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ABSTRACT
Due to the emergence of large-scale codebases, such as GitHub
and Gitee, searching and reusing existing code can help developers
substantially improve software development productivity. Over the
years, many code search tools have been developed. Early tools
leveraged the information retrieval (IR) technique to perform an
efficient code search for a frequently changed large-scale codebase.
However, the search accuracy was low due to the semantic mis-
match between query and code. In the recent years, many tools
leveraged Deep Learning (DL) technique to address this issue. But
the DL-based tools are slow and the search accuracy is unstable.

In this paper, we presented an IR-based tool CodeMatcher, which
inherits the advantages of the DL-based tool in query semantics
matching. Generally, CodeMatcher builds indexing for a large-scale
codebase at first to accelerate the search response time. For a given
search query, it addresses irrelevant and noisy words in the query,
then retrieves candidate code from the indexed codebase via itera-
tive fuzzy search, and finally reranks the candidates based on two
designed measures of semantic matching between query and candi-
dates. We implemented CodeMatcher as a search engine website. To
verify the effectiveness of our tool, we evaluated CodeMatcher on
41k+ open-source Java repositories. Experimental results showed
that CodeMatcher can achieve an industrial-level response time
(0.3s) with a common server with an Intel-i7 CPU. On the search
accuracy, CodeMatcher significantly outperforms three state-of-
the-art tools (DeepCS, UNIF, and CodeHow) and two online search
engines (GitHub search and Google search).
Demo Tool Website: http://www.codematcher.cn
Demo Video: https://youtu.be/Od7xHsZ_RWY
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1 INTRODUCTION
When faced with programming problems, developers favor learning
from existing code and finding solutions through code search [4,
21, 28, 29]. This is because code search can significantly improve
their development efficiency. During software development, it was
observed that more than 90% of developers’ code search efforts are
used to find code snippets [3], thus this study focuses on searching
code methods (i.e., the frequently searched reusable code snippets
in Java) following previous studies [2, 5, 24]. Moreover, our study
focuses on the query with natural language description. The goal of
our study is to directly find relevant codemethods from a large-scale
codebase with the same semantics as the query [22].

Early code search studies leveraged information retrieval (IR)
techniques to measure the keywords matching degree between
query and candidate code because they are fast [24]. However, the
search accuracy of IR-based models is far from satisfactory due to
twomajor issues [16]: (1) semantic gap, keywords cannot adequately
represent high-level intent implied in queries and the low-level
implementation details in code; (2) representation gap, query and
code are semantically related, but they may be represented by
different lexical tokens, synonyms, or language structures.

To address these issues, researchers leveraged deep learning (DL)
techniques to embed query and code into a shared high-dimensional
vector space. Therefore, the code search can be performed by calcu-
lating the cosine similarity between code and query vectors. Two
representative models are DeepCS [16] and UNIF [5]. Their major
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advantages are the capabilities of understanding irrelevant and
noisy keywords, capturing sequential relationships between words
in query and code, mapping query intent to the semantics of code
methods by measuring their semantic similarity [16]. However, the
DL-based models need time-consuming training and their response
time for code search is slow.

In our prior work [23], to fuse the advantages of IR-based and
DL-based models, we proposed an IR-based model CodeMatcher
that incorporated the above three features of DL-based models. Gen-
erally, CodeMatcher leverages Elasticsearch [14], a Lucene-based
text search engine to index codebase and perform fuzzy search
with the identified important keywords from search queries. To im-
prove query understanding, CodeMatcher removes noisy keywords
according to some collected metadata and replaces irrelevant key-
words with synonyms selected from the codebase. To optimize the
ranking of code methods searched by Elasticsearch, we reranked
the candidate code based on the sequential relationships between
words in query and code.

In this paper, we strengthen CodeMatcher by implementing it
as a publicly accessible code search engine website. Using Code-
Matcher, developers can use natural language to describe a Java
programming task as a query. For a query request, CodeMatcher
outputs the top-10 Java code methods whose programming seman-
tics highly related to the intent of query. To help other researchers
replicate and extend our work in the future, we have publicly re-
leased the replication package [20] of this tool demonstration.

To evaluate the performance of CodeMatcher, we compare it with
three baseline models (i.e. DeepCS [16], CodeHow [24], and UNIF
[5]) on a large-scale codebasewith 16+million Javamethods and 174
real-world queries. Experimental results showed that CodeMatcher
achieves an MRR of 0.60, outperforming three baselines by at least
46.3%. In terms of query processing efficiency, it only takes 0.3s for
code search per query, 8 times faster than CodeHow while 1.2K+
times faster than DeepCS and UNIF. Moreover, further experiments
showed that CodeMatcher outperforms two online search engines,
i.e., GitHub and Google search, by 33.3+% in terms of MRR. These
above results demonstrated the effectiveness, time-efficiency, and
usefulness of our tool.

2 APPROACH
Fig. 1 illustrates the overall framework of CodeMatcher: 1) the first
phase preprocesses a large-scale codebase and builds indexing for it;
2) the second phase performs code search in three steps, including
query understanding, iterative fuzzy search, and reranking.

2.1 Phase-I: Codebase Preprocessing and
Indexing

To build codebase for code search, the first phase extracts source
code files from Java repositories and parsed each file into an ab-
stract syntax tree (AST). By traversing the AST, we obtained name
and body of each code method. Besides, the method body is parsed
as a sequence of fully qualified tokens (e.g., converting String to
java.lang.String) in method parameters, method body, and returned
type. After retrieving pieces of information (i.e., method name,
parsed method body, and source code), we input them into Elastic-
search [14] and index the codebase.

Table 1: Five word importance levels for programming based
on the word property (e.g., verb or noun) and whether the

word is a class name in JDK.

Level Condition Examples

5 JDK Noun "Inputstream" and "readLine()"
4 Verb or Non-JDK Noun "convert" and "whitespace"
3 Adjective or Adverb "numeric" and "decimal"
2 Preposition or Conjunction "from" and "or"
1 Other Number and Non-English Symbols

2.2 Phase-II: Code Search
In the second phase, CodeMatcher performs code search on the
indexed codebase for a query in three steps. The first step extracts
some metadata to assist the query understanding, and addresses
noisy and irrelevant words in the query. The second step quickly
retrieves a set of code methods from codebase for the query based
on the collected metadata. The third step optimizes the ranking of
the search methods in the previous step by measuring the matching
degrees between the query and code methods.

2.2.1 Step-1: Query Understanding. To better understand the core
semantics of a query, we address noisy words in the query at first.
Specifically, we leveraged the Stanford Parser [6, 15, 30] to identify
the parts-of-speech (e.g., verb or noun) of query words, which is
called "word property" hereafter. Next, we filtered out three types
of noisy words in the query that are rarely used for coding [1]
according to the word property: 1) the question words with re-
lated auxiliary verbs, e.g., "how do"; 2) the verb-object/adpositional
phrase on the programming language, e.g., "in Java"; 3) the words
that were not verbs, nouns, adjectives, adverbs, prepositions, or con-
junctions. Afterward, we identified the irrelevant words in query
by counting the frequency of each word that was occurred in the
method name of codebase. If the frequency is zero, we replaced it
by the synonyms generated by WordNet [25]. If multiple synonyms
were produced, we chose the one with the highest frequency in the
codebase. Subsequently, we stemmed [27] the rest of query words
to improve their generalizability for code search.

In addition to the words property and frequency, we identified
the third metadata named ’importance’ for query words before per-
forming code search. The word importance refers to how important
a word used for programming. The importance is categorized by
five levels as shown in Table 1: JDK noun (i.e., the classes defined
in JDK) is the most important one (level 5); verbs and nouns are
important (level 4) as they can represent most of semantics in code;
adjectives and adverbs are assigned with lower importance (level
3) as they cannot indicate precise meaning without corresponding
noun or verb; preposition and conjunction show less importance
(level 2); the other (often meaningless) symbols are of the lowest
importance (level 1).

2.2.2 Step-2: Iterative Fuzzy Search. The second step takes the
preprocessed query words with metadata from the step one as in-
puts. It retrieves a set of code methods that highly related to the
query for quickly narrowing down the search space. We imple-
mented this process as an iterative fuzzy search. Specifically, it
builds a regular string [8] with all remaining query words in order
as ". ∗𝑤𝑜𝑟𝑑1 . ∗ · · · . ∗𝑤𝑜𝑟𝑑𝑛 .∗" . We performed code search on the
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Figure 1: Overall framework of CodeMatcher

method names indexed in the codebase. If the total number of re-
turned results is no more than ten, we removed the least important
word with lower frequency one at a time according to query meta-
data, and performed the fuzzy search again until no query words
left. For each round of fuzzy search, we filtered out the redundant
results by comparing the MD5 hash[9] values of their source code.

2.2.3 Step-3: Reranking. The goal of third step is to rerank the
candidate code methods returned from the step two. To reach this
goal, we designed a metric (𝑆𝑛𝑎𝑚𝑒 ) to measure the matching degree
between the semantics of query and method name as Eq. (1). Higher
value indicates that a higher-ranked method has more overlapped
tokens between query and method name in order. If two methods
have the same value of 𝑆𝑛𝑎𝑚𝑒 , we reranked them based on the
matching degree 𝑆𝑏𝑜𝑑𝑦 between the semantics of query and method
body as Eq. (2). Different from 𝑆𝑛𝑎𝑚𝑒 , we added the last term to
represent the ratio of JDK APIs in method body, in terms of the fully
qualified tokens. Finally, we returned the top-10 reranked results.

𝑆𝑛𝑎𝑚𝑒 =
#𝑞𝑢𝑒𝑟𝑦 𝑤𝑜𝑟𝑑𝑠 𝑎𝑠 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠

#𝑞𝑢𝑒𝑟𝑦 𝑤𝑜𝑟𝑑𝑠

× #𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠 𝑖𝑛 𝑛𝑎𝑚𝑒 𝑜𝑟𝑑𝑒𝑟𝑙𝑦 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠
#𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠 𝑖𝑛 𝑛𝑎𝑚𝑒

(1)

𝑆𝑏𝑜𝑑𝑦 =
#𝐴𝑃𝐼 𝑤𝑜𝑟𝑑𝑠 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑞𝑢𝑒𝑟𝑦 𝑤𝑜𝑟𝑑𝑠

#𝑞𝑢𝑒𝑟𝑦 𝑤𝑜𝑟𝑑𝑠

× 𝑀𝑎𝑥 [#𝐴𝑃𝐼 𝑤𝑜𝑟𝑑𝑠 𝑜𝑟𝑑𝑒𝑟𝑙𝑦 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑞𝑢𝑒𝑟𝑦 𝑤𝑜𝑟𝑑𝑠 ]
#𝑞𝑢𝑒𝑟𝑦 𝑤𝑜𝑟𝑑𝑠

× #𝐽 𝐷𝐾 𝐴𝑃𝐼𝑠
#𝐴𝑃𝐼𝑠

(2)

3 TOOL IMPLEMENTATION AND USAGE
We implemented CodeMatcher as a web search engine. The follow-
ing subsections describe CodeMatcher’s codebase, implementation,
and usage scenarios.

Data Collection.We chose GitHub as our data source.We searched
candidate Java repositories created from July 2016 to December 2018
with more than five stars by using the PyGithub [26] library. This li-
brary provides interfaces to call the GitHubAPIs[11].We formed the
search string with "language:java stars:>5 created:2016-07-01..2018-
12-31". As GitHub only returns the top-1k searched results, we split
the time duration ("2016-07-01..2018-12-31") of repository creation
into small periods. Afterward, we performed the search in order
and extracted the user name and repository name of each reposi-
tory. In total, we included 41,025 Java repositories. Subsequently,
we downloaded their source code according to their user name and
repository name.
Data Preprocessing. To build a codebase for code search, we
extracted all the Java source code (i.e., "*.java") from our collected
repositories. For each source code file, we parsed it into an abstract
syntax tree (AST) and obtained method components (i.e., method
name, input/output parameters, and method body). Meanwhile,
we inferred the fully qualified name of each local variable or class
within input/output parameters and method body according to the
code context, e.g., transforming "String" to "java.io.String". Finally,
we obtained 16,611,025 code methods with a total of 70,332,245 lines
of code. We implemented the data preprocessing as a tool named
Janalyzer [19] and shared it on GitHub.
Codebase Indexing. We leveraged the Elasticsearch [10] with
version 8.2 as our basic search engine for codebase. We ran it as
a back-end service with command "./bin/elasticsearch-8.2.0 -d". We
represented a code method a triple ⟨method name, parsed method
body, source code of method⟩, where the parsed method body is the
sequence of fully qualified names generated from input parame-
ter, method body, and output parameter. We created indexing in
Elasticsearch with the following settings: mappings = "properties":
"method": "type": "text", "parsed": "type": "text", "source": "type": "text".
And then, we filled all these data into it.
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Figure 2: The homepage of CodeMatcher

Code Search Website. We implemented the search engine Code-
Matcher based on the Flask [7] web framework. Fig. 2 shows an
example of the CodeMatcherwebsite. Specifically, a developer needs
to input a natural language query in the search textbox and click
the search button. After the server received the request with the
search query, it works as the code search process as described in
Section 2.2 to retrieve a set of ranked candidate code methods from
Elasticsearch, and finally returned the top-10 related results to the
front end interface. Soon after, the website formatted each returned
code with highlighted keywords to improve the readability of the
code, and showed the code list instantly. Note that Fig. 2 only illus-
trated the top-3 results due to the limited space, where complete
results can be found in our tool demonstration video.
Usage Scenarios. This section presents several examples to illus-
trate how developers would interact with CodeMatcher. For queries
like "how to convert int to a string", developers can quickly find the
correct answer (i.e., the first method named "convertIntToString")
when browsing the name and body of the top-1 returned method
code. The other search results provided the four different ways to
"convert int to string". As CodeMatcher considered the sequential se-
mantics of important query words, it can distinguish the difference
between two queries "how to convert int to a string" and "convert-
ing string to int in java". Note that this tool demo only illustrates
the top-10 search results returned by CodeMatcher, because we
assumed that developers would like to review a limited number of
results following our prior work [23] and related studies [5, 16].

4 EVALUATION AND USER STUDY
Effectiveness and Time-Efficiency. To evaluate the effective-
ness of CodeMatcher, we obtained 174 real-world queries from four

related studies [16–18]. Experimental results showed that Code-
Matcher achieved an MRR (mean reciprocal rank) of 0.60, substan-
tially outperforming one IR-based model CodeHow by 62.2%, and
two DL-based models (DeepCS and UNIF) by 81.8% and 46.3%. In
terms of the time-efficiency, CodeMatcher only takes 0.3s to search
code from a large-scale codebase for a query on average, 1.2k times
faster than two DL-based models and 8 times faster than CodeHow.
Also, CodeMatcher needs no time-consuming model training as
DL-based models.
Conciseness and Completeness. Besides, we investigated the
conciseness and completeness of the searched code. Conciseness
indicates the ratio of irrelevant lines to the total lines [18]. And
the completeness means the number of addressed tasks divided
by the total number of tasks, where the task includes the intent of
the search query and other missed statements [18]. Experimental
results showed that the average conciseness and completeness of
CodeMatcher are 0.61 and 0.33, significantly outperforming the best
baseline by 26.5% and 106.25% respectively. These results indicated
that CodeMatcher can return easier to read code and the code can
better complete the intent of queries.
Usefulness. To further assess the usefulness of CodeMatcher, we
compared CodeMatcher with two existing online search engines,
including GitHub[12] and Google[13] search. These two search
engines performed code search from all Java repositories in GitHub
with our collected 174 real-world queries. Experimental results
showed that CodeMatcher outperforms GitHub and Google search
engines by 46.3% and 33.3% in terms of MRR, respectively. These
results implied the usefulness of CodeMatcher in practical usage.

5 CONCLUSION AND FUTUREWORK
In this paper, we present CodeMatcher, a tool implemented as a
code search engine website that retrieves a set of code snippets
from a large-scale Java codebase according to a query written in nat-
ural language. Generally, CodeMatcher leveraged IR techniques to
implement the features of DL-based models, to fuse the advantages
of IR and DL-based models. Experimental results showed that Code-
Matcher can perform code search with industrial-level response
time while outperforming two state-of-the-art DL-based models in
terms of search accuracy substantially. In the near future, we plan
to extend CodeMatcher to support more programming languages
(e.g., Python) and provide more customizable search options.
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