
An Empirical Study of Code Search in Intelligent Coding
Assistant: Perceptions, Expectations, and Directions

Chao Liu∗
Chongqing University
Chongqing, China

liu.chao@cqu.edu.cn

Xindong Zhang
Alibaba Cloud

Hangzhou, China
zxd139932@alibaba-inc.com

Hongyu Zhang
Chongqing University
Chongqing, China

hyzhang@cqu.edu.cn

Zhiyuan Wan
Zhejiang University
Hangzhou, China

wanzhiyuan@zju.edu.cn

Zhan Huang
Chongqing University
Chongqing, China

huangzhan@cqu.edu.cn

Meng Yan
Chongqing University
Chongqing, China
mengy@cqu.edu.cn

ABSTRACT
Code search plays an important role in enhancing the productiv-
ity of software developers. Throughout the years, numerous code
search tools have been developed and widely utilized. Many re-
searchers have conducted empirical studies to understand the prac-
tical challenges in usingweb search engines, like Google and Koders,
for code search. To understand the latest industrial practice, we con-
ducted a comprehensive empirical investigation into the code search
capability of TONGYI Lingma (short for Lingma), an IDE-based
coding assistant recently developed by Alibaba Cloud and available
to users worldwide. The investigation involved 146,893 code search
events from 24,543 users who consented for recording. The quanti-
tative analysis revealed that developers occasionally perform code
search as needed, an effective tool should consistently deliver useful
results in practice. To gain deeper insights into developers’ percep-
tions and expectations, we surveyed 53 users and interviewed 7
respondents in person. This study yielded many significant find-
ings, such as developers’ expectations for a smarter code search
tool capable of understanding their search intents within the local
programming context in IDE. Based on the findings, we suggest
practical directions for code search researchers and practitioners.

CCS CONCEPTS
• Software and its engineering → Software maintenance tools.

KEYWORDS
Empirical Study, Code Search, Coding Assistant

ACM Reference Format:
Chao Liu, Xindong Zhang, Hongyu Zhang, Zhiyuan Wan, Zhan Huang,
and Meng Yan. 2024. An Empirical Study of Code Search in Intelligent
Coding Assistant: Perceptions, Expectations, and Directions. In Companion

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0658-5/24/07
https://doi.org/10.1145/3663529.3663848

Proceedings of the 32nd ACM International Conference on the Foundations
of Software Engineering (FSE Companion ’24), July 15–19, 2024, Porto de
Galinhas, Brazil. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3663529.3663848

1 INTRODUCTION
In modern software development, code search is one of the most
frequent activities [9, 31]. The objective of code search tools is
to retrieve source code from a large-scale codebase that aligns to
the intent of developers’ search queries [24, 25]. By utilizing code
search tools, developers enhance their development productivity
through the reuse of existing code [7, 8, 21, 42].

Over the years, researchers conducted many empirical studies
on code search tools [2, 31, 41]. For example, Bajracharya et al.
[2] analyzed developers’ motivations using the traditional code
search engine Koders. Sadowski et al. [31] investigated develop-
ers’ code search activities at Google with an internal code search
engine. Zhang et al. [45] developed a tool named Bing Developer
Assistant and provided users’ feedback. This tool searches and rec-
ommends code example for users to improve their programming
productivity. Xia et al. [41] explored the challenges associated with
the code search using web search engines like Google. To investi-
gate emerging industrial practices, in this work, we have conducted
a comprehensive empirical study on the code search capability of
TONGYI Lingma (short for Lingma hereafter), an IDE-based coding
assistant recently developed by Alibaba Cloud1.

This tool, Lingma2, was developed to improve software develop-
ment productivity at Alibaba3, a multinational technology company
with over 220k full-time employees. Lingma has been free to users
worldwide. The tool provides code search feature and the codebase
was sourced from the open-source community GitHub and the
question-and-answer (Q&A) communities (e.g., Stack Overflow and
Alibaba cloud Documents), where only permissively licensed data
was collected. Depending on the type of query, this tool supports
two types of code search. One is semantic search, which retrieves
code functionally relevant to a given query written in natural lan-
guage [13, 15, 25, 27]. The other is API search, which takes an API
name as input and returns representative code examples [3, 14]. It
is noteworthy that code search events can also be triggered by the

1Alibaba Cloud website: https://www.alibabacloud.com
2Lingma official website: https://tongyi.aliyun.com/lingma
3Alibaba website: https://www.alibaba.com

283

https://doi.org/10.1145/3663529.3663848
https://doi.org/10.1145/3663529.3663848
https://doi.org/10.1145/3663529.3663848
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3663529.3663848&domain=pdf&date_stamp=2024-07-10


FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Liu et al.

selected programming objects (i.e., code or comments) in the IDE
editor. More details can be found in Section 2.1.

To examine the practical use of the code search tool, we have
conducted a quantitative analysis on one year of recorded code
search activities, obtained with user consent. These recordings
involve 24,543 users and 146,893 code search events. The statistical
results revealed several key insights:

• Semantic search is more frequently used within the IDE,
compared to API search. The majority of developers perform
code search as needed, an effective tool should consistently
yield useful results in practice.

• User queries tend to be short and concise, and recommend-
ing relevant queries based on common user inputs is useful
to pinpoint the desired queries. Developers occasionally sub-
mit lengthy queries by copying runtime logs for debugging
purposes. For semantic search queries, inclusion of local lan-
guage (e.g., Chinese) proves advantageous for non-English
speaking developers.

• Developers commonly restrict their explorations to top rank
(less than 3) of the first page of code search results. This
behavior underscores the critical need for code search tools
to deliver highly relevant results.

Moreover, we developed a survey questionnaire to investigate
users’ perceptions and future expectations regarding code search.
The questionnaire was drafted based on the understanding of quanti-
tative analysis and recent systematic reviews of code search studies
[9, 24]. It underwent refinement through a pilot study involving
two senior developers at Alibaba. Additionally, we conducted one-
on-one interviews with seven respondents to delve deeper into
their survey responses and gather additional insights. Some major
findings include:

• Experienced developers may not perform frequent code
search; but when they do, they expect the tool to be highly
effective. Despite their experience, writing precise queries
remains a challenge for semantic search users.

• In practice, developers search code for diverse purposes (e.g.,
program comprehension). They anticipate future tools to in-
corporate codebases with multiple programming languages
(e.g., Go and Javascript) from various sources (e.g., API doc-
uments). These tools should support search at different code
granularity levels (e.g., fragment and class) and offer addi-
tional quality improvement of the search results (e.g., bug
detection and programming style checking).

• Developers expect code search tools to possess enhanced
query understanding capabilities like ChatGPT. They expect
search results to be succinct, representative, readily compre-
hensible, and adaptable to the programming context with
minimal or no modifications.

In summary, our study makes the following major contributions:

• We performed a comprehensive quantitative analysis of a
recent coding assistant to analyze developers’ code search ac-
tivities. Subsequently, we conducted surveys and interviews
to uncover valuable insights.

Figure 1: The interface of the code search feature in Lingma.

• We presented future directions for researchers concerning
code search requirements, evaluation, and improvement. Ad-
ditionally, we showed various user expectations that can
assist practitioners in developing better tools.

2 METHODOLOGY
Section 2.1 describes the study subject of this paper. Section 2.2
presents the overview of our research methodology in two stages,
each of which is elaborated in Sections 2.3 and 2.4, respectively.

2.1 Study Subject
Lingma is an AI coding assistant developed by Alibaba Cloud, pro-
viding plugins to JetBrains IDEs, Visual Studio Code, etc. Originally
published on Oct 10th, 2021, under the name Alibaba Cloud AI
Coding Assistant4, the tool underwent a name change to Lingma
on Oct 25th, 2023 with additional features such as code comment
generation [16, 17], code generation [6, 38], test case generation
[20, 39], bug fixing [36, 44], etc. Primarily, the code search feature
of this tool leverages the pre-trained language model GPT-2 [30]
and the distributed full-text search engine ElasticSearch [10].

This tool enhances software developers’ productivity by provid-
ing code search capabilities directly within the integrated develop-
ment environment (IDE), eliminating the need to switch browsers
when encountering programming challenges. The user interface of
the code search tool, depicted in Fig. 1, allows users to input textual
descriptions or API names in the search box at the top. Addition-
ally, the tool offers recommendations for candidate queries (e.g.,
“OkHttpClient”) based on users’ input (e.g., “okhttp”), facilitating

4Alibaba Cloud AI Coding Assistant website: https://github.com/alibaba-cloud-
toolkit/cosy

284



An Empirical Study of Code Search in Intelligent Coding Assistant: Perceptions, Expectations, and Directions FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

more accurate queries. Upon entering a query, the tool retrieves a
ranked list of relevant Java source code from a codebase curated by
the Lingma development group. If users finds a result of interest,
they can click on it to view contextual information associated with
the code snippet.

The tool involves two types of code search methods depending
on the query form: semantic search [13] and API search [14]. Se-
mantic search involves queries described in natural language, such
as “read file”. Researchers indicated that the challenge of aligning
the semantic gap between the natural language queries and source
code [13, 24]. To address this issue, previous studies investigated IR-
based techniques, which offer fast results but rely heavily on user
keywords for accuracy [25, 27]. More recent studies have focused on
the DL-based techniques, which enhance query understanding but
sacrifice speed [5, 12, 13, 15, 37]. This tool addressed the challenge
by integrating the strengths of both techniques.

The API search operates like the example depicted in Fig. 1.
Users can input queries in the format of “package name + class/in-
terface name + method name” (e.g., java.lang. StringBuilder) or
“package name + enumeration name + attribute name” (e.g., Calen-
dar.MONTH). Partial API names (e.g., java.lang or StringBuilder)
are also acceptable as input. API search assists developers in finding
relevant examples for a given API name. However, direct matching
may yield numerous irrelevant and duplicate results [14, 24]. This
area has been extensively explored by researchers [3, 4, 19, 29, 40].
To address this challenge, the tool leverages techniques such as
result clustering and ranking following the strategies proposed in
prior studies.

It is worth noting that the tool offers code search functionality
within the programming context. Users can select any code snippet
in the editor and access the code search option from the right-click
menu.The tool automatically recognizes programming objects, such
as comments, function names, etc. If users select a comment, the
tool will perform a semantic search based on the natural language
description. Otherwise, it will conduct an API search.

2.2 Overview
Fig. 2 illustrates an overview of our research methodology, which
comprises two stages. Stage I involves quantitative analysis. We
collected historical data from Lingma users who granted the record-
ings and investigated the code search activities in practice. This
analysis informed the survey design in Stage II. More details can be
found in Section 2.3. Stage II encompasses survey and interview.
We crafted a survey questionnaire to investigate users’ perceptions
and future expectations regarding code search. Moreover, we con-
ducted interviews with some respondents to clarify their survey
responses as illustrated in Section 2.4.

2.3 Qualitative Analysis of Code Search in
Practice

2.3.1 Process. Lingma records code search interactions for users
who consent to the data collection, storing the information in a
database. The second author, an Alibaba employee, is allowed to
collect one year of code search events from April 14, 2022 to April
14, 2023. Subsequently, the data underwent preprocessing and key
statistics were summarized. Following enterprise regulations, these

Figure 2: Overview of the methodology.

statistics and results can be shared with other authors and made
publicly available after being scrutinized by the enterprise.

2.3.2 Data Collection. The data collected for each code search
event, formed with query and search results, comprised several
elements. Firstly, we captured the user ID (i.e., anonymous machine
ID) from the database to identify the user initiating the query. Sec-
ondly, we analyzed the language employed in the query, such as
English and Chinese. Thirdly, we counted the query words, exclud-
ing punctuation and other symbols. Additionally, we recorded the
type of code search performed, namely semantic search or API
search. For the corresponding search result, we tracked the number
of pages viewed by users and recorded the rank of results that
users found interesting, namely the instances where they clicked to
view details or selected code for use (e.g., copy and paste). Detailed
statistics derived from this data can be found in Sections 3.1.1-3.1.3,
respectively.

2.3.3 Measurements. To investigate users preferences, we calcu-
lated three key metrics for all code search events as detailed in
Table 5. Firstly, the Success Rate represents the percentage of events
that users found interesting. By comparing semantic search and
API search, we can know which type is more commonly favored.
Secondly, the FRank measures the first result that captured users’
interest in the result list, indicating users’ effort in scanning the
candidate list from top to bottom [18]. A lower FRank indicates
fewer efforts and better effectiveness of a code search type, namely
semantic or API search. Lastly, the MRR (Mean Reciprocal Rank)
calculates the average of the reciprocal ranks for all queries, where
the reciprocal rank is the inverse of FRank [25]. A larger MRR
signifies a higher ranking for the first interested result.

2.3.4 Research Questions. Based on the above data and measure-
ments, the quantitative analysis aims to investigate the following
three research questions (RQs):

• RQ1: Which code search task is frequently used? This question
seeks to determine developers’ preferences regarding code
search types: semantic search or API search.

• RQ2: What are the characteristics of queries? This question
examines user queries, focusing on word count and language,
and analyzes the difference between two code search types.

• RQ3: How many search results are commonly viewed by devel-
opers? This question aims to quantify the average number

285



FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Liu et al.

of search results that developers reviewed and evaluate the
effectiveness of different code search types.

2.4 Survey and Interview on Users’ Perceptions
and Expectations

2.4.1 Process. Our goal is to bridge the gap between research and
industrial communities and enhance their comprehension on code
search users’ perceptions and expectations in practice. To reach the
goal, the first author, a code search researcher, drafted a survey com-
prising initial questions based on two systematic reviews on code
search [9, 24]. These questions underwent review and refinement
by the fourth and last authors.

Subsequently, the second author invited two Alibaba users to
conduct a pilot study. These user are experienced developers with
over 12 years of experience in the software industry. Drawing
from their insights, we refined the questionnaire by merging redun-
dant questions and options, clarifying statements, and re-ordering
the list. Following their suggestions, we removed all open-ended
questions concerning respondents’ rationales for selecting specific
option(s) for each question. However, we retained one open-ended
question regarding the comparison between the code search and
ChatGPT5, a globally recognized tool that generates code examples
based on user descriptions, provided by OpenAI. This comparison is
valuable for refining code search practices from users’ perspective,
even though ChatGPT does not directly search code [22]. This open-
ended question was placed at last and made optional for submission,
allowing respondents who did not use ChatGPT or preferred not
to answer. The final survey, comprising 12 questions, is presented
in Section 2.4.2.

The second author distributed an online survey link within an
internal chat group comprising 199 users. These individuals are
active Lingma users from various departments within Alibaba. This
group was selected due to its representation of the tool’s primary
user base at Alibaba and their active involvement in providing
feedback and suggestions for Lingma. Since the tool does not collect
users’ contact information for privacy considerations, this group
served as the most accessible population for our study. Totally, 53
respondents, including the two participants from the pilot study,
completed the survey.

To gain deeper insights into respondents’ perceptions and expec-
tations, we conducted interviews. Specifically, the second author
enlisted 7 respondents from Alibaba, including the two developers
involved in the pilot study. To save interviewees’ time, the second
author engaged them in one-on-one discussions, inviting them to
elaborate on their survey responses and provide additional insights.
These interviews aimed to make up for the removed open-ended
questions in the survey and required approximately 20 minutes per
participant.

2.4.2 Questionaire and Research Questions. Table 1 presents the 12
questions (Q1-Q12) from our survey, categorized into two parts.The
first part (Q1-Q5) pertains to users’ code search practices, while the
second part (Q6-Q12) addresses their expectations. Questions 1 and
2 inquire about developers’ demographics. Among these questions,
the 1st, 3rd, and 5th are single-choice questions, the last is an open

5ChatGPT provided by OpenAI: https://chat.openai.com

Table 1: Survey questionnaire.

Note: 1, 3, and 5 are single-choice questions; 12 is an open question; the others
are multi-choice questions.

Part I: Code Search Practice.
1. How many years have you been software industry?
(a) 0~3; (b) 3~5; (c) 5~10; (d) >10.

2. What is the role in your team?
(a) developer; (b) tester; (c) architect; (d) program manager; (e) team leader; (f)
other: .

3. When you are programming software, what is the average number of
code search activities you need per day?
(a) 0~2; (b) 3~5; (c) 6~10; (d) 11~15; (e) >15

4. Which code search type in Lingma do you often use?
(a) Semantic search: using keywords to search related code implementation; (b)
API search: using API name to search related code examples.

5. How do you feel about the usefulness of two types of code search?
Semantic Search: ; API search:
(a) Very High, often returns many useful results; (b) High, often returns some useful
results; (c) Moderate, often returns one or two useful results; (d) Low, occasionally
returns one or two useful results; (e) Very Low, difficult to find useful results.

Part II: Code Search Expectations

6. If you have an ideal code search tool, what would be your purpose of
code search?
(a) understanding code; (b) implementing requirement; (c) refactoring code; (e)
optimizing code; (f) fixing bugs; (g) removing vulnerability issues; (h) not sure; (i)
other:

7. For the ideal code search tool, what additional features do you expect it
to have?
(a) voice search: searching code according to human voice; (b) sketch search: search-
ing code for a sketched user interface figure; (c) I/O search: searching code with its
input and output examples; (d) finding similar code: searching a code with similar
functionality for a given code; (e) not sure; (f) other:

8. Which programming language(s) do you expect to add for the code
search other than Java?
(a) Python; (b) JavaScript/TypeScript; (c) C/C++; (d) Go; (e) PHP; (f) Ruby; (g) C#;
(h) Rust; (i) not sure; (j) other:

9. For the ideal tool, which data source do you expect to add?
(a) open source community (e.g., SourceForge and Gitee); (b) App Community
(e.g., FDroid); (c) Q&A community (e.g., Stack Overflow); (d) web search engine
(e.g., Google and being); (e) official API documents; (f) programming videos (e.g.,
Youtube and Bilibili); (g) vulnerability database (e.g., CVE); (h) local repository; (i)
not sure; (j) other:

10. Which code granularity or target do you expect to search?
(a) code snippet (or fragment); (b) code function (or method); (c) class; (d) file; (e)
repository; (f) not sure; (g) other:

11. Which aspect(s) do you expect to improve the quality of the retrieved
code?
(a) improving programming style; (b) checking code defects; (c) checking vulnera-
bility issues; (e) checking sensitive info (e.g., email and secret key); (f) associating
relating test case(s); (g) calculating test coverage; (h) providing testing failure info;
(i) not sure; (j) other:

12. Do you think what are the pros and cons of ChatGPT compared to the
code search feature in Lingma? (Optional)

question optional to answer, and the rest are multi-choice questions.
These questions correspond to the following research questions
(RQs).

• RQ4: What are developers’ perceptions on the code search in
practice? Assessing users’ opinion on the practical perfor-
mance of code search (Q3-Q5).

286



An Empirical Study of Code Search in Intelligent Coding Assistant: Perceptions, Expectations, and Directions FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

• RQ5: What are developers’ purposes of code search? Under-
standing the practical reasons behind developers’ utilization
of code search tools (Q6).

• RQ6: What are developers’ expected code search inputs? Inves-
tigating the preferred formats for code search inputs (Q7).

• RQ7:What are developers’ expected extensions on the codebase?
Providing insights into potential expansions of the codebase
regarding programming language (Q8) and data source (Q9).

• RQ8: What are developers’ expected search results? Under-
standing the desired formats (Q10) and enhancements (Q11)
of the searched results.

• RQ9: Code Search vs. ChatGPT. Analyzing the distinctions
between the surveyed code search tool and the widely-used
ChatGPT (Q12) as a basis for future research.

2.4.3 Data Analysis. After collecting responses to the open ques-
tion (Q12) and interviews, we proceeded to organize these descrip-
tions via open and axial coding [1]. Specifically, the first and second
authors divided the responses into distinct points with correspond-
ing codes and connected the codes into categories. We discussed
the results together with the questionnaires in Section 3.2. As per
enterprise regulations, the statistics and conclusive results can be
disclosed to the remaining authors and made public after being
scrutinized by the enterprise.

2.4.4 Demographics of Respondents. Our survey included a total
of 53 respondents. Fig. 3 shows that 8 respondents (15.09%) possess
less than 3 years of experience, while 15 respondents (28.30%) are
relatively new software engineering practitioners with 3~5 years
of experience. Besides, 23 respondents (43.40%) report having 5~10
years of experience, and 7 respondents (13.21%) claim over 10 years
of software engineering experience. In summary, 84.91% of the
respondents are experienced practitioners with over three years of
experience in the software industry.

0 5 10 15 20 25
>10 years
5~10 years
3~5 years
0~3 years

7

23

15

8

Number of participants

Figure 3: (Q1) Number of participants with different years of
experience in software industry.

Fig. 4 summarized the respondents’ role in their software devel-
opment teams. Among these respondents, 50 individuals (94.34%)
identified themselves as developers, because code search users
should “do some programming work more or less”. Moreover, 35
respondents (66.04%) chose the role of the architect as they are
commonly “responsible for a software component and its architecture
design”. Besides, 11 respondents were project managers (13.21%) or
team leaders (7.55%).The interviewees indicated that these two roles
are “part of jobs assigned by the team” and their prominent roles are
still developer or architect. Additionally, only 3 respondents (5.66%)
recognized themselves as testers because “developers are responsible
for testing their own code” as explained by the interviewees.

0 10 20 30 40 50
Tester

Team Leader
Project Manager

Architect
Developer

3
4
3

35
50

Number of participants

Figure 4: (Q2) Number of participants played different role(s)
in their software development teams.

3 RESULTS AND DISCUSSION
We provided the quantitative analysis on code search in practice in
Section 3.1, presented the results of survey and interview in Section
3.2, and finally discussed the future directions in Section 3.3.

3.1 Code Search in Practices
3.1.1 RQ1: Which code search task is frequently used? Table 2
presents insights from 24,543 users who consented to the recording
of their code search activities. Of these users, 20,861 (85.0%) engaged
in semantic search while 13,413 (54.7%) users utilized API search
to find code examples. Notably, 9,731 (39.6%) users participated
in both types of code search. These results indicated that many
users would like to use two types of code search in a mixed manner
with a preference for semantic search over API search. These users
collectively generated 146,893 code search events, with 104,614
(71.2%) events attributed to semantic search and 42,279 (18.8%) to
API search. On average, there were 402.45 code search requests per
day, with 286.61 and 115.83 events dedicated to semantic and API
search, respectively. However, for each user, only 0.02 code search
events occurred per day. This suggests that while semantic search
is more frequently used, users utilize the code search tool sporad-
ically. When the tool fails to meet their needs, they would turn
to alternative methods such as web search engine [41]. Therefore,
developers would perceive a code search tool as valuable when it
consistently resolves their issues in practice.

Table 2: Statistics of code search events for semantic search
and API search tasks, where “#Users” and “#Events” indicate
the number of users and code search events, respectively.

Statistics Semantic Search API Search Total

#Users 20,861 13,413 24,543
#Events 104,614 42,279 146,893

#Events per day 286.61 115.83 402.45
#Events per day per user 0.01 0.01 0.02

Finding 1: Semantic search shows a higher usage rate com-
pared to API search, with 40% of users utilizing both together.
As developers conduct code search as needed, an effective tool
should consistently yield useful results in practice.

3.1.2 RQ2: What are the characteristics of queries? Table 3 illus-
trates that the mean word count across all code search queries is

287



FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Liu et al.

48.21. Specifically, the mean word count for semantic search queries
surpasses that of API search (52.96 vs. 37.91). The word count distri-
butions for both tasks exhibit significant difference (p-value<0.05)
as determined by the two-sample Kolmogorov-Smirnov test [28] at
a 5% significance level. However, the median counts for semantic
search and API search show an inverse size relationship (16 vs. 36).
These results imply that, in most cases, semantic search queries
tend to be shorter than API search queries. As shown in Fig. 1, API
search queries tend to be longer because developers often opt for
candidate APIs with fully qualified names recommended by the
tool. The recommendation is helpful for users to pinpoint target
APIs. Additionally, it is widely acknowledged that semantic search
queries are concise [2, 41], often composed of verb phrases [25].
We observed that developers may input lengthy queries by select-
ing recommended candidate queries from the tool or by copying
runtime logs to find the code example for debugging purposes. Con-
sequently, developers not only perceive the semantic search as a
coding assistant, as per existing studies [18], but also expect it to
serve as a debugging assistant.

Table 3: Word count statistics for users’ queries in both
semantic search and API search tasks.

Word Count Semantic Search API Search Total

Mean 52.96 37.91 48.21
Minimum 1 1 1
Maximum 16,779 481 16,779
Median 16 36 22

Table 4 shows that 74.7% of queries are written in English, while
13.0% consist solely of local language (i.e., Chinese) words, and
12.3% involve a combination of both languages. It is common for
API search users to input API names directly in English. In contrast,
the semantic search involved 19,124 Chinese queries and 17,978
queries with a mix of languages. This indicates that local language
may serve as auxiliary when users struggle to articulate their re-
quirements clearly in English.

Table 4: The linguistic composition of code search queries
used in semantic search and API search tasks.

Language Semantic Search API Search Total

English 67,512 (64.5%) 42,248 (99.9%) 109,760 (74.7%)
Local 19,124 (18.3%) 2 (0.0%) 19,126 (13.0%)

Combined 17,978 (17.2%) 29 (0.1%) 18,007 (12.3%)
Total 104,614 42,279 146,893

Finding 2: User queries tend to be short and concise; however,
users might submit lengthy queries by opting for those recom-
mended by the tool or by copying runtime logs for debugging
purposes; in semantic search, the local language (e.g., Chinese)
could be beneficial for users who are not proficient in English.

3.1.3 RQ3: How many search results are commonly viewed by devel-
opers? Table 5 reveals a low success rate of code search (0.21). Both
semantic and API search show similar outcomes without statisti-
cal differences (p-value<0.05), as per the two-sample Kolmogorov-
Smirnov test [28] at a 5% significance level.This is primarily because
developers typically review the top search results only (#Viewed<14),
and the number of results they find interesting is often less than 2
(#Interested<2). These results corroborate existing assumption in
code search studies [9, 13, 18, 34]. In our study, the performance
of the code search tool is low with an MRR of 0.16. There is no
statistical difference (p-values<0.05) between semantic and API
search in terms of the two-sample Kolmogorov-Smirnov test [28].
However, for search results that users find interesting, the MRR
is notably higher at 0.77 with a mean FRank of 2.29. These results
suggest that developers are inclined to click on search results they
find interesting, especially if they appear in the top three ranks, to
explore details or select them for copying and pasting. However, in
many cases, search results cannot be directly applied to meet users’
implementation requirements. Additionally, developers may choose
to write code based on the useful search results or express interest
in certain code without taking further action. Thus, measuring the
actual performance of code search remains challenging.

Table 5: Performance of the code search tool, where
“#Viewed” and “#Interested” represent the number of results

viewed by users or the ones that users find interesting,
respectively; “MRR/Mean FRank for Interested” reflects the
tool’s performance specifically on the search results that

users find interesting.

Result Semantic Search API Search Total

Success Rate 0.20 0.21 0.21
#Viewed 13.97 13.06 13.45

#Interested 1.39 1.31 1.34
MRR 0.17 0.15 0.16

MRR for Interested 0.78 0.77 0.77
Mean FRank for Interested 2.34 2.25 2.29

Finding 3: Users typically limit their exploration to the first
page of code search results, with interesting findings often located
around the second rank.

3.2 Users’ Perceptions and Expectations
3.2.1 RQ4: What are developers’ perceptions on the code search in
practice? Fig. 5 illustrates that 9 (16.98%) participants performed
code search infrequently (0~2 times), while 28 (52.83%) participants
demonstrated a medium frequency conducting code search 3~5
times. The remaining 3 participants conducted code search with a
high frequency (11~15 times) or even greater (>15 times). According
to the interviewees’ feedback, they “used code search tools only when
they needed” and they are “very familiar with their coding context”.
This trend may be attributed to the respondents’ extensive experi-
ence as highlighted in Section 3.1. Consequently, the average code
search events per day per user remains low as discussed in Section

288



An Empirical Study of Code Search in Intelligent Coding Assistant: Perceptions, Expectations, and Directions FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

3.1.1. These results suggest that novice developers may generate
more code search events, while experienced developers in software
enterprises prioritize their code search needs and satisfaction levels
over frequency.

0 10 20 30
(Low) 0~2 times/day

(Medium) 3~5 times/day
(Moderate) 6~10 times/day

(High) 11~15 times/day
(Very High) >15 times/day

9

28

13

1

2

Number of participants

Figure 5: (Q3) Number of participants engaging in code
search with different frequencies per day, which are

categorized into five levels: low, medium, moderate, high,
and very high.

The statistical results from Q4 show that 48 (90.57%) respondents
frequently utilized the semantic search, while about 64.15% of re-
spondents employed API search. These results suggest a significant
preference among users for both types of code search in software
programming, which is also confirmed by the quantitative analysis
in Section 3.1 and feedback received from interviewees.

Very Low Low Moderate High Very High
0

10

20

30

4

12

27

6 4
7 7

24

12

3

Usefulness Level

N
um

be
ro

fp
ar
tic

ip
an

ts

Semantic Search
API Search

Figure 6: (Q5) Number of participants who scored the
usefulness levels (i.e., very low, low, moderate, high, and

very high) for semantic search and API search.

Fig. 6 lists the usefulness levels as reported by respondents. It
indicates that 27 respondents (50.94%) perceived semantic search
to be moderately useful, while 12 respondents (22.64%) rated its
usefulness as low. Additionally, 10 respondents found semantic
search to be highly useful. The remaining 4 respondents (7.55%)
claimed a very low usefulness. In API search, the majority of re-
spondents (45.28%) also rated its usefulness as moderate, with 13
respondents indicating high usefulness. However, 14 respondents
(26.42%) rated API search as low or very low in usefulness. These
results suggest that API search is perceived as more useful than
semantic search, despite the latter being utilized by more users, as
described in Section 3.2.1. Several interviewees noted that “describ-
ing query accurately is difficult for semantic search compared to the
API search”.

Finding 4: Experienced developers may not require frequent
code search; however, when they do, a tool should prove highly
effective. Semantic search, although more frequently utilized
than API search, shows a lower level of usefulness due to the
challenge of generating accurate queries.

3.2.2 RQ5: What are developers’ purposes of code search? Fig. 7
provided several purposes of code search. The primary purpose,
chosen by 47 (88.68%) respondents, is implementing requirements.
Many interviewees indicated that “although some search results
are useful” they “commonly write the code” by themselves. This
feedback suggest a gap between code search and developers’ coding
processes, potentially contributing to the moderate usefulness level
reported in Section 3.2.1 and explaining why many users take no
further actions for the searched results as described in Section 3.1.3.
Moreover, 45 respondents (84.91%) anticipate understanding code
examples using the tool, such as learning how to use specific APIs.
However, one interviewee noted that “sometimes a code is very long
it is difficult to know which part could be useful, thus this result could
be skipped”. Therefore, returning concise and representative code
examples is crucial for the effectiveness of the code search tool.

0 20 40

Refactoring Code
Optimizing Performance
Repairing Vulnerability

Fixing Bugs
Understanding Code

Implementing Requirement

11

13

18

33

45

47

Number of participants

Figure 7: (Q6) Number of participants who search code for
various purposes.

Subsequently, 33 respondents (62.26%) indicated a preference
for using a code search tool to find solutions for programming
bugs. According to interviewees’ feedback, when encountering
programming errors, they typically “copy error information or related
source code to the search engine and try to find some solutions”. This
practice may contribute to the lengthy search queries, as analyzed
in Section 3.1.2. However, existing code search tools may not always
be suitable for this type of query. Besides, 18 respondents (33.96%)
expected code search results to help them repair vulnerabilities.
Lastly, 13 and 11 respondents anticipated that an ideal code search
tool could assist them in optimizing (24.53%) or refactoring (20.75%)
the returned code. Nonetheless, some experienced interviewees
pointed out that “I would like to do the optimization or refactoring
by myself” This is because 1) “they are what I am good at” ; 2) and “I
will decide whether these tasks are urgently required for now”.

Finding 5: Developers want to leverage code search tools to aid
in implementing functional requirements, understanding pro-
gramming examples, and fixing bugs or vulnerabilities. Through-
out their search process, they anticipated that the retrieved code

289



FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Liu et al.

will be concise and representative, directly applicable to their
programming context.

3.2.3 RQ6: What are developers’ expected code search inputs? Fig.
8 lists five types of code search methods not included in Lingma. It
reveals that 33 respondents (62.26%) express interest in code clone
search, which involves inputting a code snippet to retrieve similar
code within a codebase. Additionally, 22 respondents (37.74%) desire
to search a target source code based on a given test case. Besides,
13 respondents (24.53%) anticipate searching code using a sketch
of the user interface. The remaining 18 respondents hope for an
ideal code search tool that works based on a pair of input and
output examples (15.09%) or human voice (5.66%). According to
interviewees, code clone search is valuable because it enables them
to “find some duplicated code snippets for the same modifications”.
However, many interviewees raised doubts on the usefulness of
other code search methods because they “cannot come up with any
cases to use them”.

0 10 20 30
Voice Search

I/O Search
Sketch Search

Test Case Search
Code Clone Search

3
8

13
20

33

Number of participants

Figure 8: (Q7) Number of participants who expected other
code search methods.

Finding 6: Developers favor code clone search as an additional
method alongside the semantic search and API search in Lingma.

3.2.4 RQ7: What are developers’ expected extensions on the code-
base? Fig. 9 illustrates that many respondents advocate for the
expansion of Java in code search to include three other program-
ming languages: Go (77.4%), JS/TS (62.62%), and Python (75.5%).
There are 13 votes each for C/C++, Ruby, and C#. Moreover, PHP
and Rust received 13 other selections. These results underscore the
diverse usage of programming languages by developers in practice.
All interviewees emphasized the necessity of this extension because
they “need to use it”. Furthermore, one interviewee highlighted the
usefulness of extending Rust because “this programming language
is new to them”.

Table 10 shows that over 33 respondents express interest in
incorporating additional search sources from other open source
communities (86.79%), Q&A community (66.04%), and official API
documents (62.62%). These sources align with developers’ common
search practices as described by interviewees. Additionally, 20 re-
spondents (37.74%) selected web search, with interviewees noting
that “the web search involved many other sources”. 14 respondents
(26.42%) found code search in local repository useful. One intervie-
wee indicated that “I want to know how a requirement is implemented
in local repositories at enterprise if I have the authority”. Moreover,
10, 3, and 2 respondents (18.87%) opted for vulnerability database

0 10 20 30 40

Rust
PHP
C#

Ruby
C/C++
Python
JS/TS

Go

6
7

13
13
13

33
40
41

Number of participants

Figure 9: (Q8) Number of participants anticipating tool
support for programming languages beyond Java.

(18.87%), APP community (5.66%), and programming video websites
(3.77%) as additional sources, respectively.

0 20 40

Programming Video Website
APP Community

Vulnerability Database
Local Repository

Web Search
Official API Documents

Q&A Community
Open Source Community

2
3

10
14

20
33
35

46

Number of participants

Figure 10: (Q9) Number of participants who expected other
search sources.

Finding 7: Developers anticipate expanding the current code
search tool to including additional programming languages such
as Go, JS/TS, and Python, as well as integrating more search
sources such as other open source communities, Q&A community,
official API documents, and local repositories.

3.2.5 RQ8: What are developers’ expected search results? Fig. 11
indicates that the majority of respondents (>88%) express interest
in searching code functions or fragments. Interviewees noted the
usefulness of these two types because their “requirements are often
small and specific” and they “would like to decompose the require-
ment” by themselves. Besides, 27 respondents (50.94%) found search-
ing classes useful, while 14 other respondents preferred searching
repositories (22.64%) or files (3.77%). These results underscore the
developers’ expectations for searching higher granularity of code
targets.

Fig. 12 ranked 7 types of quality improvements expected for
code search. Ranked in descending order, 47 respondents (88.68%)
express a need for a tool capable of checking bugs from the returned
code within the developers’ programming context. Additionally, 39
respondents (73.58%) require the returned code to conform to their
expected programming style. Moreover, 24 respondents (37.74%)
seek related test cases in the search space for the retrieved source
code. 15 respondents (28.30%) are concerned about sensitive infor-
mation in code and wish to remove them, such as secret key and

290



An Empirical Study of Code Search in Intelligent Coding Assistant: Perceptions, Expectations, and Directions FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

0 10 20 30 40 50
File

Repository
Class

Fragment
Function

2
12

27
47

50

Number of participants

Figure 11: (Q10) Number of participants anticipating
additional search granularities.

email address. Another 13 respondents (24.53%) require the future
tool to present the testing coverage for the searched code, while
an equal number of respondents (24.53%) want to know related
testing failure information. According to interviewees, the ranking
is natural. They emphasized that 1) detecting bug is crucial because
“code search can help write code but the code may not work in IDE”
and they prefer not to “debug the searched code and save effort” ; 2)
“the code is required to follow the programming style at enterprise” ;
3) “the others look useful but they are not the first priority”.

0 20 40

Providing Testing Failure Info
Calculating Testing Coverage

Checking Sensitive Info
Finding Related Test Cases

Detecting Vulnerability
Checking Programming Style

Detecting Bug

13
13
15

20
24

39
47

Number of participants

Figure 12: (Q11) Number of participants anticipating
additional quality improvements for the retrieved code.

Finding 8: Developers prefer breaking down their requirements
into specific tasks and search for code at the level of functions
or fragments. They anticipate that an ideal tool can enhance
code quality by detecting potential bugs and vulnerabilities,
transforming programming style, etc.

3.2.6 RQ9: Code Search vs. ChatGPT. Table 6 presents respondents’
positive and negative comments comparing the code search feature
in Lingma and the well-known AI language model ChatGPT. In
summary, the primary advantages of code search include its fast
response time and the retrieval of human-written code, in contrast
to ChatGPT. However, code search faces challenges in addressing
complex queries. Consequently, developers often need to refine
their queries based on search results, which can be tedious. More-
over, assessing the relevance of expected results is cumbersome
due to the presence of many duplicate results in the search list.
These observations are consistent with feedback from interviewees.
Besides, one interviewee mentioned that “they used the code search
tool when they knew the right keywords and had the confidence in
finding the expected code”.

On the contrary, ChatGPT excels in understanding queries and
the generated code is often satisfactory in two key aspects: 1) it

Table 6: (Q12) Comparison of the code search (CS) feature in
Lingma and the well-known AI language model ChatGPT

Type Aspect Respondents’ Comments

CS

Pros 1. Returning the real code written by humans.
2. Searching code is fast.

Cons

1. Difficult to understand complex semantic queries.
2. Frequently reformulating queries according to search
results.
3. Too many duplicated search results.
4. The search just narrows down the scope.
5. It is tedious to filter out the expected results.

ChatGPT

Pros

1. Capable of understanding programming context.
2. The generated code can be directly used with little
modifications.
3. It generated detailed comments on the code for easier
understanding.
4. The generated answer is well-organized with clear
logic.

Cons

1. Limited in asking questions related to some special
resources.
2. The generation is sensitive to the input.
3. Some minor changes to input still lead to the same
generation.
4. The generated API could be wrong which requires
more re-generations.

produces well-organized code with clear logic, which typically
requires minimal modifications for usability; 2) it also generate
comments to help understand the functionality of code. However,
ChatGPT’s performance is influenced by two factors. Firstly, its
knowledge boundary limits the its ability to consistently generate
accurate answers, as some respondents noted that ChatGPT cannot
always provide the correct responses.The interviewees assumed the
reason could be that “the scope of training data is limited”. Secondly,
ChatGPT’s performance depends on the prompt provided as input.
The generated code may be sensitive to the prompt description or
include unexpected APIs. Overall, interviewees favored ChatGPT
over code search, acknowledging its strengths. However, they also
commented that: 1) “ChatGPT cannot work on internal enterprise
data” because a company may write code using the customized
framework or APIs; 2) “ChatGPT are not responsible for each line of
code” so that developers still need to review code carefully.

Finding 9:Code search offers quick responses to user queries and
help developers find human-written code within a vast codebase,
but users often need to refine their queries. ChatGPT is user-
friendly as it adeptly grasps user intent and produce better results,
but its generation is confined by input prompts and the available
training data.

3.3 Implications for Future Directions
Based on our empirical findings, we present the following potential
directions for both researchers and practitioners.

For Researchers. The semantic search has gained significant at-
tention in recent years [9, 25], with numerous proposed models
[11, 32, 33]. The CodeSearchNet benchmark [18] is commonly
used for evaluation, focusing on the functional relevance between

291



FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Liu et al.

searched code and semantic queries. However, our observations
in Sections 3.1.1 and 3.2.2 indicated diverse code search purposes.
Investigating how the code search contributes to the entire software
development lifecycle is crucial, as functional relevance alone may
not suffice for all practical search requirements, as demonstrated
in Section 3.1.3. By understanding specific search requirements,
researchers can develop better benchmarks and models to bridge
academia and industry. Additionally, existing benchmarks are often
small in size [24] because manually determining all the relevancy
of ground truth is impractical. This necessitates the design of ap-
propriate test cases for automated validation like the HumanEval
benchmark for code generation [6]. Furthermore, our study re-
veals that search results are often unsuitable for direct coding use,
prompting exploration into the ways of adapting search results to
expected coding context, as noted in Section 3.2.6.

For Practitioners. Our empirical findings showed that developers
have many expectations for advancing code search tools in practice,
encompassing support for additional code search types like code
clone search (Section 3.2.3), other programming languages (Section
3.2.4), quality improvements of the searched code (Section 3.2.5),
and etc. Addressing these diverse expectations entails substantial
engineering efforts. This study offers a framework framework and
prioritization of various expectations, aiding practitioners in the
industry in effectively meeting their needs.

4 RELATED WORK
Many empirical studies investigate the effectiveness of existing
code search tools and analyze the influential factors. Previously,
Sim et al. [35] examined the support provided by five websites
(including Google, Koders, etc.) for developers’ code search needs.
They found that code-specific search engines performed better in
searches for subsystems, but Google was more effective in search-
ing code blocks. Bajracharya et al. [2] analyzed patterns in search
engine logs from the traditional code search engine Koders to gain
insights into programmers’ methods and motivations during code
search activities. Sadowski et al. [31] investigated developers’ be-
haviors and needs when searching code on Google using search
logs and surveys. They found that code search has become deeply
entrenched in software development, with developers frequently
conducting searches primarily focused on familiar code and specific
code locations. Almost a third of searches involved incremental
query reformulation. Most queries are scoped to a subset of the code
repository, and search sessions are typically short. Subsequently,
Xia et al. [41] investigated developers’ code search activities using
Google and analyzed their difficulties in code search. Liu et al. [23]
analyzed the code search intents for deep learning programming.

Yan et al. [43] constructed a benchmark with search ground truth
to evaluate six code search methods. The empirical findings demon-
strated the benchmark’s utility and revealed that deep learning
(DL) methods are more effective for queries focused on reusing
code, whereas information retrieval (IR) methods excel for queries
focused on resolving bugs and learning API usage. Zhang et al. [46]
compared two IR-based methods using the CodeSearchNet corpus
[18], demonstrating that IR-based methods outperform several pre-
BERT neural models in multiple aspects. Liu et al. [26] conducted
a survey involving over 100 software developers, revealing that a

considerable percentage of developers had never used code search
engines and were unaware of their existence. Different from prior
studies, we conducted an empirical study on the code search fea-
ture of a recent intelligent coding assistant Lingma, developed by
Alibaba Cloud. Additionally we conducted survey and interview
with tool users to gain insights into their perceptions and expecta-
tions. This investigation also provides guidance for future research
directions in code search studies.

5 THREATS TO VALIDITY
The major threats to this empirical study are the quantity and
quality of the relevant data, survey, and interview. Specifically,
the dataset spans one year of historical data, which may not fully
capture users’ intentions due to limited recorded activities. Fur-
thermore, the survey’s scope is restricted to the code search users
at Alibaba instead of all users as their contact information is not
recorded by the tool. The clarity of the survey questions could im-
pact its quality. To mitigate this issue, we conducted a pilot study
with two experienced developers at Alibaba as described in Section
2.4. While many developers at Alibaba participated in the survey,
the limited number of users may not fully represent the entire pop-
ulation. Additionally, as Alibaba Cloud continues to refine the code
search feature in Lingma based on user feedback and this study,
the findings from quantitative analysis in Section 3 may not apply
to future versions. Consequently, the statistical results may not be
generalizable to users of different code search tools or at different
companies. However, despite these limitations, the insights and im-
plications generated from this study are likely applicable to other
similar tools. Additionally, due to the enterprise regulations, other
data cannot be shared outside the enterprise. Hence, only final scru-
tinized statistics and results are presented, as described in Section
2. However, the Lingma development team has acknowledged the
usefulness of this empirical study.

6 CONCLUSION AND FUTURE WORK
Code search serves as an important task for boosting developers’
productivity. This paper reports the findings of our empirical study
on the code search tool Lingma developed by Alibaba Group. We
first performed quantitative analysis on the user-permitted record-
ings of code search activities to analyze users’ preferences. We then
designed questionnaires for the tool users at Alibaba, aiming to
understand their perceptions and expectations. Afterward, we inter-
viewed seven users to clarify their answers to the survey. Based on
the results, we presented future research directions for researchers
and practitioners. In our future work, we plan to include more
companies of different sizes to investigate the generalizability of
our findings. We also plan to improve the existing code search tool
following the suggested future directions.

7 ACKNOWLEDGEMENTS
This research is supported by the National Nature Science Founda-
tion of China (62202074 and 62372071), China Postdoctoral Science
Foundation (2022M710519), the Postdoc Foundation of Chongqing
(2021LY23), and Chongqing Technology Innovation and Application
Development Project (CSTB2023TIAD-STX0015 andCSTB2022TIAD
-KPX0068).

292



An Empirical Study of Code Search in Intelligent Coding Assistant: Perceptions, Expectations, and Directions FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

REFERENCES
[1] David F Bacon, Yiling Chen, David Parkes, and Malvika Rao. 2009. A market-

based approach to software evolution. In Proceedings of the 24th ACM SIGPLAN
conference companion on Object oriented programming systems languages and
applications. 973–980.

[2] Sushil Krishna Bajracharya and Cristina Videira Lopes. 2012. Analyzing and
mining a code search engine usage log. Empirical Software Engineering 17 (2012),
424–466.

[3] Celeste Barnaby, Koushik Sen, Tianyi Zhang, Elena Glassman, and Satish Chandra.
2020. Exempla Gratis (EG): Code examples for free. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1353–1364.

[4] Raymond PL Buse and Westley Weimer. 2012. Synthesizing API usage exam-
ples. In 2012 34th International Conference on Software Engineering (ICSE). IEEE,
782–792.

[5] Yitian Chai, Hongyu Zhang, Beijun Shen, and Xiaodong Gu. 2022. Cross-Domain
Deep Code Search with Meta Learning. (2022).

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[7] Zhongyang Deng, Ling Xu, Chao Liu, Luwen Huangfu, and Meng Yan. 2024.
Code semantic enrichment for deep code search. Journal of Systems and Software
207 (2024), 111856.

[8] Zhongyang Deng, Ling Xu, Chao Liu, Meng Yan, Zhou Xu, and Yan Lei. 2022. Fine-
grained Co-Attentive Representation Learning for Semantic Code Search. In 2022
IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 396–407.

[9] Luca Di Grazia and Michael Pradel. 2023. Code search: A survey of techniques
for finding code. Comput. Surveys 55, 11 (2023), 1–31.

[10] BV Elasticsearch. 2018. Elasticsearch. software], version 6, 1 (2018).
[11] Guodong Fan, Shizhan Chen, Cuiyun Gao, Jianmao Xiao, Tao Zhang, and Zhiyong

Feng. 2024. Rapid: Zero-shot Domain Adaptation for Code Search with Pre-
trained Models. ACM Transactions on Software Engineering and Methodology
(2024).

[12] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

[13] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE,
933–944.

[14] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2019. Codekernel: A graph
kernel based approach to the selection of API usage examples. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 590–601.

[15] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcodebert:
Pre-training code representations with data flow. arXiv preprint arXiv:2009.08366
(2020).

[16] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment gener-
ation. In Proceedings of the 26th conference on program comprehension. 200–210.

[17] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2020. Deep code comment
generation with hybrid lexical and syntactical information. Empirical Software
Engineering 25 (2020), 2179–2217.

[18] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. Codesearchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436 (2019).

[19] Kisub Kim, Dongsun Kim, Tegawendé F Bissyandé, Eunjong Choi, Li Li, Jacques
Klein, and Yves Le Traon. 2018. FaCoY: a code-to-code search engine. In Proceed-
ings of the 40th International Conference on Software Engineering. 946–957.

[20] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen.
2023. Codamosa: Escaping coverage plateaus in test generation with pre-trained
large language models. In 2023 IEEE/ACM 45th International Conference on Soft-
ware Engineering (ICSE). IEEE, 919–931.

[21] Chao Liu, Xuanlin Bao, Xin Xia, Meng Yan, David Lo, and Ting Zhang. 2022. Code-
Matcher: a tool for large-scale code search based on query semantics matching.
In Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 1642–1646.

[22] Chao Liu, Xuanlin Bao, Hongyu Zhang, Neng Zhang, Haibo Hu, Xiaohong Zhang,
and Meng Yan. 2023. Improving chatgpt prompt for code generation. arXiv
preprint arXiv:2305.08360 (2023).

[23] Chao Liu, Runfeng Cai, Yiqun Zhou, Xin Chen, Haibo Hu, and Meng Yan. 2024.
Understanding the implementation issues when using deep learning frameworks.
Information and Software Technology 166 (2024), 107367.

[24] Chao Liu, Xin Xia, David Lo, Cuiyun Gao, Xiaohu Yang, and John Grundy. 2021.
Opportunities and challenges in code search tools. ACM Computing Surveys

(CSUR) 54, 9 (2021), 1–40.
[25] Chao Liu, Xin Xia, David Lo, Zhiwe Liu, Ahmed E Hassan, and Shanping Li. 2021.

CodeMatcher: Searching Code Based on Sequential Semantics of ImportantQuery
Words. ACM Transactions on Software Engineering and Methodology (TOSEM) 31,
1 (2021), 1–37.

[26] Yin Liu, Shuangyi Li, and Eli Tilevich. 2022. Toward a Better Alignment Between
the Research and Practice of Code Search Engines. In 2022 29th Asia-Pacific
Software Engineering Conference (APSEC). IEEE, 219–228.

[27] Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang, Dongmei Zhang, and
Jianjun Zhao. 2015. Codehow: Effective code search based on api understanding
and extended boolean model (e). In 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 260–270.

[28] Frank J Massey Jr. 1951. The Kolmogorov-Smirnov test for goodness of fit. J.
Amer. Statist. Assoc. 46, 253 (1951), 68–78.

[29] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Andrian Marcus. 2015. How can I use this method?. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, Vol. 1. IEEE, 880–890.

[30] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[31] Caitlin Sadowski, Kathryn T Stolee, and Sebastian Elbaum. 2015. How developers
search for code: a case study. In Proceedings of the 2015 10th joint meeting on
foundations of software engineering. 191–201.

[32] Ensheng Shi, Yanlin Wang, Wenchao Gu, Lun Du, Hongyu Zhang, Shi Han,
Dongmei Zhang, andHongbin Sun. 2023. Cocosoda: Effective contrastive learning
for code search. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). IEEE, 2198–2210.

[33] Zejian Shi, Yun Xiong, Yao Zhang, Zhijie Jiang, Jinjing Zhao, Lei Wang, and
Shanshan Li. 2023. Improving Code Search with Multi-Modal Momentum Con-
trastive Learning. In 2023 IEEE/ACM 31st International Conference on Program
Comprehension (ICPC). IEEE, 280–291.

[34] Jianhang Shuai, Ling Xu, Chao Liu, Meng Yan, Xin Xia, and Yan Lei. 2020. Im-
proving code search with co-attentive representation learning. In Proceedings of
the 28th International Conference on Program Comprehension. 196–207.

[35] Susan Elliott Sim, Medha Umarji, Sukanya Ratanotayanon, and Cristina V Lopes.
2011. How well do search engines support code retrieval on the web? ACM
Transactions on Software Engineering and Methodology (TOSEM) 21, 1 (2011),
1–25.

[36] Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. 2023. An
analysis of the automatic bug fixing performance of chatgpt. In 2023 IEEE/ACM
International Workshop on Automated Program Repair (APR). IEEE, 23–30.

[37] Weisong Sun, Chunrong Fang, Yuchen Chen, Guanhong Tao, Tingxu Han, and
Quanjun Zhang. 2022. Code Search based on Context-aware Code Translation.
arXiv preprint arXiv:2202.08029 (2022).

[38] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020.
Intellicode compose: Code generation using transformer. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1433–1443.

[39] Yutian Tang, Zhijie Liu, Zhichao Zhou, and Xiapu Luo. 2024. Chatgpt vs sbst:
A comparative assessment of unit test suite generation. IEEE Transactions on
Software Engineering (2024).

[40] Jue Wang, Yingnong Dang, Hongyu Zhang, Kai Chen, Tao Xie, and Dongmei
Zhang. 2013. Mining succinct and high-coverage API usage patterns from source
code. In 2013 10th Working Conference on Mining Software Repositories (MSR).
IEEE, 319–328.

[41] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E Hassan, and
Zhenchang Xing. 2017. What do developers search for on the web? Empirical
Software Engineering 22 (2017), 3149–3185.

[42] Ling Xu, Huanhuan Yang, Chao Liu, Jianhang Shuai, Meng Yan, Yan Lei, and
Zhou Xu. 2021. Two-stage attention-based model for code search with textual
and structural features. In 2021 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 342–353.

[43] Shuhan Yan, Hang Yu, Yuting Chen, Beijun Shen, and Lingxiao Jiang. 2020. Are
the code snippets what we are searching for? a benchmark and an empirical study
on code search with natural-language queries. In 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
344–354.

[44] Feng Zhang, Foutse Khomh, Ying Zou, and Ahmed E Hassan. 2012. An empirical
study on factors impacting bug fixing time. In 2012 19th Working conference on
reverse engineering. IEEE, 225–234.

[45] Hongyu Zhang, Anuj Jain, Gaurav Khandelwal, Chandrashekhar Kaushik, Scott
Ge, and Wenxiang Hu. 2016. Bing developer assistant: improving developer
productivity by recommending sample code. In Proceedings of the 2016 24th acm
sigsoft international symposium on foundations of software engineering. 956–961.

[46] Xinyu Zhang, Ji Xin, Andrew Yates, and Jimmy Lin. 2021. Bag-of-Words Baselines
for Semantic Code Search. In Proceedings of the 1st Workshop on Natural Language
Processing for Programming (NLP4Prog 2021). 88–94.

293


	Abstract
	1 Introduction
	2 Methodology
	2.1 Study Subject
	2.2 Overview
	2.3 Qualitative Analysis of Code Search in Practice
	2.4 Survey and Interview on Users' Perceptions and Expectations

	3 Results and Discussion
	3.1 Code Search in Practices
	3.2 Users' Perceptions and Expectations
	3.3 Implications for Future Directions

	4 Related Work
	5 Threats to Validity
	6 Conclusion and Future Work
	7 Acknowledgements
	References

