Duplicate Bug Report Detection Using Dual-Channel
Convolutional Neural Networks

Jianjun He Ling Xu" Meng Yan
Chongging University Chonggqing University Chonggqing University
Chonggqing, China Chonggqing, China Chongqing, China
jjhe@cqu.edu.cn xuling@cqu.edu.cn mengy@cqu.edu.cn
Xin Xia Yan Lei
Monash University Chongging University

Melbourne, VIC, Australia
xin.xia@monash.edu

ABSTRACT

Developers rely on bug reports to fix bugs. The bug reports are
usually stored and managed in bug tracking systems. Due to the
different expression habits, different reporters may use different
expressions to describe the same bug in the bug tracking system.
As a result, the bug tracking system often contains many duplicate
bug reports. Automatically detecting these duplicate bug reports
would save a large amount of effort for bug analysis. Prior studies
have found that deep-learning technique is effective for duplicate
bug report detection. Inspired by recent Natural Language Pro-
cessing (NLP) research, in this paper, we propose a duplicate bug
report detection approach based on Dual-Channel Convolutional
Neural Networks (DC-CNN). We present a novel bug report pair
representation, i.e., dual-channel matrix through concatenating two
single-channel matrices representing bug reports. Such bug report
pairs are fed to a CNN model to capture the correlated semantic
relationships between bug reports. Then, our approach uses the
association features to classify whether a pair of bug reports are
duplicate or not. We evaluate our approach on three large datasets
from three open-source projects, including Open Office, Eclipse,
Net Beans and a larger combined dataset, and the accuracy of classi-
fication reaches 0.9429, 0.9685, 0.9534, 0.9552 respectively. Such per-
formance outperforms the two state-of-the-art approaches which
also use deep-learning techniques. The results indicate that our
dual-channel matrix representation is effective for duplicate bug
report detection.

CCS CONCEPTS

« Software and its engineering — Software maintenance tools.

*Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7958-8/20/05....$15.00
https://doi.org/10.1145/3387904.3389263

Chonggqing, China
yanlei@cqu.edu.cn

KEYWORDS

Duplicate Bug Report Detection, Software Maintenance, Software
Quality Assurance, Dual-Channel, Convolutional Neural Networks.

ACM Reference Format:

Jianjun He, Ling Xu, Meng Yan, Xin Xia, and Yan Lei. 2020. Duplicate Bug
Report Detection Using Dual-Channel Convolutional Neural Networks. In
28th International Conference on Program Comprehension (ICPC °20), October
5-6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3387904.3389263

1 INTRODUCTION

Modern software projects use bug tracking systems, such as Bugzilla
to store and manage bug reports [13, 30]. These bug reports are
submitted by developers, testers, and end-users to describe the
software problems they encounter. Bug reports can help to guide
software maintenance and repair activities [10, 16, 39]. Actually,
with the development of software systems, several hundreds of
bug reports are submitted to bug tracking systems each day [3].
Duplicate bug reports occur when more than one person submits
bug reports for the same bug [21, 43]. Since bug reports are always
written in natural language, the same bug may be described in
many different ways. For example, Table 1 depicts an example of
two duplicate bug reports #4524 and #9002 from the Open Office’s
bug tracking system. It is observed that there are few identical
keywords in these two bug reports. Although they describe the
same bug about the arrow placed too high with respect to the letters,
the vocabularies they used are different.

With a huge amount of bug reports, detecting duplicate bug
reports manually is a laborious process. It is impossible to provide
a standard style of bug reports written in natural languages. There-
fore, automatic duplicate bug report detection is a meaningful task
that can help avoid fixing the same bug repeatedly [4, 7, 35, 44].
In recent years, many automatic duplicate bug report detection
techniques have been proposed to address this issue. Some of these
approaches, such as topic models [6, 14, 24, 38] focus on calcu-
lating the similarity based on the textual description. Some other
approaches are adopted to mine potential features through self-
learning algorithms, such as Learning to Rank (L2R) [25], Support
Vector Machine (SVM) [40], etc. As shown in Table I, it is difficult
for typical text similarity techniques to detect duplicate bug re-
ports based on keywords. Recently, state-of-the-art deep-learning
techniques have been proven superior to traditional approaches in

https://doi.org/10.1145/3387904.3389263
https://doi.org/10.1145/3387904.3389263

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

Jianjun He, Ling Xu, Meng Yan, Xin Xia, and Yan Lei

Table 1: An example of two duplicate bug reports.

Tag Name Content
Bug ID 4524 9002
Product Math Math
Component Ul Code
Summary | space between a vector and its arrow too large. formating of font attributes.
H
L The attibutes: hat, grave, tilde, check, bar, vector, and so on are too far
. . . removed from the font. Seems to be a problem with the font definitions used.
The space between a vector and its arrow is too large making the formula too
high. It d 't matts h when the f la i h of it: but it
s oesn t matter much when the formua 1s a paragraphi oL its OWn but It | o qearound are widevec, widehat, widebar etc. Unfortunatelly the *wide’ version
looks clumsy when placed among the text of a paragraph. X .
L does not exist for all attributes.
Description
To make. myself clear, copy this text :n 2 S)f,w file then isert ,,m t he mlddle,,Of Also,bold’ in formulae is tranlated into some sort of arial font with poor
the previous paragraph the formula "vec u" or the formula "widevec AB".
Compare with what you'd get inserting the formula "overline AB" spacing wthin characters. It is unfortunate that this has changed from SOv5
P ¥y & e : which used the more conventional mathematical notation of Times bold for that,
Thanks which incidentally has better character kerning.

Natural Language Processing (NLP) [26]. Deshmukh et al. [12] first
propose a deep-learning approach to detect duplicate bug reports.
They use Siamese Single Layered Neural Network to process struc-
tured information, Convolutional Neural Networks (CNN) [19] to
process description and Long Short Term Memory (LSTM) [33]
to process summary. The two bug reports are used as inputs for
encoding separately, and then the two encodings are calculated
to obtain similarity. Budhiraja et al. [8] extract the unstructured
information (summary and description) in the bug report and use
word embeddings [9] to convert each bug report into a matrix.
They average each column of the matrix to obtain a vector of fixed
dimensions to represent a bug report. Two vectors representing
bug reports are concatenated to fed into deep neural networks to
predict the similarity of the two bug reports.

In this paper, we propose a novel duplicate bug report detection
approach by constructing a Dual-Channel Convolutional Neural
Networks (DC-CNN) model. In our approach, each bug report is
converted to a two-dimensional matrix by employing word embed-
dings. This matrix is similar to the grayscale image, so we call it a
single-channel matrix. Instead of encoding the two reports sepa-
rately like Deshmukh et al.[12], we combine the two single-channel
matrices of two bug reports into a dual-channel matrix to represent
a bug report pair.

The deep-learning techniques have been found to be effective
for dealing with text classification [41]. Compared with other deep
neural network models like Recurrent Neural Networks (RNN) [23]
and Long Short Term Memory (LSTM), CNN can handle multi-
channel input. Thus, we choose CNN to construct a classifier that
aims to capture the relationship among the contextual words by
using different sizes of kernels.

In order to verify the effectiveness of the proposed approach, we
consider the following research questions:

RQ1: Compared with the state-of-the-art deep-learning-based ap-
proaches, how effective is our DC-CNN?

We compare our DC-CNN with other two state-of-the-art deep-
learning-based duplicate bug report detection approaches. The re-
sults indicate that DC-CNN has better capability to classify dupli-
cate bug reports and non-duplicate bug reports.

RQ2: Compared with Single-Channel Convolutional Neural Networks
based approach, how effective is our DC-CNN?

To prove that the dual-channel CNN model is valid, we build
a single-channel CNN model and compare the two on multiple
measures. When combining two reports into a dual-channel report
pair, CNN can better extract their associated features.

RQ3: How effective is our approach when modeling without structured
information?

We process some structured information, including component
and product, into unstructured forms and add them to other un-
structured information, including summary and description, to help
better classify. We observe the results of removing the structured
information and find that processing structured information into
unstructured forms does improve the accuracy of the classification,
but summary and description are still dominant.

RQ4: How effective is our approach in a cross-project detection set-
ting?

When a project lacks labeled data, an alternative solution is
using labeled data from other project(s) as training project(s), i.e.,
the cross-project setting. For each project, we use the data of it as
the target project and use the data from other project(s) as training
project(s) to build a detection model. The experimental results
reveal that when a project lacks labeled data, other project(s) can
be used as training project(s) to build a detection model, but the
appropriate project(s) need to be selected.

The main contributions of this paper are as follows:

(1) We propose a novel duplicate bug report detection approach
using a dual-channel CNN model. This approach makes
use of both structured and unstructured information in the
bug report. The novelty of our approach is the use of dual-
channel matrix for representing bug report pairs. Such pairs
are fed to CNN to extract the association features between
the two bug reports. Finally, our approach uses the associ-
ation features to classify whether a pair of bug reports is
duplicate or not.

(2) We compare our approach with two state-of-the-art deep-
learning-based approaches proposed by Deshmukh et al.
(Siamese Networks) [12] and Budhiraja et al. (DWEN) [8]
on three large open-source projects (Open Office, Eclipse,
and Net Beans) [18] and a larger dataset combined of the
three, containing a total of 531,267 bug report pairs. The
experimental results show that our approach outperforms

Duplicate Bug Report Detection Using Dual-Channel Convolutional Neural Networks

the state-of-the-art deep-learning-based approaches for du-
plicate bug report detection.

This paper is organized as follows. Section 2 presents our ap-
proach in detail. In section 3, we describe the datasets used and the
evaluation metrics adopted. Section 4 presents the experimental
results and analysis. In Section 5, we discuss the possible reason
for why our DC-CNN works for duplicate bug report detection.
Section 6 presents the related work. Section 7 summarizes the main
threats of our study. The conclusion and future work are presented
in Section 8.

2 APPROACH

Figure 1 presents the overall framework of DC-CNN which contains
three phases: data preparation, training, and deployment. In the data
preparation phase, the useful fields including component, product,
summary, and description are extracted from bug reports. For each
bug report, both the structured and unstructured information is
placed into a text document together. After preprocessing, texts
of all the bug reports are collected and formed into a corpus. A
word2vec model [22, 28] is used to capture semantic regularities on
the corpus. We convert each bug report represented by text into a
single-channel matrix. To investigate the relationship between bug
reports, we combine the reports of single-channel matrices into bug
report pairs represented by dual-channel matrices. Then we take
a part of them as the training set and another part of them as the
testing set. In the training phase, we take the training set as input
to train the CNN model. In the deployment phase, the testing set is
fed to the trained model to predict the similarity of each bug report
pair which is an independent probability. The similarity is then
compared with the set threshold to classify a pair of bug reports as
duplicate or not.

2.1 Data Preparation

2.1.1 Data Extraction. Table 2 shows a sample of a bug report in
Eclipse. The bug report consists of structured information such as
product, component, priority, version, etc. and unstructured infor-
mation such as summary and description. Structured information
is usually an optional attribute, while unstructured information
is the text description of the bug. In our experiments, we only
consider product, component, summary, and description and put
them into a single text file for each bug report. For the bug report
#11112 shown in Table 2, after data extraction, we get a piece of text
containing both structured and unstructured information: “Prod-
uct: Platform. Component: SWT. Summary: Multi monitors not
correctly supported. Description: Situation: Windows XP with two
monitors. If you run eclipse on your secondary monitor, code comple-
tion and comments are displayed on the primary monitor.”.

2.1.2 Preprocessing. For each bug report, we perform typical pre-
processing steps including tokenization, stemming, stop words re-
moval and case conversion. We do the preprocessing using Lucene’s
StandardAnalyzer which is a full-text search engine toolkit for
Apache [5]. When removing stop words, we use a standard vocab-
ulary of English stop words. We find that even in two completely
unrelated reports, there are also some identical words. These words
are usually very professional words, including java, com, org. Due
to frequent occurrences, we also add them to the stop word list.

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

After the above processing, there are still some isolated numbers
which are meaningless and non-English letters such as Japanese
left in the text, and we remove them.

Table 2: A sample of a bug report.

Tag Name Content

Bug ID 11112

Product Platform

Component SWT

Summary Multi monitors not correctly supported

Status RESOLVED

Resolution DUPLICATE

Duplicates 7232

Priority P3

Severity major

Version 2.0

Created 2002-03-11 13:53:00 -0500

Modified 2002-05-15 12:07:18 -0400
Situation: Windows XP with two monitors.

Description If you run eclipse on your secondary monitor,
code completion and comments are displayed
on the primary monitor.

2.1.3 Dual-Channel Matrix Presentation. After preprocessing, all
the words in all the bug reports are made up of a corpus. We use
word2vec with the Continuous Bag of Words (CBOW) model on
the corpus to obtain the word vector of each word and the word
vector dimension is set to 20. Then, we can get a two-dimensional
matrix of each bug report. When a new bug report contains a word
that is not in the corpus, set the word to a 0 vector. Since the input
of CNN is required to be a fixed shape and the length of the bug
report is different, we adopt a truncation strategy. Parts of more
than 300 words will be discarded, and when the text contains less
than 300 words, it will be supplemented with zero vector. Similar to
the grayscale image, we can also call this two-dimensional matrix
single-channel matrix.

The siamese networks used by Deshmukh et al. [12] encode
the two bug reports separately. Then, the encodings of the two
bug reports are operated to obtain the similarity of them. Our
approach aims to find a new bug report pair representation to
avoid encoding the two bug reports separately. In the image field,
a grayscale image is a single-channel matrix, while a color image
is a multi-channel matrix which can be seen as a combination
of multiple single-channel matrices. Inspired by this, we try to
combine the two single-channel matrices into a dual-channel matrix
to represent a bug report pair and then label it with duplicate (1) or
non-duplicate (0). This process is shown in Figure 2.

Compared with single-channel, there are some benefits to using
the dual-channel presentation of bug report pair. Firstly, the two
reports can be processed jointly by CNN. Therefore, the training
speed is improved. Secondly, it is found that the use of dual-channel
data to train the CNN model achieves a high accuracy [20]. For
a dual-channel CNN architecture, it can capture the correlated

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

Data Preparation

Jianjun He, Ling Xu, Meng Yan, Xin Xia, and Yan Lei

_________________________ -

Dual-channel |
Matrix |
Presentation |

|
|
|
| — - |
! Component ¥ Training Set v !
' g D I N '
] e L Ll 3 o |
Report : —
| Short_desc 2 sl
| 4 = Test Set — I
| Description e |
| NG J Single-channel |
I Information Matrix |
:_ Extraction Presentation lI
M e e -~ -~ -7 1 Testing
| Training | Save et
| Input | b
| |
| \\ \\ | predict
| . | - -9 - -—"—-—"—-—"-""7>""7""7""7""”""”>"“"“"“""=/7 |
|
I . I)) I
I . | : Duplicate Pair | |
' - | :
| . .
| Non-duplicate Pair
i : | Deployment | |

Figure 1: Dual-Channel convolutional neural networks model.

Bug Report Pair

Pair

Bug Report 1 Bug Report 2

Figure 2: Combining two bug reports into a bug report pair.

semantic relationships between bug reports by convolving the input
which is a concatenation of two single-channel matrices converted
from bug reports.

2.2 CNN Model

In order to extract features from a bug report pair, we set three
different sizes of kernels in each convolutional layer. Thus, there
are three branches in the first convolutional layer. For each of the

three branches, there still exist three new branches in the second
convolutional layer. Since the three branches have a highly similar
architecture, Figure 3 presents the overall workflow of the CNN
model with only a branch of the first convolutional layer in detail.
All of the convolution operations use Conv2D. Table 3 provides
the detail parameter settings about our whole CNN model. For the
hyperparameters, the learning rate is set to 0.001, the batch_size
is 64, and Adam is used as the optimizer. In addition, we adopt
the early stopping strategy. The model will stop training when the
verification loss no longer falls within 5 epochs.

In the first convolutional layer, there are n k kernels k1 € RkaW,
where d is the length of kernels and k,, is the width of kernels.
Since each row of the input matrix represents a word, these kernels’
widths k., are identical and equal to m which denotes the dimension
of word vector. After the first convolution, two channels of a dual-
channel matrix are merged into one channel. Thus, we treat these
two reports as a whole to extract features. Given the length of input
I (I = ny), the padding P (P = 0) and the stride S (S = 1), the length
of the output O; can be calculated as:

l—-d+2pP
01:?4-1

(1)

The output of the first convolutional layer is in the shape of
O1 X 1 X ng,. In order to further extract the association features
between the two reports, we reshape it into O; X ng, X 1 and con-
volve it once again. In the second convolutional layer, we set three
different kinds of kernels k; € R*kw (d =1, 2,3 in Table 3, ky, =
ng,) and the number of each type of the kernel is ny,. After this

Duplicate Bug Report Detection Using Dual-Channel Convolutional Neural Networks

m dimension
word vector

ICPC *20, October 5-6, 2020, Seoul, Republic of Korea

Branch2

-

Branchl [| s

Branch3

L . DI\ . L . N N) N)
Convolutional Convolutional Max-pooling Fully-connected Fully-connected Fully-connected
Layerl Reshapel Layer2 Layer Reshape2 Layerl Layer2 Layer3
Figure 3: The overall workflow of CNN model.
Table 3: The parameter settings for CNN model.
Convolution 1 Convolution 2 .
Parameter Name Branch 1 | Branch 2 | Branch 3 | Branch 1 | Branch 2 | Branch 3 Max-pooling | FC1 | FC2 FC3
Kernel Size (d xk,,) 1x20 2%20 3%20 1x100 2X100 3X100 - - - -
Kernel Number 100 100 100 200 200 200 - - - -
Output Dimension - - - - - - - 300 100 1
Activation Function Relu Relu Relu Relu Relu Relu Relu Relu | Relu | Sigmoid

convolution, we get three kinds of feature maps with the size of O,
X1Xny,, where O, can also be calculated as Formula 1 according
to I (I = O;) and different kernels’ length d. In order to preserve
the most important features extracted by convolution and reduce
the dimensions of the data, we use Oz-max pooling for all the fea-
ture maps. Thus, each feature map is subsampled into the shape of
1X 1X ng,. Finally, we reshape and concatenate all the feature maps
from all the three branches of the first convolutional layer into a 9
xny, dimensional vector as the input to the fully-connected layer.
After three fully-connected layers, we end up with an independent
probability sim,,¢q;c; Which represents the predicted similarity
between the two reports.

At each layer except the last fully-connected layer, we use the
Rectified Linear Units (Relu) as the activation function to ex-
tract more nonlinear features. In the last layer, in order to get
a value between 0 and 1 to represent simy,¢gjcs, We use Sigmoid
instead. Given the output of the second fully-connected layer T =
[x1, x2, ..., x100] and weight vector W = [w1, wa, ..., wigo], SiMpredict
can be calculated as:

1
14 e~ (Ci wixi+b)’

@

SiMpredict =

where i is the i, element of vectors and b refers to the bias.

In order for the model to automatically adjust parameters, along
with Sigmoid, our loss function is set to:

n
loss = — Z simpredict log(labelyeqp)+
i=1

®)
(1- Simpredicti)lo_‘](l - Simpredicti),

where label,.,; denotes the actual label of a bug report pair, i
represents the i, pair and n denotes the total number of pairs.

3 STUDY SETUP

In this section, we give the details of our experimental setup. We first
describe the datasets used in our experiments. Then the evaluation
metrics adopted are introduced.

3.1 Datasets

We use public datasets which are collected and processed by Lazar
[18]. The datasets contain three large open-source projects: Open
Office, Eclipse and Net Beans. Open Office is an office software
similar to Microsoft Office. Eclipse and Net Beans are open-source
integrated development environments. In order to make experi-
ments with more training samples, we create a larger dataset by

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

merging these three datasets in an additive way and name it “Com-
bined”. The datasets also provide us with bug report pairs, part
of which in Open Office are shown in Table 4. When the RESO-
LUTION of a bug report is DUPLICATE, this bug report will be
combined with its corresponding duplicate one to form a duplicate
pair. In our case, a non-duplicate pair refers to two bugs without
duplicates. This approach is adopted to generate random samples
of non-duplicates.

Table 4: Examples of bug report pairs.

BugID 1 | Bug ID 2 | Relationship
24359 53249 duplicate
66799 66919 duplicate

1635 93577 non_duplicate
49387 116949 | non_duplicate

Table 5: The complete datasets.

Dataset Duplicate | Non_duplicate
Open Office 57340 41751
Eclipse 86385 160917
Net Beans 95066 89988
Combined 238791 292476

In the analysis of all the pairs in each dataset, we notice that
there are some problems in these pairs. Firstly, some pairs are
duplicates. For example, the pair (#200622, #197347, duplicate) in
Open Office appears five times. Secondly, some pairs represent the
same association, such as the pairs (#159435, #164827, duplicate)
and (#164827, #159435, duplicate) in Eclipse. Thus, we remove these
items. Table 5 shows the number of pairs in the datasets we finally
get.

3.2 Evaluation Metrics

The output of our CNN model is a value ranging from 0 and 1,
which represents the similarity between two bug reports in a pair.
For further classification, a threshold (0.5) is set. When we have got
siMpredicy (recall Section 2), we can calculate labely,, ¢ q;c; Which
means the predicted label of a pair as follow:

1, siMpredict 2 0.5

labely,eqict = { (4)

0, simpredict < 0.5

Bug report pairs can be divided into four categories based on
labely,eqic and label,qq: TP, TN, FP, FN.

TP indicates the number of pairs that are correctly predicted
as duplicates, TN indicates the number of pairs that are correctly
predicted as non-duplicates, FP indicates the number of pairs that
are incorrectly predicted as duplicates, and FN indicates the number
of pairs that are incorrectly predicted as non-duplicates. These four
basic performance evaluation metrics are used to the following
evaluation methods.

Accuracy indicates the proportion of all correctly predicted bug
report pairs to all pairs, and it shows the performance of our model

to classify all the bug report pairs correctly. Accuracy is calculated
as TP+TN
TP+TN+FP+FN*

Jianjun He, Ling Xu, Meng Yan, Xin Xia, and Yan Lei

Recall indicates the proportion of all bug report pairs that are
correctly predicted as duplicates to all actual duplicate pairs. Recall
: TP
is calculated as 757

Precision indicates the proportion of all bug report pairs that
are correctly predicted as duplicates to all pairs that are predicted
as duplicate. Precision is calculated as %.

F1-Score is a comprehensive evaluation of Recall and Precision,
which is the harmonic mean of them. It evaluates if an increase in
Precision (or Recall) outweighs a reduction in Recall (or Precision),
respectively and provides a balanced view of Precision and Recall.
F1-Score is calculated as Ww.

. ecall+Precision *

AUC is the Area Under the Curve of Receiver Operator Charac-
teristic (ROC). ROC can be plotted by computing the True Positive
Rates (TPR) and the False Positive Rates (FPR) according to differ-

ent thresholds. TPR is calculated as % and FPR is canlculated

as Pi}; ~ - Taking all the FPR values as the horizontal axis and all

the TPR values as the vertical axis, the ROC curve can be obtained.
Already mentioned above, when determining whether a pair of
bug reports is duplicate, the model first outputs a likelihood socre
for this pair to be duplicate. Then, the likelihood score needs to be
compared with a threshold. If the likelihood score is higher than
the threshold, this pair of bug reports are duplicate, otherwise this
pair of bug reports are non-duplicate. The threshold can range from
0 to 1. AUC measures the performance of approaches across all the
thresholds. Thus, it is a threshold independent measure.
Normalized Improvement indicates the room for improve-
ment, which is proposed by Costa et al. [11] to avoid inflated results
caused by directly comparing difference or direct proportion of re-
sults. Since prior studies have already achieved a high performance
(e.g., Accuracy > 0.8), the Normalized Improvement is more appro-
priate for measuring the improvement over baselines in our context
by following Costa et al. [11]. Formally, Normalized Improvement

Per, s—Per .
Wb““, where Pergy s is the performance
ase

of our approach and Pery,, is the performance of the baseline.
To evaluate the effectiveness of our approach, we adopt a strati-
fied 5-fold cross-validation setting. In detail, we randomly divide
the dataset into five folds by using stratified random sampling. Such
sampling technique aims to keep the ratio of duplicate report pairs
and non-duplicate report pairs in each fold to be the same as the
original dataset. Then, four folds are used to train the model, while
the remaining one fold is used to evaluate the performance of our
approach. We repeat this process five times, so that each fold is used
once as the testing set. As a result, there are five effectiveness values
and we report the average values for each performance measures.

is calculated as

4 EXPERIMENTAL RESULTS

In this section, we focus on answering the following four research
questions to demonstrate the experimental results and their impli-
cations.

4.1 RQ1: Compared with the state-of-the-art
deep-earning-based approaches, how
effective is our DC-CNN?

Motivation. To the best of our knowledge, the state-of-the-art
deep-learning-based approaches for duplicate bug report detection

Duplicate Bug Report Detection Using Dual-Channel Convolutional Neural Networks

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

Table 6: The results of our approach compared with other approaches.

Dataset Accuracy Recall Precision F1-Score AUC
Siamese | DWEN | DC-CNN | Siamese | DWEN | DC-CNN | Siamese | DWEN | DC-CNN | Siamese | DWEN | DC-CNN | Siamese | DWEN | DC-CNN
Open Office 0.8399 0.9304 0.9429 0.8586 0.9409 0.9670 0.8638 0.9389 0.9365 0.8612 0.9399 0.9515 0.9223 0.9780 0.9843
Eclipse 0.8625 0.9436 0.9685 0.7535 0.9079 0.9409 0.8367 0.9267 0.9680 0.7929 0.9172 0.9543 0.9836 0.9836 0.9950
Net Beans 0.8085 0.9221 0.9534 0.7282 0.9070 0.9513 0.8782 0.9394 0.9576 0.7962 0.9229 0.9544 0.9005 0.9774 0.9893
Combined | 0.8275 | 0.9325 0.9552 0.7958 | 0.9309 | 0.9576 0.8157 | 0.9199 | 0.9435 0.8056 | 0.9254 0.9505 | 0.9127 0.9809 | 0.9906
Table 7: The confusion matrix of the three approaches.
Dataset ALy FP TN FN
Siamese | DWEN | DC-CNN | Siamese | DWEN | DC-CNN | Siamese | DWEN | DC-CNN | Siamese | DWEN | DC-CNN
Open Office 9846 10789 11089 1552 702 752 6800 7650 7600 1621 678 378
Eclipse 13018 15685 16255 2541 1240 536 29644 30945 31649 4258 1591 1021
Net Beans 13846 17244 18087 1920 1113 800 16079 16886 17199 5167 1769 926
Combined 38003 44455 45731 8584 3871 2740 49948 54661 55792 9753 3301 2025

are proposed by Deshmukh et al. (Siamese Networks) [12] and Bud-
hiraja et al. (DWEN) [8]. The goal of our study is to propose a more
effective deep-learning-based approach. Therefore, we compare
DC-CNN with Deshmukh et al’s and Budhiraja et al.’s approaches
based on the same datasets. Since we do not have the source code
of these two papers, we implement their approaches as described in
their papers on our datasets. Deshmukh et al.’s approach includes
two models - the retrieval model and the classification model. Since
the classification model has the same task as our model, we imple-
ment it.

Results. Table 6 shows the results of Deshmukh et al.’s approach
(Siamese Networks), Budhiraja et al.’s approach (DWEN) and our ap-
proach (DC-CNN). We focus on Accuracy, F1-Score and AUC to eval-
uate the performance of our approach. Compared with Siamese Net-
works, the Normalized Improvement in terms of Accuracy is 64.33%,
77.09%, 75.66%, and 74.03%, respectively. The Normalized Improve-
ment in terms of Accuracy is 17.96%, 44.15%, 40.18%, and 33.63%,
respectively, compared with DWEN. Compared with Siamese Net-
works, the Normalized Improvement in terms of F1-Score is 65.06%,
77.93%, 77.62%, and 74.54%, respectively. The Normalized Improve-
ment in terms of FI1-Score is 29.56%, 44.81%, 69.08%, and 33.65%,
respectively, compared with DWEN. Compared with Siamese Net-
works, the Normalized Improvement in terms of AUC is 79.79%,
69.51%, 89.25%, and 89.23%, respectively. The Normalized Improve-
ment in terms of AUC is 28.64%, 69.51%, 54.65%, and 50.78%, respec-
tively, compared with DWEN.

Implications. According to Table 6, the performance of DC-CNN
is better than that of Siamese Networks and DWEN on all four
datasets. Accuracy is affected by changes of TP and TN, so we
want to explore further the cause of the change from the confu-
sion matrix which is shown in Table 7. It can be seen that for all
the datasets, both TP and TN in our DC-CNN are on the rise (ex-
cept for a slight decrease for TN in Open Office). Therefore, the
improvement in terms of Accuracy is not only simply due to cor-
rectly classify more duplicate bug report pairs or only simply due
to correctly classify more non-duplicate bug report pairs. Whether
it’s a duplicate bug report pair or a non-duplicate bug report pair,
our DC-CNN has better classification performance. This further
demonstrates that our DC-CNN model is excellent in duplicate bug
report pair classifications.

4.2 RQ2: Compared with Single-Channel
Convolutional Neural Networks based
approach, how effective is our DC-CNN?

Motivation. To prove our dual-channel input of the bug report
pair is effective, we also use the single-channel input of the bug
report as our baseline. The dual-channel input in the DC-CNN is
split according to the channel to regain two single-channel matri-
ces representing bug reports. Then we keep the structure of CNN
(part except for the fully-connected layers in Figure 3) unchanged
and use it to extract features of two reports represented by single-
channel matrices in a pair separately. The feature vectors of the
two single-channel matrices encoded by CNN are calculated to
obtain their cosine similarity. We call this approach Single-Channel
Convolutional Neural Networks (SC-CNN).

Results. We evaluate their performances through Accuracy, Recall,
Precision, F1-Score and the results are shown in Table 8, where the
best values are highlighted in bold. It is observed that DC-CNN
achieves better performance than SC-CNN with all these four met-
rics on all the datasets. Compared with SC-CNN, the Normalized
Improvement in terms of Accuracy is 32.74%, 45.31%, 22.55%, 34.21%,
the Normalized Improvement in terms of Recall is 45.27%, 7.94%,
23.43%, 42.78%, the Normalized Improvement in terms of Precision
is 24.67%, 67.11%, 22.06% 26.91%, the Normalized Improvement in
terms of F1-Score is 33.10%, 43.58%, 22.84%, 34.61%, and the Normal-
ized Improvement in terms of AUC is 52.28%, 68.94%, 32.28%, 52.28%
on Open Office, Eclipse, Net Beans, and Combined respectively.
Implications. All of these results indicate that the dual-channel
CNN model is more effective compared with the approach using
single-channel. For SC-CNN, every single bug report is transformed
into a matrix and then fed into CNN to extract their features which
are represented by feature vectors. Duplicate bug reports are de-
tected by computing the similarity of two feature vectors. For DC-
CNN, the matrices of two bug reports are concatenated into a
dual-channel matrix and fed to CNN, then the matrices of two bug
reports are convolved together, which is able to extract the deeper
semantic relationship between the two reports and makes full use
of the ability of CNN to capture local features.

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

Jianjun He, Ling Xu, Meng Yan, Xin Xia, and Yan Lei

Table 8: DC-CNN vs. SC-CNN using metrics Accuracy, Recall, Precision, F1-Score and AUC.

Dataset Accuracy Recall Precision F1-Score AUC
SC-CNN | DC-CNN | SC-CNN | DC-CNN | SC-CNN | DC-CNN | SC-CNN | DC-CNN | SC-CNN | DC-CNN
Open Office 0.9151 0.9429 0.9397 0.9670 0.9157 0.9365 0.9275 0.9515 0.9671 0.9843
Eclipse 0.9424 0.9685 0.9358 0.9409 0.9027 0.9680 0.9190 0.9543 0.9839 0.9950
Net Beans 0.9397 0.9533 0.9364 0.9513 0.9456 0.9576 0.9409 0.9544 0.9842 0.9893
Combined 0.9319 0.9552 0.9259 0.9576 0.9227 0.9435 0.9243 0.9505 0.9803 0.9906
Table 9: The performance in cross-project setting.
Target Project Training Project(s) TP FP FN TN | Accuracy | Recall | Precision | F1-Score
Eclipse 200 2 11267 | 8350 0.4313 0.0174 0.9901 0.0342
Open Office Net Beans 10976 | 6230 491 2122 0.6608 0.9571 0.6379 0.7656
Eclipse + Net Beans 4740 343 6727 | 8009 0.6432 0.4133 0.9325 0.5728
Open Office 15308 | 23932 | 1968 | 8253 0.4763 0.8861 0.3901 0.5417
Eclipse Net Beans 4806 788 12470 | 31397 0.7319 0.2782 0.8591 0.4203
Open Office + Net Beans | 16845 | 20622 | 431 | 11563 0.5743 0.9750 0.4496 0.6154
Open Office 17757 | 16502 | 1256 | 1497 0.5202 0.9339 0.5183 0.6666
Net Beans Eclipse 2051 51 16962 | 17948 0.5403 0.1079 0.9757 0.1943
Open Office + Eclipse 8821 1284 | 10192 | 16715 0.6899 0.4639 0.8729 0.6059
98 Results. It is observed from Figure 4, after removing the structured
" . e fe e information, the Accuracy on all the datasets decreased (directly

Accuracy(%)
©o © ©o
N w £

©
=

90

Open Office Net Beans Combined

Dataset

Figure 4: The effect of unstructured information.

4.3 ROQ3: How effective is our approach when
modeling without structured information?

Motivation. Structured information such as product, component,
version, etc. provides useful information to distinguish two bug re-
ports are duplicate or not. Many approaches always treat structured
information as a single feature to improve the Accuracy of dupli-
cate bug report detection. Unstructured information is the natural
language description of the bug. For duplicate bug report detection,
the CNN model is mainly used to process unstructured text since it
has good performance in processing long text. Different from the
previous methods, in this paper, we consider both structured and
unstructured information as text data and put them together into a
text document. The CNN model is applied to extract its features. In
order to answer RQ3, we remove the structured information from
the input and conduct comparative experiments without changing
other conditions.

comparing the difference) by 1.74%, 3.79%, 3.38%, 2.56% on Open
Office, Eclipse, Net Beans, and Combined respectively.
Implications. Experimental results show that it is useful to feed
structured information along with unstructured information to
CNN. We notice that after removing structured information, al-
though the Accuracy has declined, this decline is not fatal. The
reason might be that structured information only accounts for a
small fraction of the whole text. The main part for CNN to extract
features is still unstructured information.

4.4 RQ4: How effective is our approach in a
cross-project detection setting?

Motivation. By default, we train our detection model by learn-
ing from the historical labeled data within the project. However,
for projects with limited development history, there is often not
enough labeled data for building a deep-learning-based model. An
alternative solution is to build a detection model by learning from
other projects, i.e., the cross-project setting as stated by the previous
study [12]. Thus, in this section, we investigate the effectiveness
of the cross-project setting when using our approach. In the cross-
project setting, we use labeled data from other projects to train a
model. Then, such model is used to detect duplicate bug reports for
the target project.

In detail, for each target project, we construct three models
using the data from the other two projects respectively and the
data combined by the other two projects. Then, we evaluate the
effectiveness of the three models by testing on the target project.
Results. Table 9 shows the evaluation results in the cross-project
setting. We focus on the FI-Score since it can show the performance
of the classification model from a more comprehensive perspective.
For Open Office, the highest F1-Score is 0.7656. Such performance

Duplicate Bug Report Detection Using Dual-Channel Convolutional Neural Networks

Table 10: The summary and description of a duplicate pair.

Content

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

Bug ID

Summary

paper size bigger/ longer than A0 (1019x1019mm)

25791

Description | - choose format, page

- page, format: user

Trying to print a spreadsheet long! (2500mm)
I have a plotter which is able to do so and able to receive postscript files.

- it’s impossible to choose a size bigger than 1019x1019mm (nevertheless which.

50245 Suamary

width / height of a drawing-sheet more than 119 cm

Description

the maximum height / width of a drawing sheet is limitated on 119 cm x 119 cm.
(This limitation is in Impress too.)

Is it possible to set this limitation higher (e.g. unlimited)?

is achieved when learning from Net Beans project. For Eclipse,
the highest F1-Score is 0.6154. Such performance is achieved when
learning from the combined dataset of Open Office and Net Beans.
For Net Beans, the highest F1-Score is 0.6666. Such performance is
achieved when learning from Open Office.

Implications. From the experimental results, we can find that the
cross-project setting is also doable when there is not enough labeled
data in the target project. However, one remaining issue is how to
select the proper training project(s). It’s worth noting that when
using Open Office as the training project, the evaluation result of
Net Beans is better. When using Net Beans as the training project,
the evaluation result of Open Office achieves a better performance.
The reason might be that Open Office and Net Beans are projects
from the same organization (Sun). Projects developed by the same
organization may have a lot of similarities. Thus, when a target
project lacks labeled data, an alternative solution is to build a cross-
project model by earning from anther similar project when using
our approach.

5 DISCUSSION: WHY DOES DC-CNN WORK?

In this section, we analyze the reason for why our DC-CNN works
for duplicate bug report detection.

Our DC-CNN can be divided into two parts: Dual-Channel and
CNN. We explain why CNN works first. Our duplicate bug report
detection is actually a text classification problem. The key to text
classification is to refine the central idea of a document or sentence
accurately. The way to refine the central idea is to extract the
keywords in the document or sentence as features. Convolution
and pooling in CNN is such a feature extraction process. Since
our input is a document, and the adjacent words in it are highly
correlated, when we set up convolution kernels of different sizes,
we not only consider the meaning of the words but also consider the
word order and context. So, we can use CNN to train our classifier.

Dual-channel means that the convolution of CNN can process
two sets of data once. In the field of Computer Vision (CV), pictures
with only gray values have only one channel. If it is a color picture,
there will be three images of RGB (i.e., three channels). We apply
the idea of CV to the text, that is, let CNN extract the features of
the two bug reports at a time and after the first convolution, the
features of the two bug reports are merged.

Table 10 shows the summary and description of a duplicate pair
on Open Office that were successfully detected by DC-CNN. Both

the bug reports describe a problem with limited page size. When
describing the page size, #25791 uses “size” while #50245 uses
“width/height”. When making a request for a larger page selection,
#25791 uses “bigger/longer” while #50245 uses “higher” and “un-
limited”. At the first convolution, CNN extracts the features from
both reports and fuses them. In the subsequent convolution and
pooling, the features of this fusion are further refined. Finally, our
DC-CNN model extracts the deep association features of this pair.
Such a process makes it possible for even two reports that use dif-
ferent keywords to describe the same bug to be detected by our
model.

6 RELATED WORK

In the literature, many approaches have been proposed for auto-
matic duplicate bug report detection. In general, we can roughly
divide these approaches into two categories: text similarity and
machine learning.

Text similarity is the commonly used technique for duplicate bug
report detection by computing textual similarity between two bug
reports. Hiew et al. [15] propose a model using Vector Space Model
(VSM) which calculates a report as a vector with Term Frequency-
Inverse Document Frequency (TF-IDF) term weighting scheme.
Based on VSM, Runeson et al. [29] first use Natural Language Pro-
cess (NLP) to detect duplicate bug reports. Wang et al. [37] believe
that only considering natural language information may not be
sufficient for solving this problem. Hence, they use the execution
information as a feature to perform duplicate bug report detection.
However, only a small percentage of reports contain execution
information and there is a significant limitation about this way.
Sun et al. [31] propose REP which not only uses summary and
description to calculate text similarity but also uses structured in-
formation including product, component, version and so on. To
get a more accurate text similarity, they extend BM25F which is
an effective similarity method. In addition to text similarity and
structured similarity, Alipour et al. [2] also study the impact of
contextual information on duplicate bug report detection. They
apply LDA on these features and get a better result. The IR-based
approaches perform well in both accuracy and time efficiency, but
when a problem is described by different descriptive terms, the
effect is unsatisfied. So Nguyen et al. [27] propose DBTM, which
leverages both IR-based features and topic-based features. What’s
more, Sureka et al. [34] also use a character N-gram-based model

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

to detect duplicate bug reports. Aggarwal et al. [1] propose a sim-
pler software-literature context approach to detect duplicate bug
reports. This method reduces the manual effort used in contextual
bug deduplication with only a little loss in terms of accuracy.

Machine learning is also a line of approach for the automatic
detection of duplicate bug reports. Support Vector Machine (SVM)
is a very classic method in machine learning. Jalbert et al. [17] use it
to develop a classifier system which can filter out the duplicate bug
reports. At the same time, they think that the previous approaches
do not take into account the various features available in the report,
so they use surface features, textual semantics and graph clustering
on this model. Based on the work of Jalbert, Tian et al. [36] consider
some new features and construct a linear model. Starting with di-
rections of features and addressing imbalanced data, they improve
accuracy. Sun et al. [32] use SVM to construct a discrimination
model. They first divide the bug reports into two classes - duplicate
and non-duplicate. Learning to Rank (L2R) is another useful ma-
chine learning approach. Based on L2R, Zhou et al. [42] consider
textual and statistical features and use a stochastic gradient descent
algorithm for them. The proposed approach works better than tradi-
tional IR approached like VSM and BM25F. With the application of
word embedding in NLP, more and more researchers are using it to
detect duplicate reports. Budhiraja et al. [9] use word embedding to
convert bug reports into vectors and then calculate their similarity.
Experimental results show that this approach has the potential to
improve duplicate bug report detection.

Previous research has proposed some features to represent bug re-
ports. However, few methods can extract the semantic relationship
between bug reports. Deep-learning techniques perform excellently
in the area of NLP tasks and can help to bridge this gap. Deshmukh
et al. [12] first use deep-learning to perform duplicate bug report
detection. They propose a retrieval model and a classification model
based on Siamese Convolutional Neural Networks (CNN) and Long
Short Term Memory (LSTM). Their experiments show that deep-
learning makes great progress for this problem. Budhiraja et al.
[8] use word2vec to convert each report into a matrix representa-
tion, and then average each column of the matrix, thus obtaining
a vector of fixed dimensions to represent a bug report. They also
concatenate the two vectors of a pair of bug reports and put them
into a deep neural network to predict their similarity. The result
of this approach also exceeds most of the previous duplicate bug
report detection approach.

7 THREATS TO VALIDITY

In this section, we analyze several potential aspects that may threaten
the validity of our approach and experiments.

Internal Validity. Threats to internal validity relate to potential
errors in our experimental implementation. To reduce errors in our
code, we have double-checked and fully tested our code, still there
could be errors that we did not notice. Additionally, we implement
our approach on top of the commonly used tools (e.g., Lucene for
text preprocessing and Keras for CNN) to mitigate this issue.

In the implementation of other methods, although we strictly
follow the description of their papers, there are some experimental
details not mentioned in the papers. To address this issue, we set
them to default.

Jianjun He, Ling Xu, Meng Yan, Xin Xia, and Yan Lei

External Validity. The threat to external validity is the generaliz-
ability of our experiment results. We have evaluated our approach
on three large datasets. Since the experiments on each dataset are in-
dependent, we believe that it does not fully explain that our method
is universally applicable. Therefore, we combine the three datasets
together to form a larger dataset and experiment on it to mitigate
this issue.

Construct Validity. Although the performance has been improved,
the data which is mislabeled in our datasets is an issue. It is pos-
sible that the bug reports used to create the detection model are
incorrectly labeled, which may cause errors in our model. In order
to alleviate this problem, we make experiments with three datasets
from three different projects, which are labeled by different groups
of people.

8 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel approach using DC-CNN for
duplicate bug report detection. We concatenate two bug reports
represented by two single-channel matrices into a bug report pair
represented by a dual-channel matrix. Then, the dual-channel ma-
trix is fed into the CNN model to extract their hidden semantics
and features. We have investigated the performance of DC-CNN
on three public datasets including Open Office, Eclipse and Net
Beans and a larger dataset combined by these three projects. We
evaluate DC-CNN’s performance against the state-of-the-art deep-
learning-based approaches[8, 12] for duplicate bug report detection.
In summary, our conclusion is as follows:

(1) Compared with the state-of-the-art deep-learning-based ap-
proaches, DC-CNN performs better for duplicate bug reports
detection.

(2) Compared with SC-CNN in terms of Accuracy, Recall, Precision
and F1 — Score, DC-CNN is better. This indicates that our
proposed dual-channel bug report pair representation is ef-
fective.

(3) We make a comparative study by removing structured infor-
mation compared with our default approach. We find that
it is more effective by feeding both structured information
and unstructured information to CNN.

(4) We make a cross-project setting experiment. The experimen-
tal results indicate that when a project lacks labeled data,
we can use the existing labeled data from other appropriate
project(s) to train the detection model.

In the future, we will investigate how to make use of more struc-
tured information to improve our approach. Additionally, more
empirical studies can be performed to validate our approach on
both open source and industrial projects.

ACKNOWLEDGMENTS
The work described in this paper was partially supported by the Na-

tional Key Research and Development Project (Grant no. 2018YFB2101201),
the National Natural Science Foundation of China (Grant no. 61602504),

the Fundamental Research Funds for the Central Universities (Grant
no. 2019CDYGYB014) and the Australian Research Council’s Dis-
covery Early Career Researcher Award (DECRA) funding scheme
(DE200100021).

Duplicate Bug Report Detection Using Dual-Channel Convolutional Neural Networks

REFERENCES

[1] Karan Aggarwal, Finbarr Timbers, Tanner Rutgers, Abram Hindle, Eleni Strou-

[11

[12

[15

[16

[17

(18

[19

[20

[21

[22

]

]

)

]

]

]

]

lia, and Russell Greiner. 2017. Detecting duplicate bug reports with software
engineering domain knowledge. Journal of Software: Evolution and Process 29, 3
(2017), e1821.

Anahita Alipour, Abram Hindle, and Eleni Stroulia. 2013. A contextual approach
towards more accurate duplicate bug report detection. In 2013 10th Working
Conference on Mining Software Repositories (MSR). IEEE, 183-192.

John Anvik, Lyndon Hiew, and Gail C Murphy. 2005. Coping with an open bug
repository. In Proceedings of the 2005 OOPSLA workshop on Eclipse technology
eXchange. ACM, 35-39.

Prasad V Bagal, Sameer Arun Joshi, Hanlin Daniel Chien, Ricardo Rey Diez,
David Cavazos Woo, Emily Ronshien Su, and Sha Chang. 2019. Duplicate bug
report detection using machine learning algorithms and automated feedback
incorporation. US Patent App. 16/383,405.

Andrzej Bialecki, Robert Muir, Grant Ingersoll, and Lucid Imagination. 2012.
Apache lucene 4. In SIGIR 2012 workshop on open source information retrieval. 17.
David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation.
Journal of machine Learning research 3, Jan (2003), 993-1022.

Satya Prateek Bommaraju, Anjaneyulu Pasala, and Shivani Rao. 2018. System
and method for detection of duplicate bug reports. US Patent 9,990,268.

Amar Budhiraja, Kartik Dutta, Raghu Reddy, and Manish Shrivastava. 2018.
DWEN: deep word embedding network for duplicate bug report detection in soft-
ware repositories. In Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings. 193-194.

Amar Budhiraja, Kartik Dutta, Manish Shrivastava, and Raghu Reddy. 2018.
Towards Word Embeddings for Improved Duplicate Bug Report Retrieval in Soft-
ware Repositories. In Proceedings of the 2018 ACM SIGIR International Conference
on Theory of Information Retrieval. ACM, 167-170.

Yguarata Cerqueira Cavalcanti, Eduardo Santana de Almeida, Carlos Eduardo Al-
buquerque da Cunha, Daniel Lucredio, and Silvio Romero de Lemos Meira. 2010.
An initial study on the bug report duplication problem. In 2010 14th European
Conference on Software Maintenance and Reengineering. IEEE, 264-267.
Catarina Costa, Jair Figueiredo, Leonardo Murta, and Anita Sarma. 2016. TIP-
Merge: recommending experts for integrating changes across branches. In Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. ACM, 523-534.

Jayati Deshmukh, Sanjay Podder, Shubhashis Sengupta, Neville Dubash, et al.
2017. Towards accurate duplicate bug retrieval using deep learning techniques. In
2017 IEEE International conference on software maintenance and evolution (ICSME).
IEEE, 115-124.

Yuanrui Fan, Xia Xin, Lo David, and Hassan Ahmed E. [n. d.]. Chaff from the
Wheat: Characterizing and Determining Valid Bug Reports. IEEE Transactions on
Software Engineering ([n. d.]), 1-1.

Ying Fu, Meng Yan, Xiaohong Zhang, Ling Xu, Dan Yang, and Jeffrey D Kymer.
2015. Automated classification of software change messages by semi-supervised
Latent Dirichlet Allocation. Information and Software Technology 57 (2015),
369-377.

Lyndon Hiew. 2006. Assisted detection of duplicate bug reports. Ph.D. Dissertation.
University of British Columbia.

Pieter Hooimeijer and Westley Weimer. 2007. Modeling bug report quality. In
Proceedings of the twenty-second IEEE/ACM international conference on Automated
software engineering. ACM, 34-43.

Nicholas Jalbert and Westley Weimer. 2008. Automated duplicate detection
for bug tracking systems. In 2008 IEEE International Conference on Dependable
Systems and Networks With FICS and DCC (DSN). IEEE, 52-61.

Alina Lazar, Sarah Ritchey, and Bonita Sharif. 2014. Generating duplicate bug
datasets. In Proceedings of the 11th working conference on mining software reposi-
tories. ACM, 392-395.

Hoa T Le, Christophe Cerisara, and Alexandre Denis. 2018. Do convolutional
networks need to be deep for text classification?. In Workshops at the Thirty-
Second AAAI Conference on Artificial Intelligence.

Dean Lee, Vincent Siu, Rick Cruz, and Charles Yetman. 2016. Convolutional
neural net and bearing fault analysis. In Proceedings of the International Conference
on Data Mining (DMIN). The Steering Committee of The World Congress in
Computer Science, Computer ..., 194.

Johannes Lerch and Mira Mezini. 2013. Finding duplicates of your yet unwrit-
ten bug report. In 2013 17th European Conference on Software Maintenance and
Reengineering. IEEE, 69-78.

Joseph Lilleberg, Yun Zhu, and Yanqing Zhang. 2015. Support vector machines
and word2vec for text classification with semantic features. In 2015 IEEE 14th

[23

S
=)

[28

[29]

[30

[32

[33

[34

[36

[37

(38]

[41

[42]

[43]

[44]

ICPC *20, October 5-6, 2020, Seoul, Republic of Korea

International Conference on Cognitive Informatics & Cognitive Computing (ICCI*
CC). IEEE, 136-140.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016. Recurrent neural network
for text classification with multi-task learning. arXiv preprint arXiv:1605.05101
2016).

’(I‘ao L)iu, Zheng Chen, Benyu Zhang, Wei-ying Ma, and Gongyi Wu. 2004. Im-
proving text classification using local latent semantic indexing. In Fourth IEEE
International Conference on Data Mining (ICDM04). IEEE, 162-169.

Tie-Yan Liu et al. 2009. Learning to rank for information retrieval. Foundations
and Trends® in Information Retrieval 3, 3 (2009), 225-331.

Marc Moreno Lopez and Jugal Kalita. 2017. Deep Learning applied to NLP. arXiv
preprint arXiv:1703.03091 (2017).

Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N Nguyen, David Lo, and Cheng-
nian Sun. 2012. Duplicate bug report detection with a combination of information
retrieval and topic modeling. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. ACM, 70-79.
Xin Rong. 2014. word2vec parameter learning explained.
arXiv:1411.2738 (2014).

Per Runeson, Magnus Alexandersson, and Oskar Nyholm. 2007. Detection of
duplicate defect reports using natural language processing. In Proceedings of the
29th international conference on Software Engineering. IEEE Computer Society,
499-510.

Nicolas Serrano and Ismael Ciordia. 2005. Bugzilla, ITracker, and other bug
trackers. IEEE software 22, 2 (2005), 11-13.

Chengnian Sun, David Lo, Siau-Cheng Khoo, and Jing Jiang. 2011. Towards
more accurate retrieval of duplicate bug reports. In Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineering. IEEE
Computer Society, 253-262.

Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-Cheng Khoo.
2010. A discriminative model approach for accurate duplicate bug report re-
trieval. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1. ACM, 45-54.

Martin Sundermeyer, Ralf Schliiter, and Hermann Ney. 2012. LSTM neural net-

works for language modeling. In Thirteenth annual conference of the international
speech communication association.

Ashish Sureka and Pankaj Jalote. 2010. Detecting duplicate bug report using char-
acter n-gram-based features. In 2010 Asia Pacific Software Engineering Conference.
IEEE, 366-374.

D Swapna and K Thammi Reddy. 2016. Duplicate Bug Report Detection of
User Interface Bugs using Decision Tree Induction and Inverted Index Structure.
(2016).

Yuan Tian, Chengnian Sun, and David Lo. 2012. Improved duplicate bug report
identification. In 2012 16th European Conference on Software Maintenance and
Reengineering. IEEE, 385-390.

Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun. 2008. An approach
to detecting duplicate bug reports using natural language and execution informa-
tion. In Proceedings of the 30th international conference on Software engineering.

ACM, 461-470.

Meng Yan, Ying Fu, Xiaohong Zhang, Dan Yang, Ling Xu, and Jeffrey D Kymer.
2016. Automatically classifying software changes via discriminative topic model:
Supporting multi-category and cross-project. Journal of Systems and Software
113 (2016), 296-308.

Meng Yan, Xiaohong Zhang, Dan Yang, Ling Xu, and Jeffrey D Kymer. 2016. A
component recommender for bug reports using discriminative probability latent
semantic analysis. Information and Software Technology 73 (2016), 37-51.

Wen Zhang, Taketoshi Yoshida, and Xijin Tang. 2008. Text classification based on
multi-word with support vector machine. Knowledge-Based Systems 21, 8 (2008),
879-886.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional
networks for text classification. In Advances in neural information processing
systems. 649-657.

Jian Zhou and Hongyu Zhang. 2012. Learning to rank duplicate bug reports. In
Proceedings of the 21st ACM international conference on Information and knowledge
management. ACM, 852-861.

Jie Zou, Ling Xu, Mengning Yang, Meng Yan, Dan Yang, and Xiaohong Zhang.
2016. Duplication Detection for Software Bug Reports based on Topic Model. In
2016 9th International Conference on Service Science (ICSS). IEEE, 60-65.

Jie Zou, Ling Xu, Mengning Yang, Xiaohong Zhang, Jun Zeng, and Sachio Hi-
rokawa. 2016. Automated duplicate bug report detection using multi-factor
analysis. IEICE TRANSACTIONS on Information and Systems 99, 7 (2016), 1762—
1775.

arXiv preprint

	Abstract
	1 Introduction
	2 Approach
	2.1 Data Preparation
	2.2 CNN Model

	3 Study Setup
	3.1 Datasets
	3.2 Evaluation Metrics

	4 Experimental Results
	4.1 RQ1: Compared with the state-of-the-art deep-earning-based approaches, how effective is our DC-CNN?
	4.2 RQ2: Compared with Single-Channel Convolutional Neural Networks based approach, how effective is our DC-CNN?
	4.3 RQ3: How effective is our approach when modeling without structured information?
	4.4 RQ4: How effective is our approach in a cross-project detection setting?

	5 Discussion: why does DC-CNN work?
	6 Related Work
	7 Threats to Validity
	8 Conclusion and Future Work
	Acknowledgments
	References

