
Improving Fault Localization Using Model-domain
Synthesized Failing Test Generation

Zhuo Zhang1,2, Yan Lei1,5∗, Xiaoguang Mao3, Meng Yan1, Xin Xia4
1School of Big Data & Software Engineering, Chongqing University, Chongqing, China

2Guangzhou College of Commerce, Guangzhou, China.
3College of Computer, National University of Defense Technology, Changsha, China

4Software Engineering Application Technology Lab at Huawei, China
5Peng Cheng Laboratory, Shenzhen, China

zz8477@126.com, yanlei@cqu.edu.cn, xgmao@nudt.edu.cn, mengy@cqu.edu.cn, xin.xia@acm.org

Abstract—A test suite is indispensable for conducting effective
fault localization, and has two classes of tests: passing tests
and failing tests. However, in practice, passing tests heavily
outnumber failing tests regarding a fault, leading to failing tests
being a minority class in contrast to passing tests. Previous work
has empirically shown that the lack of failing tests regarding a
fault leads to a class-balanced test suite, which tends to hamper
fault localization effectiveness.

To address this issue, we propose MSGen: a Model-domain
Synthesized Failing Test Generation approach. MSGen utilizes
the widely used information model of fault localization (i.e., an
abstraction of the execution information and test results of a
test suite), and uses the minimum variability of the minority
feature space to create new synthesized model-domain failing
test samples (i.e., synthesized vectors with failing labels defined
as the information model) for fault localization. In contrast
to traditional test generation directly from the input domain,
MSGen seeks to synthesize failing test samples from the model
domain. We apply MSGen to 12 state-of-the-art localization
approaches and also compare MSGen to 2 representative data
optimization approaches. The experimental results show that our
synthesized test generation approach significantly improves fault
localization effectiveness with up to 51.22%.

Index Terms—fault localization; synthesized test generation;
model domain; suspiciousness

I. INTRODUCTION

In order to reduce the software debugging cost [1], re-

searchers have developed many fault localization techniques

to provide the assistance in seeking the positions of the faults

in the program (e.g., [2]–[8]). Among them, spectrum-based

fault localization (SBFL) [9], [10] and deep-learning-based

fault localization (DLFL) [11]–[14] are the two of the most

popular ones showing promising results [15], [16].

Input domain Model domain

{t1, t2, ,tn}

11 11 12 1

22 21 22 2

1 2

'
'

'

k

k

n n n nk n

et a a a
et a a a

t a a a e

A model-domain test sample t'n:
a vector of the information model domain

representing the execution information and
test result of the input-domain test tn.

An input-domain test tn:
specific value s of the

input domain and
expected output.

execution on a
faulty program

suspiciousness
evaluation

Evaluation
algorithm

outputtest
suite

Suspicious
statements

Fig. 1. A typical fault localization process of SBFL and DLFL.

Given a faulty program P containing a fault, Fig. 1 shows

a typical process of SBFL and DLFL as follows:

∗Yan Lei is the corresponding author.

Execution of input-domain tests. They require a collection

of input-domain tests to construct a test suite T , and execute

T on the program P . An input-domain test consists of specific

value(s) of the input domain of the program P and the

expected output.

Construction of model-domain test samples. Then, they

collect and abstract the coverage information (i.e., a statement

executed or not executed) and test result (i.e., passing or

failing) of each input-domain test as a model-domain test

sample. All model-domain test samples form an information

model (usually denoted as a matrix) [10], [11], [17], [18]

for fault localization algorithms. Specifically, a model-domain

test sample is a vector of the information model domain

representing the coverage information (i.e., executed or not
executed) of each statement and the test result (i.e., passing
or failing) of an input-domain test (see Section II-A for more

detail).

Suspiciousness evaluation. Finally, based on the informa-

tion model (i.e., model-domain tests), they use an evalua-

tion algorithm (e.g., SBFL using statistical correlation coef-

ficients [10], [16] or DLFL using neural networks [11], [19])

to evaluate the suspiciousness of each statement (or other

program elements) of being faulty and rank all the statements

in descending of suspiciousness.

The test suite T is a vital component to initiate the fault

localization process, and has two classes of input-domain

tests with a distinct feature: failing tests and passing ones.

As shown in Fig. 1, the state-of-the-art fault localization

techniques usually use either statistical correlation coefficients

(e.g., SBFL) or neural networks (e.g., DLFL) and thus require

an adequate number of tests, including passing ones and failing

ones. However, regarding a fault, the number of failing tests is

usually much fewer than passing tests in practice, leading to a

class imbalanced problem which may pose a threat to fault

localization effectiveness. Therefore, the prior studies [20],

[21] have evaluated the impact of class imbalance in a test

suite on fault localization, and their results have shown that

class imbalance hampers fault localization effectiveness.

Regarding a fault, it is difficult to generate failing tests

directly from the input domain [22]–[27] because (1) those

inputs causing program failures via this fault generally account

199

2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/22/$31.00 ©2022 IEEE
DOI 10.1109/ICSME55016.2022.00026

for a very small portion of the input domain, and (2) their dis-

tribution is usually sporadic and even random. Thus, although

researchers have spent much effort in generating tests for fault

localization, the existing test generation approaches (e.g., [20],

[28], [29]) rarely generate failing tests for fault localization,

but instead, they optimize or generate passing tests for fault

localization. Even worse, the existing studies [12], [21], [30]–

[32] have found that regarding a fault, failing tests are al-

ways beneficial for fault localization and the class imbalance

problem will jeopardize fault localization due to a bias to

passing tests. Therefore, there is an urgent need to tackle

the class imbalance problem for improving fault localization

effectiveness.

Since generating failing test cases directly from the input

domain is difficult, we seek a different perspective to address

the class imbalance problem. As shown in Fig. 1, fault local-

ization usually abstracts the statement coverage and test results

of all input-domain tests into an information model [10], [11]

(i.e., model-domain test samples) to represent the program

behavior. In other words, a model-domain test sample is

composed of the coverage of each statement (i.e., executed
or not executed) and the test results (i.e., passing or failing),

and thus we can treat the statements and the test results

as features and labels in the machine learning domain. In

machine learning, data synthesis is a commonly used solution

to the problem of class-imbalanced data [33], and many studies

(e.g., [34]–[37]) have shown that creating synthesized minority

class samples can improve the accuracy of the models. Inspired

by data synthesis, we intend to create new synthesized model-

domain failing test samples by extracting and keeping common

features (i.e., specific statements) from existing model-domain

failing test samples in information model domain. We expect

the synthesized model-domain failing test samples could help

to improve the effectiveness of SBFL and DLFL.

Based on the above observation, we propose MSGen: a

Model-domain Synthesized Failing Test Generation approach

using the minimum variability of the failing class feature space

(i.e., preserving the common features) to synthesize model-

domain failing test samples (i.e., vectors with failing labels)

for improving fault localization. MSGen adopts the widely

used information model [10] in fault localization, where a

vector records the execution information and test result of an

input-domain test showing that what statements are executed
(or not executed) by the test with a passing (or failing)

result (see Section II-A for more detail). Inspired by data

synthesis techniques [37], MSGen utilizes the existing model-

domain failing test samples to create new synthesized model-

domain failing test ones by covering the minimum suspicious

set. Specifically, for a vector of a model-domain failing test

sample, MSGen computes its nearest neighbor from existing

model-domain failing test samples, and their intersection (i.e.,
common features) covers those statements executed by all

failing tests (i.e., minimum suspicious set [30]). For preserving

the common features, MSGen only varies the subtraction (i.e.,
difference) of the model-domain failing test sample from its

nearest neighbor to produce a new synthesized model-domain

failing test sample (i.e., a new vector from the information

model with a failing label). Thus, the new synthesized model-

domain failing test sample covers minimum suspicious set and

should be beneficial for improving fault localization. Finally,

MSGen iteratively creates model-domain failing test samples

until obtaining a balanced test suite, where model-domain

failing test samples and model-domain passing test ones have

the same size in the information model as shown in Fig. 2.

In comparison to traditional test generation from the input

domain, model-domain synthesized failing test generation is

easier to synthesize new failing vectors from the model domain

and does not need the execution of a test to fix its result label.

Thus, a synthesized model-domain failing test sample does not

necessarily correspond to a real piece of data from the input

domain to execute such a path denoted by the model-domain

test sample.

To evaluate our approach, we apply MSGen to 12 state-

of-the-art fault localization approaches [9], [11]–[16] and

compare MSGen with two representative data optimization ap-

proaches [21], [38]. The large-scale empirical study on 14 real-

life programs shows that MSGen significantly outperforms

the 12 localization approaches and two data optimization

approaches in terms of fault localization effectiveness.

The main contributions of this paper can be summarized as:

• We propose a fresh perspective of producing synthesized

test samples from the model domain, rather than gener-

ating real tests from the input domain, to improve the

accuracy of fault localization algorithms.

• We propose a model-domain synthesized failing test

generation approach using the minimum variability of

the failing class feature space to synthesize new model-

domain failing test samples for fault localization.

• We conduct an experimental study on 14 large real-life

programs, showing that MSGen is effective to improve

fault localization.

The structure of the rest paper is organized as follows.

Section II introduces the background on fault localization.

Section III describes our model-domain synthesized failing test

generation approach MSGen. Section IV presents our large-

scale empirical study. Section VI summarizes related work and

Section VII concludes.

II. BACKGROUND

This section will introduce the widely used information

model in fault localization, and the 12 state-of-the-art fault

localization approaches used in the experiments.

A. Information Model

Fig. 2. The definition of the information model.

200

Fault localization usually defines an information model,

i.e., a representation of the coverage information and test

results of a test suite (i.e., a set of input-domain tests) on

a faulty program, to provide the information for initiating

and executing localization algorithms to locate faults. In fault

localization, the widely used information model is program

spectra model [10].

Fig. 2 shows the definition of program spectra model.

Specifically, given a program P with N statements, it is

executed by a test suite T with M input-domain tests, i.e.,
T = {tinput1 , tinput2 , ..., tinputM } (see Fig. 2). Here, an input-

domain test tinputi is defined as follows:

An input-domain test tinputi : a test input (i.e., test data

from input domain), a test oracle (i.e., expected output)

and others.

We execute each input-domain test to collect its coverage

information (executed or unexecuted statements) and check

the output against its test oracle (passing or failing test

result). Fault localization techniques define and construct a

model-domain test sample to represent the statement coverage

information and test result of each input-domain test. Here, a

model-domain test sample tmodel
i is defined as follows:

A model-domain test sample tmodel
i : a vector with (N +

1) elements denoted as [xi1, xi2, ..., xiN , ei], recording the

coverage information of each statement and the test result

of the input-domain test tinputi .

Where, the element xij=1 means that the statement j is

executed by the input-domain test tinputi , and xij=0 oth-

erwise. The element ei equals to 1 if the input-domain

test tinputi failed, and 0 otherwise. The M elements of ei
(i ∈ {1, 2..,M}) are usually denoted as an error vector

e = [e1, e2, ..., eM], i ∈ {1, 2..,M}.

The M model-domain test samples form the information

model (i.e., a M×(N+1) matrix) recording the coverage infor-

mation (executed or unexecuted) of each statement in the test

suite T, and the test results (i.e., passing or failing) of each

input-domain test. Thus, an information model is defined as

follows:

An information model: an M×(N+1) matrix, where the

i-th row is the model-domain test sample tmodel
i =

[xi1, xi2, ..., xiN , ei].

Based on the information model, fault localization designs

the localization algorithms (e.g., neural networks [11], [13]–

[15], [19] and statistical correlation coefficients [10], [16]) to

evaluate the suspiciousness of each statement being faulty.

B. Deep-Learning-based Fault Localization

... ...

...

...

...

Sigm
oid

yi

y(i+1)

Output layer Target

x11, x12, , x1N

x21, x22, , x2N

xM1,xM2, ,xMN

...

N statements

M
 test cases

errors
e1

e2

...

enx

loss

y(i+h-1)

ei

e(i+1)

e(i+h-1)

... ...

Xi1, Xi2, , XiN

X(i+1)1, X(i+1)2, , X(i+1)N

...

X(i+h-1)1, X(i+h-1)2, , X(i+h-1)N

Input layer

Deep learning
components

A eural network
(CNN or MLP)

Fig. 3. The architecture of Deep-Learning-based fault localization.

Deep-learning-based fault localization (DLFL) utilizes the

promising learning ability [39]–[43] of a neural network to

learn a fault localization model to evaluate the suspiciousness

of each statement being faulty. Among these DLFL techniques,

MLP-FL [19], CNN-FL [11], BiLSTM-FL [12], FLUCCS [14]

and DeepFL [13] are the representative and effective ones.

For simplicity, we will depict two DLFL localization (i.e.,
MLP-FL and CNN-FL) approaches as the representative.

Fig. 3 shows their architecture: one input layer, deep leaning

components, several hidden layers, and one output layer. In

the input layer, DLFL takes the information model defined

in Fig. 2 as input, i.e., h rows of the matrix M×N and

its corresponding error vector are used as an input. In deep

learning components, there may be convolution layers, pooling

layers or fully connected layers. After that, there may be

some hidden layers. CNN-FL and MLP-FL use convolutional

neural network and multi-layer perceptron for deep learning

components respectively. In the output layer, the models use

sigmoid function [11] because values sent into a sigmoid
function will be 0 to 1. Each element in the result vector

of the sigmoid function has difference with the corresponding

element of the target vector. Back propagation algorithm is

used to fine-tune the parameters of the model, and the goal is

to minimize the difference between training result y and error

vector e. The network is trained iteratively.

The training process will learn a trained model, reflecting

the complex nonlinear relationship between the statement

coverage and test results. Finally, the model constructs a set

of virtual tests as the testing input to measure the association

of each statement with test results. Since each virtual test

only covers one statement, each time the model inputs one

virtual test to the network and the output is the estimation

of the probability of causing a failure by only executing the

statement. Thus, the estimation is the suspiciousness of a

statement of being faulty.

C. Spectrum-based Fault Localization

Spectrum-based Fault Localization (SBFL) [10] also uses

the information model in Fig. 2, and defines the following

four variables.

anp(sj) = |{i|xij = 0 ∧ ei = 0}|, anf (sj) = |{i|xij = 0 ∧ ei = 1}|
aep(sj) = |{i|xij = 1 ∧ ei = 0}|, aef (sj) = |{i|xij = 1 ∧ ei = 1}| (1)

Eq. 1 shows the computation of anp, anf , aep, and aef
for the statement j (i.e., sj), denoting the number of pass-

ing/failing tests in which the statement was/wasn’t executed1.

With the four variables for each statement, SBFL defines

many suspiciousness evaluation formulas to evaluate the sus-

piciousness of each statement being faulty. Researchers have

conducted both theoretical [9], [44] and empirical [16] analysis

on finding the optimal SBFL formulas, i.e., ER1’, ER5, GP02,

GP03, GP19, Dstar and Ochiai.

1If the values of the elements of a vector are a decimal number, the meaning
of the four variables are slightly different (e.g., [17], [18]).

201

III. SYNTHESIZED TEST GENERATION

A. Overview
We propose MSGen to synthesize model-domain failing test

samples (i.e., synthesized vectors with failing labels) from the

model domain, rather than from the input domain, to improve

fault localization. A synthesized model-domain failing test

sample is a vector with a failing label and the same structure

of the information model defined in Fig. 2. In other words, its

elements and failing label correspond to the definition of xij

and ei in Fig. 2, respectively.

Data synthesis The previous research [30] has identified the

data covering the features of all failing tests (i.e., minimum

suspicious set) are beneficial (or safe) for fault localization.

The minimum suspicious set is defined as the set of these

statements executed by all failing tests. It is intuitive that a

faulty statement should be executed to cause a failure and

the faulty statement should be in the minimum suspicious

set. Fault localization will increase the suspiciousness of the

faulty statement if the faulty statement is in those vectors

with a failing label. Since these new vectors produced by

covering the minimum suspicious set should include the faulty

statement, fixing the failing label to those vectors is beneficial

for increasing the suspiciousness of the faulty statement.
Thus, MSGen seeks to use the information of existing

model-domain failing test samples (i.e., those vectors with a

failing label) to synthesize new failing vectors covering the

minimum suspicious set for fault localization. Specifically, for

each model-domain failing test sample, MSGen uses synthetic

minority over-sampling technique [45] to synthesize its k
nearest neighbors from the other model-domain failing test

samples, where the nearest neighbor is also a model-domain

failing test sample. Thus, the intersection (i.e., common fea-

tures) of the model-domain failing test sample and its nearest

neighbors covers the minimum suspicious set. To preserve

the common features, MSGen computes the subtraction (i.e.,
difference) of the model-domain failing test sample from its

nearest vector to generate a new vector. Since the new vector

covers the common features, MSGen takes the new vector as

a new model-domain failing test sample and adds the new

synthesized model-domain failing sample into the original

information model.

Data quantity MSGen should identify the amount of syn-

thesized model-domain failing test samples to be created.

Many studies have found that a class-balanced test suite is

useful for fault localization [12], [21], and algorithms with

balanced data should generally surpass those with imbalanced

data in performance [31], [32]. Therefore, MSGen produces

synthesized model-domain failing test samples until we obtain

a balanced test suite, in which the number of model-domain

passing test samples and model-domain failing test ones are

the same. It means that the vectors with a failing label have

the same number of those vectors with a passing label.

B. Methodology
Algorithm 1 depicts the algorithm of MSGen. Suppose that

there are at least 2 failing test cases in the original test suite.

Algorithm 1 The MSGen Algorithm

Input: The matrix of the original test suite, TOrig; The

number of nearest neighbors, k;

Output: The matrix of the new test suite, TNew.

1: TNew=TOrig;

2: TOrigF=getFailingTests(TOrig);

3: Pnum=getNumberofPassingTests(TOrig);

4: Fnum=getNumberofFailingTests(TOrig;

5: for i = 1; i <= Fnum; i++ do
6: Compute k nearest neighbors for TorigF [i] from

the set of the other model-domain failing test samples

(i.e., TorigF − TorigF [i]), and save the indices in the

nnarray[i].
7: end for
8: FNewnum = Pnum− Fnum;

9: index = 1;

10: for i = 1; i <= FNewnum; i++ do
11: if index%(Fnum+ 1) == 0 then
12: index = 1;

13: end if
14: Choose a random number between 1 and k, call it

nn. This step chooses one of the k nearest neighbors of

TOrigF [index].
15: tnearest = TOrigF [nnarray[index][nn]];
16: tnew = TOrigF [index] + rand(0, 1) ∗ |tnearest −

TOrigF [index]|;
17: Fix a failing label to tnew.

18: add(TNew,tnew);

19: index++;

20: end for
21: return TNew;

For the input and output of Algorithm 1, the matrix of a

test suite is the information model (i.e., model-domain test

samples) defined in Fig. 2, showing the statement coverage

and test results. Line 1-4 initialize TNew (i.e., the output),

TOrigF (i.e., the original model-domain failing test samples),

Pnum and Fnum (i.e., the number of model-domain passing

and failing test samples from the original test suite).

To cover the minimum suspicious set, lines 5-7 compute the

k-nearest neighbors of each model-domain failing test sam-

ple. Specifically, for each model-domain failing test sample

denoted as a vector in Fig. 2, MSGen calculates its Euclidean

distance [45] to all the other model-domain failing test samples

and selects k model-domain failing test samples with the

shortest Euclidean distance as its k-nearest neighbors. We can

observe that a model-domain failing test sample and its nearest

neighbors are the model-domain failing test samples from the

original test suite, and the minimum suspicious set is defined

as the set of these statements executed by all model-domain

failing test samples from the original test suite. Thus, the

model-domain failing test sample and its nearest neighbors

cover the minimum suspicious set.

Lines 8-20 repeat the production of new synthesized model-

domain failing test samples until the model-domain failing test

202

TABLE I
SUMMARY OF SUBJECT PROGRAMS.

Program Description Versions KLOC Test Coverage Type

chart JFreeChart 26 96 2205 59% Real

math Apache Commons Math 106 85 3602 78% Real

lang Apache commons-lang 65 22 2245 26% Real

closure Closure Compiler 133 90 7927 77% Real

mockito Framework for unit tests 38 6 1075 71% Real

time Joda-Time 27 53 4130 75% Real

python General-purpose language 8 407 355 16% Real

gzip Data compression 5 491 12 39% Real

libtiff Image processing 12 77 78 59% Real

space ADL interpreter 38 6.1 13585 100% Real

nanoxml v1 XML parser 7 5.4 206 76% Seeded

nanoxml v2 XML parser 7 5.7 206 72% Seeded

nanoxml v3 XML parser 10 8.4 206 78% Seeded

nanoxml v5 XML parser 7 8.8 206 78% Seeded

samples have the same number as the model-domain passing

test samples. For each iteration, MSGen selects a neighbor

from the k nearest neighbors of the model-domain failing test

sample TOrigF [index], and uses the neighbor to synthesize a

new model-domain failing test sample by using the equation at

Line 16. The equation at the Line 16 uses the subtraction (i.e.,
difference) of TOrigF [index] from its selected neighbor to

synthesize a new model-domain failing test sample. It means

that the new synthesized model-domain failing test sample

covers the minimum suspicious set since TOrigF [index]
and its neighbor are both model-domain failing test samples

from original test suite and the minimum suspicious set is

the intersection of all model-domain failing test samples.

Thus, MSGen fixes a failing label to the synthesized new

model-domain test sample at Line 17. Note that MSGen

does not care whether there exists data from input domain

corresponding to those synthesized model-domain failing test

samples (i.e., synthesized vectors with a failing label). For a

synthesized model-domain failing test sample, it requires no

actual execution and we may not have a real piece of data

from input domain to execute such path denoted by the model-

domain failing test sample. As a reminder, if there is only one

failing test case, we clone the failing test case repeatedly until

the failing test cases have the same number as the passing

ones.

Finally, MSGen feeds the new matrix (i.e., TNew) with the

same size of model-domain failing test samples and model-

domain passing test ones for fault localization. DLFL and

SBFL take as input the new matrix and conduct the evaluation

of the suspiciousness of each statement being faulty. They

output a ranking list of all statements in descending order of

suspiciousness.

IV. AN EXPERIMENTAL STUDY

A. Experimental Setup

Benchmarks The experiments choose the subject programs

fro the three reasons: (1) they are the widely used large-sized

programs (e.g., [1], [10]–[13], [16]) in fault localization; (2)

they are large-sized programs at least more than 5 KLOC;

(3) they are easy to be acquired for enabling comparable and

reproducible studies. Table I summarizes the characteristics

of the subject programs, listing functional description, the

number of faulty versions, the number of thousand lines of

statements, the number of test cases of the test suite, the

statement coverage of the test suite, and the type of the faults.

The first six programs (i.e., chart, math, lang,closure,mockito,

and time) are from Defects4J2. The python, gzip and libtiff are

collected from ManyBugs3. The space and the four separated

releases of nanoxml are acquired from the SIR4.

Baselines Prior studies [9], [16], [44] have conducted

theoretical [9], [44] and empirical analysis [16] on finding

the optimal SBFL formulas, i.e., Ochiai, ER5, GP02, GP03,

Dstar, GP19 and ER1’. Furthermore, the recent results [11]–

[14] on DLFL have identified five representative and effective

ones, i.e., MLP-FL, CNN-FL, BiLSTM-FL, FLUCCS and

DeepFL. Therefore, the experiments use the 12 state-of-the-

art fault localization approaches as the baselines to evaluate

the effectiveness in two scenarios: using our approach MSGen

and without using it. Furthermore, we utilize 2 representative

and effective data optimization approaches [12], [21], [38]

(denoted as undersampling and resampling) for improving

fault localization, where one [38] uses undersampling by

removing the majority class samples and the other one [12],

[21] utilizes resampling by replicating minority class. As a

reminder, since the prior study [30] has shown that a test

with a higher overlap with minimal suspiscious statements

is more beneficial for fault localization, the resampling used

by our study generates tests covering all minimal suspicious

statements.

For seven SBFL techniques, we implement them based on

the widely used SBFL source code GZoltar5; for five DLFL

techniques, we implement them based on the source code from

the previous studies [11]–[15].

Environment The physical environment of the experiments

is on a computer containing a CPU of Intel I5-2640 with 128G

physical memory, and two 12G GPUs of NVIDIA TITAN X

Pascal. The operating system is Ubuntu 16.04.3. We conducted

the experiments on the MATLAB R2016b.

B. Evaluation Metrics

To evaluate fault localization effectiveness, we adopt

four widely used metrics: Top-N [2], Mean Average Rank
(MAR) [13], Mean First Rank (MFR) [13], and Relative
Improvement (RImp) [46]–[48].

Top-N It denotes the percentage of faults located within the

first N position of a ranked list of all statements in descending

order of suspiciousness returned by a localization approach.

Mean Average Rank (MAR) It is the mean of the average

rank of all faults using a localization approach.

Mean First Rank (MFR) For a fault with multiple faulty

statements, locating the first one is critical since the others

may be located after that. MFR is the mean of the first faulty

statement’s rank of all faults using a localization approach.

Relative Improvement (RImp) It is to compare the total

number of statements that need to be examined to find all

2Defects4J, http://defects4j.org
3ManyBugs, http://repairbenchmarks.cs.umass.edu/ManyBugs/
4SIR, http://sir.unl.edu/portal/index.php
5https://gzoltar.com/

203

faults using a fault localization approach with MSGen versus

the number that need to be examined by using the one without

MSGen or with a different data optimization approach.

C. Localization with MSGen versus without MSGen
TABLE II

Top-N, MAR AND MFR COMPARISON OF MSGEN OVER THE 12 FAULT

LOCALIZATION APPROACHES.

Comparison top-1 top-5 top-10 top-20 MFR MAR
MLP-FL 0% 2.1% 3.1% 12.4% 213 352

MLP-FL(MSGen) 1.6% 5.7% 11.9% 19.1% 194 337
CNN-FL 1.6% 3.1% 8.2% 18.0% 179 263

CNN-FL(MSGen) 1.6% 9.3% 16.5% 26.3% 122 248
BiLSTM-FL 0% 1.6% 3.1% 10.8% 235 412

BiLSTM-FL(MSGen) 0% 3.6% 9.3% 17.0% 207 369
DeepFL 1.6% 4.1% 9.3% 21.1% 188 271

DeepFL(MSGen) 1.6% 9.3% 17.0% 25.8% 131 239
FLUCCS 0% 6.2% 9.3% 17.0% 193 321

FLUCCS(MSGen) 1.6% 9.3% 17.0% 25.8% 159 288
ER5 0% 6.2% 12.4% 20.6% 247 421

ER5(MSGen) 0% 7.7% 14.4% 27.3% 215 384
GP02 1.6% 15.5% 20.6% 37.1% 263 545

GP02(MSGen) 2.6% 17.0% 23.2% 40.7% 221 476
GP03 3.1% 11.3% 12.4% 19.1% 217 363

GP03(MSGen) 3.1% 15.5% 18.0% 21.1% 197 326
Dstar 3.1% 20.1% 26.3% 40.2% 241 357

Dstar(MSGen) 3.6% 23.2% 31.4% 46.9% 219 317
ER1’ 3.1% 18.6% 26.3% 38.7% 242 371

ER1’(MSGen) 3.6% 22.2% 28.9% 41.2% 221 335
GP19 3.1% 9.3% 15.5% 24.2% 253 391

GP19(MSGen) 3.1% 11.9% 22.2% 27.3% 231 365
Ochiai 1.6% 20.1% 24.2% 34.5% 215 363

Ochiai(MSGen) 2.6% 22.2% 29.4% 38.7% 187 289

Top-N, MFR, and MAR The experiments use Top-N (i.e.,
N=1, 5, 10, 20), MAR, MFR to compare MSGen with the 12

fault localization approaches. Table II presents the distribution

among 12 fault localization approaches. As shown in Table II,

MSGen achieves higher Top-N values and lower MFR and

MAR values compared to all 12 fault localization approaches.

It means that MSGen shows promising best localization effec-

tiveness in all scenarios in comparison to the 12 baselines.

(a) RImp on fault localization approaches.

(b) RImp on subject programs.
Fig. 4. RImp comparison of MSGen over the 12 localization approaches.

RImp distribution For a detailed improvement, we adopt

RImp to evaluate MSGen. Fig. 4 shows the RImp scores of

using MSGen in two cases: the RImp on 12 fault localization

approaches in Fig. 4(a) and the RImp on 14 subject programs

in Fig. 4(b).

As shown in Fig. 4(a), the RImp score is less than 100%

in all fault localization approaches, meaning that MSGen

improves the effectiveness of all the fault localization ap-

proaches. Take MLP-FL as an example. The RImp score is

67.17%, meaning that MSGen needs to examine 67.17% of

the statements that MLP-FL needs to examine for locating

all faults of all the 14 subject programs. In other words,

MSGen obtains a saving of 33.83% (100%-67.17%=33.83%)

over MLP-FL. We can observe that MSGen obtains RImp
scores ranging from 48.78% in GP03 to 95.68% in Dstar. It

means that MSGen gets a maximum saving of 51.22% (100%-

48.78%=51.22%) in GP03 and the minimum saving is 4.32%

(100%-95.68%=4.32%) in Dstar to locate all faults of the 14

programs.

As shown in Fig. 4(b), the RImp score is less than 100% on

all programs, meaning that MSGen obtains the improvements

on all the programs. The RImp score ranges from 56.74%

on math to 97.19% on libtiff. It means that MSGen obtains a

maximum saving of 43.26% (100%-56.74%=43.26%) on math
and a minimum saving of 2.81% (100%-97.19%=2.81%) on

libtiff.
Overall, MSGen obtains an average saving of 22.68% over

the 12 fault localization approaches on all 14 programs,

showing that MSGen is effective to improve fault localization.

Statistical comparison To investigate whether the difference

between the baselines and MSGen is statistically significant,

we adopt Wilcoxon-Signed-Rank Test [49] with a Bonfer-

roni correction [50]. The experiments performed 12 paired

Wilcoxon-Signed-Rank tests between MSGen and each of the

12 localization approaches by using ranks as the pairs of

measurements F(x) and G(y). Each test uses both the 2-tailed

and 1-tailed checking at the σ level of 0.05. Specifically, given

a localization technique FL1, we use the list of ranks of FL1

using MSGen in all faulty versions of all programs as the list of

measurements of F(x), while the list of measurements of G(y)

is the list of ranks of FL1 without MSGen in all faulty versions

of all programs. Hence, in the 2-tailed test, FL1 using MSGen

has SIMILAR effectiveness as FL1 when H0 is accepted at the

significant level of 0.05. And in the 1-tailed test (right), FL1

using MSGen has WORSE effectiveness than FL1 when H1 is

accepted at the significant level of 0.05. Finally, in the 1-tailed

test (left), FL1 using MSGen has BETTER effectiveness than

FL1 when H1 is accepted at the significant level of 0.05.

Table III summarizes the statistical results on this rela-

tionship in two cases: the comparison of MSGen over each

fault localization approaches in all 14 subject programs and

the comparison of MSGen over each program in all 12 fault

localization approaches. Take MLP-FL(MSGen) vs MLP-FL

and gzip(MSGen) vs gzip as the examples. In case of MLP-

FL(MSGen) vs MLP-FL, after applying MSGen to MLP-

FL, MSGen obtains 14 BETTER results on 14 out of 14

(14/14=100%) subject programs, 0 (0/14=0%) SIMILAR, and

0(0/14=%) WORSE results. In case of gzip(MSGen) vs gzip,

204

TABLE III
WILCOXON-SIGNED-RANK TEST OF THE EFFECTIVENESS RELATIONSHIP

OF MSGEN OVER 12 FAULT LOCALIZATION APPROACHES.

Comparison on fault localization approaches Result Comparison on fault localization approaches Result

MLP-FL(MSGen) vs MLP-FL
BETTER 14(100%)

CNN-FL(MSGen) vs CNN-FL
BETTER 12(85.7%)

SIMILAR 0(0%) SIMILAR 2(14.3%)
WORSE 0(0%) WORSE 0(0%)

BiLSTM-FL(MSGen) vs BiLSTM-FL
BETTER 13(92.9%)

DeepFL(MSGen) vs DeepFL
BETTER 11(78.6%)

SIMILAR 1(7.1%) SIMILAR 3(21.4%)
WORSE 0(0%) WORSE 0(0%)

FLUCCS(MSGen) vs FLUCCS
BETTER 12(85.7%)

ER5(MSGen) vs ER5
BETTER 7(50%)

SIMILAR 2(14.3%) SIMILAR 7(50%)
WORSE 0(0%) WORSE 0(0%)

GP02(MSGen) vs GP02
BETTER 7(50%)

GP03(MSGen) vs GP03
BETTER 8(57.1%)

SIMILAR 7(50%) SIMILAR 6(42.9%)
WORSE 0(0%) WORSE 0(0%)

Dstar(MSGen) vs Dstar
BETTER 6(42.9%)

ER1’(MSGen) vs ER1’
BETTER 5(35.7%)

SIMILAR 8(57.1%) SIMILAR 9(64.3%)
WORSE 0(0%) WORSE 0(0%)

GP19(MSGen) vs GP19
BETTER 8(57.1%)

Ochiai(MSGen) vs Ochiai
BETTER 6(42.9%)

SIMILAR 6(42.9%) SIMILAR 8(57.1%)
WORSE 0(0%) WORSE 0(0%)

Comparison on subject programs Result Comparison on subject programs Result

gzip(MSGen) vs gzip
BETTER 7(58.3%)

libtiff(MSGen) vs libtiff
BETTER 5(41.7%)

SIMILAR 5(41.7%) SIMILAR 7(58.3%)
WORSE 0(0%) WORSE 0(0%)

lang(MSGen) vs lang
BETTER 5(41.7%)

closure(MSGen) vs closure
BETTER 6(50%)

SIMILAR 7(58.3%) SIMILAR 6(50%)
WORSE 0(0%) WORSE 0(0%)

python(MSGen) vs python
BETTER 3(25%)

space(MSGen) vs space
BETTER 9(75%)

SIMILAR 9(75%) SIMILAR 3(25%)
WORSE 0(0%) WORSE 0(0%)

chart(MSGen) vs chart
BETTER 8(66.7%)

math(MSGen) vs math
BETTER 10(83.3%)

SIMILAR 4(36.4%) SIMILAR 2(16.7%)
WORSE 0(0%) WORSE 0(0%)

mockito(MSGen) vs mockito
BETTER 11(91.67%)

time(MSGen) vs time
BETTER 7(58.3%)

SIMILAR 1(8.3%) SIMILAR 5(41.7%)
WORSE 0(0%) WORSE 0(0%)

nanoxml v1(MSGen) vs nanoxml v1
BETTER 8(66.7%)

nanoxml v2(MSGen) vs nanoxml v2
BETTER 9(75%)

SIMILAR 4(36.4%) SIMILAR 3(25%)
WORSE 0(0%) WORSE 0(0%)

nanoxml v3(MSGen) vs nanoxml v3
BETTER 7(58.3%)

nanoxml v5(MSGen) vs nanoxml v5
BETTER 9(75%)

SIMILAR 5(41.7%) SIMILAR 3(25%)
WORSE 0(0%) WORSE 0(0%)

when locating the faults of the program gzip, MSGen obtains 7

BETTER results on 7 out of 12 (7/12=58.3%) fault localization

approaches, 5 SIMILAR results on 5 out of 12 (5/12=41.7%)

localization approaches, and 0 (0/0=0%) results.

As shown in Table III, overall, MSGen has 213 BET-

TER results (213/336= 63.39%), 123 SIMILAR results

(123/336=36.61%), and no WORSE result.

Efficiency Based on the existing model-domain failing test

samples, MSGen produces new synthesized failing test sam-

ples, and we need to evaluate its time cost. Table IV presents

the time of producing model-domain failing test samples. As

shown in Table IV, MSGen consumes an average of 3.62

seconds, leading to low overhead.

Thus, based on all the results and analysis, we can safely

conclude that MSGen significantly improves localization ef-

fectiveness, showing that producing synthesized test samples

from the information mode domain is potential to improve

fault localization.

D. MSGen versus Data Optimization Approaches

Top-N, MFR, and MAR The experiments use Top-N (i.e.,
N=1, 5, 10, 20), MAR, MFR to compare MSGen with the

two data optimization approaches (i.e., undersampling and

resampling). Table V presents the distribution among the

two optimization approaches. As shown in Table V, MSGen

achieves higher Top-N values and lower MFR and MAR values

compared to the two data optimization approaches. It means

that MSGen shows promising best localization effectiveness

in all scenarios in comparison to the two data optimization

approaches.

TABLE IV
TIME COST OF PRODUCING SYNTHESIZED MODEL-DOMAIN FAILING TEST

SAMPLES.
chart math lang closure mockito time python
4.62s 3.13s 3.1s 6.75s 1.52s 5.09s 8.19s
gzip libtiff space nanoxml v1 nanoxml v2 nanoxml v3 nanoxml v5
8.26s 5.46s 1.17s 0.89s 0.97s 0.74s 0.82s

TABLE V
Top-N, MAR AND MFR COMPARISON OF MSGEN OVER THE TWO DATA

OPTIMIZATION APPROACHES.

Comparison top-1 top-5 top-10 top-20 MFR MAR
MLP-FL(undersampling) 0% 1.6% 3.1% 10.8% 225 386

MLP-FL(resampling) 1.6.% 4.1% 9.3% 18.0% 211 344
MLP-FL(MSGen) 1.6% 5.7% 11.9% 19.1% 194 337

CNN-FL(undersampling) 0% 2% 6% 17% 185 273
CNN-FL(resampling) 1.6% 8.2% 15.5% 25.8% 131 257

CNN-FL(MSGen) 1.6% 9.3% 16.5% 26.3% 122 248
BiLSTM-FL(undersampling) 0% 0% 2.1% 9.3% 247 421

BiLSTM-FL(resampling) 0% 3.6% 8.2% 12.4% 215 374
BiLSTM-FL(MSGen) 0% 3.6% 9.3% 17.0% 207 369

DeepFL(undersampling) 0% 3.6% 6.2% 18.6% 202 285
DeepFL(resampling) 1.6% 8.2% 15.5% 25.8% 137 243

DeepFL(MSGen) 1.6% 9.3% 17.0% 25.8% 131 239
FLUCCS(undersampling) 0% 5.4% 11.3% 15.5% 205 339

FLUCCS(resampling) 1.6% 9.3% 15.9% 24.9% 172 297
FLUCCS(MSGen) 1.6% 9.3% 17.0% 25.8% 159 288

ER5(undersampling) 0% 6.2% 8.2% 26.3% 251 439
ER5(resampling) 0% 7.7% 13.5% 25.4% 229 397

ER5(MSGen) 0% 7.7% 14.4% 27.3% 215 384
GP02(undersampling) 1.6% 15.5% 21.8% 38.3% 259 538

GP02(resampling) 2.6% 17.0% 23.2% 39.4% 218 472
GP02(MSGen) 2.6% 17.0% 23.2% 40.7% 221 476

GP03(undersampling) 3.1% 12.4% 16.1% 20.1% 202 347
GP03(resampling) 3.1% 14.4% 17.0% 21.1% 193 331

GP03(MSGen) 3.1% 15.5% 18.0% 21.1% 197 326
Dstar(undersampling) 3.1% 19.1% 24.2% 38.7% 255 361

Dstar(resampling) 3.6% 23.2% 29.4% 43.0% 226 321
Dstar(MSGen) 3.6% 23.2% 31.4% 46.9% 219 317

ER1’(undersampling) 3.1% 18.6% 23.20% 37.1% 247 383
ER1’(resampling) 3.6% 22.2% 27.3% 40.7% 226 343

ER1’(MSGen) 3.6% 22.2% 28.9% 41.2% 221 335
GP19(undersampling) 3.1% 9.3% 14.5% 23.3% 259 404

GP19(resampling) 3.1% 11.9% 21.1% 25.8% 246 375
GP19(MSGen) 3.1% 11.9% 22.2% 27.3% 231 365

Ochiai(undersampling) 1.6% 18.6% 20.6% 34.5% 231 374
Ochiai(resampling) 2.6% 22.1% 29.4% 35.2% 194 327

Ochiai(MSGen) 2.6% 22.2% 29.4% 38.7% 187 289

(a) RImp on fault localization approaches.

(b) RImp on subject programs.
Fig. 5. RImp comparison of MSGen over undersampling.

RImp distribution Fig. 5 and Fig. 6 show the RImp scores of

MSGen over undersampling and resampling respectively. We

can observe that the RImp scores are less than 100%, meaning

that the improvement of using MSGen on fault localization

is larger than that of undersampling and resampling. Over-

all, when using the three data optimization approaches (i.e.,
MSGen, undersampling, and resampling) for fault localization,

MSGen obtains an average saving of 28.16% and 21.47% over

undersampling and resampling, respectively. In comparison to

205

undersampling and resampling, MSGen is significantly more

effective to improve fault localization.

TABLE VI
WILCOXON-SIGNED-RANK TEST OF MSGEN OVER UNDERSAMPLING.

Comparison on fault localization approaches Result Comparison on fault localization approaches Result
BETTER 14(100%) BETTER 14(100%)
SIMILAR 0(0%) SIMILAR 0(0%)MLP-FL(MSGen) vs MLP-FL
WORSE 0(0%)

CNN-FL(MSGen) vs CNN-FL
WORSE 0(0%)

BETTER 14(100%) BETTER 13(92.9%)
SIMILAR 0(0%) SIMILAR 1(7.1%)BiLSTM-FL(MSGen) vs BiLSTM-FL
WORSE 0(0%)

DeepFL(MSGen) vs DeepFL
WORSE 0(0%)

BETTER 14(100%) BETTER 7(50%)
SIMILAR 0(0%) SIMILAR 7(50%)FLUCCS(MSGen) vs FLUCCS
WORSE 0(0%)

ER5(MSGen) vs ER5
WORSE 0(0%)

BETTER 10(71.4%) BETTER 10(71.4%)
SIMILAR 2(14.3%) SIMILAR 4(28.6%)GP02(MSGen) vs GP02
WORSE 2(14.3%)

GP03(MSGen) vs GP03
WORSE 0(0%)

BETTER 7(50%) BETTER 5(35.7%)
SIMILAR 5(35.7%) SIMILAR 7(50%)Dstar(MSGen) vs Dstar
WORSE 2(14.3%)

ER1’(MSGen) vs ER1’
WORSE 2(14.3%)

BETTER 9(64.3%) BETTER 6(42.9%)
SIMILAR 5(35.7%) SIMILAR 7(50%)GP19(MSGen) vs GP19
WORSE 0(0%)

Ochiai(MSGen) vs Ochiai
WORSE 1(7.1%)

Comparison on subject programs Result Comparison on subject programs Result
BETTER 8(66.7%) BETTER 5(41.7%)
SIMILAR 4(33.3%) SIMILAR 7(58.3%)gzip(MSGen) vs gzip
WORSE 0(0%)

libtiff(MSGen) vs libtiff
WORSE 0(0%)

BETTER 9(75%) BETTER 8(66.7%)
SIMILAR 3(25%) SIMILAR 4(33.3%)lang(MSGen) vs lang
WORSE 0(0%)

closure(MSGen) vs closure
WORSE 0(0%)

BETTER 9(75%) BETTER 8(66.7%)
SIMILAR 3(25%) SIMILAR 4(33.3%)python(MSGen) vs python
WORSE 0(0%)

space(MSGen) vs space
WORSE 0(0%)

BETTER 12(100%) BETTER 9(75%)
SIMILAR 0(0%) SIMILAR 2(16.7%)chart(MSGen) vs chart
WORSE 0(0%)

math(MSGen) vs math
WORSE 1(8.3%)

BETTER 11(91.7%) BETTER 10(83.3%)
SIMILAR 1(8.3%) SIMILAR 2(16.7%)mockito(MSGen) vs mockito
WORSE 0(0%)

time(MSGen) vs time
WORSE 0(0%)

BETTER 8(66.7%) BETTER 8(66.7%)
SIMILAR 3(25%) SIMILAR 4(33.3%)nanoxml v1(MSGen) vs nanoxml v1
WORSE 1(8.3%)

nanoxml v2(MSGen) vs nanoxml v2
WORSE 0(0%)

BETTER 7(58.3%) BETTER 9(75%)
SIMILAR 5(41.7%) SIMILAR 3(25%)nanoxml v3(MSGen) vs nanoxml v3
WORSE 0(0%)

nanoxml v5(MSGen) vs nanoxml v5
WORSE 0(0%)

Statistical comparison Table VI and Table VII summarize

the statistical results of MSGen over undersampling and re-

sampling, respectively. Take MLP-FL(MSGen) vs MLP-FL

and gzip(MSGen) vs gzip in Talbe VI as the examples. In

case of MLP-FL(MSGen) vs MLP-FL, when applying MSGen

and undersampling to MLP-FL, MSGen obtain 14 BETTER

results over undersampling on 14 out of 14 (14/14=100%)

subject programs, 0 (0/14=0%) SIMILAR, and 0(0/14=%)

WORSE results. In case of gzip(MSGen) vs gzip, when

locating the faults of the program gzip by applying MSGen

and undersampling, MSGen obtains 8 BETTER results over

undersampling on 8 out of 12 (8/12=66.7%) fault localization

(a) RImp on fault localization approaches.

(b) RImp on subject programs.
Fig. 6. RImp comparison of MSGen over resampling.

TABLE VII
WILCOXON-SIGNED-RANK TEST OF MSGEN OVER RESAMPLING.

Comparison on fault localization approaches Result Comparison on fault localization approaches Result
BETTER 12(85.7%) BETTER 11(78.6%)
SIMILAR 2(14.3%) SIMILAR 2(14.3%)MLP-FL(MSGen) vs MLP-FL
WORSE 0(0%)

CNN-FL(MSGen) vs CNN-FL
WORSE 1(7.1%)

BETTER 13(92.9%) BETTER 10(71.4%)
SIMILAR 1(7.1%) SIMILAR 4(28.6%)BiLSTM-FL(MSGen) vs BiLSTM-FL
WORSE 0(0%)

DeepFL(MSGen) vs DeepFL
WORSE 0(0%)

BETTER 12(85.7%) BETTER 5(35.7%)
SIMILAR 2(14.3%) SIMILAR 9(64.3%)FLUCCS(MSGen) vs FLUCCS
WORSE 0(0%)

ER5(MSGen) vs ER5
WORSE 0(0%)

BETTER 9(64.3%) BETTER 7(50%)
SIMILAR 4(28.6%) SIMILAR 5(35.7%)GP02(MSGen) vs GP02
WORSE 1(7.1%)

GP03(MSGen) vs GP03
WORSE 2(14.3%)

BETTER 8(57.1%) BETTER 5(35.7%)
SIMILAR 6(42.9%) SIMILAR 9(64.3%)Dstar(MSGen) vs Dstar
WORSE 0(0%)

ER1’(MSGen) vs ER1’
WORSE 0(0%)

BETTER 9(64.3%) BETTER 4(28.6%)
SIMILAR 5(35.7%) SIMILAR 10(71.4%)GP19(MSGen) vs GP19
WORSE 0(0%)

Ochiai(MSGen) vs Ochiai
WORSE 0(0%)

Comparison on subject programs Result Comparison on subject programs Result
BETTER 7(58.3%) BETTER 5(41.7%)
SIMILAR 5(41.7%) SIMILAR 7(58.3%)gzip(MSGen) vs gzip
WORSE 0(0%)

libtiff(MSGen) vs libtiff
WORSE 0(0%)

BETTER 5(41.7%) BETTER 6(50%)
SIMILAR 7(58.3%) SIMILAR 6(50%)lang(MSGen) vs lang
WORSE 0(0%)

closure(MSGen) vs closure
WORSE 0(0%)

BETTER 3(25%) BETTER 9(75%)
SIMILAR 9(75%) SIMILAR 3(25%)python(MSGen) vs python
WORSE 0(0%)

space(MSGen) vs space
WORSE 0(0%)

BETTER 8(66.7%) BETTER 10(83.3%)
SIMILAR 4(33.3%) SIMILAR 2(16.7%)chart(MSGen) vs chart
WORSE 0(0%)

math(MSGen) vs math
WORSE 0(0%)

BETTER 11(91.7%) BETTER 7(58.3%)
SIMILAR 1(8.3%) SIMILAR 5(41.7%)mockito(MSGen) vs mockito
WORSE 0(0%)

time(MSGen) vs time
WORSE 0(0%)

BETTER 8(66.7%) BETTER 9(75%)
SIMILAR 4(33.3%) SIMILAR 3(25%)nanoxml v1(MSGen) vs nanoxml v1
WORSE 0(0%)

nanoxml v2(MSGen) vs nanoxml v2
WORSE 0(0%)

BETTER 6(50%) BETTER 9(75%)
SIMILAR 6(50%) SIMILAR 3(25%)nanoxml v3(MSGen) vs nanoxml v3
WORSE 0(0%)

nanoxml v5(MSGen) vs nanoxml v5
WORSE 0(0%)

approaches, 4 SIMILAR results on 4 out of 12 (4/12=33.3%)

localization approaches, and 0 (0/12=0%) results.

Overall, compared with undersampling, MSGen has 244

BETTER results (244/336= 72.62%), 83 SIMILAR results

(83/336=24.70%), and 9 WORSE results (9/308=2.68%); com-

pared with resampling, MSGen has 208 BETTER results

(208/336= 61.91%), 124 SIMILAR results (124/336=36.90%),

and 4 WORSE results (4/336=1.19%).

V. DISCUSSION

A. Why MSGen Is Effective?

TABLE VIII
WILCOXON-SIGNED-RANK TEST OF MSGEN OVER MSGEN WITHOUT

PRESERVING THE COMMON FEATURES.

Comparison on fault localization approaches Result Comparison on fault localization approaches Result
BETTER 14(100%) BETTER 14(100%)
SIMILAR 0(0%) SIMILAR 0(0%)MLP-FL(MSGen) vs MLP-FL
WORSE 0(0%)

CNN-FL(MSGen) vs CNN-FL
WORSE 0(0%)

BETTER 14(100%) BETTER 14(100%)
SIMILAR 0(0%) SIMILAR 0(0%)BiLSTM-FL(MSGen) vs BiLSTM-FL
WORSE 0(0%)

DeepFL(MSGen) vs DeepFL
WORSE 0(0%)

BETTER 14(100%) BETTER 14(100%)
SIMILAR 0(0%) SIMILAR 0(0%)FLUCCS(MSGen) vs FLUCCS
WORSE 0(0%)

ER5(MSGen) vs ER5
WORSE 0(0%)

BETTER 14(100%) BETTER 14(100%)
SIMILAR 0(0%) SIMILAR 0(0%)GP02(MSGen) vs GP02
WORSE 0(0%)

GP03(MSGen) vs GP03
WORSE 0(0%)

BETTER 14(100%) BETTER 14(100%)
SIMILAR 0(0%) SIMILAR 0(0%)Dstar(MSGen) vs Dstar
WORSE 0(0%)

ER1’(MSGen) vs ER1’
WORSE 0(0%)

BETTER 14(100%) BETTER 14(100%)
SIMILAR 0(0%) SIMILAR 0(0%)GP19(MSGen) vs GP19
WORSE 0(0%)

Ochiai(MSGen) vs Ochiai
WORSE 0(0%)

Comparison on subject programs Result Comparison on subject programs Result
BETTER 12(100%) BETTER 12(100%)
SIMILAR 0(0%) SIMILAR 0(0%)gzip(MSGen) vs gzip
WORSE 0(0%)

libtiff(MSGen) vs libtiff
WORSE 0(0%)

BETTER 12(100%) BETTER 12(100%)
SIMILAR 0(0%) SIMILAR 0(0%)lang(MSGen) vs lang
WORSE 0(0%)

closure(MSGen) vs closure
WORSE 0(0%)

BETTER 12(100%) BETTER 12(100%)
SIMILAR 0(0%) SIMILAR 0(0%)python(MSGen) vs python
WORSE 0(0%)

space(MSGen) vs space
WORSE 0(0%)

BETTER 12(100%) BETTER 12(100%)
SIMILAR 0(0%) SIMILAR 0(0%)chart(MSGen) vs chart
WORSE 0(0%)

math(MSGen) vs math
WORSE 0(0%)

BETTER 12(100%) BETTER 12(100%)
SIMILAR 0(0%) SIMILAR 0(0%)mockito(MSGen) vs mockito
WORSE 0(0%)

time(MSGen) vs time
WORSE 0(0%)

BETTER 12(100%) BETTER 12(100%)
SIMILAR 0(0%) SIMILAR 0(0%)nanoxml v1(MSGen) vs nanoxml v1
WORSE 0(0%)

nanoxml v2(MSGen) vs nanoxml v2
WORSE 0(0%)

BETTER 12(100%) BETTER 12(100%)
SIMILAR 0(0%) SIMILAR 0(0%)nanoxml v3(MSGen) vs nanoxml v3
WORSE 0(0%)

nanoxml v5(MSGen) vs nanoxml v5
WORSE 0(0%)

The prior work [30] has shown the data covering the com-

mon features of all failing tests (i.e., minimum suspicious set)

are beneficial (or safe) for fault localization, where a minimum

suspicious set is defined as those statements executed by

all failing tests. SBFL and DLFL share a similar idea that

when a statement occurs in a failing test, its suspiciousness

206

increases; while the statement occurs in a passing test, its

suspiciousness decreases. Their difference is that DLFL uses

neural networks while SBFL utilizes statistical correlation

coefficients to implement a similar idea. It is intuitive that

a faulty statement should be executed to cause a failure and

the faulty statement should generally be in the minimum

suspicious set except some cases like multiple faults. If a

synthesized model-domain failing test sample covers the mini-

mum suspicious set, it usually covers the faulty statement, and

thus the suspiciousness of the faulty statement should increase.

Thus, MSGen uses the minimum variability of minority class

feature space to produce synthesized model-domain failing test

samples, i.e., it preserves the common features of all model-

domain failing test samples, namely the minimum suspicious

set. If we use MSGen without preserving the common features

(i.e., without covering the minimum suspicious set), MSGen

should significantly outperform the one without preserving the

common features.

Table VIII shows the statistical results of the comparison

between MSGen and MSGen without preserving the common

features. The statistical comparison uses the Wilcoxon-Signed-

Rank test at the σ level of 0.05. As shown in Table VIII,

MSGen obtains all BETTER results over the one without

preserving the common features in all 12 fault localization

approaches and 14 subject programs, indicating that preserving

the common features is the key factor of why MSGen is

effective.

B. Effect of Passing Tests on FL Effectiveness

It is natural to raise a question on why MSGen considers

the distance (i.e., Euclidean distance [45]) of the existing

model-domain failing test samples only. If we produce those

synthesized samples by maximizing the distance from the

existing model-domain passing test samples, it is reasonable to

fix these synthesized samples as a failing label since they are

far from the existing passing samples. Therefore, we compare

MSGen with the two approaches using Euclidean distance

of passing tests. One approach (denoted as MaxP) produces

synthesized model-domain failing test samples by maximizing

the distance from the existing model-domain passing test

samples; the other one (denoted as MinF+MaxP) produces

synthesized model-domain failing test samples by minimizing

the distance from the existing model-domain failing test sam-

ples and meanwhile maximizing the distance from the existing

model-domain passing test samples.

Tables IX and X show the statistical results of the compar-

ison of MSGen over MaxP and MinF+MaxP respectively. The

statistical comparison uses the Wilcoxon-Signed-Rank test at

the σ level of 0.05. As shown in the tables, MSGen obtains

BETTER results in most fault localization approaches and

these subject programs, and no WORSE results, indicating

that MSGen is more effective than MaxP and MinF+MaxP.

For failing tests, their executions can always include the faulty

statement. In contrast, for passing tests, their executions cannot

be guaranteed to be free of a faulty statement, leading to a

coincidental correctness problem [30]. If we consider the dis-

TABLE IX
WILCOXON-SIGNED-RANK TEST OF MSGEN OVER MAXP.

Comparison on fault localization approaches Result Comparison on fault localization approaches Result
BETTER 14(100%) BETTER 14(100%)
SIMILAR 0(0%) SIMILAR 0(0%)MLP-FL(MSGen) vs MLP-FL
WORSE 0(0%)

CNN-FL(MSGen) vs CNN-FL
WORSE 0(0%)

BETTER 14(100%) BETTER 13(92.9%)
SIMILAR 0(0%) SIMILAR 1(7.1%)BiLSTM-FL(MSGen) vs BiLSTM-FL
WORSE 0(0%)

DeepFL(MSGen) vs DeepFL
WORSE 0(0%)

BETTER 14(100%) BETTER 10(71.4%)
SIMILAR 0(0%) SIMILAR 4(28.6%)FLUCCS(MSGen) vs CNN-FL
WORSE 0(0%)

ER5(MSGen) vs ER5
WORSE 0(0%)

BETTER 13(92.9%) BETTER 10(71.4%)
SIMILAR 1(7.1%) SIMILAR 4(28.6%)GP02(MSGen) vs GP02
WORSE 0(0%)

GP03(MSGen) vs GP03
WORSE 0(0%)

BETTER 9(64.3%) BETTER 7(50%)
SIMILAR 5(35.7%) SIMILAR 7(50%)Dstar(MSGen) vs Dstar
WORSE 0(0%)

ER1’(MSGen) vs ER1’
WORSE 0(0%)

BETTER 10(71.4%) BETTER 8(42.9%)
SIMILAR 4(28.6%) SIMILAR 6(50%)GP19(MSGen) vs GP19
WORSE 0(0%)

Ochiai(MSGen) vs Ochiai
WORSE 0(0%)

Comparison on subject programs Result Comparison on subject programs Result
BETTER 9(75%) BETTER 9(75%)
SIMILAR 3(25%) SIMILAR 3(25%)gzip(MSGen) vs gzip
WORSE 0(0%)

libtiff(MSGen) vs libtiff
WORSE 0(0%)

BETTER 11(91.7%) BETTER 9(75%)
SIMILAR 1(8.3%) SIMILAR 3(25%)lang(MSGen) vs lang
WORSE 0(0%)

closure(MSGen) vs closure
WORSE 0(0%)

BETTER 11(91.7%) BETTER 11(91.7%)
SIMILAR 1(8.3%) SIMILAR 1(8.3%)python(MSGen) vs python
WORSE 0(0%)

space(MSGen) vs space
WORSE 0(0%)

BETTER 12(100%) BETTER 11(91.7%)
SIMILAR 0(0%) SIMILAR 1(8.3%)chart(MSGen) vs chart
WORSE 0(0%)

math(MSGen) vs math
WORSE 0(0%)

BETTER 12(100%) BETTER 9(89.8%)
SIMILAR 0(0%) SIMILAR 2(18.2%)mockito(MSGen) vs mockito
WORSE 0(0%)

time(MSGen) vs time
WORSE 0(0%)

BETTER 9(75%) BETTER 11(91.7%)
SIMILAR 3(25%) SIMILAR 1(8.3%)nanoxml v1(MSGen) vs nanoxml v1
WORSE 0(0%)

nanoxml v2(MSGen) vs nanoxml v2
WORSE 0(0%)

BETTER 9(75%) BETTER 11(91.7%)
SIMILAR 3(25%) SIMILAR 1(8.3%)nanoxml v3(MSGen) vs nanoxml v3
WORSE 0(0%)

nanoxml v5(MSGen) vs nanoxml v5
WORSE 0(0%)

TABLE X
WILCOXON-SIGNED-RANK TEST OF MSGEN OVER MINF+MAXP.

Comparison on fault localization approaches Result Comparison on fault localization approaches Result
BETTER 13(92.9%) BETTER 11(78.6%)
SIMILAR 1(7.1%) SIMILAR 3(21.4%)MLP-FL(MSGen) vs MLP-FL
WORSE 0(0%)

CNN-FL(MSGen) vs CNN-FL
WORSE 0(0%)

BETTER 14(100%) BETTER 10(71.4%)
SIMILAR 0(0%) SIMILAR 4(28.6%)BiLSTM-FL(MSGen) vs BiLSTM-FL
WORSE 0(0%)

DeepFL(MSGen) vs DeepFL
WORSE 0(0%)

BETTER 11(78.6%) BETTER 9(64.3%)
SIMILAR 3(21.4%) SIMILAR 5(35.7%)FLUCCS(MSGen) vs FLUCCS
WORSE 0(0%)

ER5(MSGen) vs ER5
WORSE 0(0%)

BETTER 9(64.3%) BETTER 8(57.1%)
SIMILAR 5(35.7%) SIMILAR 6(42.9%)GP02(MSGen) vs GP02
WORSE 0(0%)

GP03(MSGen) vs GP03
WORSE 0(0%)

BETTER 8(57.1%) BETTER 8(57.1%)
SIMILAR 6(42.9%) SIMILAR 6(42.9%)Dstar(MSGen) vs Dstar
WORSE 0(0%)

ER1’(MSGen) vs ER1’
WORSE 0(0%)

BETTER 11(78.6%) BETTER 7(50%)
SIMILAR 3(21.4%) SIMILAR 7(50%)GP19(MSGen) vs GP19
WORSE 0(0%)

Ochiai(MSGen) vs Ochiai
WORSE 0(0%)

Comparison on subject programs Result Comparison on subject programs Result
BETTER 9(75%) BETTER 8(66.7%)
SIMILAR 3(25%) SIMILAR 4(33.3%)gzip(MSGen) vs gzip
WORSE 0(0%)

libtiff(MSGen) vs libtiff
WORSE 0(0%)

BETTER 7(58.3%) BETTER 8(66.7%)
SIMILAR 5(41.7%) SIMILAR 4(33.3%)lang(MSGen) vs lang
WORSE 0(0%)

closure(MSGen) vs closure
WORSE 0(0%)

BETTER 6(50%) BETTER 11(91.7%)
SIMILAR 6(50%) SIMILAR 1(8.3%)python(MSGen) vs python
WORSE 0(0%)

space(MSGen) vs space
WORSE 0(0%)

BETTER 9(75%) BETTER 11(91.7%)
SIMILAR 3(25%) SIMILAR 1(8.3%)chart(MSGen) vs chart
WORSE 0(0%)

math(MSGen) vs math
WORSE 0(0%)

BETTER 12(100%) BETTER 9(75%)
SIMILAR 0(0%) SIMILAR 3(25%)mockito(MSGen) vs mockito
WORSE 0(0%)

time(MSGen) vs time
WORSE 0(0%)

BETTER 9(75%) BETTER 11(91.7%)
SIMILAR 3(25%) SIMILAR 1(8.3%)nanoxml v1(MSGen) vs nanoxml v1
WORSE 0(0%)

nanoxml v2(MSGen) vs nanoxml v2
WORSE 0(0%)

BETTER 8(66.7%) BETTER 11(91.7%)
SIMILAR 4(33.3%) SIMILAR 1(8.3%)nanoxml v3(MSGen) vs nanoxml v3
WORSE 0(0%)

nanoxml v5(MSGen) vs nanoxml v5
WORSE 0(0%)

tance of passing tests, the coincidental correctness problem can

cause new samples to be far away from the faulty statement.

This is why our approach significantly outperforms MaxP and

MinF+MaxP, and does not consider passing tests to avoid the

threat caused by the coincidental correctness problem.

C. Effect of Balanced Tests on FL Effectiveness

Many studies have found that a class-balanced test suite

is useful for fault localization [12], [21]. We use MSGen

to generate different ratios of model-level failing tests to

verify whether balanced tests are better than unbalanced ones

for fault localization. Specifically, we use the ratio θ =
Pnum/Fnum, where Pnum and Fnum denote the number

of passing tests and the number of failing tests. We generate

different test suites with θ = 0.5, 1 and 1.5. Table XI shows the

statistical results of MSGen with different ratios. The results

show that MSGen obtains most BETTER results with balanced

tests, i.e., balanced tests are better than unbalanced ones for

fault localization.

207

TABLE XI
STATISTICAL RESULTS ON MSGEN USING DIFFERENT RATIOS.

Comparison on fault localization approaches

(θ = 1) vs (θ = 1.5) Result (θ = 1) vs (θ = 0.5) Result

MLP-FL
BETTER 10(71.4%)

MLP-FL
BETTER 11(78.6%)

SIMILAR 2(14.3%) SIMILAR 0(0%)
WORSE 2(14.3%) WORSE 3(21.4%)

CNN-FL
BETTER 9(64.3%)

CNN-FL
BETTER 10(71.4%)

SIMILAR 2(14.3%) SIMILAR 2(14.3%)
WORSE 3(21.4%) WORSE 2(14.3%)

BiLSTM-FL
BETTER 9(64.3%)

BiLSTM-FL
BETTER 10(71.4%)

SIMILAR 3(21.4%) SIMILAR 1(7.1%)
WORSE 2(14.3%) WORSE 3(21.4%)

DeepFL
BETTER 11(78.6%)

DeepFL
BETTER 10(71.4%)

SIMILAR 2(14.3%) SIMILAR 2(14.3%)
WORSE 1(7.1%) WORSE 2(14.3%)

FLUCCS
BETTER 10(71.4%)

FLUCCS
BETTER 11(78.6%)

SIMILAR 2(14.3%) SIMILAR 1(7.1%)
WORSE 2(14.3%) WORSE 2(14.3%)

ER5
BETTER 9(64.3%)

ER5
BETTER 9(64.3%)

SIMILAR 1(7.1%) SIMILAR 3(21.4%)
WORSE 4(28.6%) WORSE 2(14.3%)

GP02
BETTER 7(50%)

GP02
BETTER 9(64.3%)

SIMILAR 4(28.6%) SIMILAR 1(7.1%)
WORSE 3(21.4%) WORSE 4(28.6%)

GP03
BETTER 10(71.4%)

GP03
BETTER 9(64.3%)

SIMILAR 0(0%) SIMILAR 2(14.3%)
WORSE 4(28.6%) WORSE 3(21.4%)

Dstar
BETTER 9(64.3%)

Dstar
BETTER 10(71.4%)

SIMILAR 2(14.3%) SIMILAR 2(14.3%)
WORSE 3(21.4%) WORSE 2(14.3%)

ER1’
BETTER 11(78.6%)

ER1’
BETTER 9(64.3%)

SIMILAR 2(14.3%) SIMILAR 3(21.4%)
WORSE 1(7.1%) WORSE 2(14.3%)

GP19
BETTER 10(71.4%)

GP19
BETTER 11(78.6%)

SIMILAR 3(21.4%) SIMILAR 2(14.3%)
WORSE 1(7.1%) WORSE 1(7.1%)

Ochiai
BETTER 7(50%)

BiLSTM-FL
BETTER 8(57.1%)

SIMILAR 4(28.6%) SIMILAR 2(14.3%)
WORSE 3(21.4%) WORSE 4(28.6%)

D. Threats to Validity

Our experiments use deep learning-based fault localization

approaches, meaning that the fault localization results are not

the same given different training times. That drawback is

caused by the characteristic of neural networks. To make the

results more reliable, we followed the convention by repeating

the fault localization process, i.e., we computed ten times and

used the average score as the results for the experimental study.

Our approach uses the minimum suspicious set which is de-

rived from the existing state-of-the-art localization approaches.

It may not hold in some cases where these localization

approaches suffer from, e.g., multiple faults. This limitation of

the existing localization approaches will affect our approach.

We can apply the clustering technology (e.g., [51]) to alleviate

the problem via transforming the context of multiple faults into

that of single faults.

Another threat is the subject programs. Although we adopt

the widely used subject programs, there are still many un-

known and complicated factors in real debugging that could

affect the experiment results. Thus, it is worthwhile to use

more large-sized programs to further strengthen the experi-

mental results.

VI. RELATED WORK

In the field of machine learning and fault localization,

the class proportion of datasets has been widely studied.

Wong et al. [52] show that the class imbalance phenomenon

of datasets has an influence on the efficacy of classification.

Japkowizc and Shaju [53] empirically find that the class imbal-

ance phenomenon of the training set causes a negative impact

to classification problems. Baudry et al. [28] conduct the

experiments and show that fewer test cases could achieve the

same fault localization effectiveness. Hao et al. [29] improve

the localization effectiveness by using test suite reduction

techniques. However, Yu et al. [54] suggest that test suite

reduction techniques may reduce the effectiveness of fault

localization. Gong et al. [20] conduct an experimental study

showing that the identical number of passing test cases and

the failing test cases is beneficial for fault localization. These

test generation approaches for fault localization rarely generate

failing tests, but instead optimize or generate passing tests

for fault localization. In contrast, our approach is to produce

failing test samples from the perspective of data synthesis,

rather than to optimize or generate passing tests for fault

localization. Furthermore, our approach is easier to produce

synthesized failing test samples from the model domain and

requires no execution of the synthesized data to obtain the

result label.

There are also several pieces of work focusing on failure

reproduction. Jin et al. [23] propose BugRedux, which collects

different types of execution data in the field and mimics the ob-

served field failures for F3 technique [22]. Soltani et al. [24],

[25] use search-based software testing for crash reproduction.

Bohme et al. [26] introduce a semi-automatic repair technique

LEARN2FIX, the first human-in-the-loop based on the user

who is reporting a bug is available. Gabin et al. [27] propose

QFID, which augments the failing test cases with automat-

ically generated test data and elicit oracles from a human

developer to label the test cases. Although the reproducing

failure are real failing ones, they are difficult to generate

enough number of test cases to solve the imbalance problem

for fault localization due to the large computing cost and high

complexity (e.g., symbolic execution and manual inspection).

Unlike these approaches, we seek a different perspective and

a simple way to address the class imbalance problem from the

model-domain rather than the input-domain.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose MSGen which generates syn-

thesized test samples from the model domain, rather than

generating real tests from the input domain, to improve fault

localization. MSGen identifies the nearest neighbors from the

existing model-domain failing test samples, and computes the

difference between each failing test and its one nearest neigh-

bor to generate new synthesized model-domain test samples.

The experimental results on 12 state-of-the-art fault localiza-

tion and two data optimization approaches show that MSGen

can significantly improve fault localization effectiveness with

up to 51.22%.

In future, we plan to extend our approach MSGen to the

multiple-fault scenario. We also plan to explore more on model

domain for synthesized test generation.

ACKNOWLEDGMENTS

This work is supported by the National Key Research

and Development Project of China (No. 2020YFB1711900),

the National Natural Science Foundation of China (No.

62002034), the Fundamental Research Funds for the Central

Universities (No. 2022CDJKYJH001) and the Natural Science

Foundation of Chongqing (No. cstc2021jcyj-msxmX0538).

208

REFERENCES

[1] W. E. Wong, R. Gao, Y. Li, A. Rui, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineer-
ing(TSE), vol. 42, no. 8, pp. 707–740, 2016.

[2] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in International Symposium on Software Testing
and Analysis(ISSTA 2011), 2011, pp. 199–209.

[3] Y. Guo, N. Li, J. Offutt, and A. Motro, “Exoneration-based fault
localization for sql predicates,” Journal of Systems and Software, vol.
147, pp. 230–245, 2019.

[4] T. D. B. Le, R. J. Oentaryo, and D. Lo, “Information retrieval and
spectrum based bug localization: better together,” in Joint Meeting on
Foundations of Software Engineering(FSE 2015), 2015, pp. 579–590.

[5] C. Sun and S. C. Khoo, “Mining succinct predicated bug signatures,”
in Joint Meeting on Foundations of Software Engineering(FSE 2013),
2013, pp. 576–586.

[6] J. Kim, J. Kim, and E. Lee, “Vfl: Variable-based fault localization,”
Information and software technology, 2019.

[7] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in IEEE Seventh International
Conference on Software Testing, Verification and Validation(ICST 2014),
2014, pp. 153–162.

[8] M. Papadakis and Y. L. Traon, Metallaxis-FL: Mutation-based fault
localization. John Wiley and Sons Ltd., 2015.

[9] X. Xie, T. Y. Chen, F. C. Kuo, and B. Xu, “A theoretical analysis
of the risk evaluation formulas for spectrum-based fault localization,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 22, no. 4, p. 31, 2013.

[10] L. Naish and Hua, “A model for spectra-based software diagnosis,” Acm
Transactions on Software Engineering and Methodology, vol. 20, no. 3,
pp. 1–32, 2011.

[11] Z. Zhang, Y. Lei, X. Mao, and P. Li, “CNN-FL: An effective approach
for localizing faults using convolutional neural networks,” in the 26th
International Conference on Software Analysis, Evolution and Reengi-
neering (SANER 2019). IEEE, 2019, pp. 445–455.

[12] Z. Zhang, Y. Lei, X. Mao, M. Yan, L. Xu, and J. Wen, “Improving deep-
learning-based fault localization with resampling,” Journal of Software:
Evolution and Process, vol. 33, no. 3, p. e2312, 2021.

[13] X. Li, W. Li, Y. Zhang, and L. Zhang, “DeepFL: Integrating multiple
fault diagnosis dimensions for deep fault localization,” in Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2019), 2019, pp. 169–180.

[14] J. Sohn and S. Yoo, “Fluccs: Using code and change metrics to improve
fault localization,” in Proceedings of the 26th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA 2017), 2017,
pp. 273–283.

[15] Z. Zhang, Y. Lei, X. Mao, M. Yan, L. Xu, and X. Zhang, “A study of
effectiveness of deep learning in locating real faults,” Information and
Software Technology, vol. 131, p. 106486, 2021.

[16] S. Pearson, J. Campos, and Just, “Evaluating and improving fault
localization,” in International Conference on Software Engineering,
2017.

[17] H. J. Lee, L. Naish, and K. Ramamohanarao, “Effective software bug
localization using spectral frequency weighting function,” in Proceed-
ings of the 34th Annual Computer Software and Applications Conference
(COMPSAC 2010),. IEEE, 2010, pp. 218–227.

[18] Y. Lei, X. Mao, M. Zhang, J. Ren, and Y. Jiang, “Toward under-
standing information models of fault localization: Elaborate is not
always better,” in The 41st Annual Computer Software and Applications
Conference(COMPSAC 2017), 2017, pp. 57–66.

[19] W. Zheng, D. Hu, and J. Wang, “Fault localization analysis based on
deep neural network,” Mathematical Problems in Engineering,2016, vol.
2016, pp. 1–11, 2016.

[20] C. Gong, Z. Zheng, W. Li, and P. Hao, “Effects of class imbalance in
test suites: An empirical study of spectrum-based fault localization,” in
Proceedings of the 36th Annual Computer Software and Applications
Conference Workshops, 2012, pp. 470–475.

[21] L. Zhang, L. Yan, Z. Zhang, J. Zhang, W. Chan, and Z. Zheng, “A
theoretical analysis on cloning the failed test cases to improve spectrum-
based fault localization,” Journal of Systems and Software, vol. 129, pp.
35–57, 2017.

[22] W. Jin and A. Orso, “F3: Fault localization for field failures,” in
Proceedings of the 2013 International Symposium on Software Testing
and Analysis, ser. ISSTA 2013. New York, NY, USA: ACM, 2013, pp.
213–223.

[23] ——, “Bugredux: Reproducing field failures for in-house debugging,”
in Proceedings of the 34th International Conference on Software Engi-
neering (ICSE), 2012.

[24] M. Soltani, P. Derakhshanfar, A. Panichella, X. Devroey, A. Zaidman,
and A. van Deursen, “Single-objective versus multi-objectivized opti-
mization for evolutionary crash reproduction,” in Search-Based Software
Engineering, T. E. Colanzi and P. McMinn, Eds. Cham: Springer
International Publishing, 2018, pp. 325–340.

[25] M. Soltani, P. Derakhshanfar, X. Devroey, and A. van Deursen, “A
benchmark-based evaluation of search-based crash reproduction,” Em-
pirical Software Engineering, vol. 25, no. 1, pp. 96–138, Jan 2020.

[26] M. Böhme, C. Geethal, and V.-T. Pham, “Human-in-the-loop automatic
program repair,” in 2020 IEEE 13th International Conference on Soft-
ware Testing, Validation and Verification (ICST), 2020, pp. 274–285.

[27] G. An and S. Yoo, “Human-in-the-loop fault localisation using efficient
test prioritisation of generated tests,” CoRR, vol. abs/2104.06641, 2021.

[28] B. Baudry, “Improving test suites for efficient fault localization,” in
International Conference on Software Engineering(ICSE 2006), 2006,
pp. 82–91.

[29] D. Hao, Y. Pan, L. Zhang, W. Zhao, H. Mei, and J. Sun, “A similarity-
aware approach to testing based fault localization,” in Ieee International
Conference on Automated Software Engineering (ASE 2005), 2005, pp.
291–294.

[30] Y. Lei, C. Sun, X. Mao, and Z. Su, “How test suites impact fault
localization starting from the size,” IET Software, vol. 12, no. 3, pp.
190–205, 2018.

[31] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on Knowledge and Data Engineering(TKDE), no. 9, pp.
1263–1284, 2008.

[32] B. Krawczyk, “Learning from imbalanced data: open challenges and
future directions,” Progress in Artificial Intelligence, vol. 5, no. 4, pp.
221–232, 2016.

[33] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmen-
tation for deep learning,” Journal of Big Data, vol. 6, no. 1, pp. 1–48,
2019.

[34] Y. Xian, T. Lorenz, B. Schiele, and Z. Akata, “Feature generating
networks for zero-shot learning,” in Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 5542–
5551.

[35] Y. Xian, S. Sharma, B. Schiele, and Z. Akata, “f-vaegan-d2: A feature
generating framework for any-shot learning,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 10 275–10 284.

[36] F. Zhou, S. Huang, and Y. Xing, “Deep semantic dictionary learning for
multi-label image classification,” The 35th AAAI Conference on Artificial
Intelligence (AAAI), 2021.

[37] C. Tantithamthavorn, A. E. Hassan, and K. Matsumoto, “The Impact of
Class Rebalancing Techniques on the Performance and Interpretation of
Defect Prediction Models,” IEEE Transactions on Software Engineering,
pp. 1–22, 2018.

[38] H. Wang, B. Du, J. He, Y. Liu, and X. Chen, “Ietcr: An information
entropy based test case reduction strategy for mutation-based fault
localization,” IEEE Access, vol. 8, pp. 124 297–124 310, 2020.

[39] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. Lecun, “What is the best
multi-stage architecture for object recognition?” in IEEE International
Conference on Computer Vision(ICCV 2010), 2010, pp. 2146 – 2153.

[40] Y. Lecun, F. J. Huang, and Bottou, “Learning methods for generic object
recognition with invariance to pose and lighting,” in Proceedings of
the 2004 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition(CVPR 2014), 2004, pp. II–97–104 Vol.2.

[41] R. R. H. Lee, R. Grosse and A. Ng, “Convolutional deep belief networks
for scalable unsupervised learning of hierarchical representations,” in
Proceedings of the 26th Annual International Conference on Machine
Learning(ICML 2009), 2009, pp. 609–616.

[42] J. D. N. Pinto, D. Doukhan and D. Cox, “A high-throughput screening
approach to discovering good forms of biologically inspired visual
representation,” in PLoS computational biology, 2009, p. vol.5.

[43] S. C. Turaga, J. F. Murray, V. Jain, F. Roth, M. Helmstaedter, K. Brig-
gman, W. Denk, and H. S. Seung, “Convolutional networks can learn to

209

generate affinity graphs for image segmentation,” Neural Computation,
vol. 22, no. 2, pp. 511–538, 2010.

[44] X. Xie, F. C. Kuo, T. Y. Chen, S. Yoo, and M. Harman, Provably
Optimal and Human-Competitive Results in SBSE for Spectrum Based
Fault Localisation. Springer Berlin Heidelberg, 2013.

[45] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
Synthetic minority over-sampling technique,” 2011.

[46] V. Debroy, W. E. Wong, X. Xu, and B. Choi, “A grouping-based
strategy to improve the effectiveness of fault localization techniques,”
in International Conference on Quality Software(QSIC 2010), 2010, pp.
13–22.

[47] L. C. Briand, Y. Labiche, and X. Liu, “Using machine learning to support
debugging with tarantula,” in The IEEE International Symposium on
Software Reliability(ISSRE 2007), 2007, pp. 137–146.

[48] Y. Lei, X. Mao, Z. Dai, and C. Wang, “Effective statistical fault local-
ization using program slices,” in Computer Software and Applications
Conference(COMPSAC 2012), 2012, pp. 1–10.

[49] G. W. Corder and D. I. Foreman, Nonparametric Statistics for Non-
Statisticians: A Step-by-Step Approach. International Statistical Review,
2010, vol. 78.

[50] H. Abdi, “The bonferonni and Šidák corrections for multiple compar-
isons,” Encyclopedia of measurement and statistics, vol. 3, p. 103–107,
2007.

[51] J. A. Jones, J. F. Bowring, and M. J. Harrold, “Debugging in parallel,” in
Proceedings of the 2007 International Symposium on Software Testing
and Analysis (ISSTA 2007). ACM, 2007, pp. 16–26.

[52] E. Wong, T. Wei, Y. Qi, and L. Zhao, “A crosstab-based statistical
method for effective fault localization,” in International Conference on
Software Testing, Verification, and Validation((ICST 2008), 2008, pp.
42–51.

[53] N. Japkowicz and S. Stephen, “The class imbalance problem: A sys-
tematic study,” Intelligent Data Analysis, vol. 6, no. 5, pp. 429–449,
2002.

[54] Y. Yu, “An empirical study of the effects of test-suite reduction on
fault localization,” in ACM/IEEE International Conference on Software
Engineering(ICSE 2009), 2009, pp. 201–210.

[55] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar: Revisiting
template-based automated program repair,” in Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2019, pp. 31–42.

210

