

DAGMM is a deep autoencoding network that combines

AE (Auto Encoder) and GMM (Gaussian Mixture Model).

It adopts a dense network to simulate the EM (Expectation-

Maximum) step in a common GMM. Besides, it trains an AE

model that aims to reconstruct the multidimensional sequence

input precisely. After training, DAGMM applies the sum of

reconstruction error and sample energy (negative logarithmic

probability of the GMM output) as the anomaly score. Lastly,

the threshold is set according to the anomaly percentage of the

data. However, the anomaly percentage of data is inaccessible

in the real world due to a lack of reliable labels. We apply

POT to determine the thresholds for DAGMM with the same

parameters that have been mentioned above in Section II-D.

Donut is a state-of-the-art unsupervised univariate time

series anomaly detection appraoch based on VAE (Variational

Auto Encoder) and MCMC (Monte Carlo Markov Chain)

interpolation. Similar to DAGMM, Donut trains a model to

reconstruct the input sequences and take the reconstruction

probability as the anomaly score. Different from the dynamic

thresholds applied by us, Donut chooses a fixed threshold by

traversing all possible values in the range of anomaly scores.

To apply Donut to multivariate time series anomaly detection,

we simply train M models for M-dimensional data. At time t,
we compute the average reconstruction probability output by

M models to be the final anomaly score.

Evaluation Metrics. FP is the number of normal sam-

ples that are identified as abnormal. FN indicates how

many abnormal samples are identified as normal. TP de-

notes the number of anomalous samples that are correctly

identified. Anomaly detection is a binary classification prob-

lem, so precision, recall, and F-measure are usually used as

assessment criteria. Precision= TP
TP+FP , Recall= TP

TP+FN , F-

measure= 2·Precision·Recall
Precision+Recall . In our context, recall is consid-

ered more prominent than precision due to the unbearable

consequences of system faults (e.g., economic loss and loss of

users). Techniques like alarm aggregation could further handle

false alarms, but any omission of fault may be a recipe for

disaster.

Inspired by the work in [14], we adjust the anomaly

evaluation strategy as follows, if any point in an anomaly

segment could be detected as TP, we say the segment is

detected correctly. In real applications, maintenance engineers

do not care about point-wise metrics. If the detection delay is

tolerable, faults (corresponding to anomaly segments) can still

be handled in time.

IV. RESULTS

In this section, we present our experimental results by

answering the RQs mentioned in Section III.

A. RQ1: How effective is DAM in identifying various kinds of
faults in microservice systems?

To learn the temporal information in load metrics, traffic

metrics, and log sequence separately, we set the input dims

of LSTMs in our model to be (3, 4, 1), and the hidden dim

of every LSTM to be 32. Corresponding to the input dims of

LSTMs, we use 3 three-layers full connected (FC) networks

with dims (96, 32, 8, 3), (96, 32, 8, 4) and (96, 32, 8, 1) to

predict the future value.

For Donut, we use the recommended parameters illustrated

in their paper. For DAGMM, we set the number of assumed

Gaussian distributions in the estimation network to be 4 (half

of the input dims). The singular matrix that arises during

training will immediately interrupt the program. Therefore,

we set the λdiag , a parameter in the loss function which

aims to eliminate the singular matrix, to be 0.2 (higher than

default). The AE part of DAGMM consists of an eight-layers

FC network with dims (8, 60, 30, 10, 1) for encoder and (1,

10, 30, 60 ,8) for decoder.

After model building, we traverse POT’s risk parameter

q from 10−3 to 4 × 10−2 with an interval of 10−3 to get

the qbest. We record the average performance among repeated

376

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 22,2022 at 03:23:27 UTC from IEEE Xplore. Restrictions apply.

TABLE II
AVERAGE RESULTS ON THE FAULT INJECTION DATASET

Approaches Precision(%) Recall(%) F-measure(%)
DAGMM 77.37 82.05 68.91

Donut 47.27 98.96 62.12
DAM-A 53.15 75.79 62.50
DAM-M 31.57 91.11 40.58
DAM-L 52.41 81.54 56.34
DAM 71.69 99.53 80.46

aDAM-A: without attention.
bDAM-M: without metrics.
cDAM-L: without logs.

model building and evaluation procedures. Table II shows the

experimental results. DAM achieves the best F-measure on

our dataset, outperforming the suboptimal baseline by 11.55%.

Meanwhile, the recall of DAM is high, which indicates that it

could detect almost every anomaly segment in time with a little

loss in precision. DAGMM has the best precision, although it

is a trade-off between reducing false alarms and detecting all

faults. As mentioned above, faults could cause huge economic

loss or user dissatisfaction. Therefore, DAGMM is not quite

qualified as an anomaly detector in the microservices context.

Donut performs relatively worse than the others since it is

a univariate approach and could not capture the complex

dependencies hidden in multimodal data. Indeed, Donut is

more influenced by the noise in dimensions. As a result, Donut

acts too sensitive to fluctuations in a single dimension but

ignores the system’s overall state, which leads to too many

FP predictions.

In summary, DAM can detect various kinds of faults in

microservice systems effectively. DAM improves Donut and

DAGMM by 16.76% and 29.52% in terms of F-measure.

B. RQ2: What are the impacts of the attention network and
multimodal fusion?

We build models with/without attention networks to evaluate

the impact of attention networks. And the model built without

an attention network is denoted as DAM-A. Table II shows the

impact of the attention network in terms of anomaly detection

accuracy. Proven by our experiments, the attention network

could significantly improve the accuracy while consuming

little computing resources (training time increases by 6%).

Wrongly predicted points may introduce additional noises

to the anomaly scores. Therefore, accurate prediction is the

foundation of anomaly detection. Fig. 2 shows the predicted

results when we build our model with/without attention net-

work to fit 12 hours of failure-free monitoring data (6 hours

of data for training). Due to limited space, we only show three

out of eight dimensions with 36-minutes data in the picture.

Black, red, and blue lines denote ground truth, predictions with

attention, and predictions without attention, respectively. And

it is obvious that the attention network contributes a lot to the

reduction of prediction error.

To evaluate the effectiveness of multimodal fusion, we train

our model without logs or metrics (denoted as DAM-L and

DAM-M). As shown in Table II, both models fail to detect

anomalies precisely since the multitype faults we inject into

the benchmark system cannot be easily detected with a single

TABLE III
TIME EFFICIENCY OF EACH MODEL

Approaches DAGMM Donut DAM
Time Cost (s) 5,545 1,644 1,154

Fig. 2. Effectiveness of attention network. Black lines denote the ground truth,
red lines denote predictions with attention network, and blue lines denote
predictions without attention network.

data source. And it is consistent with the circumstances that

happen in a real system — maintenance engineers usually

focus on both logs and metrics rather than either one.

In summary, the attention network improves the overall

performance of our model while increasing negligible training

time. And multimodal fusion gives our model the capacity to

detect multitype faults that cannot be revealed with a single

data source.

C. RQ3: How efficient is DAM compared with the baseline
approaches?

Detecting the online faults in microservice systems requires

short training time and adaptive capacity to changing environ-

ments. Therefore, time efficiency is of vital importance in our

context. If the models cannot update in time, they may fail to

detect incoming anomalies due to the rapid iteration of code or

the varying user behavior. So we investigate the time efficiency

of our approach compared to baselines. We train each model

on the same GPU server that is equipped with NVIDIA TITAN

V 12GB GPU and 256GB memory, and 48-core Intel Xeon(R)

E5-2650 CPU. With the same batch size and window length,

we train each model using 12 hours of failure-free data for 50

epochs and record their training time. Besides, we train Donut

for each dimension parallelly and record the average time cost.

As illustrated in Table III, DAGMM takes more time than the

others on account of the tanglesome model architecture and

complex loss function. And Donut’s probability computing

step acts as a drag on fast training.

Since the testing time is negligible compared to training

time and the time efficiency of the POT algorithm has been

investigated clearly in [11]. We do not evaluate the time

efficiency during testing.

In summary, DAM is more efficient in terms of training time

despite LSTM being used. Compared to baseline approaches,

it is more suitable for a fast-changing environment like mi-

croservice systems.

377

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 22,2022 at 03:23:27 UTC from IEEE Xplore. Restrictions apply.

V. RELATED WORKS

in the microservices context, by the type of data sources,

anomaly detectors can be classified into three main categories,

metric-based, log-based, and trace-based models. In this sec-

tion, we will introduce some related approaches proposed in

recent years for each category.

Metric-Based Models. Gulenko et al. [6] enable detecting

performance anomalies in multi-service applications. It applies

the BIRCH online clustering algorithm to cluster the metrics

vectors and learn the normal subspaces. Vectors that do not

pertain to these spaces will be classified as outliers. Samir

et al. proposed DLA [7]. Based on the Spearman’s rank

correlation coefficient, the model analyses whether a variation

in a newly monitored response time corresponds to an expected

fluctuation due to an increase/decrease of users’ transactions,

or whether it actually denotes an anomaly.

Log-Based Models. Du et al. [8] proposed Deeplog, a deep

neural network model utilizing LSTM to model system logs

as natural language sequences. Logs are parsed into template

sequences and fed into LSTM to predict possible incoming

templates. Real values that do not fall into the top-k predictions

will be labeled as anomalies. Yin et al. proposed LogC [9].

Similar to Deeplog, LogC extracts templates with Drain and

matches components in log lines using regular expressions.

Components and templates are fed into two bidirectional

LSTM models separately to learn the normal pattern and detect

the anomalies.

Trace-Based Models. Liu et al. proposed TraceAnomaly

[20]. It defines a novel trace representation called STV

(Service Trace Vector) by combining span information with

response time. STVs are grouped by time, and a deep Bayesian

model is used to reconstruct these vectors. The STVs that

cannot be reconstructed well will be labeled as anomalies,

and the corresponding spans are considered the root-cause

invocations.

VI. CONCLUSION AND FUTURE WORK

This paper proposes DAM, an unsupervised anomaly de-

tection approach utilizing multimodal monitoring data. Firstly,

DAM transforms the raw log lines into template sequences and

aligns them with metrics by timestamps. Then the multivariate

data are divided into three groups according to the correlations

between dimensions. With LSTMs and attention networks,

the model is built to capture the normal pattern of service

runtime and predict future values. Anomaly scores are later

acquired by computing the absolute error between predictions

and real values. Lastly, POT is used to generate dynamic

thresholds and anomaly labels. In the future, we will try

to combine DAM with some graph-based methods such as

graph convolutional neural networks to extract the inter-service

dependencies using traces and locate the root cause service

after anomaly detection.

ACKNOWLEDGMENT

This work was supported in part by the National Key

Research and Development Project (No. 2021YFB1714200),

the Fundamental Research Funds for the Central Universities

(No. 2022CDJKYJH001), the Natural Science Foundation

of Chongqing (No. cstc2021jcyj-msxmX0538) and the Key

Project of Technology Innovation and Application Develop-

ment of Chongqing (No. cstc2019jscx-mbdxX0020).

REFERENCES

[1] B. Butzin, F. Golatowski, and D. Timmermann, “Microservices approach
for the internet of things,” in ETFA. IEEE, 2016, pp. 1–6.

[2] P. Di Francesco, I. Malavolta, and P. Lago, “Research on architecting
microservices: Trends, focus, and potential for industrial adoption,” in
ICSA. IEEE, 2017, pp. 21–30.

[3] “Average cost per hour of enterprise server downtime worldwide in
2019.” https://www.statista.com/statistics/753938/worldwide-enterprise-
server-hourly-downtime-cost/, accessed: 04 January 2022.

[4] L. Wu, J. Tordsson, E. Elmroth, and O. Kao, “Microrca: Root cause
localization of performance issues in microservices,” in NOMS. IEEE,
2020, pp. 1–9.

[5] “Why netflix, amazon, and apple care about microservices.”
https://www.leanix.net/en/blog/why-netflix-amazon-and-apple-care-
about-microservices, accessed: 09 January 2022.

[6] A. Gulenko, F. Schmidt, A. Acker, M. Wallschläger, O. Kao, and F. Liu,
“Detecting anomalous behavior of black-box services modeled with
distance-based online clustering,” in CLOUD. IEEE, 2018, pp. 912–
915.

[7] A. Samir and C. Pahl, “Dla: Detecting and localizing anomalies in con-
tainerized microservice architectures using markov models,” in FiCloud.
IEEE, 2019, pp. 205–213.

[8] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in CCS, 2017,
pp. 1285–1298.

[9] K. Yin, M. Yan, L. Xu, Z. Xu, Z. Li, D. Yang, and X. Zhang, “Im-
proving log-based anomaly detection with component-aware analysis,”
in ICSME. IEEE, 2020, pp. 667–671.

[10] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in ICWS. IEEE, 2017, pp. 33–40.

[11] A. Siffer, P.-A. Fouque, A. Termier, and C. Largouet, “Anomaly detec-
tion in streams with extreme value theory,” in KDD, 2017, pp. 1067–
1075.

[12] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao, “Poster:
Benchmarking microservice systems for software engineering research,”
in ICSE. IEEE, 2018, pp. 323–324.

[13] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and
H. Chen, “Deep autoencoding gaussian mixture model for unsupervised
anomaly detection,” in ICLR, 2018.

[14] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei,
Y. Feng et al., “Unsupervised anomaly detection via variational auto-
encoder for seasonal kpis in web applications,” in WWW, 2018, pp.
187–196.

[15] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural
networks: Lstm cells and network architectures,” Neural computation,
vol. 31, no. 7, pp. 1235–1270, 2019.

[16] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soder-
strom, “Detecting spacecraft anomalies using lstms and nonparametric
dynamic thresholding,” in KDD, 2018, pp. 387–395.

[17] D. Hu, “An introductory survey on attention mechanisms in nlp prob-
lems,” in Proceedings of SAI Intelligent Systems Conference. Springer,
2019, pp. 432–448.

[18] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and
X. Tang, “Residual attention network for image classification,” in ICPR,
2017, pp. 3156–3164.

[19] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault
analysis and debugging of microservice systems: Industrial survey,
benchmark system, and empirical study,” TSE, vol. 47, no. 2, pp. 243–
260, 2018.

[20] P. Liu, H. Xu, Q. Ouyang, R. Jiao, Z. Chen, S. Zhang, J. Yang, L. Mo,
J. Zeng, W. Xue et al., “Unsupervised detection of microservice trace
anomalies through service-level deep bayesian networks,” in ISSRE.
IEEE, 2020, pp. 48–58.

378

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on September 22,2022 at 03:23:27 UTC from IEEE Xplore. Restrictions apply.

