
Investigating and Improving Log Parsing in Practice
Ying Fu

School of Big Data and Software
Engineering, Chongqing University

Chongqing, China
fuying@cqu.edu.cn

Meng Yan∗
School of Big Data and Software

Engineering, Chongqing University
Chongqing, China
mengy@cqu.edu.cn

Jian Xu
Ant Group
China

jimmy.xj@antgroup.com

Jianguo Li∗
Ant Group
China

lijg.zero@antgroup.com

Zhongxin Liu
College of Computer Science and
Technology, Zhejiang University

Hangzhou, China
liu_zx@zju.edu.cn

Xiaohong Zhang
School of Big Data and Software

Engineering, Chongqing University
Chongqing, China
xhongz@cqu.edu.cn

Dan Yang
School of Big Data and Software

Engineering, Chongqing University
Chongqing, China
dyang@cqu.edu.cn

ABSTRACT
Logs are widely used for system behavior diagnosis by automatic
log mining. Log parsing is an important data preprocessing step
that converts semi-structured log messages into structured data
as the feature input for log mining. Currently, many studies are
devoted to proposing new log parsers. However, to the best of our
knowledge, no previous study comprehensively investigates the
effectiveness of log parsers in industrial practice. To investigate the
effectiveness of the log parsers in industrial practice, in this paper,
we conduct an empirical study on the effectiveness of six state-of-
the-art log parsers on 10 microservice applications of Ant Group.
Our empirical results highlight two challenges for log parsing in
practice: 1) various separators. There are various separators in
a log message, and the separators in different event templates or
different applications are also various. Current log parsers cannot
perform well because they do not consider various separators. 2)
Various lengths due to nested objects. The log messages be-
longing to the same event template may also have various lengths
due to nested objects. The log messages of 6 out of 10 microser-
vice applications at Ant Group with various lengths due to nested
objects. 4 out of 6 state-of-the-art log parsers cannot deal with
various lengths due to nested objects. In this paper, we propose
an improved log parser named Drain+ based on a state-of-the-art
log parser Drain. Drain+ includes two innovative components to
address the above two challenges: a statistical-based separators
∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00
https://doi.org/10.1145/3540250.3558947

generation component, which generates separators automatically
for log message splitting, and a candidate event template merging
component, which merges the candidate event templates by a tem-
plate similarity method. We evaluate the effectiveness of Drain+ on
10 microservice applications of Ant Group and 16 public datasets.
The results show that Drain+ outperforms the six state-of-the-art
log parsers on industrial applications and public datasets. Finally,
we conclude the observations in the road ahead for log parsing to
inspire other researchers and practitioners.

CCS CONCEPTS
• Software and its engineering→Maintaining software.

KEYWORDS
Log parsing, Log analysis, Industrial study

ACM Reference Format:
Ying Fu, Meng Yan, Jian Xu, Jianguo Li, Zhongxin Liu, Xiaohong Zhang,
and Dan Yang. 2022. Investigating and Improving Log Parsing in Practice. In
Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’22),
November 14–18, 2022, Singapore, Singapore. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3540250.3558947

1 INTRODUCTION
Logs are designed to record important information during systems
running, such as important status, resource information, and busi-
ness operation information. The rich running information in the
logs enables practitioners to detect system anomalies (e.g., [3] [24]
[27] [37] [45]), diagnose failures (e.g., [1] [4] [21] [30]), and pre-
dict failures (e.g., [2] [9] [10] [25]). Log messages generated by log
statements in source code are semi-structured because the devel-
opers can use free text to record the important information in log
statements based on their experience. Due to the lack of rigorous
logging guidance, the logging styles of different developers in the
same project are diverse.

https://doi.org/10.1145/3540250.3558947
https://doi.org/10.1145/3540250.3558947

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Ying Fu, Meng Yan, Jian Xu, Jianguo Li, Zhongxin Liu, Xiaohong Zhang, and Dan Yang

Log generating

Log parsing

Logging
statement

Raw log

Parsed log

logInfo (“Writing to blocks [blockID1, blockID2,
blockID3]”)

2020-12-23 14:32:23,305 INFO Writing to blocks
[block_7d2a, block_5e34, block_89ef]

Timestamp: 2020-12-23 14:32:23,
Level: INFO
Event template: Writing to blocks <*>, <*>, <*>
Variables: block_7d2a, block_5e34, block_89ef

Figure 1: An example of log parsing.

The goal of log parsing is to extract the important information
in the free text of raw log messages and convert them into a struc-
tured format, as Figure 1 shows. Most of automatic log analysis
methods use structured log messages as input (e.g., [5] [12] [26]
[29] [32] [48]). Therefore, log parsing is an essential process for
automatic log analysis methods. With the development of modern
software systems, the volume, complexity, and diversity of log mes-
sages are increasing. The traditional way of manually designing and
maintaining regex for log parsing becomes very difficult. Therefore,
many automatic log parsers are proposed to assist developers in
software system maintenance activities and service quality assur-
ance operations, such as anomaly detection, failure diagnosis, and
performance diagnosis and improvement. Automatic log parsers
play an important role in Artificial Intelligence for IT Operations
(AIOps) [8] [13] [19] [20] [25].

Traditional source-code-based log parsers [36] [47] required to
access the source code. While accessing the source code is not al-
ways possible such as third-party libraries. Data-driven log parsers
can overcome this limitation of source-code-based log parsers. Data-
driven log parsers apply data mining techniques to parse the log
messages. Data-driven log parsers can be divided into frequent-
pattern-mining-based, clustering-based, heuristic-based, and oth-
ers according to the technology adopted. Frequent-pattern-mining-
based log parsers include SLCT [43], LFA [35], LogCluster [44], and
Logram [6]. The performance of this kind of log parser is sensitive to
the threshold of frequent itemsets. Clustering-based log parsers in-
clude LKE [14], LogSig [42], LogMine [15], SHISO [34], and Lenma
[40]. This kind of log parser mainly uses various similarity mea-
sures for clustering. The performance of this kind of log parser is
sensitive to the pre-defined similarity threshold. Heuristic-based
log parsers include AEL [22], IPLoM [31], and Drain [18]. This kind
of log parser requires more manual participation when construct-
ing grouping conditions. In addition to the above three kinds of
log parsers, there are some other log parsers, such as Spell [11],
which is based on the longest common subsequence, and MoLFI
[33], which is based on the evolutionary algorithm. Although many
log parsers have been proposed, only two recent studies [6] [49]
comprehensively evaluate the log parsers on public datasets. To the
best of our knowledge, no previous study comprehensively evaluate
the log parsers on industrial projects.

To investigate the effectiveness of data-driven log parsers on
industrial projects, we select one or two representative and state-of-
the-art log parsers from each category and evaluate their effective-
ness on the microservice applications of Ant Group1 comprehen-
sively. Six state-of-the-art log parsers (AEL, IPLoM, Lenma, Spell,
Drain, and Logram) are selected. The average parsing accuracy of

1Ant Group, formerly known as Ant Financial, is the owner of one of the world largest
mobile online payment services Alipay.

these log parsers ranges from 0.062 to 0.271, and the F-measure
ranges from 0.240 to 0.639. While the average parsing accuracy of
these log parsers on 16 public datasets ranges from 0.570 to 0.864,
and the F-measure ranges from 0.823 to 0.977. These results show
that the six log parsers perform significantly worse on industrial
microservice applications of Ant Group than on public datasets.
By investigating why the six log parsers perform worse on the
microservice applications of Ant Group and studying the character-
istics of log messages of the microservice applications, we highlight
two challenges for log parsing in practice.

(1) Various separators. Various separators are used in all 10 mi-
croservice applications of Ant Group. There are various separators
in a log message, and the separators in different event templates or
different applications are also various, as shown in Figure 2. Case
1, 2, and 3 are three raw log messages of microservice applications
at Ant Group. Due to confidentiality reasons, some information
in the log messages is represented by *. Case 1 and Case 2 are
generated by different event templates of an application. Case 2
and Case 3 are generated by different applications. We can observe
that the separators used in the three cases are different (Case 1: ",
[]", Case 2: ", ()", and Case 3: ", [] ()"). It is hard to decide which
separators are used when parsing log messages. Current log parsers
use the uniform separator (blank) for parsing log messages. The
mis-splitting caused by various separators will significantly impact
the effectiveness of the log parser, and all the log parsers do not
consider such a challenge.

(2) Various lengths due to nested objects. The log messages
belonging to the same event template may also have various lengths
due to nested objects. The length of the log message refers to the
number of split tokens. A nested object is a composite of container
data types (e.g., dictionary and list) and atomic data types (e.g.,
bool and string). As Figure 3 shown, in Case 5, the nested object
is a hierarchical composite of dictionary, bool, string, and list. The
log messages of 6 out of 10 microservice applications have vari-
ous lengths due to nested objects. The average proportion of the
log messages with various lengths is 0.256 on the 10 microservice
applications. As Figure 3 shown, Case 4 and Case 5 are the log
messages of Ant Group which belong to the same event template.
For confidentiality reasons, some information in the log messages
is represented by *. Due to the null value of the nested objects in
Case 4, the lengths of Case 4 and Case 5 are different. Four of the
six studied log parsers (AEL, IPLoM, Lenma, and Drain) cannot deal
with this case since they assume that the length of the log messages’
content belonging to the same log event should be the same.

In this paper, we propose an improved log parser named Drain+
based on a state-of-the-art log parser Drain. Drain+ includes two
innovative components to address the above challenges: a statistical-
based separators generation component, which generates separa-
tors automatically for log message splitting, and a candidate event
template merging component, which merges the candidate event
templates by a template similarity method.

Specifically, firstly, we comprehensively study the effectiveness
of six state-of-the-art log parsers (AEL, IPLoM, Lenma, Spell, Drain,
and Logram) on 10 microservice applications of Ant Group. Sec-
ondly, we investigate why the state-of-the-art log parsers perform
significantly worse on thesemicroservice applications. Andwe sum-
marize two challenges that the log parsers encountered. Thirdly,

Investigating and Improving Log Parsing in Practice ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

2020/12/1,16:54:04,647,”****: **,AccountNo=<*>,20156
(0b40797e6627,218.**.165.**)

2020/12/1,16:53:42,441,"**hRuleDecisionHelper,20414
36524461,**SwitchResult[is**Out=false,**Value=<nul
l>][0b40a2,218.**.165.**.20]"

Case 1:

Case 2:

2020-12-17 15:23:34,230 [/// -] WARN **-**-ACTION
****[284(TradeResult[resultCode=AE02,tradeError=Tra
deError[childErrors=[],clazzName=com.***,code=****,
parameters=<null>,level=*,info=<null>,property=<null>]
,success=false,errorContext=<null>**EventContext=**E
ventContext[**Code=MC48,****Code=MC51,******C
ode=519,traceID=0185],resultExtInfo=<null>])(0b2)][0b
85, 18.**.165.**]

Case 3:

Figure 2: Examples of various separators in the log messages
of Ant Group.

sys|m_c_p|2efefae3b-725-42bc-ber2-c746exwwqeRZ82,
207f2802a4,Chr_ex,isSupport:false,{brower_bit=<null>,
os=true,bus=false,os_ver=true,b_ls=ture,mhc_b=true,mo
bces=true,j_b= false,mhc}

Case 4:

sys|m_c_p|20cfae3b-7d2a-42bc-bb69-c746ebb7fRZ82,
2e02e4f734,adit,isSupport:false,{brower_bit={create_*:
[*,*,*]*, …},os=true,bus=true,os_ver=true,b_ls=ture,m
hc_b=true,mobces=true,j_b=true,*}

Case 5:

Figure 3: Examples of various lengths due to nested objects
in the log messages of Ant Group.

we propose a log parser named Drain+ that includes two innova-
tive components to deal with the two challenges of log parsing,
especially on industrial projects. Fourthly, we investigate the ef-
fectiveness of two innovative components of Drain+ (automatic
separator generation and template merging). Finally, we conclude
the observations in the road ahead for log parsing to inspire other
researchers and practitioners. In summary, the main contributions
of the paper are as follows:

(1) We conduct an empirical study to evaluate the effectiveness
of six log parsers on industrial microservice applications. The re-
sults show that current log parsers cannot perform well in practice
compared to their effectiveness on public datasets. We highlight
two challenges that limit the effectiveness of log parsing in practice,
i.e., various separators and various lengths due to nested objects.

(2) We propose an improved log parser named Drain+ based on
Drain. Drain+ includes two innovative components: a statistical-
based separators generation component, which can deal with vari-
ous separators, and a candidate event template merging component,
which can deal with various lengths due to nested objects.

(3) We evaluate the effectiveness of Drain+ on 10 microservice
applications of Ant Group and 16 public datasets. The evaluation
results show that Drain+ outperforms the six state-of-the-art log
parsers on industrial microservice applications and public datasets.

Paper organization. The remainder of the paper is organized
as follows. Section 2 presents the background of log parsing. Sec-
tion 3 presents our study setup, including the log datasets, the log
parsing process, the studied log parsers, and the used evaluation
measures. Section 4 presents an empirical study on the log messages
of microservice applications at Ant Group. Section 5 presents the

Raw log messages

Log event templates

Log preprocessing

Log grouping or partition

Templates generation

Figure 4: The framework of log parsing.

design of Drain+. Section 6 presents our study results. Section 7
discusses the threats to the validity of our evaluation and how far
are log parsing. Section 8 surveys prior work related to log parsing.
Section 9 concludes the paper.

2 BACKGROUND
2.1 An Overview of Log Parsing Process
The log parsing process involves several key steps, as Figure 4
shows:

Log preprocessing. This step mainly contains two processing:
1) Content preprocessing. Log parsers extract the log messages’
content by using pre-defined regular expressions and removing
some common variables by regular expressions, such as IP addresses.
The regular expressions used in the two processing are defined
manually based on domain knowledge. It is worth noting that the
processing of common variables is not a necessary step. Some log
parsers need processing before parsing, while others can parse
raw logs directly. 2) Word splitting. After extracting the content of
log messages, the content needs to be split into tokens. This is an
important processing step before applying various techniques for
log grouping or log partition. The effect of the content splitting has
a significant impact on the log parsing accuracy.

Log grouping or partition. After content splitting, different
log parsers use different techniques to group or partition the log
messages. This step is the most important processing of log parsing.
The logmessages that are considered to belong to the same template
by the log parser are grouped.

Templates generation. After log messages grouping, the event
templates contained in log messages are generated. The tokens
contained in all log messages which belong to the same group are
considered static text. The other tokens are considered dynamic
variables and replaced by the pre-defined dynamic variables sym-
bols. It is worth noting that the frequent occurrence of dynamic
variables can have a negative impact on log parsing.

2.2 Studied Automatic Log Parsers
Currently, many data-driven-based log parsers have been proposed.
The data-driven-based log parsers can be classified into four cate-
gories according to the techniques adopted, including heuristics-
based, clustering-based, frequent-pattern-mining-based, and longest-
common-subsequence-based. We select one or two state-of-the-art
log parsers from each category as the representatives and evaluate
their effectiveness on the microservice application of Ant Group.
Six log parsers are selected, including AEL [22], IPLoM [31], Lenma
[40], Spell [11], Drain [18], and Logram [6], based on the following
criteria: 1) The log parser does not rely on source code since we

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Ying Fu, Meng Yan, Jian Xu, Jianguo Li, Zhongxin Liu, Xiaohong Zhang, and Dan Yang

Table 1: The studied log parsers.

Log parser Technique Preprocessing Year
AEL Heuristics Yes 2008
IPLoM Heuristics No 2012
Lenma Clustering No 2016
Spell Longest common subsequence No 2016
Drain Heuristics Yes 2017
Logram Frequent pattern mining Yes 2020

cannot access the source code from which the logs are generated;
2) The log parser is of high efficiency; 3) The log parser is repre-
sentative and the state-of-the-art one in its corresponding category.
Table 1 shows the studied log parsers in our study. The second col-
umn represents the technique the log parser adopted, and the third
column represents whether the log parser requires a preprocessing
before starting log parsing.

To make our paper self-contained, we briefly introduce these
approaches:

AEL. AEL is a heuristic-based method proposed by Jiang et al.
[22]. Firstly, AEL uses heuristics to recognize the dynamic tokens
in log messages. Secondly, it separates the log messages into differ-
ent groups according to each log message’s number of words and
parameters. Thirdly, generating the event templates.

IPLoM. IPLoM (Iterative Partitioning Log Mining) is a heuristic-
basedmethod proposed byMakanju et al. [31]. IPLoM adopts an iter-
ative partition strategy based on the characteristics of log messages
to parse logs. IPLoM parses log by three steps iterative partitioning
process. Firstly, partition by the number of tokens in log content.
In this process, the log messages with the same token length are
partitioned into the same groups. The log messages with different
token lengths are partitioned into different groups. Secondly, par-
tition by token position. In this process, IPLoM partitions the log
messages by the column with the least number of variables. Thirdly,
partition by the search for bijection mapping and generating log
event template from every cluster.

Lenma. Lenma is a clustering-based method proposed by Shima
et al. [40]. Firstly, Lenma creates a word length vector and word
vector for each log message. Secondly, it calculates the similarity
between two log messages and clusters of log messages into a group
whose similarity value is larger than the pre-defined threshold.
Thirdly, it generates a log event template for each cluster that has
the same number of words.

Spell. Spell (Streaming parser for event logs using longest-common-
subsequence) is proposed by Du et al. [11]. Spell uses a longest-
common-subsequence-based method to parse log messages. Spell
computes the longest common subsequence of two log messages to
generate the static text of the event template.

Drain. Drain (Depth tree based online log parsing) is a heuristic-
based method proposed by He et al. [18]. Drain uses a fixed-depth
tree to represent the hierarchical relationship between logmessages.
In the first layer of the tree, Drain uses the length of log message
content to group the log messages. So the nodes in the first layer of
the tree are used to represent the log groups whose log messages
are in different log message lengths. The second layer of the tree
uses the tokens in the beginning positions of the log messages to
select the next internal node. The third layer of the tree calculates
the similarity between the log message and the log event template
of each log group.

Logram. The Logram is a frequent-pattern-mining-basedmethod
proposed by Dai et al. [6]. Logram leverages n-grams to parse log
messages. Firstly, Logram uses the log tokens extracted from each
log message to build a 2-gram dictionary and a 3-gram dictionary.
Secondly, it parses log messages by the previously built n-gram
dictionaries. Thirdly, Logram generates an event template for each
log message.

Drain, AEL, and Logram usually need to preprocess log messages
with domain knowledge which is used to remove some common
variables before log parsing to improve parsing accuracy further.
While IPLoM, Lenma, and Spell can parse raw log messages directly
to achieve a good performance [17].

Drain, IPLoM, AEL, and Lenma use the length of log message
content when grouping or partitioning the log messages. They all
assume that the length of the log message content belonging to the
same log event should be the same. However, some log messages
with various lengths belong to the same log event in the industrial
environment. This assumption will limit the performance of these
four parsers in industrial practice. Spell and Logram do not use the
length of log message content. Spell computes the longest common
subsequence of two log messages to generate the static text of the
event template. It assumes the total length of parameter values in a
log is more than half of its size. This assumption will be voidable
in practice. Logram is different from the other log parsers that it
uses the frequent n-grams in the log messages. The core insight of
Logram is that the frequent n-grams are more likely to be static texts
of event templates. Therefore, the accuracy of Logram is sensitive
to the pre-defined threshold of n-gram frequency.

3 EXPERIMENTAL SETUP
3.1 Dataset
Data selection. We use the datasets2 from Ant Group and public
datasets [49]. A summary of the log messages produced by the
microservice applications can be seen in Table 2. A summary of 16
public datasets can be seen in Table 3. We study the log messages
produced by 10 microservice applications of Ant Group. We refer
to the applications as App1 to App10 due to confidentiality reasons.
We select these microservice applications as: 1) Currently, these
microservice applications are running online and used bymillions of
users on a daily basis, and a large volume of the latest log messages
can be collected; 2) They differ in purposes; 3) We can conveniently
communicate with these applications’ operation and maintenance
person when needed.

Data labeling. Data labeling aims to extract the event templates
from log messages. Zhu et al. [49] already extracted the event
templates manually for the public datasets. For the log messages
from Ant Group, 2,000 log messages were randomly selected from
each microservice application for manual event template extraction
as ground truth followed Zhu et al. In Table 2 and Table 3, the
Templates column presents the number of event templates in the
each microservice application. The Avg (length) column presents
the average length of log messages in each microservice application.
2The dataset does not contain any Personal Identifiable Information (PII) and is desen-
sitized and encrypted. Adequate data protection was carried out during the experiment
to prevent the risk of data copy leakage, and the data set was destroyed after the
experiment. Besides, the data set is only used for academic research and does not
represent any real business situation.

Investigating and Improving Log Parsing in Practice ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Table 2: Summary of the log messages produced by the mi-
croservice applications of Ant Group.

App Templates Avg (length) Messages
App1 20 17.00 2,000
App2 14 23.25 2,000
App3 5 99.46 2,000
App4 11 12.25 2,000
App5 61 17.18 2,000
App6 18 16.39 2,000
App7 13 215.68 2,000
App8 6 6.65 2,000
App9 10 49.96 2,000
App10 9 10.62 2,000

Table 3: Summary of 16 public datasets.

Dataset Templates Avg (length) Messages
HDFS 14 7.44 2,000
Hadoop 114 8.19 2,000
Spark 36 8.76 2,000

Zookeeper 50 6.30 2,000
BGL 120 6.32 2,000
HPC 46 3.48 2,000

Thunderbird 149 8.51 2,000
Windows 50 7.93 2,000
Linux 118 8.30 2,000

Andriod 166 5.40 2,000
HealthApp 75 2.80 2,000
Apache 6 6.28 2,000
Proxifier 8 9.35 2,000
OpenSSH 27 8.56 2,000
OpenStack 43 9.01 2,000

Mac 341 9.17 2,000

For the public datasets, we use white space to split the log messages
to compute the length. For the log messages from Ant Group, we
use the separators that are used in the microservice application.

3.2 Evaluation metrics
Accuracy Metric. To quantify the effectiveness of automated log
parsers, we use F-measure and PA (Parsing Accuracy) used in
prior studies [49] [18] as the accuracy metric. F-measure is a typical
evaluation metric for clustering algorithms [39], and it is also used
in the prior log parsing study [17]. The definition of F-measure
is 𝐹 -𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 , where Precision and Recall are
defined as 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, and 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. TP (True

Positive) represents that two log messages with the same log event
are grouped into the same group; FP (False Positive) represents that
two log messages with different log events are grouped into the
same group; FN (False Negative) represents that two log messages
with the same log event are grouped into different groups.

PA is defined by Zhu et al. [49]. The log messages are con-
sidered to parse correctly if all log messages with the same log
event are grouped in one group, and all log messages in the same
group contain the same log event. The definition of PA is 𝑃𝐴 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑎𝑟𝑠𝑒𝑑 𝑙𝑜𝑔 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠

𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑙𝑜𝑔 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠
.

4 AN EMPIRICAL STUDY
To understand the effectiveness of the studied log parsers and the
challenges in industrial practice, we conduct an empirical study on
industrial microservice applications of Ant Group. Here we target
at the following research questions:

• RQ1: How effective are the state-of-the-art log parsers on
industrial applications?

• RQ2:Why do the state-of-the-art log parsers perform sig-
nificantly worse on industrial applications than on public
datasets?

RQ1 aims to explore whether the six state-of-the-art log parsers
are sufficiently good for industrial applications. RQ2 aims to inves-
tigate the challenges of log parsing in industrial practice.

4.1 RQ1: How effective are the state-of-the-art
log parsers on industrial applications?

Motivation. Prior studies [6] [49] evaluate the effectiveness of the
six studied log parsers on 16 public datasets. Their evaluation results
show that these log parsers work well on most public datasets. In
the evaluation of Zhu et al. [49], the average parsing accuracy of
the five log parsers (Drain, IPLoM, Spell, AEL, and Lenma) on the
16 public datasets is greater than 0.7. In the evaluation of Dai et
al. [6], the average accuracy of the three log parsers (Drain, AEL,
and Logram) is greater than 0.7. However, how effective are the six
studied log parsers on industrial applications in practice?

Methods. Firstly, we collect log messages produced by 10 mi-
croservice applications of Ant Group. Secondly, we randomly select
2,000 log messages from each microservice application and manu-
ally extract the event template as ground truth, following the study
of Zhu et al. [49]. Thirdly, we use comma as the uniform separator
to implement the six state-of-the-art log parsers. Please note that
the original implementations of the six log parsers use blank as
the uniform separator. However, blank is rarely used in the log
messages of Ant Group, while comma is the most frequently used
separator. Therefore, we choose to use comma instead of blank as
the uniform separator. Fifthly, we run the six studied log parsers on
16 public datasets following the evaluation of Zhu et al. [49] and
compare the effectiveness of the six log parsers on public datasets
and the microservice applications of Ant Group.

Results. Table 4 shows the average effectiveness of six studied
log parsers on 16 public datasets. Table 5 shows the effectiveness
of six studied log parsers on 10 microservice applications. Based
on these results, we make the following observations:

Table 5 shows the effectiveness of six studied log parsers on 10
microservice applications. The PA row presents the parsing accu-
racy of the log parser. We can observe that the average PA of six
log parsers is less than 0.3, and the average F-measure of six log
parsers is less than 0.8. While as Table 4 shown, the average parsing
accuracy of six log parsers on 16 public datasets is greater than
0.5, and the average F-measure of six log parsers is greater than
0.8. The best average parsing accuracy of six log parsers on the
10 microservice applications is significantly worse than the worst
average parsing accuracy of six log parsers on the 16 public datasets.
And the best average F-measure of six log parsers on the 10 mi-
croservice applications is worse than the worst average F-measure
of six log parsers on the 16 public datasets. This indicates that the
effectiveness of six state-of-the-art log parsers is not sufficiently
good for the log messages of industrial applications.

Summary for RQ1¬ The six state-of-the-art log parsers perform
significantly worse on the microservices applications of Ant Group
than on public datasets.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Ying Fu, Meng Yan, Jian Xu, Jianguo Li, Zhongxin Liu, Xiaohong Zhang, and Dan Yang

Table 4: The average effectiveness of 6 studied log parsers on 16 public datasets.

Average effectiveness
AEL IPLoM Lenma Spell Drain Logram

PA F-measure PA F-measure PA F-measure PA F-measure PA F-measure PA F-measure
0.791 0.968 0.756 0.968 0.766 0.936 0.793 0.961 0.864 0.977 0.570 0.823

The parsing accuracy highlighted in underline is the best among the six log parsers, and the F-measure highlighted in bold is the best among the six log parsers.

Table 5: The effectiveness of 6 studied log parsers on 10 microservice applications.

Dataset AEL IPLoM Lenma Spell Drain Logram
PA F-measure PA F-measure PA F-measure PA F-measure PA F-measure PA F-measure

App1 0.000 0.215 0.000 0.215 0.152 0.513 0.152 0.515 1.000 1.000 0.935 0.985
App2 0.588 0.879 0.001 0.773 0.001 0.728 0.588 0.826 0.001 0.772 0.001 0.123
App3 0.001 0.000 0.001 0.367 0.001 0.000 0.001 0.000 0.432 0.842 0.005 0.085
App4 0.001 0.878 0.003 0.878 0.087 0.057 0.002 0.721 0.087 0.057 0.003 0.229
App5 0.000 0.061 0.000 0.061 0.000 0.034 0.043 0.565 0.509 0.217 0.593 0.284
App6 0.000 0.000 0.000 0.859 0.000 0.000 0.039 0.983 0.039 0.983 0.000 0.983
App7 0.001 0.550 0.004 0.600 0.001 0.284 0.000 0.510 0.004 0.602 0.004 0.475
App8 0.222 0.173 1.000 1.000 0.079 0.023 0.001 0.969 0.300 0.998 0.901 0.999
App9 0.002 0.706 0.282 0.942 0.289 0.756 0.000 0.498 0.281 0.919 0.264 0.938
App10 0.001 0.934 0.002 0.681 0.007 0.001 0.001 0.591 0.007 0.001 0.006 0.179
Average 0.082 0.440 0.129 0.638 0.062 0.240 0.083 0.618 0.266 0.639 0.271 0.528

The parsing accuracy highlighted in underline is the best among the six log parsers, and the F-measure highlighted in bold is the best among the six log parsers.

4.2 RQ2: Why do the state-of-the-art log parsers
perform significantly worse on industrial
applications than on public datasets?

Motivation. The results presented in Subsection 4.1 show that
the average parsing accuracy of the six studied state-of-the-art log
parsers is less than 0.3 on the microservice applications of Ant
Group, which is significantly worse than on public datasets. The
characteristics of log messages can affect the generalization ability
of log parsers [33]. Does the change of log characteristics cause the
poor effectiveness of the log parsers on industrial applications? In
this subsection, we investigate the reasons for the poor effectiveness
of the six log parsers on the microservice applications of Ant Group.

Methods. Firstly, we manually analyze the log messages that
the six log parsers parse incorrectly to investigate the reasons that
caused the poor effectiveness of the six log parsers. As a result,
we observe two factors that may cause poor parsing effectiveness
(i.e., various separators and various lengths due to nested objects).
Secondly, we statistically analyze the distribution of the two factors
on 10microservice applications’ logmessages of Ant Group. Thirdly,
we explore the impact of various separators by comparing the
effectiveness of six studied log parsers using multi separators to
implement vs. original using one uniform separator. We use three
separators to implement the six log parsers and run the six log
parsers on the 10 microservice applications. We chose to use these
separators because the 10 microservice applications all used these
separators. Fourthly, to explore the impact of various lengths due
to nested objects, we investigate the distribution of various lengths
due to nested objects in parsed correctly and incorrectly parsed log
messages, respectively.

Results. As the results are shown in Table 6, Table 7, and Table 8
we make the following observations:

(1) As Table 6 shows, the Various separators column presents
which separators are used in the microservice application. We can
observe that various separators are used in all 10 studied microser-
vice applications. Various separators are used in the log messages
of microservice applications at Ant Group. Since the lack of rigor-
ous specifications to guide developers’ logging practices, different
separators are used by the different developers in several log styles.

Table 6: The characteristics of the log messages of 10 mi-
croservice applications.

Dataset Various-length proportion Various separators
App1 0.000 , [] () -
App2 0.413 , ; [] { } () -
App3 0.365 , [] ()
App4 0.161 , [] () -
App5 0.000 , [] () -
App6 0.000 , [] ()
App7 0.747 , | [] { } ()
App8 0.000 , []
App9 0.637 , ; [] { } () -
App10 0.234 , [] () -
Average 0.256

There are various separators in a log message, and the separators in
different event templates or different applications are not the same.
It is hard to decide which separators are used when parsing log
messages. This is different from public datasets where the uniform
separator (blank) is used in most log messages.

(2) As Table 6 shows, the Various-lengths proportion column
presents the proportion of log messages that belong to the same
event template with various lengths due to nested objects. If log
messages belong to the same event template with various lengths,
all of them are counted as various lengths log messages. As shown
in Figure 3, Case 4 and Case 5 belong to the same event template,
but they are of various lengths due to needed objects. The log
messages of 6 out of 10 microservice applications with various
lengths due to the nested objects, and the average proportion is
0.256.

(3) Table 7 shows the average effectiveness of six studied log
parsers using multi separators to implement vs. original using one
uniform separator on 10microservice applications of Ant Group.We
can observe that the average effectiveness of six log parsers using
multi separators to implement is better than that of six log parsers
using one uniform separator. This indicates that the separator has an
impact on the effectiveness of the log parser. And using one uniform
separator to split the log messages may degrade the effectiveness of
log parsers when there are various separators in the log messages.

(4) Table 8 shows the average proportion of the logmessages with
various lengths in parsed correctly and incorrectly log messages.

Investigating and Improving Log Parsing in Practice ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Table 7: The average effectiveness of six studied log parsers using multi separators to implement vs. original using one uniform
separator on 10 microservice applications.

Average
effectiveness

AEL IPLoM Lenma Spell Drain Logram
PA F-measure PA F-measure PA F-measure PA F-measure PA F-measure PA F-measure

Original 0.082 0.440 0.129 0.638 0.062 0.240 0.083 0.618 0.266 0.639 0.271 0.528
Multi separators 0.157 0.667 0.150 0.662 0.320 0.679 0.303 0.710 0.388 0.716 0.282 0.641

Table 8: The average proportion of the log messages with various lengths in parsed correctly and incorrectly log messages.

Average proportion
of log messages

with various lengths

AEL IPLoM Lenma Spell Drain Logram
parsed
correctly

parsed
incorrectly

parsed
correctly

parsed
incorrectly

parsed
correctly

parsed
incorrectly

parsed
correctly

parsed
incorrectly

parsed
correctly

parsed
incorrectly

parsed
correctly

parsed
incorrectly

0 0.256 0 0.256 0 0.256 0 0.256 0 0.256 0 0.256

We can observe that all the log messages with various lengths are
parsed incorrectly by all six log parsers. This indicates various
lengths due to nested objects have an impact on the effectiveness
of the log parsers.

By analyzing the reasons why the six state-of-the-art log parsers
do not work well on the log messages of microservice applicaitons
at Ant Group and studying the characteristics of log messages, we
obtain the main problems that the log parsers fail to deal with. In
summary, there are the following challenges:

• Various separators. There are various separators in a log
messages. It is hard to decide which separators are used
when parsing log messages.

• Various lengths due to nested objects. The log messages
belong to the same event template may also have various
lengths to nested objects. Four of the six studied log parsers
(AEL, IPLoM, Drain, and Lenma) fail to deal with such cases
since they assume that the length of the log messages’ con-
tent belonging to the same log event should be the same.

Summary for RQ2 ¬ There are two challenges (various sepa-
rators and various lengths due to nested objects) that cause the
poor performance of log parsers on microservice applications of Ant
Group.

5 OUR APPROACH
In this section, we detail the core design of Drain+. The framework
of Drain+ is shown in Figure 5. In the log partition step, we use the
fixed depth tree of Drain to generate the candidate event templates,
because: 1) As the evaluation results shown in Section 4.1, Drain has
comparable average parsing accuracy with Logram which has the
best average parsing accuracy on 10 Microservice applications of
Ant Group and higher F-measure than Logram. And Drain achieves
the best parsing accuracy and F-measure on more Microservice
applications (5 and 4, respectively) of Ant Group than other log
parsers. 2) In the prior study [49], the evaluation results show that
Drain attains the highest accuracy on average and the smallest vari-
ance on the 16 public datasets. 3) Drain has high parsing efficiency
[18]. The detailed step of Drain+ as follows.

Separators generating. Separators are generated for log mes-
sage content splitting by a statistical-based method. Firstly, we
define the candidate separator set. The candidate separators set
includes ", | ; [] { } () - ". Secondly, the occurrences of candidate sep-
arators contained in the log messages are counted for each dataset.
Thirdly, the candidate separators that occur more than the pre-
defined threshold of the log messages are selected as the separators.

Here we set the default threshold to 0.2 and we discuss the impact of
such threshold later. If there is a version update to the microservice
application, the separators will be regenerated and updated.

Log preprocessing. In log preprocessing, we mainly perform
two processing steps. Firstly, we extract the content of the log mes-
sages by using a pre-defined regular expression and replace the
common variables such as IP addresses and simple URL addresses
with variable symbols before log parsing based on domain knowl-
edge. All the log messages of studied applications use the same
regular expression. The previous study [17] has shown that the
processing step of removing common variables can improve the
parsing effectiveness. Secondly, we split the content of log messages
by the separators generated in the generating separators process.

Log partition & templates generation. We use the fixed depth
tree of Drain to generate the candidate event templates. Firstly, us-
ing the length of log messages content to partition the log messages.
Secondly, using the beginning position token to partition the log
messages further. Thirdly, generating the candidate templates.

Templates merging. The fixed depth tree uses the length of log
message content to partition the log message in the first layer of the
tree. It assumes that the length of log message content belonging
to the same log event should be the same. While the length of log
message content belonging to the same log event may not be the
same. To reduce the negative impact caused by the assumption
in the fixed depth tree, we use asymmetric Jaccard similarity to
merge the candidate templates generated by the fixed depth tree.
Jaccard similarity is computed as the number of shared terms over
the number of all unique terms in both strings [38]. Firstly, we
split all event templates into tokens and remove special symbols
such as variable symbols. Only static text tokens are left. Secondly,
generate event template tokens vector space by Sklearn [41]. The
event templates 𝑇1 and 𝑇2 are transformed to vectors (𝑇1𝑣𝑒𝑐 , 𝑇2𝑣𝑒𝑐).
Thirdly, we calculate the similarity of 𝑇1 and 𝑇2 based on the candi-
date template vectors. If the similarity of 𝑇1 and 𝑇2 is greater than
the pre-defined threshold, we merge𝑇1 and𝑇2 and update the event
template. Here we set the default threshold to 0.6 and we discuss
the impact of such threshold later. When new log messages come,
Drain+ calculates the similarity between the new candidate tem-
plates and the existing event template if new candidate templates
are generated. If the similarity is greater than 0.6, Drain+ merges
the new candidate templates into the current event templates; else,
it creates new event templates.

𝐽 (𝑇1,𝑇2) =
|𝑇1𝑣𝑒𝑐 ∩𝑇2𝑣𝑒𝑐 |
|𝑇1𝑣𝑒𝑐 ∪𝑇2𝑣𝑒𝑐 |

(1)

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Ying Fu, Meng Yan, Jian Xu, Jianguo Li, Zhongxin Liu, Xiaohong Zhang, and Dan Yang

Writing to block id_0236
Reading from block id_0xd6
Receiving block id_0es6
Deleting block id_0126
Writing to block id_0536
Receiving block id_0e6y
Checking u_03 authorization
……

Raw log messages
Writing to block <*>
Reading from block <*>
Receiving block <*>
Deleting block <*>
Checking <*> authorization
……

Log event templates

Templates generation
…

Log partition

Templates generation

Templates merging

Templates merging

Separators generation

vec n-5vec 1

vec 5

vec 6
vec 10 vec n

… …… …

vec n-5vec 1
vec 10

vec 5
vec n vec 6

…

Candidate separators

Log preprocessing

Jaccard similarity calculate

Log preprocessing

statistical-based separators gen

…… …

Figure 5: The framework of Drain+.

The main differences between Drain+ and Drain include: 1)
Drain+ uses a statistical-based method to automatically generate
separators for log message splitting instead of a uniform separator;
2) Drain+ uses template similarity to merge the candidate event
templates to deal with the various lengths due to nested objects.

6 EVALUATION
6.1 Research Questions
In this paper, Drain+ makes two improvements to the Drain to
deal with the challenges of log parsing on industrial applications
described in Section 4.2. In this section, we intend to investigate
the following two research questions:

RQ3: How effective is Drain+ on industrial applications of Ant
Group and public datasets?

RQ4: How do the innovative components contribute to Drain+?

6.2 RQ3: How effective is Drain+ on industrial
applications of Ant Group and public
datasets?

Motivation. The two challenges (various separators and various
lengths due to nested objects) in log parsing pose an obstacle to the
six state-of-the-art log parsers. We propose an improved log parser
named Drain+ that can deal with such challenges based on Drain.

In this section, we want to investigate the effectiveness of Drain+
on the microservice applications of Ant Group. We also investigate
whether Drain+ can also be effective on public datasets or not.

Methods. Firstly, we run Drain+ on 10 microservice applications
of Ant Group to evaluate the effectiveness of Drain+ on industrial
projects; Secondly, we run Drain+ on 16 public datasets to evaluate
the effectiveness of Drain+ on public datasets. Drain+ is only com-
pared to Drain because Drain has the best average effectiveness
among the six parsers on public datasets.

Results. As the results are shown in Table 9 and Table 10, we
make the following observations:

(1) Table 9 shows the effectiveness of Drain+ on the log messages
of the microservice applications at Ant Group. The PA row presents
the parsing accuracy of the log parser. We can observe that the
average PA of Drain+ is 0.846 and the average F-measure is 0.958,
which are both better than Drain. Drain+ improves Drain by 218.0%
in terms of average PA and by 49.9% in terms of average F-measure.
We can observe that the PA of Drain on App2, App7, and App10 are
close to 0. The poor PA of Drain on App2 and App10 is mainly due
to under-splitting, which causes Drain to partition the logs that
belong to one event template into multiple event templates. The
poor PA of Drain on App7 is mainly caused by the log messages
with various lengths due to nested objects. The proportion of the

Table 9: The effectiveness of Drain+ on 10 microservice ap-
plications.

Dataset Drain Drain+
PA F-measure PA F-measure

App1 1.000 1.000 1.000 1.000
App2 0.001 0.772 0.590 0.660
App3 0.432 0.842 0.982 1.000
App4 0.087 0.057 0.902 1.000
App5 0.509 0.217 0.990 1.000
App6 0.039 0.983 0.912 1.000
App7 0.004 0.602 0.490 0.990
App8 0.300 0.998 1.000 1.000
App9 0.281 0.919 0.590 0.930
App10 0.007 0.001 1.000 1.000
Average 0.266 0.639 0.846 0.958

Table 10: The effectiveness of Drain+ on public datasets.

Dataset Drain Drain+
PA F-measure PA F-measure

HDFS 0.998 1.000 1.000 1.000
Hadoop 0.948 0.999 0.954 0.999
Spark 0.920 0.992 0.920 0.992

Zookeeper 0.967 1.000 0.967 1.000
BGL 0.941 0.999 0.941 0.999
HPC 0.887 0.991 0.887 0.991

Thunderbird 0.955 0.999 0.969 1.000
Windows 0.997 1.000 1.000 1.000
Linux 0.690 0.992 0.690 0.992

Andriod 0.911 0.996 0.913 0.995
HealthApp 0.780 0.918 0.901 0.993
Apache 1.000 1.000 1.000 1.000
Proxifier 0.527 0.785 1.000 1.000
OpenSSH 0.788 0.999 0.788 0.999
OpenStack 0.733 0.993 0.807 0.992

Mac 0.787 0.975 0.856 0.980
Average 0.864 0.977 0.912 0.996

log messages with various lengths in App7 is 0.747. We can also
observe that the F-measure of Drain+ on App2 isn’t as good as
that of Drain. We investigate the reason and find that the log mes-
sages of App2 contain multilingual long descriptions of the product.
Some separators in the descriptions lead to excessively splitting of
log content. At the same time, some variables in the descriptions
are identified as static text, which affects the clustering effect of
candidate templates.

(2) Table 10 shows the effectiveness of Drain+ on 16 public
datasets. We can observe that Drain+ can also work well on the 16
public datasets. In general, Drain+ improves Drain by 5.6% in terms
of average PA and by 1.9% in terms of average F-measure on the
log messages of the 16 public datasets.

Summary for RQ3 ¬ Drain+ significantly improves Drain on
microservice applications of Ant Group by 218.0% in terms of PA and
by 49.9% in terms of F-measure on average. Additionally, Drain+
also outperforms Drain on public datasets on average.

Investigating and Improving Log Parsing in Practice ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

6.3 RQ4: How do the innovative components
contribute to Drain+?

Motivation. We propose an improved log parser Drain+ that in-
cludes two innovative components (statistical-based separators gen-
eration and candidate event templates merging), based on Drain.
The two innovative components can deal with the challenges de-
scribed in Section 4.2. In this section, we conduct an ablation experi-
ment to investigate how the two innovative components contribute
to Drain+.

Methods. To investigate how the two innovative components
(statistical-based separators generation and candidate event tem-
plates merging) contribute to Drain+, we compare Drain+ with two
of its incomplete variants: 1) Drain + automatic separator genera-
tion component (for short, Drain_Auto_sep); 2) Drain + candidate
event templates merging component (for short, Drain_Merging).
Comparing Drain with Drain_Auto_sep, we can know the con-
tribution of the statistical-based separator generation component.
Comparing Drain with Drain_Merging, we can know the contribu-
tion of the candidate event templates merging component.

Results. As the results are shown in Table 11, we make the
following observations:

(1) The second row presents the average effectiveness of Drain_A-
uto_sep on 10 microservice applications. We can observe that the
average effectiveness of Drain_Auto_sep is better than that of Drain.
Thus, we conclude that the statistical-based separators component
can improve the parsing effectiveness.

(2) The third row presents the average effectiveness of Drain_Mer-
ging on 10 microservice applications. We can observe that the av-
erage effectiveness of Drain_Merging is better than that of Drain.
Thus, we conclude that the candidate event templates merging
component can improve the parsing effectiveness.

Table 11: The results of ablation experiment.

Drain + Auto_sep + Merging PA F-measure
✓ 0.266 0.639
✓ ✓ 0.560 0.857
✓ ✓ 0.415 0.836
✓ ✓ ✓ 0.846 0.958

The last row indicates Drain+.

Summary for RQ4¬ Both two innovative components (statistical-
based separators generation and candidate event templates merging)
make important contributions to Drain+.

7 DISCUSSION
7.1 The effects of different parameters
There are two important parameters in Drain+: the separators’ oc-
currence threshold in the statistical-based separators generation
component and the similarity threshold in the candidate event
templates merging component. We set the default separators’ oc-
currence threshold to 0.2. We explore the effect of the separators’
occurrence threshold from 0.1 to 1 (step = 0.1). We find that if the
separators’ occurrence threshold is small than 0.2, one token is
split into multiple tokens. If the separators’ occurrence threshold is
greater than 0.4, that can result in multiple tokens not being split.
We set the default similarity threshold to 0.6. We explore the effect
of the similarity threshold from 0.1 to 1 (step = 0.1). We find that

if the similarity threshold is small than 0.5, log messages that do
not belong to the same event template will be merged incorrectly
on most microservice applications. If the similarity threshold is
greater than 0.8, part of the log messages with various lengths will
not be merged on most microservice applications. Thus, our default
settings are reasonable.

7.2 Threats to validity
External validity. Threats to external validity relate to the gen-
eralizability of our results. In this work, we evaluate Drain+ on
10 microservice applications of Ant Group. Drain+ achieves an
average PA 0.846 and an average F-measure 0.958. Since only one
company’s log messages are used in our case study, we cannot claim
that Drain+ can achieve high PA and F-measure on other compa-
nies’ log messages. However, although Drain+ is proposed based on
the findings on the datasets of one company, it is a general-purpose
method and can be easily adopted in other projects. Our evaluation
results on 16 public datasets confirm this argument.

Internal validity. Threats to internal validity relate to the po-
tential deficiency of our work. Drain+ includes two innovative
components to deal with the two challenges of log parsing. How-
ever, Drain+ cannot generate the separators based on the context
information of log messages. For example, Drain+ cannot determine
the candidate separators in a product description are not used as
separators on App2. Nevertheless, Drain+ achieves higher PA and
F-measure than the six studied log parsers on industrial applica-
tion and public datasets. In future work, we will continue to study
the industrial log message parsing based on our findings in this
work. Drain+ can be further improved by optimizing the separator
generation based on the context information of log messages.

7.3 Road ahead for log parsing
Based on our findings, we now present some observations about
the road ahead for log parsing.

Evaluating log parser on current public datasets is not
enough. Our experiment results show that the six state-of-the-art
log parsers work significantly worse on the Microservice applica-
tions of Ant Group than on public datasets. The average parsing
accuracy is less than 0.3, and the average F-measure is less than
0.65. This indicates that the six state-of-the-art log parsers are still
not powerful enough for industrial applications, and evaluating
log parsers on current public datasets is not enough. We suggest
evaluating the log parser on both public datasets and industrial
projects and expanding public dataset with the projects that use
more diverse logging practices.

We need an adaptive log parser. Firstly, adapting the various
separators in a more granular way. We need a log parser that can
determine whether a candidate separator is a separator based on its
context information. For example, in App2, the candidate separators
in the product description are not used as separators. Secondly,
adapting the changes of log characteristics by incremental learning
or fine-tuning. We need a log parser that can automatically learn
the characteristics from log messages to deal with the changes
of log characteristics rather than make assumptions based on log
characteristics to build the model. For example, Drain, IPLoM, AEL,
and Lenma use the characteristic that the length of log messages

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Ying Fu, Meng Yan, Jian Xu, Jianguo Li, Zhongxin Liu, Xiaohong Zhang, and Dan Yang

when building the model. This causes their performance to degrade
when the log characteristics change significantly.

8 RELATEDWORK
This paper investigates the effectiveness of six state-of-the-art log
parsers comprehensively on industrial applications and proposes an
improved log parser named Drain+ based on Drain. Therefore, we
divide our related work into two aspects: log parsing and empirical
study of log parsing.

8.1 Log parsing
In recent years, log parsing has been widely studied, and many log
parsers have been proposed. In general, existing log parsers can be
categorized into rule-based, source-code-based, and data-driven-
based log parsers.

Rule-based log parsers mainly used heuristic rules designed by
developers or researchers manually to parse log messages [7] [16].
The challenges of rule-based parsing include two aspects: first, it
requires substantial human effort to construct the rules and main-
tain the rules as evolution of logging statements [23] [46]; second,
the coverage of these methods is limited.

Source-code-based log parsers mainly used static analysis tech-
niques to generate log event templates by analyzing the log state-
ment in the source code. Xu et al. [47] used static source analysis
to extract all log printing statements from the source code and
types of variables contained in the log messages. Nagappan et al.
[36] presented a cost-effective automated approach to parse the log
lines in code into sequences of events. Due to source code often
being unavailable for log parsing and various difficulties may be
encountered when using static analysis technology for parsing,
source code-based parsing is less popular than data-driven parsing.

Data-driven-based log parsers mainly use data mining tech-
niques to parse log messages. Data-driven-based log parsers can be
classified into heuristic-based, clustering-based, frequent-pattern-
mining-based, and others according to the technology adopted.
Heuristic-based log parsers include AEL [22], IPLoM [31], and Drain
[18]. This kind of log parser mainly uses the characteristics of log
messages and the conditions defined by experts to group log mes-
sages, then generate event templates from groups. Heuristic-based
log parsers require more expert experience. Clustering-based log
parsers include LKE [14], LogSig [42], LogMine [15], SHISO [34],
and Lenma [40]. This kind of log parser mainly uses various simi-
larity measures for clustering. The similarity between log messages
in the same cluster is less than the pre-defined threshold, and the
similarity between log messages of different clusters is greater than
the threshold. The performance of clustering-based log parsers is
sensitive to the pre-defined similarity threshold. Frequent-pattern-
mining-based log parsers include SLCT [43], LFA [35], LogCluster
[44], and Logram [6]. The general procedures of this kind of log
parser are 1) traversing log messages and constructing frequent
itemsets; 2) grouping log messages based on the frequent itemsets,
and log messages that are considered to belong to the same event
template are grouped into a cluster; 3) generating event templates
from each cluster. The performance of this kind of log parser is sen-
sitive to the threshold of frequent itemsets. In addition to the above
three kinds of log parser, there are other log parsers, such as Spell

[11] uses the longest common subsequence algorithm to recognize
the static text in the log messages, then generate event templates.
MoLFI [33] is based on the evolutionary algorithm. UniParser [28]
is based on the deep learning algorithm. In this paper, we pro-
pose an improved log parser named Drain+ based on Drain. Drain+
enhances Drain with two innovative components: the statistical-
based separator generation component and the candidate template
merging component.

8.2 The empirical study of log parsing
In recent years, some empirical studies have investigated the effec-
tiveness of parsing parsers on public datasets. He. et al. [17] have
conducted an evaluation study of four representative log parsers
(SLCT, IPLoM, LKE, and LogSig) on five datasets. They package the
four log parsers into a toolkit and open source it. Zhu et al. [49]
have made a comprehensive evaluation study of 13 log parsers on 16
public datasets. Our work contains an empirical study of automatic
log parsing but differs from existing studies several aspects. Firstly,
we comprehensively evaluate the six state-of-the-art log parsers
on 10 industrial microservice applications. Secondly, we study the
characteristics of the log messages of the 10 microservice applica-
tions. The results highlight two challenges (various separators and
various lengths due to nested objects) of log parsing in practice. In
addition, we propose an improved log parser named Drain+ based
on the findings of our empirical study.

9 CONCLUSION
In this work, firstly, we comprehensively study the effectiveness of
six state-of-the-art log parsers (AEL, IPLoM, Lenma, Spell, Drain,
and Logram) on 10 microservice applications of Ant Group. The
evaluation results show that the state-of-the-art log parsers per-
form significantly worse on the 10 microservice applications than
on public datasets. Secondly, we investigate why the state-of-the-
art log parsers perform significantly worse on the 10 microservice
applications. Our empirical results highlight two challenges (vari-
ous separators and various lengths due to nested objects) for log
parsing in practice. Thirdly, we propose an improved log parser
named Drain+ that includes two innovative components to deal
with the two challenges of log parsing. We conduct an extensive
experiment on 10 microservice applications of Ant Group and 16
public datasets to evaluate the effectiveness of Drain+. The results
show that Drain+ outperforms the state-of-the-art log parsers on
industrial applications and public datasets. Fourthly, we conduct
an ablation study to investigate the contribution of two innova-
tive components of Drain+. The results show that both innovative
components make important contributions to Drain+. Finally, we
conclude the observations in the road ahead for log parsing to
inspire other researchers and practitioners.

Acknowledgment. This work was supported in part by the Na-
tional Key Research andDevelopment Project (No. 2018YFB2101200),
the Fundamental Research Funds for the Central Universities (No.
2022CDJKYJH001), the Natural Science Foundation of Chongqing
(No. cstc2021jcyj-msxmX0538), the Postdoc Foundation of Chongqi-
ng (No. 2020LY13), and the research fund fromAnt Group. Zhongxin
Liu gratefully acknowledges the support of Zhejiang University
Education Foundation Qizhen Scholar Foundation.

Investigating and Improving Log Parsing in Practice ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

REFERENCES
[1] Anton Babenko, Leonardo Mariani, and Fabrizio Pastore. 2009. Ava: Automated

interpretation of dynamically detected anomalies. In Proceedings of the eighteenth
international symposium on Software testing and analysis. 237–248.

[2] Eduardo Berrocal, Li Yu, Sean Wallace, Michael E Papka, and Zhiling Lan. 2014.
Exploring void search for fault detection on extreme scale systems. In 2014 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE, 1–9.

[3] Jakub Breier and Jana Branišová. 2015. Anomaly detection from log files using
data mining techniques. In Information Science and Applications. Springer, 449–
457.

[4] An Ran Chen. 2019. An empirical study on leveraging logs for debugging pro-
duction failures. In 2019 IEEE/ACM 41st International Conference on Software
Engineering: Companion Proceedings (ICSE-C). IEEE, 126–128.

[5] Mike Chen, Alice X Zheng, Jim Lloyd, Michael I Jordan, and Eric Brewer. 2004.
Failure diagnosis using decision trees. In International Conference on Autonomic
Computing, 2004. Proceedings. IEEE, 36–43.

[6] Hetong Dai, Heng Li, Che Shao Chen, Weiyi Shang, and Tse-Hsun Chen. 2020.
Logram: Efficient log parsing using n-gram dictionaries. IEEE Transactions on
Software Engineering (2020).

[7] Carlos Viegas Damasio, Peter Fröhlich, Wolfgang Nejdl, Luis Moniz Pereira,
and Michael Schroeder. 2002. Using extended logic programming for alarm-
correlation in cellular phone networks. Applied Intelligence 17, 2 (2002), 187–202.

[8] Yingnong Dang, Qingwei Lin, and Peng Huang. 2019. AIOps: real-world chal-
lenges and research innovations. In 2019 IEEE/ACM 41st International Conference
on Software Engineering: Companion Proceedings (ICSE-C). IEEE, 4–5.

[9] Anwesha Das, FrankMueller, and Barry Rountree. 2020. Aarohi: Making real-time
node failure prediction feasible. In 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 1092–1101.

[10] Anwesha Das, Frank Mueller, Charles Siegel, and Abhinav Vishnu. 2018. Desh:
deep learning for system health prediction of lead times to failure in hpc. In
Proceedings of the 27th International Symposium on High-Performance Parallel and
Distributed Computing. 40–51.

[11] Min Du and Feifei Li. 2018. Spell: Online streaming parsing of large unstructured
system logs. IEEE Transactions on Knowledge and Data Engineering 31, 11 (2018),
2213–2227.

[12] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
1285–1298.

[13] Nosayba El-Sayed, Hongyu Zhu, and Bianca Schroeder. 2017. Learning from fail-
ure acrossmultiple clusters: A trace-driven approach to understanding, predicting,
and mitigating job terminations. In 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 1333–1344.

[14] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. 2009. Execution anomaly
detection in distributed systems through unstructured log analysis. In 2009 ninth
IEEE international conferenAbstracting log lines to log event types for mining
software system logsce on data mining. IEEE, 149–158.

[15] Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui Zhang, Guofei Jiang, and
Abdullah Mueen. 2016. Logmine: Fast pattern recognition for log analytics.
In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management. 1573–1582.

[16] Stephen E Hansen and E Todd Atkins. 1993. Automated System Monitoring and
Notification with Swatch.. In LISA, Vol. 93. 145–152.

[17] Pinjia He, Jieming Zhu, Shilin He, Jian Li, and Michael R Lyu. 2016. An evaluation
study on log parsing and its use in log mining. In 2016 46th IEEE/IFIP international
conference on dependable systems and networks (DSN). IEEE, 654–661.

[18] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. 2017. Drain: An online
log parsing approach with fixed depth tree. In 2017 IEEE International Conference
on Web Services (ICWS). IEEE, 33–40.

[19] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R Lyu, and
Dongmei Zhang. 2018. Identifying impactful service system problems via log
analysis. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
60–70.

[20] Peng Huang, Chuanxiong Guo, Jacob R Lorch, Lidong Zhou, and Yingnong Dang.
2018. Capturing and enhancing in situ system observability for failure detection.
In 13th {USENIX} Symposium on Operating Systems Design and Implementation
(OSDI). 1–16.

[21] Tong Jia, Pengfei Chen, Lin Yang, Ying Li, Fanjing Meng, and Jingmin Xu. 2017.
An approach for anomaly diagnosis based on hybrid graph model with logs for
distributed services. In 2017 IEEE International Conference on Web Services (ICWS).
IEEE, 25–32.

[22] Zhen Ming Jiang, Ahmed E Hassan, Parminder Flora, and Gilbert Hamann. 2008.
Abstracting execution logs to execution events for enterprise applications. In
2008 The Eighth International Conference on Quality Software. IEEE, 181–186.

[23] Suhas Kabinna, Cor-Paul Bezemer, Weiyi Shang, Mark D Syer, and Ahmed E
Hassan. 2018. Examining the stability of logging statements. Empirical Software

Engineering 23, 1 (2018), 290–333.
[24] Van-Hoang Le and Hongyu Zhang. 2021. Log-based anomaly detection with-

out log parsing. In 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 492–504.

[25] Qingwei Lin, Ken Hsieh, Yingnong Dang, Hongyu Zhang, Kaixin Sui, Yong
Xu, Jian-Guang Lou, Chenggang Li, Youjiang Wu, Randolph Yao, et al. 2018.
Predicting node failure in cloud service systems. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 480–490.

[26] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen.
2016. Log clustering based problem identification for online service systems. In
2016 IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C). IEEE, 102–111.

[27] Fucheng Liu, Yu Wen, Dongxue Zhang, Xihe Jiang, Xinyu Xing, and Dan Meng.
2019. Log2vec: a heterogeneous graph embedding based approach for detecting
cyber threats within enterprise. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. 1777–1794.

[28] Yudong Liu, Xu Zhang, Shilin He, Hongyu Zhang, Liqun Li, Yu Kang, Yong Xu,
Minghua Ma, Qingwei Lin, Yingnong Dang, et al. 2022. UniParser: A Unified Log
Parser for Heterogeneous Log Data. In Proceedings of the ACM Web Conference
2022. 1893–1901.

[29] Jian-Guang Lou, Qiang Fu, Shengqi Yang, Ye Xu, and Jiang Li. 2010. Mining
Invariants from Console Logs for System Problem Detection.. In USENIX Annual
Technical Conference. 1–14.

[30] Jie Lu, Feng Li, Lian Li, and Xiaobing Feng. 2018. Cloudraid: hunting concurrency
bugs in the cloud via log-mining. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 3–14.

[31] Adetokunbo Makanju, A Nur Zincir-Heywood, and Evangelos E Milios. 2011. A
lightweight algorithm for message type extraction in system application logs.
IEEE Transactions on Knowledge and Data Engineering 24, 11 (2011), 1921–1936.

[32] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao
Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, et al. 2019. LogAnomaly: Unsupervised
Detection of Sequential and Quantitative Anomalies in Unstructured Logs.. In
IJCAI, Vol. 7. 4739–4745.

[33] Salma Messaoudi, Annibale Panichella, Domenico Bianculli, Lionel Briand, and
Raimondas Sasnauskas. 2018. A search-based approach for accurate identifica-
tion of log message formats. In 2018 IEEE/ACM 26th International Conference on
Program Comprehension (ICPC). IEEE, 167–16710.

[34] Masayoshi Mizutani. 2013. Incremental mining of system log format. In 2013
IEEE International Conference on Services Computing. IEEE, 595–602.

[35] Meiyappan Nagappan and Mladen A Vouk. 2010. Abstracting log lines to log
event types for mining software system logs. In 2010 7th IEEE Working Conference
on Mining Software Repositories (MSR). IEEE, 114–117.

[36] Meiyappan Nagappan, Kesheng Wu, and Mladen A Vouk. 2009. Efficiently
extracting operational profiles from execution logs using suffix arrays. In 2009
20th International Symposium on Software Reliability Engineering. IEEE, 41–50.

[37] Animesh Nandi, Atri Mandal, Shubham Atreja, Gargi B Dasgupta, and Subhrajit
Bhattacharya. 2016. Anomaly detection using program control flow graph min-
ing from execution logs. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 215–224.

[38] R. Real and J. M. Vargas. 1996. The Probabilistic Basis of Jaccard’s Index of
Similarity. Systematic Biology 45, 3 (1996), 380–385.

[39] Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. 2008. Intro-
duction to information retrieval. Vol. 39. Cambridge University Press Cambridge.

[40] Keiichi Shima. 2016. Length matters: Clustering system log messages using
length of words. arXiv preprint arXiv:1611.03213 (2016).

[41] sklearn. 2022. https://scikit-learn.org/stable/.
[42] Liang Tang, Tao Li, and Chang-Shing Perng. 2011. LogSig: Generating sys-

tem events from raw textual logs. In Proceedings of the 20th ACM international
conference on Information and knowledge management. 785–794.

[43] Risto Vaarandi. 2003. A data clustering algorithm for mining patterns from event
logs. In Proceedings of the 3rd IEEE Workshop on IP Operations & Management
(IPOM). IEEE, 119–126.

[44] Risto Vaarandi and Mauno Pihelgas. 2015. Logcluster-a data clustering and
pattern mining algorithm for event logs. In 2015 11th International conference on
network and service management (CNSM). IEEE, 1–7.

[45] Bin Xia, Yuxuan Bai, Junjie Yin, Yun Li, and Jian Xu. 2020. LogGAN: a Log-level
Generative Adversarial Network for Anomaly Detection using Permutation Event
Modeling. Information Systems Frontiers (2020), 1–14.

[46] Wei Xu. 2010. System problem detection by mining console logs. Ph. D. Dissertation.
UC Berkeley.

[47] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I Jordan. 2009.
Detecting large-scale system problems by mining console logs. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles. 117–132.

[48] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, et al. 2019. Robust log-based
anomaly detection on unstable log data. In Proceedings of the 2019 27th ACM

https://scikit-learn.org/stable/

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Ying Fu, Meng Yan, Jian Xu, Jianguo Li, Zhongxin Liu, Xiaohong Zhang, and Dan Yang

Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 807–817.

[49] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, andMichael R
Lyu. 2019. Tools and benchmarks for automated log parsing. In 2019 IEEE/ACM

41st International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE, 121–130.

	Abstract
	1 Introduction
	2 Background
	2.1 An Overview of Log Parsing Process
	2.2 Studied Automatic Log Parsers

	3 Experimental Setup
	3.1 Dataset
	3.2 Evaluation metrics

	4 An empirical study
	4.1 RQ1: How effective are the state-of-the-art log parsers on industrial applications?
	4.2 RQ2: Why do the state-of-the-art log parsers perform significantly worse on industrial applications than on public datasets?

	5 Our approach
	6 Evaluation
	6.1 Research Questions
	6.2 RQ3: How effective is Drain+ on industrial applications of Ant Group and public datasets?
	6.3 RQ4: How do the innovative components contribute to Drain+?

	7 Discussion
	7.1 The effects of different parameters
	7.2 Threats to validity
	7.3 Road ahead for log parsing

	8 Related Work
	8.1 Log parsing
	8.2 The empirical study of log parsing

	9 Conclusion
	References

