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Abstract—Logs are universally available in software systems
for troubleshooting. They record system run-time states and
messages of system activities. Log analysis is an effective way
to diagnosis system exceptions, but it will take a long time for
engineers to locate anomalies accurately through logs. Many
automatic approaches have been proposed for log-based anomaly
detection. However, most of the prior approaches did not con-
sider the corresponding system component of a log message.
Such component records the log location, which can help de-
tect the location-sequence-related anomalies. In this paper, we
propose LogC, a new Log-based anomaly detection approach
with Component-aware analysis. LogC contains two phases: (i)
turning log messages into log template sequences and component
sequences, (ii) feeding such two sequences to train a combined
LSTM model for detecting anomalous logs. LogC only needs
normal log sequences to train the combined model. We evaluate
LogC on two open-source log datasets: HDFS and ThunderBird.
Experimental results show that LogC overall outperforms three
baselines (i.e., PCA, IM, and DeepLog) in terms of three metrics
(precision, recall, and F-measure).

Index Terms—Anomaly Detection, Log Analysis, Deep Learn-
ing

I. INTRODUCTION

With software systems evolving to large-scale and complex

distributed systems, these systems often suffer from bugs

and vulnerabilities. Besides, these large-scale systems often

provide massive online services and application program in-

terfaces, which require high robustness and stability. But when

a system failure occurs (such as service fault and service

outage), multiple services may be affected by the failure,

which may lead to a significant loss of the system. The system

anomaly detection technique aims to locate these system

failures. Such a technique plays a vital role in system mainte-

nance. Timely and precise anomaly detection is necessary for

engineers to pinpoint causes promptly.

There are many types of data for anomaly detection and

troubleshooting in the system. Log data, which is univer-

sally available in most of the large-scale systems, have a

wealth of information and contain a record of critical sys-

tem states, events, and run-time messages. So system logs

become a central data source for anomaly detection. Log-

based anomaly detection has become a research question,

and many approaches [1]–[3] have been proposed. Generally,

these existing approaches first extract useful features from logs
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and then employ unique or universal detection algorithm to

locate anomalous logs. In the process, log feature selection

is vital because the representative features can reflect the

difference between regular logs and abnormal logs. However,

prior approaches did not consider components in logs when

building a log-based anomaly detection model. Components

record the location of logs and reflect the calling relationship

between system modules. Some system failures may result

in different component workflows that can be reflected in

logs, but they may hard to be detected through log template

sequences.

In this paper, we propose a new method, called LogC, which

utilizes component-aware analysis, to pinpoint abnormal log

sequences. Component-aware analysis is a mechanism that in-

tegrates the detection of abnormal component workflows. The

proposed method LogC first transforms unstructured log data

to log template sequences and component sequences. Then,

LogC trains two LSTM models from normal log template

sequences and component sequences, respectively. Finally,

LogC combines two LSTM models for anomaly detection. We

evaluate LogC over two log datasets following prior studies

[3], [4], and the results show the effectiveness of our method.

The main contributions of this paper are as follows:

• We propose a new log-based anomaly detection with

component-aware analysis: LogC. Experimental results

on two widely used log datasets show that LogC achieves

an F-measure of 0.949 on average, which outperforms

three baseline approaches.

• We investigate how LogC performs under different con-

figurations. Experimental results show that the threshold,

which determines the anomaly detection standard of

LogC, has a significant impact on the effectiveness of

LogC.

• The proposed component-aware analysis can be adapted

to other existing log-based anomaly approaches.

II. THE PROPOSED APPROACH

Overview. LogC aims to automatically and accurately de-

tect anomalous logs that reflected system failures. System logs,

which are printed by logging statements, can be separated

into several classes by their contents [5]. Each log contains

its component information that means which system modules

the log message belongs to. Our main idea is to improve the
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Fig. 1. The framework of LogC

Fig. 2. An example of an HDFS block

effectiveness of log-based anomaly detection through a com-

bined LSTM model considering component-aware analysis.

The architecture of our approach is shown in Figure 1. LogC

first extract templates and components from historical logs,

and then generate log sequences and component sequences.

Based on the combined LSTM model, LogC can identify

abnormal logs once a new log sequence and component

sequence are fed into the trained model.

To better demonstrate component-aware analysis, Figure 2

shows the workflow of an HDFS block (identified by block

IDs) containing several log messages, and the change of

component. In Figure 2, Et indicates a class of log templates.

“dfs.FSNamesystem” is a system component of the Hadoop

Distributed File System (HDFS). Some system failures may

result in different component workflows. These system failures

could be located by monitoring changes in the component

sequences. Thus we propose a combined model that can

process two types of sequences at the same time.

Log Feature Extraction. Logs are unstructured and contain

a wealth of information with free format. The purpose of log

parsing is to extract log keys, also known as log templates,

from log messages. To be more specific, every message can

be parsed into a kind of template with some parameters. For

example, according to Figure 1, we can extract block IDs and

IP address from HDFS logs.

In our approach, Drain [6] is applied to build log template

sequences from log data. Besides, we use regular expressions
to match components and HDFS block IDs.

Model Training. Suppose a system log file contains

n log templates L = {l1, l2, ..., ln} and m components

O = {o1, o2, ..., om}. Obviously, n ≥ m. Let mt

denotes the log message of time t. For example, giv-

ing a log message sequence M = {m1,m2,m3, ...,mt},
through log feature extraction, a new sequence Me =
{(c1, k1), (c2, k2), (c3, k3), ..., (ct, kt)} is generated. ct is a

component of mt at time t. kt is a log template of mt at

time t. The input of the combined LSTM model is a window

W of the h most recent log templates and components.

W = {(ct−h, kt−h), (ct−h+1, kt−h+1), ..., (ct−1, kt−1)},
where each pair (ct, kt) is extracted from log mes-

sage mt. For example, suppose a log sequence Me =
{(o1, l6), (o1, l4), (o4, l7), (o3, l22)}, window size h = 2,

then the training data are {(o1, l6), (o1, l4) → (o4, l7)},
{(o1, l4), (o4, l7)→ (o3, l22)}.

The combined model is a multi-class classifier, so the loss

function in training is cross-entropy. For the problem, cross-

entropy is used as the loss function for log key model and

component model, which is shown as follows:

loss = − 1

M

M∑

i=1

n∑

j=1

kj log(pj) (1)

M is the total number of training samples and n is the number

of types of log templates or components. kj is the real tag of

the log template or the component. pj is the probability value

of the log key j or the system component j. Adam algorithm

is applied to minimize the loss function.
Anomaly Detecting. LogC can run online. To confirm if

a log message mt is normal or abnormal, we send window

Mh = {mt−h,mt−h+1, ...,mt−1} to LogC. Firstly, these log

messages will be extracted to form structured data as the input

of the trained combined model. And the corresponding output

are two probability distributions Pl[lt|W ] = {l1 : pl1 , l2 :
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TABLE I
DETAILS OF THE DATASETS

Datasets Original logs Anomalies Anomalies(%)
HDFS 11,175,629 16838(blocks) 2.93

ThunderBird 3,992,351 162,953 4.08

pl2 , ..., ln : pln} and Po[ot|W ] = {o1 : po1 , o2 : po2 , ..., om :
pom}. Then our approach sorts the possible log templates L
and components O by the probabilities that are the outputs of

the softmax activation function.

If the real log template kt and component ct are not among

the top g log templates Lg and components Og with relatively

large probabilities, the real message mt will be treated as

an anomalous log. And an alarm of a system failure will

be generated. Specifically, there is a calculation process to

determine whether the log message mt is anomalous. We

define that rl is the prediction result of the log template of

mt, and ro is that of the component of mt. The final result

r = ro and rl. There is a special case that occurs when ro = 1
and rl = 0. The corresponding result r = 1. If r = 1, the log

message mt will be labeled as an anomalous log message.

III. EXPERIMENTAL SETUP

Research Questions. We design experiments to answer the

following research questions:

RQ1: How effective is LogC in detecting anomalous logs?
RQ2: How does LogC perform under different configura-

tions?
RQ3: How does the proposed component-aware analysis

perform by integrating other anomaly detection approaches?
Datasets and Setup. We use two open-source datasets to

evaluate our approach following prior studies [3], [4]. The

basic information of the datasets are reported in Table I. These

logs are from a distributed system and a high-performance

computer system. HDFS data are collected from more than 200

Amazon’s EC2 nodes. The dataset has been labeled by experts.

ThunderBird is an open-source log dataset collected from a

ThunderBird supercomputer system at Sandia National Labs.

It has more than two hundred million logs, and we choose the

top about four million log messages. The log contains alert

and non-alert messages identified by tags.

Preprocessing is needed to cut these long log sequences,

which are generated by large systems, into small ones [7]. In

the following experiments, on HDFS, We group log messages

into different sessions by block IDs and each session is a life

cycle of a block. There are 575,061 blocks in HDFS. We

leverage top about 1% normal logs as the training data (if

needed), and the rest as the testing data (both abnormal and

normal logs). On ThunderBird, we divide the dataset by fixed

windows because ThunderBird logs have no obvious identifier.

We label a session as abnormal if there is any anomalous log

in the session. Top 80% of the logs are selected as the training

data, and the rest are the testing data.

Baselines. We compare our approach with three baseline

methods. The detecting process of these methods are anal-

ogous. These detection methods include: PCA [3], IM [2],

DeepLog [1]. We implement our approach and DeepLog with

(a) Memory units: αk (b) Layers: Lk

Fig. 3. LogC performance with different αk and Lk on HDFS

Python 3.6 and PyTorch 1.2.0. As for PCA and IM, we use

an open-source toolkit provided by He et al. [5].

The Principal Component Analysis (PCA) groups log mes-

sages by special identifiers. Utilizing a log parsing method

and counter, it can get log template vectors from log sessions.

PCA detects an abnormal vector by calculating the projected

length on anomalous space.

Invariant Mining (IM) groups log messages according to the

relationship among log parameters. The approach can reveal

the inherent linear characteristics of event workflows by mined

invariants.

DeepLog is a state-of-the-art anomaly detection proposed

by Du et al. [1]. The approach performs well on multiple

datasets: HDFS, OpenStack and BGL. DeepLog aims to detect

sequential anomalies and parameter anomalies of log data

utilizing LSTM networks.

Evaluation Metrics. FP is the number of normal logs

(blocks) that are identified as abnormal logs (blocks). FN
means how many abnormal logs (blocks) are identified as nor-

mal logs. TP denotes the number of anomalous logs (blocks)

that are correctly identified. Anomaly detection is a binary

classification problem, so precision, recall and F-measure

are usually used as assessment criteria. Precision= TP
TP+FP ,

recall= TP
TP+FN , F-measure= 2·Precision·Recall

Precision+Recall .

IV. RESULTS

In this section, we present our experimental results by

answering the research questions mentioned in Section III.

A. RQ1: How effective is LogC in detecting anomalous logs?

Table II shows the results achieved by LogC. We evaluate

three baselines (i.e., PCA, IM, and DeepLog) and our approach

on two log datasets: HDFS and ThunderBird.

By default, we set gk = 9, hk = 10, Lk = 2, αk = 64 for

the log key model [1] and gc = 6, hc = 10, Lc = 1, αc = 64
for the component model. g determines the anomaly detection

standard of LogC. h denotes the window size. L is the number

of LSTM network layers and α denotes memory units of one

LSTM cell. The value of hk and hc must be equal.

As shown in Table II, our approach achieves a recall of

98.29% and an F-measure of 95.85% over the HDFS dataset.

PCA has the highest precision of 97.73% but at the cost of a

lower recall, which means that it achieves more false negatives.

In a large-scale system, for a log-based detection method, low

recall indicates that the monitoring ability of the detection
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TABLE II
RESULTS ON THE TWO DATASETS

Methods HDFS ThunderBird
Precision(%) Recall(%) F-measure(%) Precision(%) Recall(%) F-measure(%)

PCA 97.73 74.71 84.68 63.16 62.80 62.96
IM 73.22 100.00 84.54 59.18 90.34 71.52

DeepLog 93.37 91.15 92.25 96.40 90.47 93.34
LogC 93.53 98.29 95.85 95.83 92.03 93.89

(a) HDFS (b) ThunderBird

Fig. 4. The impact of h on the effectiveness of LogC

(a) HDFS (b) ThunderBird

Fig. 5. The F-measure of two approaches with different g, gk

module is feeble though it takes up specific system resources.

It is inefficient.

On ThunderBird dataset, there are more log templates and

components than that of HDFS. So we set gk = 45, gc =
15. And we reduce the size of window W by setting h = 4
because of the nature of ThunderBird logs. As illustrated in

Table II, Deeplog decreases F-measure by 0.55% and recall

by 1.56% compared to LogC.

In summary, our approach LogC achieves the best results on

the two log datasets in terms of F-measure. LogC has higher

values of recall compared to PCA and DeepLog, which means

LogC achieves less false negatives.

B. RQ2: How does LogC perform under different configura-
tions?

As discussed in Section II, LogC utilizes LSTM to learn

models of two kinds of sequences and uses a parameter

g(gk, gc) as the threshold. So we investigate the impact of

some critical parameters in LogC from two aspects. In each

experiment, we change the value of one parameter and fix the

values of the others to the default values as shown in RQ1.

Parameters in LSTM Network. These hyperparameters

contain: memory units αk, layers Lk, and window size h. As

can be seen from Figure 3, varying the value of Lk and αk

will not affect the performance of LogC much on HDFS. It is

the same on ThunderBird.

According to Figure 4(b), window size h has a significant

impact on the performance of LogC over ThunderBird. Further

(a) HDFS (b) ThunderBird

Fig. 6. The impact of gc on the effectiveness of LogC

TABLE III
RESULTS OF NEW METHODS ON HDFS AND THUNDERBIRD

Methods Datasets Precision(%) Recall(%) F-measure(%)

PCA-C HDFS 96.52 91.27 93.82
ThunderBird 64.99 77.60 70.76

IM-C HDFS 72.70 100.00 84.19
ThunderBird 60.03 93.60 73.15

research shows that the nature of the two types of logs is

different. If we adjust the value of gk and gc shown in RQ1,

LogC can achieves an F-measure of 86.56%. So threshold g
(gk, gc) plays a vitally important role in this case.

The Threshold in the Detection Stage. We investigate the

impact of g (gk, gc) on LogC over two datasets. According

to Figures 5(a) and 5(b), LogC performs better overall than

DeepLog in terms of F-measure. Threshold g in DeepLog and

threshold gk in LogC have the same meaning. In Figure 6(a),

F-measure changes dramatically because there only are few

components in HDFS logs. When we set gc = 3, the precision

of LogC is very low, which means a large number of normal

logs are identified as abnormal logs.

In conclusion, the threshold gc has a significant impact on

the effectiveness of LogC. Other parameters in LogC, have

little effect on LogC.

C. RQ3: How does the proposed component-aware analysis
perform by integrating other anomaly detection approaches?

To investigate the importance of component-aware analysis

and the effectiveness of the component model in LogC, we

combine the baselines (PCA and IM) with the component

model. The new methods are named PCA-C and IM-C.

The detection model of LogC is composed of DeepLog and

component model. We replace the log key model with the two

anomaly detection approaches [2], [3]. For each log session,

baselines and the component model give the prediction values,

respectively. And through the calculation mentioned in Section

II, the new methods output the final results.

We evaluate the two new approaches over the HDFS dataset

and ThunderBird dataset. As shown in Table III, compared

with the performance of baselines in Table II, the new methods

have higher values of recall and F-measure and perform better.
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However, we find that the results of IM-C on HDFS are

not as good as the previous method IM. Further research

shows that combining the component model is an effective

way to improve the recall of a detection method, but this

combination may slightly reduce the precision of the method.

In this case, IM achieves a recall of 100% on HDFS, so the

recall of IM cannot be improved. The results of PCA-C and

IM-C over ThunderBird verify the truth of our findings and

the effectiveness of component-aware analysis.

In summary, through integrating component-aware analysis,

baselines (i.e., PCA and IM) perform better in most cases.

However, LogC still outperforms the two new approaches (i.e.,

PCA-C and IM-C).

V. RELATED WORK

Log Parsing. Logs play an essential role in the development

and maintenance of large-scale systems. In recent years, many

efficient approaches have been proposed to parse system log

data based on frequent pattern mining and clustering. For

LenMa [8] and LogMine [9] methods, the clustering algorithm

was applied to parser system logs. Spell [10] was an online

streaming method that parsed system event logs through the

longest common subsequence. Drain method [6] utilized a

fixed depth parse tree to get structured data. In addition, some

industrial log management tools also have high efficiency

with powerful search technology and intelligent algorithm. Our

work applies Drain to parse logs because it performs well on

multiple log datasets [11].

Log-Based Anomaly Detection. A large number of detec-

tion methods were designed for specific systems, and many

studies so far has focused on log-based anomaly detection.

He et al. [5] provided a detailed review of log-based anomaly

detection. Usually, for anomaly detection approaches that view

a log file as a log sequence, it is essential to extract sequential

log information accurately. These approaches can be basically

classified into two categories: supervised anomaly detection

and unsupervised anomaly detection. Labeled training data is

the prerequisite of supervised methods [12], [13].

However, unlike supervised methods, unsupervised methods

do not need training data, so they are more suitable for a real-

world system environment [2], [3], [14]. In recent years, the

recurrent neural network (RNN) is widespread and achieves

excellent performance in sequence prediction. Researchers had

applied multiple types of RNN on log sequence anomaly

detection [1], [15], [16]. Our work also utilizes the LSTM

model but considers more features of logs.

There also exist other special anomaly detection methods.

Some approaches focused on workflow construction [17]–[20].

In addition, probabilistic analysis was also used to detect

anomalies through log data [21], [22].

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed LogC, a new log-based anomaly

detection approach combining component-aware analysis, to

help engineers to pinpoint anomalous logs. LogC first trans-

forms unstructured log data to log template sequences and

component sequences. With such two sequences, LogC trains

two LSTM models and combines them for anomaly detection.

Experimental results show that LogC outperforms three base-

lines (i.e., PCA, IM, and DeepLog) in terms of F-measure. In

the future, we will choose more features in log data and apply

Attention Mechanism to log sequence prediction.
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