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Abstract—The traditional duplicate bug reports detection 
approaches are usually based on vector space model. However, 
the experimental result is rarely satisfying since this method 
cannot distinguish semantic correlation among bug reports 
which written by natural languages. Topic model, as a method 
to model underlying topics of texts, can solve the problem of 
document similarity calculation methods used in the 
information retrieving. It can find the semantic topics among 
the texts through massive training data, and obtain semantic 
relatedness among documents. Therefore, this paper proposes 
a novel duplication detection method based on topic model. 
Through selecting bug reports with execution information and 
combing with classified information of bugs, not only does this 
new method overcome the problem of high dimension, sparse 
data and loud noise, but also avoid the problem of synonymy 
and ambiguity in the natural languages. Comparing to the 
traditional SVM method, the recall rate and precision rate of 
our proposed approach have obviously increased, which 
indicates the effectiveness of this new method. 

Keywords—duplicate bug reports detection, topic model, 
execution information, vector space model 

I.  INTRODUCTION 
Along with the increase of the size of software project, 

software becomes more and more complicated. Maintenance 
expense takes up 2/3 of software life cycle expense. Software 
bug reports are document descriptions about possible defects 
or errors made by software testers or users while 
maintaining. Along with the increasing scale and updating 
versions, various users submit bug reports to bug-tracking 
management system every day. Thus, open source software 
like Eclipse, Firefox, Open Office and so on, produce a great 
deal of duplicate bug reports. Take Firefox as an example, 
the percentage of duplicate bug report in its software bug 
database is up to 30% [1]. “Everyday, almost 300 bugs 
appear that need triaging. This is far too much for only the 
Mozilla programmers to handle”, a programmer from 
Mozilla reported in 2005. Duplicate bug reports not only 
occupy space, but also cause problems with bug report 
assignment, increasing labor costs. 

In order to relieve the burden of manual detection on the 
duplicate bug reports, more and more researchers involve 
themselves into this field currently. Runeson P [2] and his 
co-workers, took bug reporter library of Sony Ericsson 

Mobile Communications as a dataset, calculate similarities of 
bug reports after vectoring and normalizing processing, and 
gained 30% precision. Wang X Y [3] et al. added execution 
information on the basis of Runeson P’s research, defined 
two kinds of similarities among bug reports: natural language 
similarity and execution information similarity. If take 
executive information as the only reference standard, the 
recall rate should be around 93%, and the precision rate 67%. 
Based on the research of Runeson P et al, Sun [4] et al. 
mapped the vectorized and identified bug reports to 
discriminative model, and then trained a SVM classifier to 
detect duplicate bug reports. Compared with Runeson P’s 
method, Sun’s precision rate is about 20% higher, but it’s 
lower than Wang X Y’s. Thus it can be seen that introduction 
of execution information can enormously raise the precision 
rate of detection. Standardized execution information made 
automatic detection of duplicate bugs available not only in 
theoretical research but also in practice. Compared with the 
natural language, standard executive information can be 
more reliable and understandable to describe the situation 
when bugs emerge. Moreover, to facilitate standardization, 
procedurization, and sophistication is the inevitable direction 
of software engineering development, thus, this paper 
chooses executive information bug reports as the main 
research object. 

Most of the detecting methods of similarities are based 
on one hypothesis: the more words are repeated in different 
documents, the more similar these documents are. However, 
it is not exactly so in practice. Very often, correlation degree 
depends on semantic relation, instead of repeating words and 
expressions. Topic model LDA [5] (Latent Dirichlet 
Allocation) can find these semantic relations of bug reports. 
LDA, is a generated topic model which provides an available 
method for auto-organization, comprehension, and massive 
documents detection. LDA can be used to explore the hidden 
topics in corpus, mark on the document according to the 
topics, and finally organize, classify, induce and retrieve 
similarity among documents on the basis on these marks. 
Also, during the process of submitting bug reports, 
developers or users need to specify the category of these bug 
reports which refers to classified information defined by 
submitters. The classified information reflects the basic 
properties of bug reports on a certain degree. So we put 
weight on it and combine it with descriptive information to 
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improve the duplicates detection results. In this paper, a new 
LDA-based method is proposed to detect similarities of 
documents, classified information submitted by the original 
users, executive information, and descriptive information of 
bugs are combined together to obtain the final experimental 
result. The main idea of this paper is as follows: firstly, build 
a data warehouse which is taken as training data, and use 
LDA method to construct a topic model; then, construct a 
small testing sample space, and make a thematic inference 
according to the constructed topic model to obtain the 
document-topic matrix, thus map the bug report documents 
from traditional high dimension word space to low 
dimensional topic space; at last, calculate similarities among 
documents in low dimension topic space. If the similarity is 
greater than the set threshold, the bug reports will be 
considered as duplicates. 

The remainder of this paper is organized as follows: 
Chapter 2 explains our approach for duplicate bug report 

detection in detail. Chapter 3 shows and evaluates the 
experimental results. Chapter 4 analyzes the threats to 
validity. Chapter 5 discusses the related work. Chapter 5 
draws a conclusion of the research work. 

II. T  PROPOSED METHOD 
Our approach is consisted of three key steps. Firstly, 

select bug reports from the experimental data set as the 
training sample space, and then build a topic model by using 
LDA method in the training sample space; secondly, 
randomly select some bug reports as the test sample space 
data, extract classified information of each bug in the sample 
space, and meanwhile deduce the topics of the testing 
samples by the constructed topic model to get a 
corresponding topic-document matrix; finally, transform the 
document-topic matrix into the vector representation of 
document object in the topic space, calculate the similarity 
between documents by calculating the cosine of the angle of 
vector space and put weight on it, and at the same time, 
calculate the similarity of classified information and put 
weight on it. The multiplication of the two is the final results 
of the bug reports similarities, and then set a threshold, the 
bug reports will be considered as duplicates when the 
similarity is greater than the threshold. The overall procedure 
of our method is shown in figure 1. 

A. Constructing Topic Model 
The method of duplicate bug reports detection presented 

in this paper is based on LDA, which models the bug reports 
as documents. LDA model is a complete generative model 
which regards blend weights of topic as random variables of 
T dimension parameters rather than set of individual 
parameters directly related to the training data. It avoids the 
shortcomings of PLSA model [6].  

LDA model assumes a process of producing a document 
firstly, and then observes and predicts the production 
process. LDA supposes that all documents have Κ topics (the 
topic is represented by the word distribution in LDA model). 
To generate a document, the first step is to generate a topic 
distribution of the document, and then assemblage of words; 
to generate a word, a topic should be randomly chosen 

according to the conditional distribution of topics w.r.t the 
document, and after that a word is randomly chosen from the 
conditional distribution of words w.r.t the topic. 

Assuming that the Κ dimensional vector α is the 
parameter of the prior data distribution of the topic, Κ⋅V 
matrix β is the parameter of the distribution of the words (V 
is the sum of words) in the topic, i.e. βij=p(wj|zj)= the 
probability of the word wj in the ith topic. Thus, we generate a 
document topic distribution and N topics, and the probability 
of the N words we get in this document is expressed as: 

N

n n n
n 1

( , , ) ( |�) (z | ) (w  |z ,�) p z w p pθ θ θ
=

= ∏                   (1) 

Where θ is the topic distribution vector of the document, 
z is the topic vector of N dimensions, and w is the vector 
composed of the N words. Since θ and z are latent variables 
in the training data which cannot be observed, they are 
eliminated through marginal distribution from the left: 

N
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To corpus D which has M documents, 
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Fig 1. The overall procedure of the method 
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As shown above, the process of constructing the LDA 
model is a process of achieving maximized parameters α and 
β of p(D|α,β). 

B. Applying LDA Model and Extracting classified 
Information  
We obtain the conditional distribution of words within 

the topics p(w|z) and the conditional distribution of topics 
within documents p(z|d) of training samples after 
constructing a topic model. When there is a new submitted 
bug report in testing samples, we deduce the topics of the 
new unlabeled texts by the trained topic model and get its 
corresponding topic distribution p(z|dnew) through the 
previous p(w|z). And then we can calculate the similarities 
between the new bug report and the bug reports of training 
samples by formula (6) after getting the p(z|d) and p(z|dnew). 
The corresponding topic distribution p(z|dnew) is also the 
conditional probability distribution of the document in the 
topic space. 

( , , , )
( , , , )  

( , )
p z w

p z w
p w
θ α β

θ α β
α β

=                    (5) 

After application of sample space model, extract 
classified information from each bug report in sample space 
and mark them for the follow-up experiment. The classified 
information of bug report contains four kinds of information: 
classification, product, component, and version. All kinds of 
information are in relation to progressive gradual progressive 
relation. 

C. Similarity Calculation  
Similarity calculation is divided into two steps: the first is 

the similarity of each document in topic space, on which is 
weight 1 placed; the second is the similarity calculation of 
classified information of each document, on which is weight 
1 placed, too. 

After application of topic model to the testing sample, we 
can get its conditional probability distribution in the topic 
space in the form of a document-topic matrix which can 
easily be transformed into vector representation of 
documents in the topic space. Thus, we can express semantic 
similarity by calculating the similarity between the 
documents in topic space.  

There are a lot of methods to measure vector space 
similarity. The one this paper adopts is to calculate the angle 
cosine value of vectors. To calculate the similarity of testing 
sample document D1 and D2, the vector of document D1 in 
the ith dimension topic space is d1i, and that of document D2 
is d2i. The similarity calculation formula is as follows: 

1 2
1 2 2 2

1 2

( )
( , ) i ii

i ii

d d
Sim d d

d d

∗
=

∗
�
�

                         (6) 

Note that, the cosine value of the vector angles ranges 
between 0 to 1, and the bigger the angle is, the smaller the 
cosine value is. From the space relationship corresponding to 

the similarity, we can find that when the cosine value is 
bigger and the angle is smaller, space similarity or semantic 
similarity between the two documents is higher. 

Classified information of document, which provides the 
basis of similarity for detecting duplicate bug report, is a 
basic feature of bug report. Classified information is a kind 
of structured information organized according to the 
classification\ product\ component\ version sequence, so the 
appropriate way to calculate similarity of classified 
information is not to compare the classified information 
according to unstructured text data but layer sequence, and 
stop comparing when find the difference at the first time to 
stop. The similarity of descriptive information is between 0 
and 1. Set the weight of classified information at 1 and the 
number of the same level obtained through comparison are 
0.4, 0.55, 0.7, 0.85, and 1. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 
In this experiment, two problems should be taken into 

consideration. First, under what condition can achieve 
optimum experimental results? Second, how well the results 
compared with experiments in other methods? 

To evaluate the results, we used the recall and precision 
rates as standard metrics. 

detected

total

NRecallRate
N

=                              (7) 

det

det

ected

ectedall

NPrecisionRate
N

=                         (8) 

Where Ndetected is the number of correct experimental 
detections in the duplicate bug reports of the test sample, 
Ntotal is the total number of the actual duplicate bug reports in 
the testing sample, Ndetectedall is the total number of duplicate 
bug reports in the experimental detections (including the 
right and wrong). 

A. Dataset and data Preprocessing 
When selecting the experimental data set, we take two 

factors into consideration: 
1. There is often a bug correction period after main 

versions release of a software (usually one and a half 
months). 

2. The most effective time to detect duplicate bug reports 
is within 50 days when the corresponding bug source reports 
are submitted. 

According to the above principles, this experiment is 
based on the bug report data from the famous open source 
project Eclipse, taking bug reports newly submitted in 3 
months from June 26, 2006 to September 26, 2006 as the 
training sample space (due to the updating of version 3.2 
Callisto issued by Eclipse on June 26, 2006). Testing 
samples in the later part of the experiment are from this 
training sample space. 

Before constructing topic model for the training sample 
space, we need to format the original data. Since the original 
report file is organized in the form of XML, and also 
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contains a lot of redundant information, only bug title and 
content are selected as the main experimental data. If the title 
and content of the original bugs are all null, which infers that 
this report is non-existent, it should be removed, such as bug 
report ID 511. 

For the training sample space, there were 10400 original 
bug reports. After removal of invalid bug reports, 9600 
remained, among which 1115 were marked “duplicate”, 
which accounts for 11.6% of the total. Whether it is marked 
as “duplicate” is decided by the value of "resolution" in the 
original XML file. And classified information is obtained 
through classification\ product\ component\version and 
marked to each bug report. 

The preprocessing is followed by the treatment of 
extracted data including data cleaning, segmentation, stem 
extraction and removal of stop words. Note that, there are a 
data cleaning process differ from common text processing, 
because most of the description of the bug has invalid 
information expressed in fixed sentence pattern, such as: 

1 Fixed in HEAD. 
Available in builds > N20071108-0010.Available in 

builds > N20071108-0010. 
2 *** Bug 208441 has been marked as a duplicate of 

this bug. *** 
The sentence pattern 1 shows that the bug has been 

revised in previous versions, while patterns 2 point out which 
bugs are marked as duplicate bugs. The two patterns 
mentioned above has no connection with the bug itself, since 
there is a lot of this kind of information in the original file 
and it produces a large number of duplicate invalid 
information which will eventually have a great influence on 
the experimental results, they are removed according to the 
fixed patterns firstly. After finishing the cleaning of the data, 
the few remaining preprocess steps can be carried out to 
further refine information. 

A standard data set will be obtained when data 
preprocessing is complete. Then, we construct a LDA topic 
model in the training sample space. 

To construct the LDA model, we used natural language 
processing toolkit MALLET [7] open source (Machine 
Learning for language Toolkit) to implement LDA modeling. 
First, we convert all texts of training sample space to feature 
sequence, then set the number of topics according to the size 
of sample space, and finally, get a topic model of training 
samples.  

To construct a test sample space, we randomly select 22 
bug reports with executive information from 1115 which 
have been marked duplicate in the training sample space, and 
choose 178 from non-duplicate reports to construct a basic 
database. Get actual duplicate bug reports corresponding to 
the 22 bug reports from the website of Eclipse, add them to 
the basic database. In the experiment of this paper, 47 are 
added externally. Finally, we get a small testing sample 
space containing 247 bug reports. Apply the constructed 
topic model in this test space, and get the document-topic 
matrix. 

All the document-topic matrixes are converted into 
vector space, and calculate the similarity between the bug 
reports in the testing sample space by formula (6). And then 

we set a threshold, the bug reports will be considered 
duplicates when the similarity is greater than the threshold 
value. 

B. Experimental results and analysis 
As for the bug reports with executive information, Wang 

X Y [8] et al defined two kinds of similarities between them: 
natural language similarity and executive similarity, 
estimated the similarity of bug reports through the distance 
between vectors after vectoring(TF*IDF) and normalizing. 
Wang X Y et al. achieved a 95% recall rate and the highest 
precision rate 67% using this method. What have been found 
from this experiment is that increase of the recall rate is at 
the expense of precision rate [8]. Instead, this paper applies a 
topic model, calculates the corresponding semantics 
similarities between bug reports through the topics extracted 
by LDA model. Also, we calculate the similarities of 
classified information at the same time, place weight on 
semantic similarities and classification similarity and finally 
get the recommendation results.  

Figure 2 shows the results of our method on testing 
samples in comparison with Wang X Y’s. And the threshold 
is set as 0.95 in figure 2. Since the recall rate parallels Wang 
X Y’s, but the precision is greatly improved at the same 
time. 

 
Fig 2. The comparison of our results with Wang X Y 

As can be seen from figure 2, compared with the 
traditional SVM method adopted to detect duplicate bug 
report with executive information, the recall rate is roughly 
the same at about 95%, but the precision rate is improved 
greatly. As for this experiment, when 40 topics are selected, 
the precision rate is up to 90%, obviously increased 
compared with 67% by traditional method. 

From figure 2 we see that the parameter selection will 
directly affect the quality of the modeling and the 
experiments results when building models for specific 
sample spaces. We experiment the influences of different 
parameters on the experiment results, such as the number of 
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topics and threshold. Figure 3 shows the influence of topics 
amount on the experiment results, As shown in Figure 3, 
when the number of topics reaches 40, the precision rate is 
the best, and the recall rate at a high level. 

 
Fig 3. The influence of topics amount on the experiment results 

Therefore, when there are too few topics, the 
discrimination between topics is not obvious enough and the 
particle size distribution is insufficient. Too many topics 
usually make it dispersive, which may lead to unsatisfying 
results. Only when the amount of topics set to a reasonable 
interval, the experimental results can be optimal. 

Similarly, the threshold is also important for the 
performance of the model. Figure 4 and Figure 5 shows the 
recall and precision rate when the threshold is set to different 
value. 

 
Fig 4. The comparison with recall rate at different threshold 

 
Fig 5. The comparison with precision rate at different threshold 

As shown in Figure 4, the smaller the threshold is, the 
more recommendation results which are greater than the 
threshold is. Thus, it leads to a greater probability of accurate 
results and a higher the recall rate. 

In Figure 5, when the threshold is higher, the results 
obtained in the experiment set are small, which results from 
the less invalid results, the precision is higher. 

In a comprehensive analysis of Figure 4 and Figure 5, the 
smaller the threshold is, the higher the recall rate becomes, 
but the lower precision rate is; the greater the threshold is, 
the lower the recall rate becomes, but the precision rate is 
increased. According to the experiment, when the threshold 
is at 0.95, the increase of precision rate is greater than the 
decline of recall rate. The optimal experimental results come 
out when the topic number is 40, the threshold is 0.95. 

As mentioned above, the different values of parameters 
affect the detection results. There is no provably optimal 
choice for the parameters [9] [10]. The choice is a tradeoff 
between coarser parameters (smaller value) and finer grained 
parameters (larger value). So a reasonable choice should be 
made which is mainly dependent on the experiments and 
experience of the experimenter. 

IV. THREATS TO VALIDITY 
In our study, we assume that the information provided by 

the bug reporter is correct, including the textual, categorial, 
and duplication information. If a bug report information is 
not enough or misleading, the performance of our approach 
is adversely affected.  

When performing the LDA model, we chose to use 40 as 
the number of topics. There is no absolutely optimal choice 
for the number of topics in all situations and all datasets [9] 
[10]. The choice is to seek a reasonable value between 
coarser-grained and finer-grained. To alleviate this threat, we 
experimented with different values and chose the one that 
gave the best results by considering the recall rate and 
precision rate.  

The next validity threat is limited by the sole use of the 
Eclipse open source bug repository, but this is very large and 
popular with tens of thousands of developers worldwide. and 
since Eclipse uses Bugzilla as its bug tracking system, which 
is the most widely used bug tracking system, the breadth of 
the Eclipse sub-projects provides some form of generality. In 
the future, we would consider more software systems, 
especially on commercial projects. 

We tried to minimize the internal threats to validity by 
using mature tools for extracting data, executing LDA, 
duplication detection and visualization. We used the SAX 
API to parse and extract data, MALLET to construct our 
LDA model, JAVA programming environment for 
duplication detection, Excel and Matlab to visualize figures. 

V. RELATED WORK 
To detect the duplicate bug reports, an increasing number 

of experts currently involve themselves into this field. Most 
of the early works were statistical IR approaches. Hiew et al. 
[11] applied VSM to detect duplicate bug reports, which 
models a bug report as a vector. Sureka and Jalote [12] used 
a character N-gram-based model to detect duplicate bug 
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reports, which applied N-gram at the character level. Sun et 
al. [13] proposed an REP model, an advanced IR approach, 
to calculate the similarity between two bug reports. They 
also extended BM25F [14], a document similarity formula 
built upon Tf-Idf. 

Runeson P et al. [2] applied Natural Language Processing 
(NLP) on the bug reports. Wang X Y et al. [3] added 
execution information on the basis of Runeson P.’s research.  

The Machine Learning (ML) method is also a popular 
method on duplicate bug reports detection. Jalbert and 
Weimer [15] proposed a system that automatically classifies 
duplicate bug reports to save developers’ time. They used 
textual semantics, surface features, and graph clustering to 
predict duplicate status. Tian et al. [16] extended Jalbert and 
Weimer’s work [15] by utilizing REP. And Sun et al. [4] 
utilizes a discriminative model for duplicates detection. 

VI. CONCLUSIONS 
A new detection of duplicate report based on topic model 

is proposed in this paper. Through topic model, problems can 
be solved by transforming them from the original words 
space to topic space. We also consider the executive 
information and the classification of bug reports in our 
proposed method. 

The experimental results show that the recall rate of our 
duplicate bug reports detection approach reaches about 
95.75%, and the precision rate 90% or so which indicates the 
effectiveness of our LDA-based methods.  
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