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ABSTRACT
Data is the fuel to models, and it is still applicable in fault local-
ization (FL). Many existing elaborate FL techniques take the code
coverage matrix and failure vector as inputs, expecting the tech-
niques could find the correlation between program entities and
failures. However, the input data is high-dimensional and extremely
imbalanced since the real-world programs are large in size and the
number of failing test cases is much less than that of passing test
cases, which are posing severe threats to the effectiveness of FL
techniques.

To overcome the limitations, we propose Aeneas, a universal
data augmentation approach that generAtes synthesized failing
test cases from reduced feature space for more precise fault localiza-
tion. Specifically, to improve the effectiveness of data augmentation,
Aeneas applies a revised principal component analysis (PCA) first
to generate reduced feature space for more concise representation
of the original coverage matrix, which could also gain efficiency for
data synthesis. Then, Aeneas handles the imbalanced data issue
through generating synthesized failing test cases from the reduced
feature space through conditional variational autoencoder (CVAE).
To evaluate the effectiveness of Aeneas, we conduct large-scale ex-
periments on 458 versions of 10 programs (fromManyBugs, SIR, and
Defects4J) by six state-of-the-art FL techniques. The experimental
results clearly show that Aeneas is statistically more effective than
baselines, e.g., our approach can improve the six original methods
by 89% on average under the Top-1 accuracy.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.
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1 INTRODUCTION
1.1 Preliminary
Software debugging is a painstaking but important job for devel-
opers, which requires a significant level of time and energy. To
reduce the cost, various Fault localization (FL) techniques [21, 22,
30, 32, 36, 44, 51, 55, 67] have been proposed during the past several
decades. FL techniques provide automated ways to assist developers
in locating buggy lines that may cause unexpected outputs.
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Figure 1: The overall workflow of FL.

Figure. 1 shows the traditional workflow of FL. The raw data,
which includes the coverage matrix and failure vector, are collected
from runtime information when the program is executing the test
cases in the test suite. In the code coverage matrix, the rows and
columns correspond to the test cases and source code statements,
respectively. Each cell (i.e., denoted as 𝑥𝑖 𝑗 , where 𝑖 means 𝑖-th test
case, 𝑗 is the 𝑗-th statement) is assigned with the value of 1 if the
𝑗-th statement is executed in the 𝑖-th test case 1, and with the value
of 0, otherwise. For each test case, there is a testing result, which is
marked as 𝑦𝑖 in Figure 1, where 𝑖 means 𝑖-th test case. The value
of 0 will be assigned if the program functions correctly, and with
1We can also assign a decimal number to the values of the elements of a vector to
represent different weights (e.g., [28, 29]).
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the value of 1, otherwise. As we obtained the raw data, they serve
as the universal input for many FL techniques, such as the most
popular ones of spectrum-based fault localization (SFL) [2, 36, 55]
and deep learning-based fault localization (DLFL) [67, 69, 71].

SFL, as a classical localization approach, devises ingenious formu-
las that could assign each line of code a suspiciousness value. Many
formulas of SFL originate in the statistics, coefficient, or probability
related to the raw data [56]. Different from the intuitive SFL, DLFL
utilizes the learning ability of deep learning to construct a localiza-
tion model for each program, expecting the model could reflect the
complex nonlinear relationship between the statements and test
results. After the training process ends, a set of virtual test cases in
which each test case only covers one single statement will be fed
into the model [34, 54, 57, 64, 67, 70, 71]. The output of the model is
considered to be the suspiciousness of the corresponding covered
statement. Actually, the effectiveness of the model is closely related
to the sample data (i.e., the raw data). After we obtain the suspi-
ciousness of each statement from either SFL or DLFL, we can thus
rank the statements in descending order of their suspiciousness.

1.2 Motivation
From the pipelines of SFL and DLFL, we can observe that the effec-
tiveness of SFL andDLFL heavily relies on the statistical information
and quality of the input raw data. Nevertheless, the quality of raw
data poses severe threats due to the class-imbalanced test suite in
real-world programs. As presented in Table 1, we list the number of
total test cases and that of failing test cases for all faulty versions of
a subject program in column ‘# TT’ and column ‘# FT’, respectively.
The column ‘FT/TT’ calculates the ratio of the number of failing
test cases over that of all test cases. The values in column ‘FT/TT’
indicate that the failing test cases only take up a small proportion of
all test cases (i.e., less than 3% for most programs). In other words,
we face a between-class imbalance problem rooted in the nature of
real-world test suite. Furthermore, previous studies have found that
a class-balanced test suite is useful for fault localization [13, 65].

Table 1: Statistics of test cases and statements in representa-
tive benchmarks.

program # TT # FT FT/TT # TS # BS BS/TS
gzip 30 5 16.67% 8586 25 0.29%
libtiff 219 18 8.22% 29377 1571 5.35%
python 1,240 4 0.32% 14663 72 0.49%
space 461,890 71,935 15.57% 123,867 101 0.08%
Chart 4,799 92 1.92% 104738 64 0.06%
Closure 445,683 350 0.08% 2199631 431 0.02%
Math 18,245 176 0.96% 241423 407 0.17%
Lang 6,095 124 2.03% 52289 251 0.48%
Time 68,173 76 0.11% 139056 114 0.08%
Mokito 25,500 120 0.47% 67553 140 0.21%
TT: Total Test cases, FT: Failing Test cases, TS: Total executable Statements, BS:
Buggy Statements.

However, to the best of our knowledge, existing SFL and DLFL
techniques just take raw data as input and rarely take the imbal-
anced data problem into account, which may consequently cause
the ineffectiveness or inefficiency of their approaches. In addition,
generating test cases directly from inputs is nearly impossible due

to the complexity of the program. Thus, there is an urgent need to
tackle the class-imbalanced problem from a different perspective.

Recently, the utilization of deep learning techniques in FL indi-
cates that there are distinguished features (i.e., specific statements)
that can make a distinction more effectively between passing test
cases and failing ones than traditional SFL. Motivated by the exist-
ing DLFL techniques, we can take the coverage matrix and failure
vector as samples and labels in machine learning domain, respec-
tively. In other words, each test case corresponds to a sample and
each sample is composed of features (i.e., statements). In machine
learning, data augmentation is a commonly used solution to the
problem of limited data [42]. Oversampling augmentation is one
of the data augmentation approaches, which creates synthetic in-
stances by generative networks and adds them into the original
data. Inspired by the data augmentation approaches, we intend
to apply the generative networks to the raw data, expecting the
synthetic data could help to improve the effectiveness of SFL and
DLFL.

When considering the usage of the generative networks, we
found another important problem originated from the program size.
In common scenarios, real-world programs are large in size but
only several lines of codes or even one statement is responsible
for program failure. The low ratios between the number of buggy
statements and the number of total executable ones in Table 1 (i.e.,
the column ‘BS/TS’) confirm the issue. Mapping this situation to
feature space, the dimension of the data is high and there is only
a relatively small number of distinguished features. The previous
study [10] has shown that high-dimensional data in the input space
is usually not good for learning due to the curse of dimensionality.

1.3 Contributions
To deal with the above high-dimensionality and class-imbalanced
problems for better data augmentation, we propose Aeneas, a uni-
versal data augmentation approach that generAtes synthesized
failing test cases from reduced feature space for improving the uni-
versal FL input (i.e., the raw data). Specifically, Aeneas consists of
two stages for data augmentation, namely dimensionality reduction
and data synthesis.

Stage 1: Dimensionality reduction. A common way to solve
the high-dimensional problem is feature selection, which reduces
the dimensionality by selecting a subset of features from the input
feature set [14]. The dimensionality reduction aims at obtaining
reduced feature space for a better representation of the original
coverage matrix, while gaining effectiveness and efficiency. To
this end, Aeneas adopts a revised principal component analysis
(PCA) [46] for feature selection as the first stage.

Stage 2: Data synthesis. As for the challenge of imbalanced
data, a different way of handling this problem is that we can gen-
erate synthesized failing test cases. Concretely, each synthesized
failing test is an 𝑛-dimensional vector with positive label (i.e., value
of 1), where the value of 𝑛 is the number of statements. Thus, Ae-
neas adopts a widely used generative model conditional variational
autoencoder (CVAE) [45] to generate the specific class of data (i.e.,
failing test cases) until the class is balanced.

To the best of our knowledge, our study is the first ever to process
the raw data from the feature perspective in fault localization. We
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implement our approach and intend to make it universal to
all FL techniques that take the raw data as input. In summary,
this paper makes the following contributions:

1. A new perspective.We provide a novel insight that cover-
age matrix and failure vector in FL are equivalent to samples and
labels respectively in machine learning. Thus, we can apply dimen-
sionality reduction, feature selection, and other machine learning
algorithms to the coverage matrix.

2. A universal approach. We propose a universal data aug-
mentation approach, which can be useful for better localization
effectiveness. We tackle the imbalanced data problem with an idea
that generates synthesized failing test cases by using CVAE. Along
with this, we alleviate the high-dimensional issue by adopting a
revised PCA technique.

3. Large-scale experiments. We evaluate the effectiveness
of Aeneas across 458 versions of real-world programs and six
representative FL approaches (e.g., Dstar [55] and CNN-FL [67]),
and the results reflect the improvement of Aeneas over original
FL techniques and data sampling approaches.

The remainder of the paper is organized as follows. Section 2
introduces the preliminaries of our approach. Section 3 illustrates
our methodology in detail. Section 4 evaluates the effectiveness
of our approach, while Section 5 and 6 discuss the limitations and
related work, respectively. Finally, Section 7 concludes the paper.

2 BACKGROUND
2.1 Conditional Variational Autoencoder
In Section 1, we find that the test suite is imbalanced in real-
world programs. Thus, in this paper, we mainly focus on han-
dling the imbalanced data problem. Many studies deal with the
class-imbalanced problem by using different kinds of basic data
augmentation methods, such as flip, rotation, scale, crop, and trans-
lation [8, 26, 40, 48]. Later, researchers take advantages of gen-
erative models (e.g., generative adversarial networks, variational
autoencoders, and convolutional neural networks) for data aug-
mentation [5, 35, 37, 39, 43, 50, 58–60, 72, 73]. Xian et al. [59] use a
popular generative model named conditional generative adversarial
network (GAN) to generate features for zero-shot learning. Xian
et al. [60] propose a framework that combines GAN with another
powerful generative model named variational autoencoder (VAE)
to learn and generate the convolutional neural network features
for any-shot learning. These techniques, essentially, strengthen the
features of the small number of classes. Motivated by these works,
we are confident of generating synthesized failing test cases from
the coverage matrix.
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Figure 2: The difference between VAE and CVAE.

Variational autoencoder (VAE) is one of the most popular gener-
ative models, which aims at modeling the underlying probability

distribution of data so that it could sample new data from the distri-
bution. The structure of VAE network includes two parts, namely
encoder and decoder as presented in Figure 2 (the contents of the
red dotted rectangle are not included in terms of VAE). The encoder
part encodes input data into latent variables and the decoder part
generates data from the latent variables. Generally, the decoder
part could be used independently of the encoder part as long as the
model is well-trained, and we can generate new samples by feeding
the decoder a random noise vector. However, the labels of newly
generated samples are unknown if we just use a random noise vec-
tor as input. In our approach, the data we need is the synthesized
failing test cases, but VAE model could not determine the labels
of the new samples. Conditional variational autoencoder (CVAE) is
an extension of VAE, which can control the process of data gener-
ation. As shown in Figure 2, CVAE combines the input data and
latent variables with labels (i.e., conditional vector 𝑣 wrapped by red
dotted rectangle in Figure 2) in the training process, and then the
decoder parts can generate data according to given labels. In other
words, the label information is used both in the encoder module for
supervision and in the decoder module for guiding the generation.

2.2 Principal Component Analysis
Principal component analysis (PCA) [53] is a technique for ex-
ploratory data analysis, dimensionality reduction of large datasets,
and predictive models construction [20]. Since PCA is used in ex-
ploratory data analysis, we can do data visualization on coverage
matrix from a feature’s perspective. Concretely, we take the cov-
erage matrix as the input of PCA algorithm and set the number
of principal components to two. Finally, we have the data with
two dimensions, and we can visualize our data in the coordinate
system. Figure 3 shows the visualized plots of some subject pro-
grams we used in experiments. There are nine plots in Figure 3 and
each plot shows two dimensions (i.e., two principal components)
of the coverage matrix after applying PCA. Note that the two di-
mensions do not correspond to any original statements since new
dimensions are obtained by using the linear combination of the
original dimensions. In figure 3, the passing test cases are denoted
as blue dots, while the orange dots represent the failing test cases.
We can observe that the orange dots are well separated from blue
dots in these cases, which demonstrates that within the coverage
matrix, there are distinguished features that can make a distinction
between failing test cases and passing test cases.

From the above exploratory experiment, we notice that PCA is
a powerful method that can present intuitive figures of raw data.
On the other hand, the reduction process of PCA is to create new
variables that do not correspond to any original features. Thus, PCA
can not be directly used for FL since we need to locate the specific
statements (i.e., features), but this information is not preserved
by PCA. A revised PCA [46], which utilizes the core idea of PCA
for feature selection, can fill this gap, and the detail of steps are
described in Section 3.2.

3 METHODOLOGY
3.1 Overview
Given a faulty program 𝑃 with 𝑁 statements, it is executed by a
test suite 𝑇 with 𝑀 test cases, which contains at least one failing
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Figure 3: Data visualization for coverage matrix after apply-
ing PCA.

test case. According to the runtime information by executing all
the test cases, we can obtain the code coverage matrix 𝑋 with the
size of 𝑀 ∗ 𝑁 , and coverage vector 𝑋 (𝑖) represents the coverage
information of 𝑖-th test cases, 𝑖 ∈ {1, 2, ..., 𝑀}. By observing the
behavior of the program for each test case (e.g., comparing the
expected output and the actual one), we could deduce the value of
failure vector 𝑦, where 𝑦 (𝑖) means the label of 𝑖-th test cases. The
code coverage matrix 𝑋 and the failure vector 𝑦 are the inputs of
our approach.

Our approach includes two stages, namely dimensionality reduc-
tion and data synthesis in Figure 4. The first stage is dimensionality
reduction, which takes the coverage matrix 𝑋 as input and outputs
reduced coverage matrix𝑋𝑟𝑒𝑑𝑢𝑐𝑒 whose size is𝑀 ∗𝐾 (𝐾 < 𝑁 ) after
filtering out the potential irrelevant statements. The following data
synthesis stage will construct a generative model for the program.
In order to model the underlying probability distribution of data,
𝑋𝑟𝑒𝑑𝑢𝑐𝑒 and condition vector 𝑣 (i.e., one-hot vector of the corre-
sponding label) are used for the training process. The CVAE model
can capture the key latent variables and the decoder can sample
specific data by a random noise 𝑟 and given condition vector 𝑣 . The
generation process ends until the class is balanced, i.e., the number
of failing test cases is equal to that of passing test cases. Next, we
will depict the above steps in detail.

3.2 Dimensionality Reduction using Revised
PCA

We formally present the steps of dimensionality reduction in Figure
4 in this subsection. Algorithm 1 describes the process of feature
selection by revised PCA in detail. Besides the coverage matrix 𝑋 ,
another two compulsory parameters (i.e., the number of largest
eigenvalues 𝑚 and the number of principal components 𝐾) are
needed. The algorithm starts with calculating the covariance ma-
trix of 𝑋 and solves all the eigenvalues and eigenvectors of the
covariance matrix (lines 1 - 3). Then, we select the eigenvectors
corresponding to the first 𝑚 largest eigenvalues (line 4), i.e., we

obtain a 𝑁 ∗𝑚 size matrix𝑉 consists of𝑚 eigenvectors, each eigen-
vector has 𝑁 elements. Next, we compute the contribution values
(denoted as 𝑐) of each feature component by summing𝑚 elements
in every row of 𝑉 (lines 5 - 7). According to the contribution value
list 𝑐 , we sort 𝑐 in descending order and store indexes of them into
variable 𝑖𝐶𝑜𝑛𝑡𝑟𝑖𝑀𝑎𝑥 (line 8). Now the compulsory data are ready,
we can easily select 𝐾 statements according to 𝑖𝐶𝑜𝑛𝑡𝑟𝑖𝑀𝑎𝑥 and add
the selected column of 𝑋 into 𝑋𝑟𝑒𝑑𝑢𝑐𝑒 (lines 10 - 13). Finally, the
algorithm returns 𝑋𝑟𝑒𝑑𝑢𝑐𝑒 with the size𝑀 ∗ 𝐾 (line 14).

Algorithm 1 dimensionality reduction using revised PCA
Input:

coverage matrix with the size of𝑀 ∗ 𝑁 : 𝑋
number of largest eigenvalues:𝑚
number of principal components: 𝐾

Output:
reduced coverage matrix with size of𝑀 ∗ 𝐾 : 𝑋𝑟𝑒𝑑𝑢𝑐𝑒

1: 𝑐𝑜𝑣𝑋 = covariance matrix of original samples
2: 𝑒𝑖𝑔𝑒𝑛𝑉𝑒𝑐 = eigenvectors of 𝑐𝑜𝑣𝑋
3: 𝑒𝑖𝑔𝑒𝑛𝑉𝑎𝑙 = eigenvalues of 𝑐𝑜𝑣𝑋
4: 𝑉 = select the 𝑒𝑖𝑔𝑒𝑛𝑉𝑒𝑐 corresponding to the first 𝑚 largest
𝑒𝑖𝑔𝑒𝑛𝑉𝑎𝑙

5: for 𝑖 = 1; 𝑖 <= 𝑁 ; 𝑖 + + do
6: calculate contribution value: 𝑐𝑖 =

∑𝑚
𝑝=1 |𝑉𝑝𝑖 |

7: end for
8: 𝑖𝐶𝑜𝑛𝑡𝑟𝑖𝑀𝑎𝑥 = argmax(𝑐)
9: Initialize 𝑋𝑟𝑒𝑑𝑢𝑐𝑒 as None
10: for 𝑖 = 1; 𝑖 <= 𝐾 ; 𝑖 + + do
11: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 = select the 𝑖𝐶𝑜𝑛𝑡𝑟𝑖𝑀𝑎𝑥 [𝑖]-th column of

𝑋

12: add(𝑋𝑟𝑒𝑑𝑢𝑐𝑒 , 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 )
13: end for
14: return 𝑋𝑟𝑒𝑑𝑢𝑐𝑒

The number of principal components (i.e., K) is automatically
determined by comparing the number of executed statements with
all the faulty historical versions in our datasets. The key idea is: if
a faulty version has a larger number of executed statements, the
reduction ratio would be higher since there are usually several
faulty statements no matter what the size of executed statements
is. In detail, we divide all the faulty versions into ten equally sized
groups in descending order of the number of executed statements.
For the ten groups, we set the reduction proportion into ten values
of percentages (from group-1 with 5% to group-10 with 50%, in 5%
increments) to determine K.

3.3 Synthesizing Failing Test Cases using CVAE
The data synthesis stage has two main steps, i.e., a training step
and a generating step as shown in Figure 4. In the training step,
there are two structures called neural networks (NN) encoder and
NN decoder (wrapped by the dotted rectangle in Figure 5) because
they utilize the learning ability of neural networks.

For the training step (as shown in the top half of Figure 5) of the
data synthesis stage, the CVAE model takes the 𝑋𝑟𝑒𝑑𝑢𝑐𝑒 from the
filter stage as training samples. Given any index 𝑖 (𝑖 ∈ {1, 2, ..., 𝑀}),
the CVAE model first converts the corresponding label 𝑦 (𝑖) into
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one-hot vector 𝑣 (𝑖) and attaches it to the respective coverage vec-
tor 𝑋𝑟𝑒𝑑𝑢𝑐𝑒 (𝑖). Specifically, passing test case (i.e., value of 0) and
failing test case (i.e., value of 1) will result in one-hot vectors [1, 0]
and [0, 1], respectively. The coverage vector 𝑋𝑟𝑒𝑑𝑢𝑐𝑒 (𝑖) and the
corresponding one-hot vector 𝑣 (𝑖), as a whole, are the inputs of
our model. Followed by the combinational vector [𝑋𝑟𝑒𝑑𝑢𝑐𝑒 (𝑖), 𝑣 (𝑖)],
there are two convolutional layers (‘CL’ in Figure 5). Convolutional
layer with the filter can extract features from given data [4], and
many studies have fully explored the ability of feature extraction
of convolutional neural networks [12, 17, 19, 41, 66]. Since the test
cases are independent of each other, we take one-dimensional con-
volution layers, which the dimension of filter in each convolutional
layer is one.

Then, the second convolutional layer of NN encoder generates
the mean value𝑚 and standard deviation 𝜎 , which𝑚 controls the
value of latent variables and 𝜎 is used to compute the weights of
the noise vector. The noise vector 𝑡 comes from randomly sampled
from the Gaussian distribution. The encoder finally generates latent
variables 𝑧 by Equation 1 [9].

𝑧 =𝑚 + 𝑒𝜎 ∗ 𝑡 (1)

To avoid the value of weights 𝑒𝜎 infinitely close to 0 (i.e., 𝜎 is
negative infinity), the CVAE model sets a loss function named KLD
loss that could be calculated by Equation 2 [9].

𝐾𝐿𝐷𝑙𝑜𝑠𝑠 = −
∑︁

(1 + 𝜎 −𝑚2 − 𝑒𝑡 )/2 (2)

The NN encoder outputs latent variables 𝑧 and 𝑧 is the input of
the NN decoder. NN decoder also considers the condition vector 𝑣
that we mentioned above. For each training sample, the NN decoder
takes 𝑧 (𝑖) and 𝑣 (𝑖) as inputs and outputs the vector 𝑋𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 (𝑖)
that has the same dimension of 𝑋𝑟𝑒𝑑𝑢𝑐𝑒 (𝑖) through two convolu-
tional layers that are followed by active layers using 𝑅𝑒𝐿𝑈 [18].
Note that both NN encoder and NN decoder could have more than
two convolutional layers when considering different program size.
By calculating the mean squared error (MSE) of 𝑋𝑟𝑒𝑑𝑢𝑐𝑒 (𝑖) and
𝑋𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 (𝑖) by Equation 3 [9], we get another loss of the train-
ing process.

𝑀𝑆𝐸𝑙𝑜𝑠𝑠 =

∑𝐾
𝑗=1 (𝑋𝑟𝑒𝑑𝑢𝑐𝑒 (𝑖) − 𝑋𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 (𝑖))2

𝐾
(3)

The goal of the training step is to minimize the sum of 𝐾𝐿𝐷𝑙𝑜𝑠𝑠
and𝑀𝑆𝐸𝑙𝑜𝑠𝑠 . We use stochastic gradient descent to update network
parameters with batch size ℎ, which means for every step of the
training process, a ℎ ∗𝐾 matrix with the number of ℎ corresponding
one-hot vectors are fed into the network. In addition, we set the drop
rate as 25% to prevent from overfitting [47]. The network is trained
iteratively, and the training process will learn a trained model,
which can sample new data through the underlying probability
distribution.

The generating step (as shown in the bottom half of Figure 5)
takes advantage of the NN decoder that is separated from the well-
trained CVAE model. Specifically, we can generate synthesized
failing test cases 𝑋

′

𝑟𝑒𝑑𝑢𝑐𝑒
by feeding the NN decoder a random
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noise vector 𝑟 from Gaussian distribution and condition vector 𝑣 .
The conditional vector 𝑣 is set to [0, 1] because the class we need is
positive. The number of synthesized failing test cases remains to
be fixed in this step. Many studies have found that a class balanced
test suite is useful for fault localization [13, 65], and algorithms
with balanced data should generally surpass these with imbalanced
data in performance [15, 25]. Therefore, we synthesize failing test
cases until the test suite is class-balanced.

Finally, Aeneas takes 𝑋𝑟𝑒𝑑𝑢𝑐𝑒 and 𝑋
′

𝑟𝑒𝑑𝑢𝑐𝑒
as a whole for the

next FL techniques (e.g., SFL and DLFL) to address their imbalanced
data problem.

3.4 An Illustrative Example
Figure 6 shows an artificial example of a bug. The bug occurs at line
3 in which the number 0 in the ‘if’ statement should be 6 instead.
To locate the buggy line, there exists a category named SFL we
mentioned in Section 1. Here we use GP02 [62] for our motivat-
ing example. The cells below each statement indicate whether the
statement is covered by the execution of a test case or not (1 for
executed and 0 for not executed), and the rightmost cells represent
whether the execution of a test case is failing or not (0 for passing
and 1 for failing). We can observe that the original test suite has
six test cases, in which the test 𝑡1 and 𝑡6 are two failing test cases.
Aeneas will generate two more synthesized failing test cases (i.e.,
𝑡7 and 𝑡8) marked with pink in Figure 6.

The rows that start with "GP02", "feature selection", and "GP02
(Aeneas)" contain the results of original method, the method using
feature selection, and our approach, respectively. With the origi-
nal test suite, the ranking of suspicious faulty statements of GP02
is {𝑠7, 𝑠8, 𝑠9, 𝑠12, 𝑠10, 𝑠11, 𝑠14, 𝑠15, 𝑠16, 𝑠1, 𝑠2, 𝑠3, 𝑠13, 𝑠4, 𝑠5, 𝑠6}. The first
line marked with blue in Figure 6 shows the results of feature selec-
tion using the revised PCA, the sign of × means the corresponding
statement is filtered out. With the reduced feature space, the rank-
ing of suspicious faulty statements is {𝑠7, 𝑠9, 𝑠12, 𝑠10, 𝑠11, 𝑠1, 𝑠2, 𝑠3,
𝑠13, 𝑠4, 𝑠6, 𝑠5, 𝑠8, 𝑠14, 𝑠15, 𝑠16}. With the new test suite generated by
Aeneas, the ranking of suspicious faulty statements of GP02 is
{𝑠8, 𝑠9, 𝑠12, 𝑠7, 𝑠1, 𝑠13, 𝑠3, 𝑠2, 𝑠16, 𝑠14, 𝑠15, 𝑠10, 𝑠11, 𝑠5, 𝑠6, 𝑠4}. We can ob-
serve that GP02 ranks the faulty statements 𝑠3 as the 12th place and
after dimensionality reduction, the rank is 8th place. Aeneas ranks
the faulty statement 𝑠3 as the 4th place, showing better localization
results.

4 EXPERIMENT
To evaluate the statistical effectiveness of our approach, we have
integrated Aeneas into a pipeline that could rank the statements
by their suspiciousness. The code implemented in Python is
publicly available at github2.

Our experiment was conducted on a 64-bit Linux server with
16 Intel(R) Xeon CPUs and 128G RAM. The operating system is
Ubuntu 16.04.3.

4.1 Datasets
We evaluate Aeneas on 10 real-world programs with all real faults.
As presented in Table 2, we list some statistics of subject programs.

2The github repository for this study: https://github.com/ICSE2022FL/ICSE2022FLCode

Table 2: Subject programs

Program Versions LoC(k) Test Description
gzip 5 491 12 Data compression
libtiff 12 77 78 Image processing
python 8 10 355 General-purpose language
space 38 6 13,585 ADL interpreter
Chart 26 96 2,205 Java chart library
Closure 133 90 7,927 Closure compiler
Math 106 85 3,602 Apache commons-math
Lang 65 22 2,245 Apache commons-lang
Time 27 28 4,130 Standard date and time library
Mokito 38 67 1,075 Mocking framework for Java
Total 458 972 35,214 -

The space is collected from SIR 3, the gzip, libtiff and python are
collected from ManyBugs 4, while the other programs are from
Defects4J 5. These programs are commonly used for fault local-
ization. Note that it is time-consuming to collect inputs since the
programs of Defects4J are large in size, so we reuse the coverage
matrix collected by Pearson et al. [38].

4.2 Evaluation Metrics
For the evaluation process, we use the following widely used met-
rics:

• Number of Top-K [24]: It is the number of buggy versions
with at least one faulty statement that is within the first K
position of rank list by a FL technique. In previous study,
most respondents view a fault localization as successful only
if it can localize bug in the top 5 positions from practical
perspective [24]. Following the prior work [32, 44], we assign
K with the value of 1, 3 and 5 for our evaluation.

• Mean Average Rank (MAR) [32]: For a faulty version,
average rank is the mean rank of all faulty statements in
rank list. MAR is the mean average values for the project
that includes several faulty versions.

• Mean First Rank (MFR) [32]: It first computes the rank
that any of the statements is located first for a faulty version.
Then compute the mean value of the ranks for the project.

• Relative Improvement (RImp) [67]: It is to compare the
total number of statements that need to be examined to find
all faults using Aeneas versus the number that need to be
examined by using other fault localization approaches.

• Wilcoxon signed-rank tests (WSR) [52]: The metrics
above just compare the values by given a specific definition.
To evaluate the statistical significance of our results, we
adopt Wilcoxon signed-rank tests following prior studies [7,
27, 30, 67].

4.3 Research Questions and Results
4.3.1 RQ1. Howdoes Aeneas perform in localizing real faults
compared with original state-of-the-art FL techniques?

There are two major popular types of FL: spectrum-based fault
localizaiton (SFL) and deep learning-based fault localization (DLFL).

3https://sir.csc.ncsu.edu/portal/index.php
4https://repairbenchmarks.cs.umass.edu/
5https://github.com/rjust/defects4j
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Program Bug information

S1:Read(a,b,c)             S8: d2 = c+1;          S15:else {output(d2);

S2:d1=0,d2=0,d3=0     S9:if(a < 0){           S16:output(d3);}

S3:if(b < 0){                S10:a = a+c;}

S4:d1 = b;                    S11: else a = a+b;

S5:d2 = c;                    S12: d3 = a+1;}

S6:d3 = a;}                  S13:if(c>0){

S7:else {d1 = b+1;      S14:output(d1);}

t7 and t8 are new failing

tests generated by Aeneas. 

Then there are 4 passing test cases 

and 4 failing ones.

S3 is faulty.

Correct form: 

if(b<6){

test a, b, c S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 result

t1 -1, 5, 3 1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1

t2 -2, -7, 5 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0

t3 5, -6, -8 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 1 0

t4 -5, 8, -8 1 1 1 0 0 0 1 1 1 1 0 1 1 0 1 1 0

t5 4, 7, 11 1 1 1 0 0 0 1 1 1 0 1 1 1 1 0 0 0

t6 4, 2, -1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 1

GP02
susp 6 6 6 4.24 4.24 4.24 8.24 8.24 8.24 6.46 6.46 8.24 6 6.24 6.24 6.24 -

rank 10 11 12 14 15 16 1 2 3 5 6 4 13 7 8 9 -

feature 

selection

result √ √ √ √ √ √ √ √ √ √ √ -

rank 6 7 8 10 12 11 1 13 2 4 5 3 9 14 15 16 -

t7 - 0.89 0.90 0.90 0.35 - 0.35 0.66 - 0.65 0.38 0.30 0.68 0.87 - - - 1

t8 - 0.96 0.95 0.96 0.34 - 0.38 0.67 - 0.68 0.31 0.38 0.66 0.98 - - - 1

GP02

(Aeneas)

susp 9.71 9.71 9.72 5.62 0 5.68 10.90 0 10.90 7.85 7.82 10.93 9.70 0 0 0 -

rank 5 6 4 11 12 10 3 13 2 8 9 1 7 14 15 16 -

Figure 6: An example of our approach.

To evaluate the effectiveness of Aeneas, we use the six state-of-
the-art FL techniques and compare Aeneas with them. The six
techniques are listed as follows:

• Dstar6 [55],Ochiai [1] and Barinel [3] are three traditional
SFLmethods. Formore details about them, please refer to [56].

• MLP-FL [71], CNN-FL [67], and RNN-FL [69] are three
of the DLFL techniques, which utilize the multi-layers neu-
ral network, convolutional neural network, and recurrent
neural network for localization. The source code of MLP-FL,
CNN-FL and RNN-FL are not public available, so we first
acquire the source code of CNN-FL from the authors and
then implement MLP-FL and RNN-FL based on the source
code of CNN-FL.

We choose MLP-FL, CNN-FL, and RNN-FL as our baseline for
the following two reasons. First, our work focuses on statement-
level FL whereas many recent DLFL baselines (e.g., DeepFL [30],
FLUCCS [44], and TraPT [31]) belong to a different topic, i.e.,method-
level FL. Second, since our approach only relies on the raw data of
test cases, we select baselines that only take the raw data of test
cases as inputs without relying on complex source code structure
(e.g., AST) analysis, which might increase the difficulty to use it in
practice when the size of project is large. Thus, we do not include
them (e.g.,DEEPRL4FL [32]) as baselines. In such baselines, the data
augmentation approach would be another topic which should con-
sider other structures (e.g., data-flow graph and AST) to generate
samples.

As a reminder, in our evaluation, when several statements have
the same suspiciousness value, we adopt the statement order based

6The ‘*’ in Dstar formula is usually assigned to 2.

strategy [63] that we sort the statements in ascending order accord-
ing to the line number.

Table 3: The results of TOP-1, TOP-3, TOP-5, MAR, and MFR
by comparison of original method and Aeneas.
metric scenario Dstar Ochiai Barinel RNN-FL MLP-FL CNN-FL

MFR origin 448.23 464.89 485.80 1311.63 1816.47 773.57
Aeneas 361.08 333.82 332.54 376.03 334.78 417.56

MAR origin 828.84 792.77 807.64 1690.55 2165.98 1167.79
Aeneas 714.05 631.79 611.82 638.54 594.88 767.40

TOP-1 origin 42 42 38 9 9 31
Aeneas 45 45 42 15 46 45

TOP-3 origin 98 98 86 33 24 71
Aeneas 98 99 99 48 98 98

TOP-5 origin 120 122 116 52 30 81
Aeneas 127 127 131 73 127 128

As presented in Table 3, we list the data under Top-1, Top-3, Top-
5, MAR, andMFRmetrics.We can observe thatAeneas outperforms
the original baseline at most cases among six FL approaches. For
instance, when examining the Top-1, Top-3, and Top-5 metrics of
MLP-FL, the number of bugs thatAeneas can locate is 46, 98 and 127
respectively, which means Aeneas improves recall at Top-1, Top-3,
and Top-5 by 411%, 308%, and 323% in comparison with original
MLP-FL. Especially, the improvement observed in the experiments
through applying Aeneas on DLFL is more than that on SFL. There
are two possible reasons for this. Firstly, the bugs in Defects4J take
themost proportion of all bugs and ranks onmany faulty versions in
Defects4J are already at the top by using Dstar, Ochiai, and Barinel.
Secondly, Aeneas reformulates the data imbalance problem as data
augmentation from the feature perspective in machine learning
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domain, which may have more positive influence on deep learning-
based approaches.

Note that the experiment results of original DLFL approaches un-
derperform that of the traditional SFL approaches. The work [16]
has shown that traditional FL approaches (e.g., Ochiai) perform
extremely well on the widely used Defects4J, leading to a bench-
mark overfitting problem. In fact, for other datasets, DLFL actually
performs better [69]. Despite the effectiveness of original DLFL is
less than that of original SFL in our experiment, we also take into
account various kinds of DLFL approaches considering that the aim
of our work is to propose a universal data augmentation approach.

When considering the MAR and MFR metrics, the rank of Ae-
neas is lower than that of baselines for all six FL techniques, which
indicates that we can always locate buggy line first and find all
buggy lines with the least effort. Take Barinel as an example, the
original method will examine 485.80 lines on average to find the
first bug in all fault versions (i.e., MFR), while our approach only
checks 332.54 lines of code, 68.45% (332.54/485.80) of the original
method.

To evaluate the effectiveness of Aeneas, we adopt the afore-
mentioned metrics and the results demonstrate our approach out-
performs the baselines. However, these metrics fail to get a statis-
tical comparison of our method. Therefore, we adopt the paired
Wilcoxon signed-rank tests (WSR), which is a more rigorous and
scientific metric at the statistical level. Given independent samples
(𝑥𝑖 , 𝑦𝑖 ), 𝑖 ∈ [1, 𝑛] from a bivariate distribution (i.e., paired samples),
WSR computes the difference 𝑑𝑖 = 𝑥𝑖 − 𝑦𝑖 and gives the 𝑝-values.
One assumption of the test is that the differences are symmetric.
The two-sided test has the null hypothesis that the median of the
differences is zero against the alternative that it is different from
zero. The one-sided test has the null hypothesis that the median
is positive against the alternative that it is negative, or vice versa.
If the 𝑝-value that calculated by WSR is greater than the given
significant level 𝜎 , it can be concluded that we can reject the null
hypothesis.

Table 4: Statistical comparison of Aeneas and the original
methods.

comparsion greater less two-sided conclusion
Dstar(Aeneas) v.s. Dstar 1 1.26E-20 2.53E-20 BETTER
Ochiai(Aeneas) v.s. Ochiai 1 2.96E-19 5.91E-19 BETTER
Barinel(Aeneas) v.s. Barinel 1 5.77E-34 1.15E-33 BETTER
RNN-FL(Aeneas) v.s. RNN-FL 1 8.92E-46 1.78E-45 BETTER
MLP-FL(Aeneas) v.s. MLP-FL 1 2.90E-55 5.81E-55 BETTER
CNN-FL(Aeneas) v.s. CNN-FL 1 1.49E-38 2.97E-38 BETTER

In our experiment, we use both two-sided and one-sided to check
at the 𝜎 level of 0.05. For all faulty versions in the dataset, we use
the list of the rank that locates the first bug by using Aeneas as the
list of 𝑥 , while 𝑦𝑖 is the element in the list of ranks using original
baselines. Table 4 shows the statistical results of WSR, in which
the columns ‘greater’, ‘less’ and ‘two-sided’ are the 𝑝-values. The
column ‘greater’ gives the assumption that the median of 𝑥𝑖 − 𝑦𝑖 is
greater than zero, but the 𝑝-values in column ’greater’ is greater
than 𝜎 , which denotes the hypothesis that ranks using Aeneas is
greater than the ones using original baselines is rejected. That is to
say, the number of lines of code to be examined by using Aeneas
is less than that by using original methods. From the perspective of

the statistics, we can observe that Aeneas obtains BETTER results
in six FL techniques.

We also analyze the improvement in terms of MAR/LoC value
for a faulty version, where the ‘LoC’ means executable lines of
code for the faulty version. Figure 7 presents the distributions of
MAR/LoC values of six FL techniques for all faulty versions. For
all six FL techniques, we can observe that Aeneas outperforms the
original methods, especially DLFL methods.

Figure 7: Boxplot of MAR/LoC values of Aeneas and original
methods.

Summary for RQ1 In RQ1, we explore the effectiveness of Aeneas
over original method. The results show that our method statistically
outperforms original method, especially DLFL techniques, which
indicates that the neural network model is greatly limited by the
imbalanced input data.

4.3.2 RQ2. How effective is Aeneas compared with the data
resampling and undersampling approaches?

In addition to the origin methods, we also compare our approach
with resampling technique [11, 65, 68] and undersampling tech-
nique [49], which aim at obtaining class-balanced data by repli-
cating minority samples and removing the majority samples, re-
spectively. For more details about oversampling technique and
undersampling technique, please refer to Gao et al. [11] and Wang
et al. [49], respectively.

As seen in Table 5, Aeneas also improves over the resampling
and undersampling baselines. From the table, we can clearly find
thatAeneas can achieve very promising overall fault localization re-
sults than undersampling and resampling techniques. For instance,
Aeneas is able to locate 45, 98, and 127 faults within Top-1, Top-3,
and Top-5 metrics when using Dstar. Apart from the Top-K met-
rics, the MAR and the MFR of Aeneas are also the best among the
studied approaches.

Although the metrics above can show detailed values, they miss
the statistical information. We also use Wilcoxon-Signed-Rank Test
to evaluate the effectiveness of Aeneas over that of the other
data sampling techniques. Table 6 shows the statistical results of
Aeneas over data undersampling and resampling techniques in
three SFL techniques and three DLFL techniques. The ‘conclusion’
column gives the conclusion according to 𝑝-value. For example, in
comparison to the resampling technique of Ochiai, the 𝑝-value of
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Table 5: The results of TOP-1, TOP-3, TOP-5, MAR and MFR
by comparison of sampling methods and Aeneas.
metric scenario Dstar Ochiai Barinel RNN-FL MLP-FL CNN-FL

MFR
re 469.13 482.16 485.74 559.45 492.56 518.63

under 542.27 532.65 555.53 603.30 976.93 944.11
Aeneas 361.08 333.82 332.54 376.03 334.78 417.56

MAR
re 867.75 829.70 807.57 909.24 835.36 912.13

under 968.79 932.62 940.10 988.45 1533.47 1485.77
Aeneas 714.05 631.79 611.82 638.54 594.88 767.40

TOP-1
re 40 40 38 9 40 40

under 18 18 16 18 14 19
Aeneas 45 45 42 15 46 45

TOP-3
re 90 91 86 38 89 90

under 46 46 38 37 36 46
Aeneas 98 99 99 48 98 98

TOP-5
re 114 114 115 60 114 114

under 65 65 58 58 49 64
Aeneas 127 127 131 73 127 128

‘re’ means resampling and ‘under’ means undersampling

Table 6: Statistical comparison of Aeneas and the data sam-
pling approaches.

method comparison greater less two-sided conclusion

Dstar undersampling 1 3.05E-40 6.10E-40 BETTER
resampling 1 1.37E-32 2.74E-32 BETTER

Ochiai undersampling 1 2.01E-35 4.01E-35 BETTER
resampling 1 5.64E-34 1.13E-33 BETTER

Barinel undersampling 1 2.85E-40 5.71E-40 BETTER
resampling 1 4.87E-34 9.74E-34 BETTER

RNN-FL undersampling 1 1.43E-50 2.86E-50 BETTER
resampling 1 8.32E-39 1.66E-38 BETTER

MLP-FL undersampling 1 6.81E-44 1.36E-43 BETTER
resampling 1 1.77E-38 3.54E-38 BETTER

CNN-FL undersampling 1 3.23E-23 6.46E-23 BETTER
resampling 1 1.42E-51 2.84E-51 BETTER

greater, less, and two-sided are 1, 5.64E-34, and 1.13E-33 respectively.
According to the definition of WSR, it means that the MFR value
of Aeneas is less than that of the resampling technique, leading
to a BETTER result. From the table, we can observe that Aeneas
outperforms others data sampling techniques in almost all cases.

Figure 8 visualizes the distributions of MAR/LoC values of six
FL techniques for all faulty versions in three scenarios (i.e., the
resampling technique, the undersampling technique, and our ap-
proach). For all six FL techniques, we can observe that Aeneas
outperforms other scenarios. Especially in the undersampling tech-
nique, the improvement is more significant compared to resampling
technique.

Summary for RQ2 In RQ2, we make comparison between Aeneas
and other data sampling techniques, i.e., data resampling and data
undersampling. Based on all experimental results, we can find that
resampling technique is much better than undersampling technique
since data undersampling technique will drop a lot of useful infor-
mation. Further, we can observe that Aeneas is more effective over
both the data resampling and undersampling techniques.

Figure 8: Boxplot of MAR/LoC values of FL techniques in 4
scenarios.

4.3.3 RQ3. Is each stage of Aeneas necessary for the capabil-
ity of Aeneas?

SinceAeneas is a two-staged (i.e., dimensionality reduction stage
and data synthesis stage) data augmentation approach, it is natural
to explore the capability of each stage. Thus, we conduct ablation
experiments to explore the contributions of each stage. In order to
answer this RQ, we implement the approach with only dimensional-
ity reduction stage and that with only data synthesis stage, and we
named them asAeneas𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 andAeneas𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 respectively.
We use RImp as our metric to demonstrate the contributions of each
stage of Aeneas. More specifically, we calculate the RImp values
of Aeneas,Aeneas𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 method andAeneas𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 method
over original method.

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Dstar

Ochiai

Barinel

RNN-FL

MLP-FL

CNN-FL

synthesis reduction Aeneas

Figure 9: The comparison of Aeneas, Aeneas𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 method
and Aeneas𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 method over original method under
RImp metric.

Figure 9 shows the results of the comparison of the three sce-
narios over original method under RImp metric. As we can see in
this figure, the improvement of only one stage is relatively small
than our two-stage method Aeneas. Take Ochiai as example, the
RImp value of Aeneas𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 is 86.80%, that of Aeneas𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠
is 94.17%, while that of Aeneas is 79.69%. The results show that
the dimensional reduction stage and data synthesis stage both con-
tribute to Aeneas. The reason may be that the reduced feature
space from feature selection can make a better representation than
raw data. Therefore, the generative model can obtain well-trained
parameters that can help to generate more robust negative samples,
which are beneficial to locate bugs.
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Summary for RQ3 In RQ3, we explore the capability of each stage
of Aeneas, our experimental results show that the dimensional
reduction stage and data synthesis stage both contribute to our
proposed method.

5 DISCUSSION
5.1 Reasons for Non-improvement
Already/nearly balanced data. We observe that if the test suite
of a program is already balanced or nearly balanced, Aeneas will
have limited effect on the program. Chart-25 7 in Defects4J is an
illustrative example of such case. This faulty version has four bugs
that all belong to 𝑁𝑢𝑙𝑙𝐶ℎ𝑒𝑐𝑘 category. Correspondingly, there exist
four triggering test cases (i.e., testDrawWithNullMeanVertical, test-
DrawWithNullDeviationVertical, testDrawWithNullMeanHorizontal
and testDrawWithNullDeviationHorizontal). The code coverage ma-
trix collected by Pearson et al. [38] consists of only nine rows,
five for passing test cases and four for failing test cases. Thus, the
raw data is nearly balanced in this case. Finally, the original Dstar
method just gives the rank of 3133 and both the resampling tech-
nique and Aeneas can not improve the rank greatly. There are
eight (about 2%) versions that are already/nearly balanced in our
experiments. For the eight versions, the improvement is less than
3% (under the MFR metric) on average.
Multiple faults.We also take Chart-25 as the example. For each
triggering test case in Chart-25, the program failed due to the dif-
ferent root causes. This indicates the features that are responsible
for failures are distributed. We conduct an extensive experiment on
this faulty version. Concretely, we isolate each failing test case, and
then we get five passing test cases and one failing test case as input.
The rank of Aeneas in such case is 163, revealing a considerable im-
provement. We further check the original test cases from Defects4J
benchmark, and Defects4J reported 3234 test cases for Chart-25
in total. In other words, the number of lines in the code coverage
matrix collected by Pearson et al. [38] is inconsistent with that of
original test cases. The reason is that they only apply fault-relevant
classes to reduce CPU costs. Applying only fault-relevant classes
indeed saves CPU costs, nevertheless, it drops a huge amount of
useful information that may contribute to the effectiveness of fault
localization.

5.2 The Imbalanced Levels Distribution of
Subject Programs

In this subsection, we intend to explore the relationship between
the extent of improvement and different levels of imbalance.

He et al. [15] reported the ratios of 100:1, 1,000:1, and 10,000:1
between majority class and minority class could be viewed as imbal-
anced data. Since the number of test cases of our subject programs
is no more than 10,000, we set three imbalanced levels of subject
programs, in the order of their appearance in the sequence: upper
level indicates more balanced data.

(1) Ratio that is greater equal than 0.01.
(2) Ratio that is less than 0.01 and greater equal than 0.001.
(3) Ratio that is less than 0.001 and greater equal than 0.0001.

7https://github.com/rjust/defects4j/blob/master/framework/projects/Chart/patches
/25.src.patch
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Figure 10: The distribution of imbalanced levels for each
subject program.

For each subject program, we count the percentage of each level
as shown in Figure 10. In Figure 10, the bar for each subject program
indicates the distribution of different imbalanced levels. We count
the number of passing test cases and that of failing test cases for
a faulty version of a subject program first. Then, we calculate the
imbalanced ratios of each faulty version and count the number of
ratios in listed intervals. Finally, we could get the percentage of each
level for a subject program. Take 𝑀𝑎𝑡ℎ as an example, there are
106 bugs and the numbers of ratios of three imbalanced levels are
74.53% (79/106), 21.70% (23/106), and 3.77% (4/106) respectively. The
programs in Figure 10 are sorted from left to right in descending
order according to imbalanced level (1).

In order to explore the relationship between the different levels
of the imbalance and the extent of improvement. We define a met-
ric named Improvement Ratio (ImpR) and the ImpR is defined as
follows.

𝐼𝑚𝑝𝑅 =
𝑀𝐴𝑅𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 −𝑀𝐴𝑅Aeneas

𝑀𝐴𝑅𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
(4)

A higher value of ImpR shows better improvement of our approach.
We calculate the values of ImpR based on RNN-FL method and
the ImpR value increases as the proportion of imbalanced level (1)
decreases. In other words, our method is more effective in more
imbalanced data.

5.3 Threats to Validity.
Integrity and validity of raw data. We collect the raw data of
Defects4J by using the results of Pearson et al. [38] for convenience
instead of executing test cases to collect coverage matrix and failure
vector. But this may introduce the problems of data integrity and
validity. As we mentioned before, Pearson et al. [38] applied each
fault localization technique only to the fault-relevant classes, which
directly result in the data integrity problem compared to applying
all test cases. We should further spend more CPU costs to collect
more complete data before we conduct the experiment. Another
problem is data validity. Pearson et al. [38] used an improved ver-
sion of GZoltar [6] that relies heavily on the configurations and
the local environment. Even at the same computer with the same
configurations, the coverage matrices of two independent runs may
differ from each other. A more stable version of GZoltar should be
used for collecting raw data.
Implementation of baselines and our method. Our implemen-
tation of baselines and Aeneas may potentially include bugs. We
first implement the Dstar, Ochiai, and Barinel according to the for-
mulas and then test those methods by hand-made test cases for their

57

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on February 09,2023 at 02:15:03 UTC from IEEE Xplore.  Restrictions apply. 



A Universal Data Augmentation Approach for Fault Localization ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

correctness. As for RNN-FL, MLP-FL, and CNN-FL, we first acquire
the source code of CNN-FL from the authors and then implement
MLP-FL and RNN-FL based on the source code of CNN-FL. How-
ever, neural networks require many parameters for construction,
such as the units of the hidden layer, the number of the layers, batch
size, learning rate, and optimizer. That is, the details of RNN-FL,
MLP-FL, and CNN-FL may differ from the original paper. Apart
from the implementation of baselines, we implement our pipeline of
dimensional reduction, test cases synthesis, and fault localization as
different modules, which may also contain bugs. To mitigate those
threats, our six team members check our code implementation
rigorously and make all relevant code publicly available.
Generalizability of the results. Our comparison was only con-
ducted on real faults of Defects4J, SIR, andManyBugs dataset. Those
datasets are widely used in fault localization research. In recent
years, Defects4J is a popular dataset for both fault localization and
automated program repair. However, in the early years, the fault
localization studies frequently used Siemens suite and other C pro-
grams with small size [56]. Thus, it is unknown that whether our
approach is also effective or not on these programs and other pro-
grams with imbalanced test cases. Further, experiments on other
datasets should be carried out to migrate this threat.

6 RELATEDWORK
Spectrum-based fault localization. In recent years, fault localiza-
tion (FL) has been intensively studied. Spectrum-based FL (SFL) is
one of the typical localization methods. SFL (such as Tarantula [23],
Dstar [55], Ochiai [36], Barinel [3], Jaccard [2]) locates bugs from
statistical analysis under the assumption that a program entity (e.g.,
statement, method or class) executed by more failing test cases and
not executed by passing test cases is more suspicious. Followed by
this, SFL is usually lightweight, straightforward, and effective.
Deep learning-based fault localization. Deep neural networks
have shown to be promising in many research areas due to their
powerful learning ability. Researchers have reformulated the FL
as learning the relationship between program entities and failures.
BP neural network-based FL [57], MLP-FL [71] and CNN-FL [67]
directly use raw data as training data. DEEPRL4FL [32] devises an
enhanced coverage matrix and adopts a test case ordering technique
to fully explore the learning ability of the convolutional neural net-
work. Other FL techniques, such as DeepFL [30], FLUCCS [44], and
TraPT [31], combine more information for more precise localization.
ABLFL [61] takes more comprehensive features, i.e., statistical infor-
mation (e.g., number of strings, number of integers, and number of
operators), semantic information (e.g., code complexity and textual
similarity), and dynamic information (e.g., coverage matrix, stack
trace, and dynamic program slice), into account for localization.
Generally, one method with more information tends to be more
effective and less efficient than that with less information. However,
the effectiveness also relies on the structure of neural networks and
the quality of input data.
Other advanced fault localization techniques. In recent years,
there are more advanced FL techniques that leverage various useful
approaches. Here are some examples. Automated program repair
(APR) has been an essential research topic and FL is a crucial start
in APR pipeline. Lou et al. [33] improved FL at method level by
leveraging the patch execution information of APR techniques as

feedback. In this work [27], they combine causal inference tech-
niques and machine learning to estimate the failure-causing effect
of statements.

For more information about different types of fault localization
techniques, please refer to Wong et al. [56].

7 CONCLUSION
In this paper, we proposeAeneas, a universal data augmentation ap-
proach that aims at improving the effectiveness of fault localization
approaches. Aeneas is a novel approach to handle the problems
of high-dimensional and extremely imbalanced data by feature
selection and data synthesis, respectively. Our key ideas include
(1) treating coverage matrix and failure vector as samples and la-
bels; (2) reformulating the test cases generation problem as a data
augmentation problem; (3) tackling the high-dimensional and class-
imbalanced problem by feature selection and data synthesis; More
concretely, we use a revised PCA technique for feature selection
and a promising generative model CVAE for data synthesis. In the
CVAE model, we use convolutional layer as its component due to
its effectiveness at extracting features. We have implemented our
method and integrated it into the FL pipeline. Further, we evaluated
Aeneas on the parts of ManyBugs, SIR, and Defects4J and the ex-
perimental results show that our method statistically outperforms
the baselines and other data sampling techniques. In future work,
we intend to use more subject programs and replace CVAE by more
powerful generative models.
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