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ABSTRACT

Program classification can be regarded as a high-level abstrac-

tion of code, laying a foundation for various tasks related to source

code comprehension, and has a very wide range of applications in

the field of software engineering, such as code clone detection, code

smell classification, defects classification, etc. The cross-language

program classification can realize code transfer in different pro-

gramming languages, and can also promote cross-language code

reuse, thereby helping developers to write code quickly and reduce

the development time of code transfer. Most of the existing stud-

ies focus on the semantic learning of the code, whilst few studies

are devoted to cross-language tasks. The main challenge of cross-

language program classification is how to extract semantic features

of different programming languages. In order to cope with this diffi-

culty, we propose a Unified Abstract Syntax Tree (namely UAST in

this paper) neural network. In detail, the core idea of UAST consists

of two unified mechanisms. First, UAST learns an AST representa-

tion by unifying the AST traversal sequence and graph-like AST

structure for capturing semantic code features. Second, we con-

struct a mechanism called unified vocabulary, which can reduce the

feature gap between different programming languages, so it can

achieve the role of cross-language program classification. Besides,

we collect a dataset containing 20,000 files of five programming

languages, which can be used as a benchmark dataset for the cross-

language program classification task. We have done experiments on

two datasets, and the results show that our proposed approach out-

performs the state-of-the-art baselines in terms of four evaluation

metrics (Precision, Recall, F1-score, and Accuracy).
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1 INTRODUCTION

Program classification is aiming to automatically classify pro-

grams according to their functions or semantics. As one of the

primary means of facilitating program comprehension, program

classification nowadays has been widely employed in a variety

of different tasks such as code clone detection [3, 5, 7], defect de-

tection and identification [28, 42], and code search [25], etc. The

benefits of program classification have been generally recognized

and valued, program classification has long relied on manual classi-

fication, which is very time-consuming and error prone. In recent

years, more and more researchers have paid attention to source

code-oriented program comprehension, as source codes are the

most natural representation of programs. Moreover, source codes

are well-structured, are ideal to support automating program com-

prehension.

Cross-language program classification refers to how programs

written in different programming languages can be classified by

their functions according to the structure and semantics of their

codes. For example, although the code structure and logic of "quick

sort" written in C++ and "bubble sort" written in Python is imple-

mented differently, they are both sorting algorithms in essence,

so they should be classified as codes of the same function. Conse-

quently, cross-language program classification can reduce the time

to implement programs of the same function in different languages,

and can also promote cross-language code reuse, thereby helping

developers write code quickly and reduce development time for

code transfer.

However, it is challenging to capture code semantics efficiently

and accurately. Moreover, considering that different programming

languages have different grammatical rules and coding features,

it is even more difficult to accurately extract cross-language code

semantics. In terms of the extraction of code semantic information,

Li et al. [29] and Harer et al. [21] use tokens to generate embed-

ded vectors and feed them into neural networks for code feature

learning. However, a token only contains lexical information of

the code and cannot reflect the structural and semantic character-

istics of the code. Ben et al. [6] use Intermediate Representations

(IRs) to design a graph called XFG, and then uses neural networks

(GNN [37], RNN [16]) to learn the semantic features of the graph.

Since the XFG contains data dependence of the code, it is helpful

for semantic extraction, but obtaining IR requires code compilation,

which makes it impossible to process some incomplete code frag-

ments. Azcona et al. [2] and Mou et al. [32] propose code learning

approaches based on Abstract Syntax Tree (AST), which could learn

the features from the traversal or the tree structure of the AST, and

have a certain semantic effect.
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public void selectSort(){
for(int i=0; i<length-1; i++){

int minIndex = i;
for(int j=minIndex+1;j<length;j++){

if(array[j]<array[minIndex]){
minIndex = j;

}
}
int temp = array[i];
array[i] = array[minIndex];
array[minIndex] = temp;

}
}

void bubbleSort(vector<int> &q){
for(int i = q.size() - 1; i > 0; i--){

bool flag = false;
for(int j = 0; j + 1 <= i; j++){

if(q[j] > q[j+1]){
swap(q[j], q[j+1]);
flag = true;

}
}
if(!flag)

break;
}

}

def insertionSort(arr):
for i in range(1, len(arr)):

key = arr[i]
j = i-1
while j >=0 and key < arr[j]:

arr[j+1] = arr[j]
j -= 1

arr[j+1] = key 

Figure 1: An overview of the proposed approach – UAST.

These researches for learning the semantic features of the code

mentioned above are all set for single language, and cannot learn the

semantic features of different programming languages, resulting in

not much breakthrough in the research of cross-language program

classification. Bui et al. [8] pay attention to cross-language issues,

and propose a Bi-NN framework to learn the semantic features

of two different programming languages. Specifically, it uses two

networks of the same structure (similar to Siamese [10] networks)

to perform code feature learning. Although the model can handle

cross-language program classification problems, it is essentially

learning a single programming language feature respectively and

fusing different learned code features. In addition, the structure

is not highly scalable, if the number of programming languages

increases, a new network needs to be added, which makes the

network structure more complicated and more time-consuming on

the training time. Bui et al. [9] propose a pre-trained model with

the idea of self-supervision. It trains code features on the large

corpus which contains multiple programming languages, so it can

be used for cross-language program classification tasks. However,

it does not have special preprocessing for different languages and

just directly generates AST for mixed training, which essentially

does not consider the differences of different languages.

To address those problems mentioned above, we propose a neu-

ral network called Unified Abstract Syntax Tree (UAST for short).

With regard to semantic extraction, we employ self-attention com-

bined with Bi-LSTM to extract flattened AST sequence features,

which can capture the global logical structure characteristics of

the code. Besides, we use Graph Convolutional Neural (GCN) [27]

network to extract the local feature of the graph-like AST structure.

And then, we fuse those two features (sequence features and graph

features) to strengthen the feature of corresponding dimension,

so that the structural and semantic characteristics of the code can

be obtained. For cross-language semantic learning, we have estab-

lished a unified vocabulary for embedded mapping and use this

vocabulary to reduce the differences between different program-

ming languages, so as to facilitate the learning of neural networks.

In addition, we collect a dataset that contains five different pro-

gramming languages from Leetcode1. We conduct experiments on

two datasets, the results both show that our UAST performs better

than the state-of-the-art baselines by 4.54% - 22.62% in terms of four

evaluation metrics. Furthermore, we conduct ablation experiments

to explore the impact of our unified vocabulary and unified AST

feature fusion on model performance.

In summary, the main contributions of this study can be summa-

rized as follows.

• We propose a unified AST representation learning approach

using two sub-networks (SAST and GAST). SAST is used

to extract the global code syntactic features contained in

the AST path sequence. GAST is used to capture the local

code semantic features in the AST tree. The unified AST net-

work can comprehensively consider global and local learned

code features, which could effectively learn code semantic

features.

• We construct a unified vocabulary mechanism to reduce the

difference between different programming languages. The

initial input embedded vector can be obtained through the

vocabulary mapping, and then put the vector to two sub-

networks for training, which can classify cross-language

programs.

• We conduct experiments on two datasets, and the experimen-

tal results show that our performance is better than other

state-of-the-art baselines (CodeBERT, Infercode) in terms of

Recall, Precision, F1-score and Accuracy.

• We contribute a benchmark dataset for the cross-language

program classification task. The dataset contains five pro-

gramming languages (C, C++, Java, Python, and JavaScript),

with a total of 50 problems and 20,000 solution files. The

solutions to each problem are semantically similar codes to

each other.2

1https://leetcode.com/
2Our replication package including both datasets and scripts can be found at
https://github.com/kkcookies99/UAST.
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The remainder of this paper is organized as follows. Section 2

elaborates on the proposed approach. Sections 3 and 4 report on the

experimental design and results respectively. Section 5 discusses

the considerations behind the proposed approach. Section 6 reviews

the related work. Finally, we conclude this paper and present the

future work in Section 7.

2 THE PROPOSED APPROACH

In this section, we present the design and implementation de-

tails of our proposed UAST (Unified Abstract Syntax Tree) neural

network model for cross-language program classification.

2.1 Overall Structure

As illustrated in Figure 1, this model firstly takes different pro-

gramming source codes as input and then parses them into ASTs.

Afterwards, it performs path embedding and graph embedding us-

ing unified vocabulary on ASTs. Then the path embedded vector

and the graph embeded vector are fed into different sub-networks to

capture code features respectively. Finally, it fuses separate learned

features and conducts the classification task.

Specifically, it mainly consists of five parts: Unified Vocabulary,

Sequence-based AST Network, Graph-based AST Network, Unified

AST Feature Fusion, and Cross-language Program Classification.

We explain the details of each part in the following subsections.

2.2 Unified Vocabulary

Since different programming languages have different coding

rules and coding characteristics, there are certain differences in the

text representation of different languages. Figure 2 shows ASTs

generated by tree-sitter3 parsing the function of adding two integers

implemented by three programming languages (Java/C++/Python).

The reason why we choose tree-sitter for syntactic analysis of the

source code is that it supports 40 programming languages, and

also provides a Python API which is easy to use. It can be found in

Figure 2 that there are some differences in the node names of ASTs.

The root node is called "program" in the Java AST, "translation

unit" in C++ AST, and "module" in Python AST. Actually, these

three terminologies all represent the same semantics, that is, the

coding unit, which generally means the code file or the program.

In order to reduce the difference in node names between different

languages, we propose a mechanism called "Unified Vocabulary",

which is mainly used to normalize AST node names in different

languages, such as the "coding unit" mentioned above is unified into

"unit". Specifically, we use "unit" to replace "program, translation

unit, module" uniformly, which will reduce the difference between

different coding languages. Furthermore, "block" in Java, "compound

statement" in C++ and "block" in Python are essentially a code block,

so "block" is used instead. The nodes of the same color in Figure 2

represent the same meaning, so they all will be processed into the

same node name uniformly.

We have considered all similar but different expressions of node

names in different languages. The unified vocabulary mechanism

will unify AST node names generated by different programming

languages, alleviating the differentiation caused by different cod-

ing characteristics. Thus, the embedded vector generated using

3http://tree-sitter.github.io/tree-sitter/

the unified vocabulary can learn the feature of various program-

ming languages and thereby tackle the problem of cross-language

programming classification.

2.3 Sequence-based AST Network

The foundation of cross-language program classification is to

learn semantic and syntactic code features of different program-

ming languages. As for the extraction of the syntactic structure

information of the code, we propose a Sequence-based AST net-

work (SAST for short). First, we perform a pre-order traversal of

the unified AST, and the obtained path sequence can be regarded as

a flattened presentation of the AST. The path sequence contains the

global information of the source code, and also shows the syntactic

structure characteristics of the source code to a certain extent. In

order to extract the dependencies between the nodes within the se-

quence, we use the self-attention structure [41]. The self-attention

mechanism is a powerful mechanism in the transformer structure,

which is very effective in extracting internal relationships and can

alleviate the problem of long-distance dependence. The calculation

formula is as follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (
𝑄𝐾𝑇√
𝑑𝑘

)𝑉 (1)

where the three matrices 𝑄 ∈ R𝑙×𝑑 , 𝐾 ∈ R𝑙×𝑑 , and 𝑉 ∈ R𝑙×𝑑 are

initialized and generated according to the embedded path sequence

vector, and these three matrices are equal in the self-attention

mechanism, which could reduce the parameters of the model and

can train faster. 𝑑 is the embedding dimension of the path sequence.
𝑙 is the length of input path. Dot product is calculated between𝑄 and

𝐾 .𝑑𝑘 ∈ R
𝑑 is the dimension of input vector. And𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 )

is the calculated attention score.

In writing code, the context of the code statement often reflects

its intent. For example, it needs to declare a variable before using it

in C++. The above-mentioned self-attention mechanism has cap-

tured the internal relationship of the code embedded vector. So

in addition to extracting the internal dependencies of the input

source code, it also needs to capture the context dependency of the

source code. Therefore, the Bidirectional Long Short-Term Mem-

ory (Bi-LSTM) [20] is introduced here. The Bi-LSTM could learn

features of the input data from two directions, so it can infer the

current information from the context of the code. In our proposed

SAST network, Bi-LSTM is used to comprehensively consider all

available input path information in the context to extract semantic

and logic features of the source code. Specifically, the hidden state

of the LSTM at each position 𝑡 of the input path is computed as:

𝑖𝑡 = 𝜎 (𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑖 ) (2)

𝑓𝑡 = 𝜎 (𝑊𝑓 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏 𝑓 ) (3)

𝑜𝑡 = 𝜎 (𝑊𝑜 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑜 ) (4)

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑐 ) (5)

𝑐𝑡 = 𝑓𝑡 � 𝑐𝑡−1 + 𝑖𝑡 � 𝑐𝑡 (6)

ℎ𝑡 = 𝑜𝑡 � 𝑡𝑎𝑛ℎ(𝑐𝑡 ) (7)

where 𝜎 is the sigmoid function, 𝑡𝑎𝑛ℎ is the hyperbolic function,

𝑥𝑡 ∈ R
𝑑 presents the data at position 𝑡 of the input path sequence
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class Demo{
public static int add(int a,int b)
{

return a+b;
}

}

int add(int a, int b){
return a+b;

}

def add(a,b):
return a+b

Java C++ Python

Figure 2: The construction of unified vocabulary. Boxes of the same color have the same meaning, and the areas surrounded by

dotted lines of the same color represent the same code structure.

after self-attention, 𝑐𝑡 presents the hidden unit state of 𝑥𝑡 , and

ℎ𝑡 ∈ Rℎ represents the hidden unit state of the learning layer,

which is the final extracted code features.𝑊𝑖 ,𝑊𝑓 ,𝑊𝑜 ∈ R
ℎ×𝑑 are

the trainable weight matrices. � is the element-wise matrix multi-

plication operator.
ℎ𝑆𝐴𝑆𝑇 =

→
ℎ𝑡 ⊕

←
ℎ𝑡 (8)

After that, we concatenate the hidden state
→
ℎ𝑡 ∈ R

ℎ learned by

the forward LSTM and the hidden state
←
ℎ𝑡 ∈ R

ℎ learned by the

backward LSTM to obtain the ℎ𝑆𝐴𝑆𝑇 ∈ R2×ℎ , which contains the

context features of the code.

2.4 Graph-based AST Network

Sequence-based AST network has learned the global structure

and syntactic features of the code from the path sequence, but

the path sequence is a flattened representation, which leads to

ignoring some tree-like structure information of the code. We find

that except for language-specific library files or package files, the

logic of different programming languages is generally the same

when writing specific functions. As shown in the Figure 2, the

parts enclosed by the dashed lines of the same color all have the

same meaning (i.e., the parts outlined by the green dotted line all

represent "return a+b" statement in 3 programming languages). In

addition, the parts enclosed by the dashed lines of the same color

are also highly consistent in the AST shape. In order to learn the

local tree features of the AST, it is easy to think of using GCN

to extract the local information of the code, so we propose the

Graph-based AST network (GAST for short). We regard the AST

structure as a special graph and perform convolution operation

on it to extract code semantic features. GCN can aggregate and

learn features of neighbor nodes of each node in the unified AST,

so that it can capture the local features of the AST, that is, the local

semantics of the code.

Figure 3 illustrates the AST of "return a+b" statement and a

two-layer convolution operation on it. Specifically, the "return state-

ment" node will aggregate the information of its first-order neigh-

bors ("unit, binary expression left, and binary expression right") with

2-hop aggregation

1-hop aggregation

Figure 3: A case of AST node aggregation of GAST.

the 1-hop aggregation, which can extract the direct relationship

between code statements. As the number of hops increases, the "re-

turn statement" node can also indirectly aggregate the information

of their second-order neighbors("body, 𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟1, 𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟2").
Therefore, the "return statement" node could learn the local struc-

tural and semantic features of its neighbors. The right of Figure 3 is

the adjacency matrix of the left AST, and it is worth noting that 𝐴
adds an identity matrix to its adjacency matrix, indicating that the

node could also learn the feature of itself. The graph convolution

operation is defined as follows:

𝐴 = 𝐴 + 𝐼 (9)

𝐻𝑖
(𝑙+1) = 𝜎 (

∑
𝑗 ∈𝑁

𝐷−
1
2𝐴𝐷−

1
2𝐻 𝑗

(𝑙)𝑊 (𝑙) ) (10)

where 𝐻𝑖
(𝑙+1) is the feature of node 𝑖 in the layer (𝑙 + 1), 𝐻 𝑗

(𝑙) is

the feature of all neighbor nodes of node 𝑖 (including itself) in the
layer 𝑙 ; 𝑁 is the number of all neighbors of node 𝑖; 𝐴 ∈ R𝑁×𝑁 is

the adjacency matrix 𝐴 of node 𝑖 added with the identity matrix;
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𝐷 ∈ R𝑁×𝑁 is the degree matrix of 𝐴; 𝑊 (𝑙) ∈ R𝑑𝑖𝑛×𝑑𝑜𝑢𝑡 is the

trainable weight matrix in the layer 𝑙 .

2.5 Unified AST Feature Fusion

The aforementioned SAST has captured the global structure and

logical characteristics of the code, and GAST has extracted the local

structural and semantic feature of the code. In order to compre-

hensively consider the global and local code semantic feature, a

fusion mechanism is further needed. We realize the enhancement

of dimensional features through vector concatenation, which can

be described as:

ℎ𝑐𝑜𝑑𝑒 = 𝑐𝑜𝑛𝑐𝑎𝑡 (ℎ𝑆𝐴𝑆𝑇 , ℎ𝐺𝐴𝑆𝑇 ) (11)

where ℎ𝑐𝑜𝑑𝑒 ∈ R
2×ℎ+𝑑𝑜𝑢𝑡 represents the feature vector after the

unified AST feature fusion, ℎ𝑆𝐴𝑆𝑇 ∈ R2×ℎ represents the global

structural feature learned from the flattened sequence, andℎ𝐺𝐴𝑆𝑇 ∈

R
𝑑𝑜𝑢𝑡 represents the local semantic feature learned from the graph-

like AST.

2.6 Cross-language Program Classification

After that, we obtain the feature vector which includes the global

and local semantic features of the input code, and then we perform

a fully connected layer for linear dimensional transformation, and

eventually the probability 𝑝𝑖 is the output through the SoftMax

layer. We use the Cross Entropy [13] as our loss function and adopt

Adam optimizer [23] to minimize it. The loss is calculated as follows:

𝐽 = −
𝑘∑
𝑖=1

𝑦𝑖𝑙𝑜𝑔(𝑝𝑖 ) (12)

where 𝑘 is the number of program categories, and 𝑦 is the label of
different programs (if the category is i, then 𝑦𝑖 = 1,else 𝑦𝑖 = 0), 𝑝𝑖
is the output after the SoftMax layer.

3 EXPERIMENTAL DESIGN

This section firstly presents four research questions to be in-

vestigated, then describes our experimental datasets, compared

baselines, experiments settings and common evaluation metrics in

the following subsections.

3.1 Research Questions

Our motivation is to verify whether adopting the unified vo-

cabulary and the unified AST feature fusion could improve the

performance of our approach, and how those two mechanisms

affect the performance of UAST. Taking the above concerns into

account, we raise the following Research Questions (RQs):

RQ1: How effective is the proposed UAST compared with the

other baselines?

RQ1 is intended to investigate whether the proposed UAST outper-

forms the other state-of-the-art baselines. There are many other

works also explore code representation learning semantics for cross-

language program classification, and we select representative ones

as baselines and will be described in Section 3.3.

RQ2: How does the unified vocabulary affect the performance of

our proposed UAST ?

RQ2 aims to explore whether unified vocabulary could reduce the

difference between different programming languages and thus im-

prove the performance of our proposed method. To analyze the

impact of unified vocabulary on model effectiveness, we verify

the impact of using the unified vocabulary or not on the overall

performance through ablation experiments.

RQ3: How does the unified AST feature fusion affect the perfor-

mance of our proposed UAST?

RQ3 is put forward to evaluate the impact of the unified AST feature

fusion. Since the two sub-networks (SAST and GAST) mentioned in

Section 2.3 and 2.4 could extract global syntactic features and local

semantic structure features respectively, so it is a need to explore

an effect of the fusion mechanism on the learned features of two

sub-networks. Therefore, we conduct ablation experiments to verify

the impact of using the unified AST feature fusion mechanism on

the overall performance.

RQ4: How do different parameter settings affect the performance

of our proposed UAST?

RQ4 is to examine the impact of UAST’s own parameters on per-

formance. UAST contains two important parameters which could

affect the model performance substantially. One is the length of

the path obtained by pre-order traversal of the AST, the other is

the layer of GCN which determines how many layers of neighbors’

information can be aggregated in the GAST. We set different pa-

rameters to find the most suitable parameters which make the best

performance.

3.2 Datasets

We use two datasets to evaluate the performance of program clas-

sification models. The first dataset inherits from the Bi-TBCNN by

Bui et al. [8], since the dataset contains two programming languages

(Java and C++), we call this dataset Dataset JC. To evaluate our

model performance on more programming languages, we collect

a dataset from Leetcode which contains 20000 problem solutions

of five different programming languages, and we call this dataset

Dataset Leetcode. The following is a detailed introduction to these

two datasets.

• JC: This dataset includes 10 different categories of programs
crawled by Bui et al. [8] from GitHub. It contains 5822 Java

files and 7019 C++ files. The code files for each category

implement the same function, so they are codes that are

semantically similar to each other. The dataset is divided into

three parts: training set (3), validation set (1), and testing set

(1). The specific information of the dataset split is shown in

the Table 1.

• Leetcode: We crawl 50 different categories of programs from

Leetcode, each of which contains 400 solutions of different

programming languages, with a total of 20000 files. The

codes under the same problem are all semantically similar
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to each other. The dataset includes five different program-

ming languages: C, C++, Java, Python, and JavaScript. We

use NICAD4 to filter out the duplicate code. Considering

that each code file contains some salient information (the

function name of the solution to each problem written in

different programming language is the same, for example,

the function name of codes to the problem of "finding the

median of two positive-order arrays" are all called “findMe-

dianSortedArrays” ), so we use "XXX" instead of all function

names to each problem and the user-defined function names

will not be replaced. Besides, our dataset can also be used as

a benchmark dataset for cross-language program classifica-

tion task. Since the number of problem solutions in different

programming languages is unbalanced, we divide it accord-

ing to the number of different programming languages, and

the ratio of division is: training(3): validation(1): testing(1).

The specific division information of the dataset is shown in

the Table 1.

Table 1: The division of Dataset JC and Leetcode.

JC Leetcode

Java C++ C C++ Java Python JavaScript

Training 3498 4215 331 3428 5051 2633 557

Validation 1162 1402 110 1143 1684 878 185

Testing 1162 1402 110 1143 1684 878 185

3.3 Baselines

We compare UAST with the following state-of-the-art baselines

for the cross-language code learning.

• CodeBERT [17]: It is a variant of BERT [14] and it uses RTD

(Replaced Token Detection) for pre-training and adopts deep

bi-transformer components, so it finally generates the code

features that can integrate context information, which can

effectively extract the features of the input sequence. And it

learns a pre-trained model for 6 programming languages, so

it can be used for cross-language program classification.

• Infercode [9]: Thismethod applies the self-supervised learn-
ing ideas in natural language processing to the AST of the

code, and trains the code representation by predicting the

automatic context sub-trees of the AST. Because it has been

trained on multiple programming languages, it can extract

the characteristics of the different programming languages

and can be used to classify cross-language programs.

3.4 Experimental Setting

We implement our network in Pytorch. For hardware devices,

all experiments are run on a 10-core 3.70GHz Intel(R) Core(TM)

i9-10900X CPU and NVIDIA GeForce RTX 3090 GPU server. To

ensure the fairness of the comparative experiments, we use the

same training set for training. We tune the parameters on the val-

idation set and the specific parameter settings are as follows: the

epoch of UAST is 5, the batch size is 64, we adopt Adam [26] as

the training optimizer, and the learning rate is set to 0.001. As for

4http://www.txl.ca/txl-nicaddownload.html

SAST, the length of the path sequence is unified to 700 for Dataset

JC and 200 for Dataset Leetcode (specifically, if it is insufficient, it

is padded with 0; if it is exceeded, it is directly truncated). Besides,

the embedding dimension of the path is 200, the number of units

of the Bi-LSTM is 64, the number of layers of Bi-LSTM is 2, and

the dropout rate of Bi-LSTM is set to 0.5; the dropout rate of self-

attention is 0.2, and the number of heads of the self-attention layer

is 4. As for GAST, the size of the adjacency matrix of the graph is

unified to [400, 400], and the number of layers of GCN is 2.

3.5 Evaluation Metrics

For multi-classification tasks, it is common to use public evalua-

tion indicators (Precision, Recall, F1-score, Accuracy) to evaluate

the model performance [46]. In order to verify the effect of our

model, we use those four evaluation metrics. Detailed definition of

those metrics as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(13)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(14)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(15)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑃 +𝑇𝑁 + 𝐹𝑁
(16)

where 𝑇𝑃 (True Positive) is the weighted average of the number

of samples that are correctly predicted as positive examples for each

class; 𝐹𝑁 (False Negative) is the weighted average of the number

of samples that are incorrectly predicted as negative examples per

class; 𝐹𝑃 (False Positive) is the weighted average of the number

of samples that are incorrectly predicted as positive examples per

class;𝑇𝑁 (True Negative) is the weighted average of the number of

samples that are correctly predicted as negative examples per class.

4 RESULTS AND ANALYSIS

This section reports the experimental results by addressing the

four research questions that are proposed in Section 3.1.

4.1 RQ1: Model Performance

In order to answer RQ1, we compare UAST with mentioned

algorithms in Section 3.3. Table 2 and Table 3 report the results on

two datasets. It can be found from Table 2 that UAST achieves a

Recall of 0.9611, a Precision of 0.9631, a F1-score of 0.9617 and an

Accuracy of 0.9626, which outperforms other baselines. Meanwhile,

the result on Dataset Leetcode also outperforms other baselines,

indicating that our UAST is effective for cross-language program

classification.

Table 2: Comparative experiment on Dataset JC.

Model Recall Precision F1-score Accuracy

CodeBERT 0.9078 0.9177 0.9090 0.9005

Infercode 0.8317 0.8468 0.8325 0.8343

UAST 0.9611 0.9631 0.9617 0.9626
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Table 3: Comparative experiment on Dataset Leetcode.

Model Recall Precision F1-score Accuracy

CodeBERT 0.6147 0.6348 0.6174 0.6245

Infercode 0.5696 0.5819 0.5762 0.5807

UAST 0.7958 0.8025 0.7965 0.7964

Among them, Infercode learns the characteristics of the sub-tree

of the AST through self-supervision and it uses a cross-language

corpus for training, so it can be used for cross-language program-

ming classification. However, the extracted feature vector is only

100 dimensions, which cannot fully reflect the characteristics of

some long codes, making the final performance worse than the

other neural network models. As a powerful pre-trained model,

CodeBERT’s bi-transformer structure can effectively extract the

context information of the code, so its performance can reach 91%

on Dataset JC. However, it learns the feature of code by token

embedding, so it cannot reflect the semantic characteristics of the

code. UAST comprehensively considers global and local code struc-

ture semantic information, and also the unified vocabulary in it

can reduce the difference in different programming languages, the

performance is better than other baselines.

Furthermore, we conduct experiments on two datasets of differ-

ent sizes and language types. And the performance of our proposed

UAST in both datasets outperforms other baselines, which not only

shows the efficiency of our model but also shows that our proposed

model has a strong generalization ability.

Result 1: Our proposed UAST significantly outperforms other state-

of-the-art baselines in terms of Precision, Recall, F1-score, and Ac-

curacy.

4.2 RQ2: The Impact of the Unified Vocabulary

As mentioned in Section 2.2, we propose the unified vocabulary

mechanism to reduce the differences between different program-

ming languages. So in order to answer RQ2, we conduct an ablation

experiment to explore the impact of the unified vocabulary on

model performance. The results are shown in the Table 4.5

According to Table 4, we find that using the unified vocabulary

outperforms those who do not use it by 0.37% - 3.32% in terms of

Recall, by 0.37% - 3.86% in terms of Precision, by 0.42% - 3.26% in

terms of F1-score, and by 0.30% - 2.86% in terms of Accuracy on both

Dataset JC and Leetcode, which indicates that the unified vocabu-

lary indeed reduces the feature gap between different programming

languages and thus improves the performance of cross-language

program classification.

Since different programming languages have their own unique

coding features, the terms obtained by the parser in parsing dif-

ferent programming languages are different even if they have the

same meaning, so the AST nodes will show different node names.

If we directly generate a vocabulary for all the node names of the

AST, then each language will have a certain difference in its corre-

sponding AST, which will enlarge the gap of code features. So the

use of the unified vocabulary will reduce the difference in terms

obtained by code parsing, and further reduce the feature learned

5Method with -V indicates that the unified vocabulary is not used.

Table 4: Ablation experiment results of the unified vocabu-

lary on Dataset JC and Leetcode.

Dataset Model Recall Precision F1-score Accuracy

JC

SAST-V 0.8802 0.8868 0.8816 0.8856

SAST 0.9125 0.9254 0.9142 0.9142

GAST-V 0.9467 0.9479 0.9469 0.9478

GAST 0.9504 0.9516 0.9511 0.9508

UAST-V 0.9524 0.9526 0.9509 0.9516

UAST 0.9611 0.9631 0.9617 0.9626

Leetcode

SAST-V 0.6553 0.6894 0.6540 0.6554

SAST 0.6718 0.7020 0.6707 0.6721

GAST-V 0.7744 0.7793 0.7749 0.7749

GAST 0.7892 0.7956 0.7887 0.7892

UAST-V 0.7893 0.7970 0.7904 0.7882

UAST 0.7958 0.8025 0.7965 0.7964

by the proposed network, so the performance for cross-language

program classification tasks has been improved.

Furthermore, we find that in addition to improving the perfor-

mance of all three networks (SAST, GAST, and UAST), the use of the

unified vocabulary in the SAST network has the most pronounced

effect. Due to the fact that the SAST network is designed to extract

the features of a traversal path sequence of the AST, and the initial

embedded vector input into the network is determined by vocabu-

lary mapping, so the unified vocabulary has the most direct impact

on the SAST network which leads to the notable performance. As

for the GAST network, the adjacency matrix is not constructed

based on the unified vocabulary, but only on the structure of the

AST. And the feature matrix is composed of the one-hot vector of

the node name, which is related to the unified vocabulary, so the

overall impact of the unified vocabulary on the GAST is relatively

insignificant compared to SAST.

Given all those results discussed above, the unified vocabulary

improves the performance to a certain extent, confirming the effec-

tiveness of the unified vocabulary for the cross-language program

classification.

Result 2: The unified vocabulary does improve model performance

to a certain extent, so leveraging the unified vocabulary to generate

the embedded vector is a good choice for cross-language classifica-

tion tasks.

4.3 RQ3: The Impact of the Unified AST Feature

Fusion

Table 5 shows that the performance after the unified AST feature

fusion is 1.06% - 4.86% higher than that before fusion on Dataset JC,

and 0.66% - 12.58% higher than that before fusion on Dataset Leet-

code, indicating that the unified AST feature fusion could further

enhance the effectiveness of our proposed model.

In addition, we find that the performance of SAST is not good as

the performance of GAST on both datasets. This result implies that

the feature extracted from the flattened AST sequence structure is

less useful than the feature extracted from the AST graph-like struc-

ture. The main reason is that the sequence obtained by traversing
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the AST has fewer structural characteristics of the branch state-

ments, cause it only includes the overall process of the source code.

While the adjacency matrix in the graph-like AST can capture the

associated relationship with neighbor nodes, which is very effective

for some structures (i.e., for-loop structure, if-condition structure,

etc.), the performance of SAST is not as good as that of GAST.

Table 5: Ablation experiment results of the unified AST fea-

ture fusion on Dataset JC and Leetcode.

Dataset Model Recall Precision F1-score Accuracy

JC

SAST 0.9125 0.9254 0.9142 0.9142

GAST 0.9504 0.9516 0.9511 0.9508

UAST 0.9611 0.9631 0.9617 0.9626

Leetcode

SAST 0.6718 0.7020 0.6707 0.6721

GAST 0.7892 0.7956 0.7887 0.7892

UAST 0.7958 0.8025 0.7965 0.7964

In order to further analyze the reasons why unified AST feature

fusion works better, we perform a reasonable analysis as follows.

The two code features extracted by the unified AST neural network

(SAST and GAST) contain global features and local features of the

code respectively. If we only consider one of the features, then

the features of the other aspect will be ignored, so fusing the two

hidden vectors can strengthen the features of the corresponding

dimensions, which results in better performance. Furthermore, the

SAST focuses on global information extraction, and the GAST pays

attention to the capture of local information. Therefore, two code

features are spliced and fused after the unified AST neural network

(SAST, GAST), which can comprehensively consider global and

local information and learn the semantic structure characteristics

of the code from multiple aspects.

Given all those factors stated above, the unified AST feature

fusion mechanism can indeed improve the performance of the

network as a whole.

Result 3: The unified AST feature fusion mechanism leverages both

global structural information and local semantic information for

code representation, which can significantly help improve model

performance.

4.4 RQ4: The Impact of Parameter Settings

In our proposed UAST, the length of the path sequence in SAST

and the layers of GCN in GAST are two important parameters that

could affect the performance of the model. The length of the path

sequence determines how much code content is fed into the neu-

ral network. Due to the unbalanced distribution of the length of

the source code in the dataset, setting the appropriate length is

of particular importance. The number of layers of GCN in GAST,

namely hop, represents the range that each node can aggregate

information from neighbor nodes. As the number of hops increases,

each node can aggregate a larger range of information from neigh-

boring nodes, thereby focusing on a larger range of local semantic

information of the code. To answer RQ4, we perform experiments

with different parameter settings, and the experimental results are

shown in Figure 4 and Figure 5.

For the length of the path sequence, we explore the effect of

different lengths on performance by setting different length values

(100-1000). Figure 4 shows that the UAST achieves the best per-

formance when the length is set to 700 on Dataset JC and 200 on

Dataset Leetcode in terms of Recall, Precision, F1-score and Accu-

racy. As the length increases, the effect of the model will not be

improved, but it will increase the complexity of the model. Besides,

Bi-LSTM cannot effectively handle long sequences of inputs, which

is one of the possible reasons for the poor performance. When the

length is reduced, the performance of the model will also decrease.

The main reason is that reducing the length of the input will cut

out some useful information, so that the neural network cannot

effectively capture some key feature of the code.

(a) Results on Dataset JC (b) Results on Dataset Leetcode

Figure 4: The effect of the length of the path sequence in

SAST network on model performance.

Notably, we have statistics on the length of AST path for both

datasets. As shown in the Table 6, we find that 80% of the AST path

sequences are within 726 in length on the Dataset JC, while 80% of

the AST path sequences are within 221 in length on the Dataset

Leetcode. Therefore, it is most suitable to set the sequence input to

700 and 200 respectively on Dataset JC and Leetcode, because long

input will cause some short codes to be filled with 0, and short input

will lose some key information. Thus, when training on different

datasets, it is a need to have statistics on the length of AST path

and choose the most appropriate length before training.

Table 6: Statistical distribution of AST path sequence length

on Dataset JC and Leetcode.

Dataset Mean Median 70% 80% 90%

JC 576 354 502 726 1498

Leetcode 165 144 189 221 279

For the layers of GCN, we explore the effect of different layers

on performance by setting different layers of GCN (1,2,3). It can be

seen from Table 5 that the model performs best when the number of

layers of GCN is set to 2. The first-order neighbors indicate a smaller

neighbor range, resulting in a smaller captured tree structure, so the

performance is not as good as two GCN layers stacking. A larger

number of layers represents a wider range of neighbors, and the

experimental results are even worse than that of one layer. Our

initial inference is that some specific structures are only displayed

in the range of two layers when writing the code. In addition,
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the increase in the number of layers could make the model more

complex and lead to overfitting.

(a) Results on Dataset JC (b) Results on Dataset Leetcode

Figure 5: The effect of the layer of GCN in GAST Network on

model performance.

Result 4: For the choice of path length, it is better to have statistics

on dataset AST path before training and choose the most suitable

value. While setting the layer of GCN to 2 is beneficial to model

effectiveness.

5 DISCUSSION

This section discusses the considerations behind the proposed

approach and the threats to validity of this study.

5.1 Why we choose AST as the code

representation form?

In order to capture the characteristics of the code, current re-

search is mainly to learn the code by exploring different code In-

termediate Representations (IRs). Token represents code lexical in-

formation, Abstract Syntax Tree (AST) is a representation form that

includes code structure and grammatical information. Graph-based

IRs such as Control Flow Graph (CFG) and Data Flow Graph (DFG)

contain the control flow and data flow characteristics of the code.

Different representation forms include different features from differ-

ent views of the code. In recent years, many excellent studies based

on those IRs have been carried out [2, 6, 17, 32]. It is currently the

mainstream method of program classification to distinguish codes

of different categories (functions) by capturing code characteristics.

For the intermediate representation of the code, we have a variety

of options, token, AST or graph-based forms (such as CFG, DFG).

For the token, it only contains the information of the lexical level

of the code, and the program classification is based on the function

implemented by the code (i.e., the semantic level), so the token is not

the best choice. As for graph-based representations, although some

control information they contain can describe the semantics of the

code, it is not easy to generate the graph of multiple languages,

and the cost of training a pure graph model is high. While AST is

relatively easy to generate for most programming languages. And

as a tree structure, AST is easier to traverse. So we finally decide to

use AST as our code representation.

5.2 Why does UAST work?

The essential difficulty of cross-language program classification

is to learn the semantic features of codes implemented in differ-

ent programming languages. This model achieves such excellent

performance on cross-language program classification mainly due

to two mechanisms (unified vocabulary and unified AST feature

fusion) in it. The unified vocabulary reduces the differences be-

tween different programming languages, making it more effective

for cross-language classification. The fusion mechanism fuses the

learned code features of global and local information to capture the

semantics of the code leading the classification performance better.

5.3 Threats to Validity

There are two types of threats to this study, and accordingly, we

have made efforts to mitigate those threats to validity.

Internal threat: The threats to the internal validity of this study

may result from the dataset. Since we collect the data from Leetcode,

where the function names of the solutions to the problems are the

same. If they explicitly appear in the code, the label will be exposed.

So we substitute all the function name of solutions to eliminate

this threat. Meanwhile, the dataset may be some duplicate codes,

therefore, we deduplicate the similar codes using NICAD tools to

reduce this threat.

External threat: In order to rule out that our proposed method

is only effective on our Dataset Leetcode, we use two datasets for

experiments, which could reduce the threat of accidental results to

a certain extent. The results outperform other baselines using the

same two datasets, illustrating our model has good generalization

ability.

6 RELATEDWORK

6.1 Program Classification

Program classification can be regarded as a high-level abstraction

of code. In all source code mining tasks, program classification lays

the foundation for various tasks related to source code understand-

ing. Program classification can be applied to many scenarios in the

field of software engineering, such as code clone detection [5, 7],

bug fixing [35], code smell classification [18], defect classification

[42], program understanding [1], etc. The earliest research on pro-

gram classification dates back to the last century. [7, 11, 23, 39] used

features (such as token, component name, counts of statements,

code metrics, etc) to classify programs. Since these studies are clas-

sified based on artificially defined rules and extract features at the

surface level of the code, their performances are not too prominent,

but it starts the beginning of exploration for program classification.

Machine learning has been shown to yield promising results

for classification. Ugurel et al. [40] used Support Vector Machine

(SVM) [15] to classify the code’s token set, and Ma et al. [30] used

SVM, Decision Tree [36], and Bayesian Network [19] to classify the

code based on the code’s token sequence to determine which types

software artifacts are produced by various open source projects

at different levels of granularity. Shimonaka et al. [38] used four

machine algorithms to construct a learning model for the syntactic

information of the code, which is used to identify the source code

to determine whether the code is automatically generated code.

With the rising trend of deep learning, more and more researches

begin to combine neural networks to learn the characteristics of the

code. Mou et al. [32] proposed a tree-based convolutional network,

the kernel of which can be used to capture the structural informa-

tion of the source code, and performed well in the task of classifying
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programs. Zhang et al. [46] divided the AST into small sub-ASTs,

encoded those sub-ASTs into vectors by capturing the lexical and

syntactic features, and then used the Bi-RNN model to generate

the code vector representation. This algorithm has achieved excel-

lent results in the source code classification task. Barchi et al. [4]

explored the use of Convolutional Neural Networks (CNN) [24]

to analyze program source code and proved that the CNN model

can be successfully applied to source code classification. Compared

with the most advanced methods, this method provided higher

accuracy and less learning time.

6.2 Code Representation Learning

The emergence of deep neural networks technology has brought

new solutions to the field of software engineering, and at the same

time, an increasing amount of attention has been devoted to the

learning of code representation. Code representation forms are

used to analyze the original meaning of the source code at different

levels. For example, the token represents the lexical information

of the code, while the Abstract Syntax Tree (AST) represents the

code structure and grammatical information obtained by the syntax

analyzer, and the Data Control Flow (DFG) and the Control Flow

Graph (CFG) represent the code data flow and control flow infor-

mation. Also, there are other intermediate representations (IRs) to

represent the code, and different representation forms combined

with neural network to learn code semantics is the direction that

researchers are exploring currently.

Harer et al. [21] used Word2Vec [31] tool to generate the initial

embedded vector for the C/C++ token, and then used the TextCNN

[47] model to learn the features of the vector for software vul-

nerability detection. Azcona et al. [2] analyzed the Python code

submitted by students by embedding the token into a vector, and

then extracted the effective features of the student to analyze the

progress and performance of the student. The token contains the

lexical information of the code, but ignores the structural features

and grammatical logic information of the code.

Mou et al. [32] proposed a convolutional neural network named

TBCNN based on AST. They designed a subtree kernel to slide

on the AST to extract the structure information of the tree, and

also used dynamic pooling to deal with the number of sub-trees of

the AST. Uri Alon et al. [1] proposed a code embedding algorithm

called code2vec, which gives an attention score to each path in

the AST, so that it could extract the syntactic information of the

entire source code while dividing sentences of different degrees

of importance. Wang et al. [43] constructed a graph called Flow-

Augmented Abstract Syntax Tree (FA-AST) to represent source code,

which contains control flow and data flow information. Then they

used Graph Neural Networks (GNN) [37] to capture the feature of

FA-AST.

Ben-Nun et al. [6] tried to learn code semantics based on the IR

of the code. They converted IR into context flow graph (XFG), which

contains the data flow and control flow of the code, and then used

neural networks to learn the code features from XFG embedding.

Wei et al. [44] generated a type dependency graph from source code,

which links type variables with logical constraints as well as name

and usage information, and then used GNN to extract the feature

of this kind of IR.

6.3 Cross-language Code Learning

Cross-language learning is widely used in machine translation

in the field of NLP [12, 22], and cross-language code learning is still

in its infancy. Nguyen et al. [33] proposed a tool called semSMT

based on SMT to migrate Java programs to C#, and it operated at all

three lexical, syntactic, and semantic levels to extract code features.

Bui et al. [8] proposed a bilateral dependency neural networks to

learn the features of different languages, and then used Siamese

network for similarity detection. Ye et al. [45] proposed the MISIM

(Machine Inferred Code Similarity System) model, in which the

Context-Aware Semantic Structure (CASS) can capture the code’s

contextual semantics to describe the intent of the code, and CASS

could also learn the language-independent representation through

manual configuration for cross-language detection. The Infercode

proposed by Bui et al. [9] implemented self-supervised learning by

predicting the automatic context sub-trees of the AST, in which vec-

tors are generated by training multiple languages, and it performed

well on multiple tasks.The TPTrans proposed by Peng et al. [34]

performed feature learning for different programming languages,

and incorporated the feature information of the code tree struc-

ture into the transformer structure using position embedding and

embedding. This model performed well for code summarization

tasks.

7 CONCLUSIONS

In order to better address the problem of cross-language code

learning, in this study, we propose a Unified Abstract Syntax Tree

neural network (UAST) framework for cross-language program clas-

sification task. The UAST contains two sub-networks (SAST and

GAST), where SAST is used to extract the global code syntactic fea-

tures contained in the AST path sequence, GAST is used to capture

the local code semantic features of the AST tree. And UAST net-

work can comprehensively consider global and local code features

througth the unified AST feature fusion, which could effectively

learn code semantic features. In addition, the unified vocabulary

mechanism we proposed can reduce the difference between dif-

ferent programming languages. The comprehensive experiments

on the public dataset and our collected dataset both show that the

UAST performs better than other state-of-the-art baselines by a

significant margin, and can better distinguish between different

programs. In conclusion, this study leverages the powerful repre-

sentation learning techniques to model cross-language source code,

which contributes to the state-of-the-art AI for software engineer-

ing. With regard to the future work, we are going to leverage both

source code and natural text information to better improve program

classification.
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