
Duplication Detection for Software Bug Reports based on Topic Model

Jie Zoub, Ling Xua,b,*, Mengning Yanga,b, Meng Yanb, Dan Yangb, Xiaohong Zhanga,b
a. Key Laboratory of Dependable Service Computing in Cyber Physical Society Ministry of Education,

 Chongqing 400044, PR China
b. The School of Software Engineering, Chongqing University,

 Chongqing (401331), PR China.
xuling@cqu.edu.cn

Abstract—The traditional duplicate bug reports detection
approaches are usually based on vector space model. However,
the experimental result is rarely satisfying since this method
cannot distinguish semantic correlation among bug reports
which written by natural languages. Topic model, as a method
to model underlying topics of texts, can solve the problem of
document similarity calculation methods used in the
information retrieving. It can find the semantic topics among
the texts through massive training data, and obtain semantic
relatedness among documents. Therefore, this paper proposes
a novel duplication detection method based on topic model.
Through selecting bug reports with execution information and
combing with classified information of bugs, not only does this
new method overcome the problem of high dimension, sparse
data and loud noise, but also avoid the problem of synonymy
and ambiguity in the natural languages. Comparing to the
traditional SVM method, the recall rate and precision rate of
our proposed approach have obviously increased, which
indicates the effectiveness of this new method.

Keywords—duplicate bug reports detection, topic model,
execution information, vector space model

I. INTRODUCTION
Along with the increase of the size of software project,

software becomes more and more complicated. Maintenance
expense takes up 2/3 of software life cycle expense. Software
bug reports are document descriptions about possible defects
or errors made by software testers or users while
maintaining. Along with the increasing scale and updating
versions, various users submit bug reports to bug-tracking
management system every day. Thus, open source software
like Eclipse, Firefox, Open Office and so on, produce a great
deal of duplicate bug reports. Take Firefox as an example,
the percentage of duplicate bug report in its software bug
database is up to 30% [1]. “Everyday, almost 300 bugs
appear that need triaging. This is far too much for only the
Mozilla programmers to handle”, a programmer from
Mozilla reported in 2005. Duplicate bug reports not only
occupy space, but also cause problems with bug report
assignment, increasing labor costs.

In order to relieve the burden of manual detection on the
duplicate bug reports, more and more researchers involve
themselves into this field currently. Runeson P [2] and his
co-workers, took bug reporter library of Sony Ericsson

Mobile Communications as a dataset, calculate similarities of
bug reports after vectoring and normalizing processing, and
gained 30% precision. Wang X Y [3] et al. added execution
information on the basis of Runeson P’s research, defined
two kinds of similarities among bug reports: natural language
similarity and execution information similarity. If take
executive information as the only reference standard, the
recall rate should be around 93%, and the precision rate 67%.
Based on the research of Runeson P et al, Sun [4] et al.
mapped the vectorized and identified bug reports to
discriminative model, and then trained a SVM classifier to
detect duplicate bug reports. Compared with Runeson P’s
method, Sun’s precision rate is about 20% higher, but it’s
lower than Wang X Y’s. Thus it can be seen that introduction
of execution information can enormously raise the precision
rate of detection. Standardized execution information made
automatic detection of duplicate bugs available not only in
theoretical research but also in practice. Compared with the
natural language, standard executive information can be
more reliable and understandable to describe the situation
when bugs emerge. Moreover, to facilitate standardization,
procedurization, and sophistication is the inevitable direction
of software engineering development, thus, this paper
chooses executive information bug reports as the main
research object.

Most of the detecting methods of similarities are based
on one hypothesis: the more words are repeated in different
documents, the more similar these documents are. However,
it is not exactly so in practice. Very often, correlation degree
depends on semantic relation, instead of repeating words and
expressions. Topic model LDA [5] (Latent Dirichlet
Allocation) can find these semantic relations of bug reports.
LDA, is a generated topic model which provides an available
method for auto-organization, comprehension, and massive
documents detection. LDA can be used to explore the hidden
topics in corpus, mark on the document according to the
topics, and finally organize, classify, induce and retrieve
similarity among documents on the basis on these marks.
Also, during the process of submitting bug reports,
developers or users need to specify the category of these bug
reports which refers to classified information defined by
submitters. The classified information reflects the basic
properties of bug reports on a certain degree. So we put
weight on it and combine it with descriptive information to

2016 9th International Conference on Service Science

2165-3836/16 $31.00 © 2016 IEEE

DOI 10.1109/ICSS.2016.16

60

improve the duplicates detection results. In this paper, a new
LDA-based method is proposed to detect similarities of
documents, classified information submitted by the original
users, executive information, and descriptive information of
bugs are combined together to obtain the final experimental
result. The main idea of this paper is as follows: firstly, build
a data warehouse which is taken as training data, and use
LDA method to construct a topic model; then, construct a
small testing sample space, and make a thematic inference
according to the constructed topic model to obtain the
document-topic matrix, thus map the bug report documents
from traditional high dimension word space to low
dimensional topic space; at last, calculate similarities among
documents in low dimension topic space. If the similarity is
greater than the set threshold, the bug reports will be
considered as duplicates.

The remainder of this paper is organized as follows:
Chapter 2 explains our approach for duplicate bug report

detection in detail. Chapter 3 shows and evaluates the
experimental results. Chapter 4 analyzes the threats to
validity. Chapter 5 discusses the related work. Chapter 5
draws a conclusion of the research work.

II. T PROPOSED METHOD
Our approach is consisted of three key steps. Firstly,

select bug reports from the experimental data set as the
training sample space, and then build a topic model by using
LDA method in the training sample space; secondly,
randomly select some bug reports as the test sample space
data, extract classified information of each bug in the sample
space, and meanwhile deduce the topics of the testing
samples by the constructed topic model to get a
corresponding topic-document matrix; finally, transform the
document-topic matrix into the vector representation of
document object in the topic space, calculate the similarity
between documents by calculating the cosine of the angle of
vector space and put weight on it, and at the same time,
calculate the similarity of classified information and put
weight on it. The multiplication of the two is the final results
of the bug reports similarities, and then set a threshold, the
bug reports will be considered as duplicates when the
similarity is greater than the threshold. The overall procedure
of our method is shown in figure 1.

A. Constructing Topic Model
The method of duplicate bug reports detection presented

in this paper is based on LDA, which models the bug reports
as documents. LDA model is a complete generative model
which regards blend weights of topic as random variables of
T dimension parameters rather than set of individual
parameters directly related to the training data. It avoids the
shortcomings of PLSA model [6].

LDA model assumes a process of producing a document
firstly, and then observes and predicts the production
process. LDA supposes that all documents have Κ topics (the
topic is represented by the word distribution in LDA model).
To generate a document, the first step is to generate a topic
distribution of the document, and then assemblage of words;
to generate a word, a topic should be randomly chosen

according to the conditional distribution of topics w.r.t the
document, and after that a word is randomly chosen from the
conditional distribution of words w.r.t the topic.

Assuming that the Κ dimensional vector α is the
parameter of the prior data distribution of the topic, Κ⋅V
matrix β is the parameter of the distribution of the words (V
is the sum of words) in the topic, i.e. βij=p(wj|zj)= the
probability of the word wj in the ith topic. Thus, we generate a
document topic distribution and N topics, and the probability
of the N words we get in this document is expressed as:

N

n n n
n 1

(, ,) (|�) (z |) (w |z ,�) p z w p pθ θ θ
=

= ∏ (1)

Where θ is the topic distribution vector of the document,
z is the topic vector of N dimensions, and w is the vector
composed of the N words. Since θ and z are latent variables
in the training data which cannot be observed, they are
eliminated through marginal distribution from the left:

N

n n n
n 1

(| ,) (|�) (z |) (w | ,)d p w p p zα β θ θ β θ
=

= ∏� (2)

To corpus D which has M documents,

d1
(| ,) (w | ,)

d M
p D pα β α β

=
=� �

 (3)

Thus

dNM

dn dn dn
d 1 n 1

(| ,) (|)((z |)p (w |z ,))d
dn

d d d
z

p D p pα β θ α θ β θ
= =

= �∏ ∏� (4)

Fig 1. The overall procedure of the method

61

As shown above, the process of constructing the LDA
model is a process of achieving maximized parameters α and
β of p(D|α,β).

B. Applying LDA Model and Extracting classified
Information
We obtain the conditional distribution of words within

the topics p(w|z) and the conditional distribution of topics
within documents p(z|d) of training samples after
constructing a topic model. When there is a new submitted
bug report in testing samples, we deduce the topics of the
new unlabeled texts by the trained topic model and get its
corresponding topic distribution p(z|dnew) through the
previous p(w|z). And then we can calculate the similarities
between the new bug report and the bug reports of training
samples by formula (6) after getting the p(z|d) and p(z|dnew).
The corresponding topic distribution p(z|dnew) is also the
conditional probability distribution of the document in the
topic space.

(, , ,)
(, , ,)

(,)
p z w

p z w
p w
θ α β

θ α β
α β

= (5)

After application of sample space model, extract
classified information from each bug report in sample space
and mark them for the follow-up experiment. The classified
information of bug report contains four kinds of information:
classification, product, component, and version. All kinds of
information are in relation to progressive gradual progressive
relation.

C. Similarity Calculation
Similarity calculation is divided into two steps: the first is

the similarity of each document in topic space, on which is
weight 1 placed; the second is the similarity calculation of
classified information of each document, on which is weight
1 placed, too.

After application of topic model to the testing sample, we
can get its conditional probability distribution in the topic
space in the form of a document-topic matrix which can
easily be transformed into vector representation of
documents in the topic space. Thus, we can express semantic
similarity by calculating the similarity between the
documents in topic space.

There are a lot of methods to measure vector space
similarity. The one this paper adopts is to calculate the angle
cosine value of vectors. To calculate the similarity of testing
sample document D1 and D2, the vector of document D1 in
the ith dimension topic space is d1i, and that of document D2
is d2i. The similarity calculation formula is as follows:

1 2
1 2 2 2

1 2

()
(,) i ii

i ii

d d
Sim d d

d d

∗
=

∗
�
�

 (6)

Note that, the cosine value of the vector angles ranges
between 0 to 1, and the bigger the angle is, the smaller the
cosine value is. From the space relationship corresponding to

the similarity, we can find that when the cosine value is
bigger and the angle is smaller, space similarity or semantic
similarity between the two documents is higher.

Classified information of document, which provides the
basis of similarity for detecting duplicate bug report, is a
basic feature of bug report. Classified information is a kind
of structured information organized according to the
classification\ product\ component\ version sequence, so the
appropriate way to calculate similarity of classified
information is not to compare the classified information
according to unstructured text data but layer sequence, and
stop comparing when find the difference at the first time to
stop. The similarity of descriptive information is between 0
and 1. Set the weight of classified information at 1 and the
number of the same level obtained through comparison are
0.4, 0.55, 0.7, 0.85, and 1.

III. EXPERIMENTAL RESULTS AND ANALYSIS
In this experiment, two problems should be taken into

consideration. First, under what condition can achieve
optimum experimental results? Second, how well the results
compared with experiments in other methods?

To evaluate the results, we used the recall and precision
rates as standard metrics.

detected

total

NRecallRate
N

= (7)

det

det

ected

ectedall

NPrecisionRate
N

= (8)

Where Ndetected is the number of correct experimental
detections in the duplicate bug reports of the test sample,
Ntotal is the total number of the actual duplicate bug reports in
the testing sample, Ndetectedall is the total number of duplicate
bug reports in the experimental detections (including the
right and wrong).

A. Dataset and data Preprocessing
When selecting the experimental data set, we take two

factors into consideration:
1. There is often a bug correction period after main

versions release of a software (usually one and a half
months).

2. The most effective time to detect duplicate bug reports
is within 50 days when the corresponding bug source reports
are submitted.

According to the above principles, this experiment is
based on the bug report data from the famous open source
project Eclipse, taking bug reports newly submitted in 3
months from June 26, 2006 to September 26, 2006 as the
training sample space (due to the updating of version 3.2
Callisto issued by Eclipse on June 26, 2006). Testing
samples in the later part of the experiment are from this
training sample space.

Before constructing topic model for the training sample
space, we need to format the original data. Since the original
report file is organized in the form of XML, and also

62

contains a lot of redundant information, only bug title and
content are selected as the main experimental data. If the title
and content of the original bugs are all null, which infers that
this report is non-existent, it should be removed, such as bug
report ID 511.

For the training sample space, there were 10400 original
bug reports. After removal of invalid bug reports, 9600
remained, among which 1115 were marked “duplicate”,
which accounts for 11.6% of the total. Whether it is marked
as “duplicate” is decided by the value of "resolution" in the
original XML file. And classified information is obtained
through classification\ product\ component\version and
marked to each bug report.

The preprocessing is followed by the treatment of
extracted data including data cleaning, segmentation, stem
extraction and removal of stop words. Note that, there are a
data cleaning process differ from common text processing,
because most of the description of the bug has invalid
information expressed in fixed sentence pattern, such as:

1 Fixed in HEAD.
Available in builds > N20071108-0010.Available in

builds > N20071108-0010.
2 *** Bug 208441 has been marked as a duplicate of

this bug. ***
The sentence pattern 1 shows that the bug has been

revised in previous versions, while patterns 2 point out which
bugs are marked as duplicate bugs. The two patterns
mentioned above has no connection with the bug itself, since
there is a lot of this kind of information in the original file
and it produces a large number of duplicate invalid
information which will eventually have a great influence on
the experimental results, they are removed according to the
fixed patterns firstly. After finishing the cleaning of the data,
the few remaining preprocess steps can be carried out to
further refine information.

A standard data set will be obtained when data
preprocessing is complete. Then, we construct a LDA topic
model in the training sample space.

To construct the LDA model, we used natural language
processing toolkit MALLET [7] open source (Machine
Learning for language Toolkit) to implement LDA modeling.
First, we convert all texts of training sample space to feature
sequence, then set the number of topics according to the size
of sample space, and finally, get a topic model of training
samples.

To construct a test sample space, we randomly select 22
bug reports with executive information from 1115 which
have been marked duplicate in the training sample space, and
choose 178 from non-duplicate reports to construct a basic
database. Get actual duplicate bug reports corresponding to
the 22 bug reports from the website of Eclipse, add them to
the basic database. In the experiment of this paper, 47 are
added externally. Finally, we get a small testing sample
space containing 247 bug reports. Apply the constructed
topic model in this test space, and get the document-topic
matrix.

All the document-topic matrixes are converted into
vector space, and calculate the similarity between the bug
reports in the testing sample space by formula (6). And then

we set a threshold, the bug reports will be considered
duplicates when the similarity is greater than the threshold
value.

B. Experimental results and analysis
As for the bug reports with executive information, Wang

X Y [8] et al defined two kinds of similarities between them:
natural language similarity and executive similarity,
estimated the similarity of bug reports through the distance
between vectors after vectoring(TF*IDF) and normalizing.
Wang X Y et al. achieved a 95% recall rate and the highest
precision rate 67% using this method. What have been found
from this experiment is that increase of the recall rate is at
the expense of precision rate [8]. Instead, this paper applies a
topic model, calculates the corresponding semantics
similarities between bug reports through the topics extracted
by LDA model. Also, we calculate the similarities of
classified information at the same time, place weight on
semantic similarities and classification similarity and finally
get the recommendation results.

Figure 2 shows the results of our method on testing
samples in comparison with Wang X Y’s. And the threshold
is set as 0.95 in figure 2. Since the recall rate parallels Wang
X Y’s, but the precision is greatly improved at the same
time.

Fig 2. The comparison of our results with Wang X Y

As can be seen from figure 2, compared with the
traditional SVM method adopted to detect duplicate bug
report with executive information, the recall rate is roughly
the same at about 95%, but the precision rate is improved
greatly. As for this experiment, when 40 topics are selected,
the precision rate is up to 90%, obviously increased
compared with 67% by traditional method.

From figure 2 we see that the parameter selection will
directly affect the quality of the modeling and the
experiments results when building models for specific
sample spaces. We experiment the influences of different
parameters on the experiment results, such as the number of

63

topics and threshold. Figure 3 shows the influence of topics
amount on the experiment results, As shown in Figure 3,
when the number of topics reaches 40, the precision rate is
the best, and the recall rate at a high level.

Fig 3. The influence of topics amount on the experiment results

Therefore, when there are too few topics, the
discrimination between topics is not obvious enough and the
particle size distribution is insufficient. Too many topics
usually make it dispersive, which may lead to unsatisfying
results. Only when the amount of topics set to a reasonable
interval, the experimental results can be optimal.

Similarly, the threshold is also important for the
performance of the model. Figure 4 and Figure 5 shows the
recall and precision rate when the threshold is set to different
value.

Fig 4. The comparison with recall rate at different threshold

Fig 5. The comparison with precision rate at different threshold

As shown in Figure 4, the smaller the threshold is, the
more recommendation results which are greater than the
threshold is. Thus, it leads to a greater probability of accurate
results and a higher the recall rate.

In Figure 5, when the threshold is higher, the results
obtained in the experiment set are small, which results from
the less invalid results, the precision is higher.

In a comprehensive analysis of Figure 4 and Figure 5, the
smaller the threshold is, the higher the recall rate becomes,
but the lower precision rate is; the greater the threshold is,
the lower the recall rate becomes, but the precision rate is
increased. According to the experiment, when the threshold
is at 0.95, the increase of precision rate is greater than the
decline of recall rate. The optimal experimental results come
out when the topic number is 40, the threshold is 0.95.

As mentioned above, the different values of parameters
affect the detection results. There is no provably optimal
choice for the parameters [9] [10]. The choice is a tradeoff
between coarser parameters (smaller value) and finer grained
parameters (larger value). So a reasonable choice should be
made which is mainly dependent on the experiments and
experience of the experimenter.

IV. THREATS TO VALIDITY
In our study, we assume that the information provided by

the bug reporter is correct, including the textual, categorial,
and duplication information. If a bug report information is
not enough or misleading, the performance of our approach
is adversely affected.

When performing the LDA model, we chose to use 40 as
the number of topics. There is no absolutely optimal choice
for the number of topics in all situations and all datasets [9]
[10]. The choice is to seek a reasonable value between
coarser-grained and finer-grained. To alleviate this threat, we
experimented with different values and chose the one that
gave the best results by considering the recall rate and
precision rate.

The next validity threat is limited by the sole use of the
Eclipse open source bug repository, but this is very large and
popular with tens of thousands of developers worldwide. and
since Eclipse uses Bugzilla as its bug tracking system, which
is the most widely used bug tracking system, the breadth of
the Eclipse sub-projects provides some form of generality. In
the future, we would consider more software systems,
especially on commercial projects.

We tried to minimize the internal threats to validity by
using mature tools for extracting data, executing LDA,
duplication detection and visualization. We used the SAX
API to parse and extract data, MALLET to construct our
LDA model, JAVA programming environment for
duplication detection, Excel and Matlab to visualize figures.

V. RELATED WORK
To detect the duplicate bug reports, an increasing number

of experts currently involve themselves into this field. Most
of the early works were statistical IR approaches. Hiew et al.
[11] applied VSM to detect duplicate bug reports, which
models a bug report as a vector. Sureka and Jalote [12] used
a character N-gram-based model to detect duplicate bug

64

reports, which applied N-gram at the character level. Sun et
al. [13] proposed an REP model, an advanced IR approach,
to calculate the similarity between two bug reports. They
also extended BM25F [14], a document similarity formula
built upon Tf-Idf.

Runeson P et al. [2] applied Natural Language Processing
(NLP) on the bug reports. Wang X Y et al. [3] added
execution information on the basis of Runeson P.’s research.

The Machine Learning (ML) method is also a popular
method on duplicate bug reports detection. Jalbert and
Weimer [15] proposed a system that automatically classifies
duplicate bug reports to save developers’ time. They used
textual semantics, surface features, and graph clustering to
predict duplicate status. Tian et al. [16] extended Jalbert and
Weimer’s work [15] by utilizing REP. And Sun et al. [4]
utilizes a discriminative model for duplicates detection.

VI. CONCLUSIONS
A new detection of duplicate report based on topic model

is proposed in this paper. Through topic model, problems can
be solved by transforming them from the original words
space to topic space. We also consider the executive
information and the classification of bug reports in our
proposed method.

The experimental results show that the recall rate of our
duplicate bug reports detection approach reaches about
95.75%, and the precision rate 90% or so which indicates the
effectiveness of our LDA-based methods.

ACKNOWLEDGMENT
The work described in this paper was partially supported

by Chongqing University Postgraduates’ Innovation Project
(Grant No. CYS15022), the National Natural Science
Foundation of China (Grant no. 91118005, 61173131), and
Changjiang Scholars and Innovative Research Team in
University (Grant No. IRT1196).

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open bug
repository,” in Proceedings of the 2005 OOPSLA workshop on
Eclipse technology eXchange - eclipse ’05, 2005, pp. 35–39.

[2] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of
duplicate defect reports using natural language processing,” in
Software Engineering, 2007. ICSE 2007. 29th International
Conference on, 2007, pp. 499–510.

[3] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in Proceedings of the 30th international conference on
Software engineering, 2008, pp. 461–470.

[4] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in
Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1, 2010, pp. 45–54.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, 2003.

[6] T. Hofmann, “Probabilistic latent semantic indexing,” in Proceedings
of the 22nd annual international ACM SIGIR conference on Research
and development in information retrieval, 1999, pp. 50–57.

[7] A. K. McCallum, “Mallet: A machine learning for language toolkit,”
2002.

[8] G. Salton, A. Wong, and C. S. Yang, “A vector space model for
automatic indexing,” Commun. ACM, vol. 18, no. 11, pp. 613–620,
Nov. 1975.

[9] H. M. Wallach, I. Murray, R. Salakhutdinov, and D. Mimno,
“Evaluation methods for topic models,” in Proceedings of the 26th
Annual International Conference on Machine Learning, 2009, pp.
1105–1112.

[10] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, “Studying
software evolution using topic models,” Sci. Comput. Program., vol.
80, pp. 457–479, 2014.

[11] L. Hiew, “Assisted detection of duplicate bug reports,” The
University Of British Columbia, 2006.

[12] A. Sureka and P. Jalote, “Detecting Duplicate Bug Report Using
Character N-Gram-Based Features,” in 2010 Asia Pacific Software
Engineering Conference, 2010, pp. 366–374.

[13] C. Sun, D. Lo, S. Khoo, and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” in 2011 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE
2011), 2011, pp. 253–262.

[14] C.-Z. Yang, H.-H. Du, S.-S. Wu, and X. Chen, “Duplication
Detection for Software Bug Reports Based on BM25 Term
Weighting,” in Technologies and Applications of Artificial
Intelligence (TAAI), 2012 Conference on, 2012, pp. 33–38.

[15] N. Jalbert and W. Weimer, “Automated duplicate detection for bug
tracking systems,” in Dependable Systems and Networks With FTCS
and DCC, 2008. DSN 2008. IEEE International Conference on, 2008,
pp. 52–61.

[16] Y. Tian, C. Sun, and D. Lo, “Improved Duplicate Bug Report
Identification,” in 2012 16th European Conference on Software
Maintenance and Reengineering, 2012, pp. 385–390..

65

